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Lecture 6: A fair & robust classifier and other fairness contexts

Summary of Lectures 1 ∼ 5

We have thus far focused on two contexts: (i) fair classifiers; (ii) fair generative models. In
the context of fair classifiers, we first explored two prominent fairness measures in the realm of
group fairness that I declared to focus on in this tutorial: (i) DDP that captures the degree of
independence between prediction and an interested sensitive attribute; (ii) DEO that quantifies
the degree of such independence yet conditioned on true labels. We then studied one fair
classifier inspired by the most prominent (and possibly most favorite) information-theoretic
notion: mutual information. We also investigated another fair classifier (known as the state of the
art) that performs well both in accuracy-vs-fairness tradeoff and training stability. It is based on
a well-known statistical measure also prevalent in information theory: kernel density estimation.
As for fair generative models, we focused on one fairness notion, called fair representation, which
pursues class-balanced synthesized samples even trained with class-imbalanced real data. Prior
to exploring a fair generative model, we first studied a prominent generative model, which we
named the hinge-loss-based GAN, which forms the basis of the fair generator. Building upon
the connection with total variation distance (TVD), we then investigated a TVD-based fair
generative model that well promotes fair representation, i.e., decreases “Fairness Discrepancy
(FD)”, as well as that yields high sample quality reflected in low FID.

Now what is next? To introduce the last content, let us first revisit the five aspects which I
emphasized yesterday in Lecture 1 as the requirements for enabling trustworthy AI. See Fig. 1
again. We have four remaining aspects not explored yet: robustness; explainability; value
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Figure 1: Revisit the five aspects for enabling trustworthy AI. A recent progress was made
towards addressing both fair and robust training.

alignment; and transparency. The last content is relevant to one recent progress that we made
towards addressing both fairness and robustness issues [2].

Outline of Lecture 6

In this lecture, we will explore the recent work on fairness & robustness. This tutorial touches
solely upon two fairness contexts: fair classifiers and fair generative models. Obviously there
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are many others beyond the two. So we will also discuss some other contexts. Specifically what
we are going to cover are four folded. First we will introduce a robustness issue that arises in
fair classifiers. We will then study a recent technique that ensures fairness in the presence of
data poisoning. Next we will discuss other contexts such as fair recommender systems and fair
ranking (yet in a very brief manner). Lastly we will conclude the tutorial with a few remarks.

Robustness in fair classifiers

Let us start by figuring out what it means by robustness. It means that a trained model should
guarantee a negligible performance degradation due to poisoned data. Here data poisoning refers
to any negative action made on training data, such as adding noise or subjective (or possibly
adversarial) perturbation.

A challenge

A challenge arises in the course of ensuring both fairness and robustness aspects. It turns out
the accuracy-vs-fairness (e.g., DDP) tradeoff performance is significantly worsen in the presence
of data poisoning if we naively applied a fair classifier without taking into account the robustness
aspect. See Fig. 2 for instance. Here we plot accuracy-vs-DDP tradeoff performances for two
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Figure 2: Accuracy-vs-DDP performance when applying a fair classifier [1] without consideration
of the robustness aspect.

different datasets (under COMPAS): (i) the original clean data; (ii) poisoned data in which 20%
true labels are flipped in the focused binary classification setting along a direction of aggravating
prediction accuracy. We employ the MI-based fair classifier [1]. Notice that the tradeoff curve
(marked in red dots) under poisoned data is significantly shifted upward, implying a worsened
tradeoff. This suggests that we need a non-trivial fair classifier in which accuracy-vs-fairness
performance is well maintained even under poisoned data.

Idea for ensuring robustness [2]

To this end, we can also invoke a similar idea as employed in [1]. To figure out what it means,
let us recall the MI-based fair optimization in the reference:

min
w

1 − λ

m

m∑
i=1

`CE(y(i), ŷ(i)) + λ · I(Z; Ŷ ). (1)

Here we employ mutual information in an effort to enforce the Demographic Parity (DP) condi-
tion, reflected in I(Z; Ŷ ). It turns out mutual information can also be instrumental in equipping
with the robustness aspect.
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For the robustness aspect, we impose a constraint on classifier hard-decision output Ỹ . The idea
is to design Ỹ so that the classifier output together with input data (X,Z) looks like clean data.
This way, we can somehow sanitize data indirectly. However, there is an issue in comparing to
clean data. Since we target data poisoning scenarios, clean data may not be often available. To
address the issue, we employ an additional clean yet small validation dataset. As for the degree
of small, we consider, say a 5–10%-sized validation set, relative to the original real dataset,
which can possibly be gathered with some efforts. Given the clean validation dataset, we then
introduce a new random variable, say V , which indicates whether we take (X,Z, Ỹ ) (real and
possibly poisoned) or (Xval, Zval, Yval) (clean validation set):

(X̄, Z̄, Ȳ ) =

{
(X,Z, Ỹ ) if V = 1;
(Xval, Zval, Yval) if V = 0.

(2)

With these notations, the imposed constraint can then be translated to the independence between
V and (X̄, Z̄, Ȳ ), because the independence encourages (X,Z, Ỹ ) to indeed act as clean data:

I(V ; X̄, Z̄, Ȳ ) = 0. (3)

Now what we want is to minimize I(V ; X̄, Z̄, Ȳ ). This naturally motivates us to consider the
following regularized optimization:

min
w

1 − λ1 − λ2

m

m∑
i=1

`CE(y(i), ŷ(i)) + λ1 · I(Z; Ŷ ) + λ2 · I(V ; X̄, Z̄, Ȳ ) (4)

where 0 ≤ λ1 ≤ 1 and 0 ≤ λ2 ≤ 1 − λ1 indicate fairness and robustness regularization fac-
tors, respectively. A similar question arises. How to express λ2 · I(V ; X̄, Z̄, Ȳ ) in terms of the
optimization variable w?

MI via function optimization

To this end, we can apply exactly the same trick as done before. Remember in Lecture 2 that
I(Z; Ŷ ) was approximated as the following implementable max-optimization:

I(Z; Ŷ ) ≈ max
D(ŷ,z):

∑
z D(ŷ,z)=1

m∑
i=1

1

m
logD(ŷ(i), z(i)) +H(Z). (5)

Similarly for I(V ; X̄, Z̄, Ȳ ), one can readily obtain:

I(V ; X̄, Z̄, Ȳ ) ≈ max
D(x̄,z̄,ȳ,v):

∑
v D(x̄,z̄,ȳ,v)=1

mval∑
i=1

1

mval
logD(x̄(i), z̄(i), ȳ(i), v(i)) +H(V ) (6)

where mval is the number of examples in the validation set. Here the only distinctions are: we
read v (instead of z), (x̄, z̄, ȳ) (instead of ŷ) and mval (instead of m).

Implementable optimization

Applying (5) and (6) into (4) together with neural-net-based parameterizations (via θ and φ),
we obtain the following implementable optimization:

min
w

max
θ:
∑
z Dθ(ŷ,z)=1

max
φ:
∑
v Dφ(x̄,z̄,ȳ,v)=1

1 − λ1 − λ2

m

m∑
i=1

`CE(y(i), ŷ(i))

+
λ1

m

m∑
i=1

logDθ(ŷ
(i), z(i)) +

λ2

mval

mval∑
i=1

logDφ(x̄(i), z̄(i), ȳ(i), v(i)).

(7)
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Here we have another max optimization w.r.t. Dφ, so this naturally motivates us to introduce
another discriminator as illustrated in Fig. 3.

Architecture

See Fig. 3 for the architectural detail. We now have two discriminators. One is for fairness whichTN6_3

softmax

classifier
discriminator 

for fairness 

discriminator 

for robustness 

Figure 3: Architecture of the MI-based fair & robust classifier [2].

we already visited in Lecture 2. The second is for robustness. The discriminator for robustness
outputs another D, which indicates whether the input is either fake clean data (x, z, ỹ) or real
clean data (xval, zval, yval). It turns out for a 5 − 10%-sized clean validation set, this classifier
exhibits almost no decrease in tradeoff performance under data poisoning. We omit presenting
such simulation results. Please refer to [2] if you are further interested in.

Fairness in other contexts

As I promised earlier, before concluding this tutorial, I will leave a few words about other
fairness contexts beyond fair classifiers and fair generative models that have been focused thus
far. Two contexts. One is fair recommender systems. Here fairness means that a model ensures
similar recommendation accuracies across different demographics. Or it means the model should
recommend a diverse (non-biased) set of recommended items for every group. For instance, we
may want to ban the situation in which science and math subjects are not recommended to
woman group, which may often occur due to the inherent stereotype reflected in training data.
The second is fair ranking. Here fairness means that top-ranked users should come from diverse
groups (not from a single group). Or comparison data which is often employed for many ranking
algorithms should encompass the broad scope covering the entire groups in a balanced manner.

Due to the recent surge of interest in the fairness topic, there has been a proliferation of many
recent works on fair recommender systems and fair ranking. Fig. 4 showcases only a partial list
of them. Due to the interest of time, we will not cover them. But I believe these are different
directions on fairness that you may want to pursue. In such a case, these references may give
you some guideline.

A concluding remark
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Fair recommender systems Fair ranking

[Beutel et al. SIGKDD2019]

[Mehrotra et al. CIKM2018]

[Burke arXiv17]

[Xiao et al. RecSys2017]

[Yao-Huang NeurIPS2017]

[Zehlike et al. CIKM2017]

[Singh et al. SIGKDD2018]

[Yadav et al. arXiv19]

[Narasimhan et al. AAAI2020]

Figure 4: References regarding fair recommender systems (left) and fair ranking (right).

Now let me conclude. One last remark that I would like to leave. I believe fairness is a very
important issue that often arises in a widening array of current & future applications. In this
tutorial, I provided only a few instances where tools of information theory and statistics that you
guys may be interested in are instrumental in addressing fairness issues that arise in a couple of
contexts. I believe there would be many more such contexts. I hope you can exploit the tools
of your interest and possibly your expertise to address many interesting fairness-relevant issues.

TN6_5

Jaewoong Cho Gyeongjo Hwang Soobin Um

Yuji Roh Kangwook Lee Steven E. Whang

Moonseok Choi

KAIST KAIST KAIST KAIST

KAIST Madison KAIST

Figure 5: Collaborators of the works presented in this tutorial.
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