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Recap: MI-based optimization
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Rationale behind training instability:

= “max” optimization

“min-max” optimization often suffers from 

training instability.

Mentioned: training instability.



Recap
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Claimed: There is another fair classifier that 

addresses training instability while offering a 

better tradeoff.



Today’s lecture
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1. 

Will study the new fair classifier in depth.

Explore a way to directly compute the fairness 

measure DDP.

2. 

3. 

4. 

Introduce a trick that allows us to well approximate 

DDP:

Develop a KDE-based optimization for a fair 

classifier. 

Study how to solve the optimization.

Kernel Density Estimation (KDE)



Revisit: the fairness measure DDP
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Let’s try to compute this directly.

First focus on:

pdf

Instead: We are given samples

Question: A way to infer the pdf from samples?

uknown!



Kernel density estimation (KDE)
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Given samples

a smoothing parameter 

(bandwidth)

a kernel function 

(e.g., Gaussian kernel)

KDE is defined as:



Accuracy of KDE?
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Given samples KDE is defined as:

→ Yields an inaccurate estimate under high-dim. cases

Jiang ICML17: dim. of an 

interested r.v.

Good news: In our setting, 



Approximation via KDE
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(Gaussian kernel)



Approximation via KDE
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Remember:

Similarly, one can obtain: 



Approximated DDP
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Can express DDP in terms of samples (thus w) 



KDE-based optimization
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Algorithm: Gradient descent

Issues: How to deal with the absolute function?

How to choose bandwidth h?

Cho-Hwang-Suh NeurIPS20



How to deal with the absolution func?
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Instead, one can employ Huber loss:

This enables us to readily obtain gradient.



How to choose bandwidth h?
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Advise us to find       that minimizes the MSE.

See [Cho-Hwang-Suh NeurIPS20] for details.

Turns out:

There is a sweet spot for     that miminizes the mean 

square error of KDE estimate. 



Extension to another fairness measure DEO
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Experiments
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A benmark real dataset: COMPAS

black or white
criminal records

reoffend or not 

in near future



Trainining instability?
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DDP

fairness tuning knob

KDE-based fair classifer

MI-based fair classifer

KDE-based approach offers training stability!



Accuracy vs DDP tradeoff
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Accuracy DDP

Non-fair classifier

MI-based 

fair classifier

KDE-based

fair classifier



Accuracy vs DDP tradeoff
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prediction accuracy

DDP

KDE-based fair classifier

MI-based fair classifier



Summary of Lectures 1 and 2 
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Explore fairness measures in fair classifiers.

Study an MI-based fair classifier which yields a 

good tradeoff while suffering from training instability.

Investigate another fair classifer based on KDE, 

which addresses the training instability issue.

1. 

2. 

3. 



Revisit: Five aspects for trustworthy AI

robustness

value 

alignment
transparency

fairness

explainability

A recent progress: Roh-Lee-Whang-Suh, ICML20
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Look ahead
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Will explore the recent work on fairness & 

robustness, and discuss relative issues. 
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