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Lecture 5: A fair generative model using total variation distance

Recap

Last time, we investigated the hinge-loss-based GAN [3] which takes the following optimization:

Discriminator: max
D

EPreal
[min(0,−1 +D(X))] + EPG

[
min(0,−1−D(X̃))

]
;

Generator: min
G

EPreal
[D(X)]− EPG

[
D(X̃)

]
.

(1)

We then found there is a theoretical insight behind the choice of the hinge loss function for
Discriminator and the linear loss function for Generator. The insight was well justified via the
interesting connection to a well-known divergence measure, Total Variation Distance (TVD).
Plugging the maximizer D∗ into the objective function in Generator’s optimization, we found:

min
G

EPreal
[D∗(X)]− EPG

[
D∗(X̃)

]
= min

G
2 · TV(Preal,PG). (2)

It turns out this connection gives insights into developing a fair generative model. This forms
the content of this lecture.

Outline of Lecture 5

In Lecture 5, we will explore a TVD-based fair generative model. This lecture consists of four
parts. First we will introduce a TVD-based regularization term that promotes fair representation
of this tutorial’s focus. We will then formulate a corresponding optimization problem. Next we
will translate it into an implementable optimization that bears similarity to (1) in structure.
Finally, we will discuss experimental results.

A regularization term for fair representation

Observe the TVD-based optimization for Generator in the hinge-loss-based GAN:

min
G

TV(Preal,PG). (3)

A question of interest is: How to incorporate a fairness constraint that respects fair represen-
tation? To gain insights, let us first ponder on what we want for fair representation. Suppose
that Pref indicates a reference distribution that well respects fair representation. Then, we can
naturally come up with a constraint on PG. That is,

PG ≈ Pref . (4)

However, there is an issue in satisfying the constraint (4). The issue is that the given real data
does not necessarily satisfy Pref . Actually what we are targeting are the challenging situations in
which Preal is far from Pref and hence fair representation is not guaranteed with a naive generative
model relying solely upon the given real data.

One natural way to address the issue is to employ a new yet small reference dataset that respects
Pref . Here what I mean by the degree of small is less than 10% reference dataset relative to the
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original real dataset. This is because around 10% hand-crafted datasets may be available in
practice. This then naturally motivates us to consider TV(Pref ,PG) as a regularization term,
since minimizing TV(Pref ,PG) promotes fair representation.

TVD-based optimization for a fair generative model [1]

Inspired by this, Um and Suh [1] came up with the following optimization for fair representation:

min
G

(1− λ) · TV(Preal,PG) + λ · TV(Pref ,PG) (5)

where 0 ≤ λ ≤ 1 denotes a regularization factor that acts as a fairness tuning knob.

An equivalent form based on hinge loss

How to solve the optimization (5)? To gain insights, remember what we did for the hinge-loss-
based GAN. Recall that TV(Preal,PG) was a consequence of evaluating Generator’s objective
function at the optimal D∗, which was derived from the following Discriminator:

max
D

EPreal
[min(0,−1 +D(X))] + EPG

[
min(0,−1−D(X̃))

]
. (6)

So we can now guess the same thing yet w.r.t. TV(Pref ,PG). We conjecture that TV(Pref ,PG) is a
consequence of evaluating Generator’s objective function for another optimal discriminator, say
D∗ref . The optimization problem for D∗ref would be of exactly the same structure yet employing
different entities (Dref ,Pref , Xref):

max
Dref

EPref
[min(0,−1 +Dref(Xref))] + EPG

[
min(0,−1−Dref(X̃))

]
. (7)

As you may easily guess, the conjecture is true. In other words, the optimization (5) is equivalent
to solving the following three-level optimization:

Discriminator 1 : max
D

EPreal
[min(0,−1 +D(X))] + EPG

[
min(0,−1−D(X̃))

]
;

Discriminator 2 : max
Dref

EPref
[min(0,−1 +Dref(Xref))] + EPG

[
min(0,−1−Dref(X̃))

]
;

Generator : min
G

(1− λ)
{
EPreal

[D(X)]− EPG

[
D(X̃)

]}
+ λ

{
EPref

[Dref(Xref)]− EPG

[
Dref(X̃)

]}
.

(8)

Here Generator’s objective function is simply the λ-weighted summation of two individual ob-
jectives, each corresponding to each discriminator.

Proof of equivalence

What we need to show is that plugging the optimal (D∗, D∗ref) into Generator’s objective function
yields:

(1− λ)
{
EPreal

[D∗(X)]− EPG

[
D∗(X̃)

]}
+ λ

{
EPref

[D∗ref(Xref)]− EPG

[
D∗ref(X̃)

]}
=2(1− λ)TV(Preal,PG) + 2λTV(Pref ,PG).

(9)

The proof is the same as before. Using the technique based on the lemma introduced earlier,
one can first show:

D∗(x) = sign(Preal(x)− PG(x));

D∗ref(x) = sign(Pref(x)− PG(x)).
(10)
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Plugging these into Generator’s objective function, we get:

(1− λ)
{
EPreal

[D∗(X)]− EPG

[
D∗(X̃)

]}
+ λ

{
EPref

[D∗ref(Xref)]− EPG

[
D∗ref(X̃)

]}
=(1− λ)

∑
x∈X∪X̃

(Preal(x)− PG(x))D∗(x) + λ
∑

x∈Xref∪X̃

(Pref(x)− PG(x))D∗ref(x)

=(1− λ)
∑

x∈X∪X̃

|Preal(x)− PG(x)|+ λ
∑

x∈Xref∪X̃

|Pref(x)− PG(x)|

=2(1− λ)TV(Preal,PG) + 2λTV(Pref ,PG)

(11)

where Xref indicates the set of the samples in the reference dataset.

Architecture

The architecture of the hinge-loss-based optimization (8) is illustrated in Fig. 1. We have oneTN5_1

reference (balanced)

real (biased)

or

or

Figure 1: Architecture of the TVD-based fair generative model: A three-player game. An input
to D(·) is either X (a real sample) or X̃ (a generated sample). An input to Dref(·) is either X̃
(a generated sample) or Xref (a reference sample).

generator and two discriminators: one for intending to synthesize high-quality realistic samples;
and the other for promoting fair representation with the help of an additional reference dataset.
So one can interpret this as a three-player game. We can indeed see three-way battles.

The first is a well-known battle between the generator G and the 1st discriminator D. Re-
member D∗(x) = sign(Preal(x) − PG(x)). So one can interpret D∗ as the strength of distin-
guishing real (potentially biased) samples against generated samples. On the other hand, the
generator intends to fool D, thus promoting realistic samples. The second battle is in be-
tween the generator and the 2nd discriminator Dref . The same interpretation can be made from
D∗ref(x) = sign(Pref(x)−PG(x)) (the ability to distinguish balanced reference samples against the
generated samples). This way, the generator G is encouraged to produce balanced (yet possibly
unrealistic1 samples, thus pitting the 1st discriminator against the 2nd discriminator indirectly.
The last battle is in between the 1st and 2nd discriminators. This tension is directly controlled
by the fairness tuning knob λ. It turns out the three-way tradeoff relationships established

1This is because we employ a much smaller-sized reference dataset relative to real dataset.
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via the TVD-based framework (5) are greatly balanced, thus achieving significant performances
both in fairness and sample quality. This will be empirically demonstrated in the next sections.

Experiment setting

We provide experimental results for a benchmark real dataset CelebA [2] to demonstrate that the
TVD-based fair generative model can indeed produce realistic and balanced fake samples. Here
is detail of the experiment setting. The real dataset is constructed to have 9 : 1 ratio (female vs.
male) samples where mreal = 67, 507. We take the balanced samples for the reference dataset
(1 : 1 ratio, i.e., Pref(z) ∼ Uniform). We consider a realistic scenario in which the size of the
additional reference dataset is more or less small, around 10% relative to the real dataset, i.e.,
mref ≈ 0.1mreal.

TN5_2

Figure 2: Real data samples of CelebA.

Performance measures

We consider two performance measures: one for the quality of generated samples; the other
for quantifying the degree of fair representation. As for the quality of samples, we employ a
well-known score, named Fréchet Inception Distance (FID) [5]. It is defined as the 2nd order
Wasserstein distance between the Gaussianized distributions of real and generated samples:

FID := W 2(N (µreal,Σreal),N (µG,ΣG)) (12)

where (µreal,Σreal) denote the empirical mean and covariance of real samples, respectively. Sim-
ilarly for (µG,ΣG). As a measure for fair representation, we consider Fairness Discrepancy (FD)
mentioned in Lecture 1 [6]:

FD :=

√∑
z∈Z

(PG(z)− Pref(z))2. (13)

Experimental results
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All the simulation results are the ones averaged over five trials with distinct random seeds. Fig. 3
provides FID-vs-FD tradeoff performances for (non-fair) hinge-loss-based GAN and the TVD-
based fair generative model. The specific architecture that we employ is [4]. Notice that the

TN5_3
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Figure 3: FID (quality) vs FD (fairness) tradeoff performances. Here we set a hyperparameter
λ as 0.925.

TVD-based fair generative model significantly boots up the fairness performance (i.e., reduces
FD) with relatively smaller performance degradation in sample quality (“FID”). The lower, the
better for all the measures.

Fig. 4 visualizes generated samples on CelebA. Faces above the yellow line are female samples,
while the rest are male samples. In addition to fair representation, the considered approach
produces realistic sample images, reflected in a lower FID, around 11.49.

TN5_4

Figure 4: Fake samples generated by the TVD-based fair generative model. Female : male =
54 : 46.

Look ahead

Now we are done for exploring the two focused contexts: (i) fair classifiers; and (ii) fair generative
models. In the next (last) lecture, we will conclude the tutorial by saying a few words about two
things: (i) fair classifiers being robust against data poisoning; and (ii) other contexts beyond
the two.
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