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Overview & a fair classifier using
mutual information
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Trustworthy Al

“Al has significant potential to help solve
challenging problems, including by advancing
Go Ie medicine, understanding language, and fueling
g scientific discovery. To realize that potential,
it’s critical that Al is used and developed

responsibly.”

“Moving forward, “build for performance” will not
suffice as an Al design paradigm. We must learn
how to build, evaluate and monitor for trust.”
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Five aspects of trustworthy Al

focus of this tutorial

fairness robustness

explainability value transparency
alignment




A ML model of this tutorial’s focus

Classifier!

Wil explore fairness & robustness issues that arise Iin
classifiers.



Outline of this tutorial

Lecture 1 (Today):
Figure out what it means by fairness in classifiers.
Study one fair classifier using mutual information.

Lecture 2 (Wed):

nvestigate another fair classifier that offers better
performance.

t employs a statistical technigue prevalent in
Information theory: Kernel Density Estimation (KDE)
Lecture 3 (Fri):

Explore another fair classifier also being robust to
data poisoning.




A fair classifier
using mutual information



Fairness in the context of classifiers?

There are many fairness concepts.

One important concept is group fairness:

Pursues predictions to exhibit similar statistics
regardless of sensitive attributes of groups

|

e.g., race, gender, age, religion, etc.



Applications of fair classifiers

job hiring parole decision (fREMFIR)

Applicants want no A fair predictor for recidivism

discrimination depending (m3e) score plays a crucial
on race or sex. role.
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Feldman et al. SIGKDD15

A falrness measure Zafar et al. AISTATS17

Y : class € {O 1} Y: prediction (hard decision)

no reoffend\ reoffend black Whlte

Z : sensitive attribute €.9.,€ Z = {O, 1}

Demographic Parity (DP) condition:
YI1Z: PY=1Z=2)=PY =1),Vz€ Z

A gquantifed measure: Difference btw two interested
probabilities in DP condition

DDP := ) [P(Y =1]|Z =2) - P(Y =1)
zEZ
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Limitation of DP condition

4 )
Demographlc Parity (DP) condition:

Y1Z: PV =1Z=2)=P(Y =1),Vz € 2
\ _J

Suppose that the ground-truth label dist. respects:
PY=1Z=1)>P(Y =1|Z =0)

Enforcing the DP condition may aggravate prediction
accuracy significantly.
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AnOther fail‘neSS n()ti()n Hardt-Price-Srebo NeurlPS16

Equalized Odds (EO) condition: }N/J_Z |Y A

PY=1Y=yZ=2))=PY =1Y =y) Ve Z,vyey

relevant to prediction accuracy

\_

Enforcing the EO condition has little to do with reducing
prediction accuracy.

A quantified measure:

~

DEO:= ) > [P(Y =1Y =y, Z =2) -P(Y = 1|Y = y)

yey zez
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Many recent works on fair classifiers

Here is only a partial list:

[Feldman et al. SIGKDD15] Zafar et al. AISTATS17]
Hardt-Price-Srebo NeurlPS16] [:Cho-Hwang-Suh |S|T20]]
Pleiss et al. NeurlPS17] [Roh-Lee-Whang-Suh ICML20]
[Zhang et al. AIES18] Cho-Hwang-Suh NeurlPS20]
[Donini et al. NeurlPS18] [Baharlouei et al. ICLR20]
[Agarwal et al. ICML18] Jiang et al. UAI20]
[Roh-Lee-Whang-Suh ICLR 21] Lee et al. arXiv 20]

employ mutual information
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Problem setting

\

(x,2) — classifier

prediction
(soft decision)

~ g —§=1j =7}

w
/T/
{(x(i)’ Z(i)’y(i))

normal data sens
(possibly non-sensitive)

hard decision

/ label

T, m: # of examples

1=

itive attribute € Z
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Problem setting

\

(x,2) — classifier |
w

N
Nag
|
-
—~—
N
AV
3
—

T {2,y

For illustrative purpose, this tutorial focuses on:
(1) binary classifier &
() one fairness measure:

~

DDP := ) |P(Y =1|Z =2) - P(Y =1)
zEZ
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Optimization

Conventional optimization for classifiers:

mm— ZECE @) ) )

cross entropy loss
—y log §™ — (1 — y™*)) log(1 — §*)

How to incorporate the fairness measure DDP?
DDP := > |P(Y =1|Z =2) —P(Y = 1)
zEZ
Observation: The smaller DDP, the more fair.
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Enforcing fairness via regularization

1 -\ o NN?
- (1) (0 .DDP
i =3 feely' . 5) +

where DDP := ) [P(Y =1|Z =2) - P(Y = 1)
zEZ

Challenge: DDP iIs a complicated function of the
optimization variable w.

Will study another approach which employs a
different regularization term.

It IS based on a connection between DDP and mutual
Information.
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Connection btw DDP & mutual information

KObservation:

DDP=0:Y1Z < > I(Z;Y)=0

_ 1(Z;Y) =0

ﬁf/:: 1{Y > 7}

~
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Ml-based approach

Cho-Hwang-Suh ISIT20

-

\_

Connection:

DDP=0:Y1Z < I(Z

Y)=0

\

ldea: Employ \ - I(Z' f/) (instead of A\ - DDP)

minl_ ZECE @), —I—/\'[I(Z;}A/)]

How to express it with w?
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A careful look at mutual information

[l 1
= H(Z)+E |log — | — E |log
L PY(Y) PY,Z(Ya Z)
Py (9, 2
= H(Z)+) Py 4(§.2)log ———
; v (9)
Yr2 & J/
v
=: D*(§;2) Y D*(§:2)
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Ml via function optimization

A Py Z(sz)
I(Z;Y)=H(Z)+ ) Py ,(i,2)log = B

Y,2 g }\/ry J

ZD*(Q, z)=1Vy =: D*(y; 2)

Theorem:

[(Z:Y)=H(Z)+

22



Proof of Theorem b2 := Y D*(j2) =1 Vj

Theorem: concave in D

I(Z:Y)=H(Z) + max P 2)log D
( ) (Z) D(@:2):5". D(§7)= Z yzy z)log D(y; 2)

yZ

Lagrange function:

L(D(;2),v(§)) = Z Py (3, 2)log D(i;2) + Z v (9) (1 — > D(j; z))
KKT condition: |

dL(D(y;2),v(9))
dD(§; z)

,Z(Qﬂ 2)

D=D qpt,V=Vopt DOPt(y; Z)

ZDopt(:&; Z) =1 \V/:LA/

— Vopt(g) =0 V:&a Z
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Proof of Theorem b ;2 := Py 0:%)

Y D*(gi2)=1Vj

Py (9)
Theorem:
[(Z:Y)=H(Z)+ max P, (7, 2)log D(§: 2
( ) (Z) D(3;2z):2., D(9;2)=1 yz; Y’Z( ) (4:2)
KKT condition:
dL(D(;2),v(H)) Py 2(9:%) : ,
- — — — Vo =0 ‘v/y, <
dD(7; z) D=Dopt,V=Vopt Dopt(7; 2) Vo (D) .
A N D ~ . ]P)?,Z(ya Z)
ZDopt(y; Z) =1 Vy — Opt(y7 Z) — Vopt(fg)
Po (1) P (4,
2. Y=ZA(y’ ?) =1 = Vopt(§) = Py (§) = Dopt(5; 2) = Y’?(g{ ) = D*(9); )
Vopt(y) Py(y)



How to express I(Z;Y)in terms of w?

Py (7, %) not available!

P SN ¢ NN () N

Rely on empirical distributions: Qy (3", 2"") —
. mo1 | |
I(Z;)Y)~ H(Z) + max — log D(4'V); 219

( ) (Z) D(:O:Z):ZzD(iO:Z)ﬂ;m s D )

irrelevant of (6, w) Parameterize D(-;-) with ¢
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Implementable optimization

How to solve?

Algorithm: Alternating gradient descent:
(i) Given w, update ¢ via the inner opt;
(i) Given the updated 6, update w via the outer opt;

(1) iterate this process until converge.
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Architecture

—1 classifier — ¢ — discriminator
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Interpretation on Dy(y; 2)

\ wax
(x, 2) —>D9(3J:§ 21)
—— classifier — ¢y —{ discriminator —:’De(y;zQ)
w 0 —"De(@;z|2|)
t/ /t
{(x(i)’z(i)’y(i)) m {Z(%) m

Observe: Discriminator wishes to maximize Dy(3®; (),
while classifier wishes to minimize.

Can interpret Dy(y; z) as the ability to figure out 2
from y.
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Analogy with GAN Goodfellow et al. NeurlPS14

Ml-based fair classifier GAN
discriminator discriminator
Figure out sensitive attribute | Goal: Distinguish real samples
from prediction from fake ones.
classifier generator

Decrease the ability to figure | Generate realistic fake samples
out senstivie attribute for the
purpose of fairness.
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Extension to another fairness measure DEO

4 _ N
Connection:

DEO=0:Y1Z|Y <— I(Z;Y|Y)=0
. y

Implementable optimization:

1 | & L
min - max '—{}:H—Aﬂwwmﬂwn+A§:bg&MW%%WM7}

w g Do(y:z,y)=1 TN
Zz B(yvzay) =1 G=1
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Experiments

A benchmark real dataset; COMPAS

-]

criminal records

black or white

Angwin et al. ‘15

reoffend or not
IN near future
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Accuracy vs DDP tradeoff

Accuracy DDP
Non-fair classifier 68.29 +0.44 0.2263 4+ 0.0087
MI-basea 67.07 +0.47 | 0.0997 + 0.0426

fair classifier

32




A challenge

DDP 1

0.25 ;

0.20 -

0.15

0.10

0.05 ;

. MIl-based fair classifier
: - 3 ) *
I T
. ’ ¥ ote ©
E ¢
‘ i.'..:.-.
Yields different results with Kaads
. ®
different seeds o %
9
—> Training instabllity! "-:.
L
0.1 02 0.3 0.4 0.5 06 07 0.8 0.9

fairness tuning knob A
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Recent work Cho-Hwang-Suh NeurlPS20

Another fair classifier resolves the training instability
while offering a better tradeoff.

It IS based on a well-known statistical method that
often arises in information theory:

Kernel Density Estimation (KDE)
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Look ahead

Explore the KDE-based fair classifier.

35
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