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Summary so far

1.Explored two prominent fairness measures:
DDP and DEO

2.Studied one fair classifier based on mutual information.

3.Investigated another based on kernel density
estimation.



Revisit: Five aspects for trustworthy Al

A recent progress: Roh-Lee-Whang-Suh, ICML20

fairness robustness

explainability

value
alignment

transparency



Today’s lecture

Will explore the recent work on fairness & robustness,
and discuss other contexts.

1. Introduce a robustness issue that arises In fair
classifiers.

2. Study a recent technigue that ensures fairness in
the presence of data poisoning.

3. Discuss other contexts such as fair recommender
systems and fair ranking.

4. Conclude the tutorial.



Robustness in fair classifiers?

It means: ensuring negligible performance
degradation due to data poisoning.

Data poisoning refers to any negative action made on
training data, such as adding noisy or subjective (or
possibly adversarial) perturbation.



A challenge

Turns out: Accuracy-vs-fairness tradeoff is significantly
worsen In the presence of data poisoning.
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Hence: Needs a fair classifier also being robust to
data poisoning.



Insights from the prior work

Recall: Ml-based optimization for a fair classifier

1_
min ZECE @GN+ X I(Z,Y)

Turns out: Mutual information can also be
iInstrumental in equipping the robustness aspect.



ldea for ensuring robustness

Impose a constraint on a classifier hard-decision Y :

(X,Z,Y) acts as a clean data.

This way: Can sanitize data indirectly.

Issue: Clean data may not be often available especially
when we target data poisoning scenarios.

To address this issue, we employ an additional clean

yet small validation dataset
I

5-10% relative to the original real data



How to use clean validation set?

Impose a constraint on a classifier hard-decision Y :

(X,Z,Y) acts as a clean data.

(@) (%) (Z))}mval

Clean validation set: {(z. .1, 2.1, Yo ) b3

Introduce a new random variable, say V, such that:

_ <, (X,Z,?) if V=1;
(XvathaIaK/al) it V=0.

(X,Z,Y) =

\.

The constraint is then translated to: I(V;X,Z,Y) =

0



Optimization for a fair and robust classifier

[Roh-Lee-Whang-Suh, ICML20]:

1— A — A — . )
min — 2 ey, g ) + A I(ZY) + Ao - IV

m

1=1

Question:

How to solve the optimization?
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Ml via function optimization

[Roh-Lee-Whang-Suh ICML20]:

Remember:

N 1 . .
I(Z;Y)~  max Y —logD(j";2\")+ H(Z)
Similarly:

log D(2\", 209, 55 0") + H(V)

I(V;X,2,Y) ~ 7 max



Implementable optimization
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Architecture
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Experiments

A benmark real dataset;: COMPAS

(z,2,y)
]

criminal records

black or white

reoffend or not
IN near future
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Recall: Worsen tradeoff due to poisoning

e clean data

. poisoned MI-based fair classifier
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Fair and Robust (FR) classifier
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Other fairness contexts



Fair recommender systems

Fairness means: Similar recommendation accuracies
across different demographics

Or it means: A diverse set of items should be
recommended for every group.

Example: STEM courses for women
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Fair ranking

Fairness means: Top-ranked users from diverse groups

Or it means: Data employed for ranking should not be
biased.

Example: Localized comparison data

H

hyperlink
Google’s

PageRank websites can be

unfavorably
— {reated

® | these isolated
O
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Recent works

Fair recommender systems

'Yao-Huang NeurlPS2017]
Beutel et al. SIGKDD2019]
'Mehrotra et al. CIKM2018]
Xiao et al. RecSys2017]

Burke arXiv17]

Fair ranking

Narasimhan et al. AAAI2020]
Zehlike et al. CIKM2017]
Singh et al. SIGKDD2018]
'Yadav et al. arXiv19]

If you pursue these research directions, the references

might give you some guideline.
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A concluding remark

Fairness becomes more crucial in many current &
future applications.

Expect: Information-theoretic tools explored in this
tutorial would help address many fairness-relevant

ISSuUes.
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