
IEEE East Asian School of Information Theory August 3, 2021
KAIST, August 3 ∼ 6, 2021 Changho Suh (chsuh@kaist.ac.kr)

Lecture 2: A fair classifier using mutual information

Outline

This lecture investigates a fair classifier which is inspired by an interesting connection between
fairness measures and mutual information (MI) [2]. Specifically what we are going to do are five
folded. First we will introduce a problem setting together with associated notations. We will
then introduce an optimization framework for a conventional classifier which forms the basis of
a fair classifier to be explored. Next we will establish a connection between fairness measures
and MI. Building upon the connection, we will then develop an MI-based optimization for a fair
classifier. Finally we will translate it into an implementable optimization, thereby coming up
with a concrete way to solve the optimization.

Problem setting

Fig. 1 illustrates the architecture of a conventional binary classifier. There are two types ofTN2_1

classifier

prediction

hard decision

(soft decision)

Figure 1: A problem setting of a binary fair classifier. Here X ∈ Rd denotes normal (possibly
non-sensitive) data, Z ∈ Z indicates a sensitive attribute with arbitrary alphabet size, and Y is
a binary label. Let Ŷ be the prediction output that intends to learn the ground-truth conditional
probability P(Y = 1|X = x, Z = z) and Ỹ be its hard-decision value Ỹ := 1{Ŷ ≥ τ} where τ is
a certain threshold. Here the classifier is parameterized by w.

data for input: (i) normal (possibly non-sensitive) data; (ii) sensitive attributes. We denote
the normal data by X ∈ Rd. In the case of recidivism score prediction, such X may refer to a
collection of the number of prior criminal records and a criminal type, e.g., misdemeanour or
felony. For sensitive data, we employ a different notation, say Z. In the above example, Z may
indicate a race type among black (Z = 0) and white (Z = 1). In general, the alphabet size of Z
is arbitrary. For instance, there are many race types such as Black, White, Asian, Hispanic, to
name a few. Also there could be multiple sensitive attributes like gender and religion. In order
to reflect such practical scenarios, we consider Z ∈ Z with an arbitrary alphabet size that can
represent a collection of possibly many sensitive attributes. Let Ŷ be the classifier output which
aims to represent the ground-truth conditional distribution P(y|x, z). Here Y ∈ Y denotes the
ground-truth label. In the recidivism score prediction, Y = 1 means reoffending in the near
future, say within two years (Y = 0 otherwise), while Ŷ indicates the probability of such event
being occurred. Let Ỹ be its hard-decision value Ỹ := 1{Ŷ ≥ τ} where τ is a certain threshold.
Here the classifier is parameterized by w. We consider a supervised learning setup, so we are

1

given m example triplets: {(x(i), z(i), y(i))}mi=1.

For illustrative purpose, this tutorial focuses on the simple binary classification setting and one
fairness measure DDP:

DDP :=
∑
z∈Z
|P(Ỹ = 1|Z = z)− P(Ỹ = 1)|. (1)

Fairness-regularized optimization

A conventional classifier optimization often takes the following form:

min
1

m

m∑
i=1

`CE(y(i), ŷ(i)) (2)

where `CE(y, ŷ) indicates cross entropy loss:

`CE(y, ŷ) := −y log ŷ − (1− y) log(1− ŷ). (3)

How to incorporate the fairness measure DDP? Notice that the smaller DDP, the more fair the
situation is. Hence, one natural approach is to incorporate the DDP as a regularization term:

min
1− λ
m

m∑
i=1

`CE(y(i), ŷ(i)) + λ · DDP (4)

where λ denotes a regularization factor that lies in between 0 and 1. One can interpret λ
as a fairness tuning knob. Here a challenge arises in solving the regularized optimization (4).
Recalling the definition (1) of DDP, we see that DDP is a complicated function of the optimization
variable w. It turns out it is not that simple to express DDP in terms of w. One effort to address
this challenge was made by Zafar et al. [1]. They introduce an easily-expressible proxy for the
fairness measure. Specifically they employ a covariance function between Ŷ and Z. However,
this proxy serves only as a weak constraint because a small covariance does not necessarily
imply the independence although the reverse always hold. In this tutorial, we will study another
approach which introduces a different regularization term that can serve as a strong constraint
for the independence.

Connection between DDP and mutual information

The approach is based on the popular information-theoretic measure: mutual information. To
clearly see how it is relevant, let us make a concrete connection. The connection is made via
the following observation:

DDP = 0 : Ỹ⊥Z ⇐⇒ I(Z; Ỹ) = 0. (5)

This is because I(Z; Ỹ) = 0 is the sufficient and necessary condition for the independence
between Z and Ỹ . The connection can also be made via the soft-decision prediction value Ŷ .
Notice that

I(Z; Ỹ) ≤ I(Z; Ỹ , Ŷ) = I(Z; Ŷ) (6)

where the 1st inequality comes from the chain rule (I(Z; Ỹ , Ŷ) = I(Z; Ỹ) + I(Z; Ŷ |Ỹ)) and
the non-negativity of mutual information; and the 2nd equality is due to the fact that Ỹ is a
function of Ŷ (Ỹ := 1{Ŷ ≥ τ}) and hence I(Z; Ỹ |Ŷ) = 0. This together with (5) yields:

DDP = 0 : Ỹ⊥Z ⇐= I(Z; Ŷ) = 0. (7)

2

Note that I(Z; Ŷ) = 0 can serve as a strong constraint for the independence.

MI-based approach [2]

The connection (7) naturally motivates us to employ λ · I(Z; Ŷ) as a regularization term in (4)
instead of λ · DDP:

min
w

1− λ
m

m∑
i=1

`CE(y(i), ŷ(i)) + λ · I(Z; Ŷ). (8)

Now a question of interest is: How to express I(Z; Ŷ) in terms of the optimization variable w?
It turns out there is an interesting way to do this. To figure out the way, let us massage I(Z; Ŷ)
to arrive at the expression.

A careful look at mutual information

Starting with the definition of mutual information, we get:

I(Z; Ŷ) = H(Z)−H(Z|Ŷ)

(a)
= H(Z)− (H(Ŷ , Z)−H(Ŷ))

(b)
= H(Z)− E

[
log

1

PŶ ,Z(Ŷ , Z)

]
+ E

[
log

1

PŶ (Ŷ)

]

= H(Z) +
∑
ŷ,z

PŶ ,Z(ŷ, z) log
PŶ ,Z(ŷ, z)

PŶ (ŷ)

(9)

where (a) comes from the chain rule (H(Ŷ , Z) = H(Ŷ) + H(Z|Ŷ)); and (b) is due to the
definitions of entropy and joint entropy. Define the term placed in the last line marked in blue
as:

D∗(ŷ, z) :=
PŶ ,Z(ŷ, z)

PŶ (ŷ)
. (10)

Due to the total probability law, D∗(ŷ, z) should respect the sum-up-to-one constraint w.r.t. z:∑
z

D∗(ŷ, z) = 1 ∀ŷ. (11)

Mutual information via function optimization

Instead of D∗(ŷ, z), one can think about another function, say D(ŷ, z), which respects only the
sum-up-to-one constraint (11). It turns out D∗(ŷ, z) is the optimal choice among such D(ŷ, z)
in a sense of maximizing: ∑

ŷ,z

PŶ ,Z(ŷ, z) logD(ŷ, z), (12)

and this gives insights into expressing I(Z; Ŷ) in terms of w. To see this clearly, let me formally
state that D∗(ŷ, z) is indeed the optimal choice via the following theorem.

Theorem: The mutual information I(Z; Ŷ), reflected in the last line of (9), can be represented
as the following function optimization:

I(Z; Ŷ) = H(Z) + max
D(ŷ,z):

∑
z D(ŷ,z)=1

∑
ŷ,z

PŶ ,Z(ŷ, z) logD(ŷ, z). (13)

3

The proof of this is simple. Notice that the optimization (13) is convex in D(·, ·), since the log
function is concave and the convexity preserves under additivity. Hence, by checking the KKT
condition (the optimality condition for convex optimization), one can prove that the optimal
D(·, ·) indeed respects (10) and (11). Here is detail. Consider the Lagrange function:

L(D(ŷ, z), ν(ŷ)) =
∑
ŷ,z

PŶ ,Z(ŷ, z) logD(ŷ, z) +
∑
ŷ

ν(ŷ)

(
1−

∑
z

D(ŷ, z)

)
(14)

where ν(ŷ)’s indicate Lagrange multipliers w.r.t. the equality constraints. Consider the KKT
conditions

dL(D(ŷ, z), ν(ŷ))

dD(ŷ, z)

∣∣∣∣
D=Dopt,ν=νopt

=
PŶ ,Z(ŷ, z)

Dopt(ŷ, z)
− νopt(ŷ) = 0; (15)∑

z

Dopt(ŷ, z) = 1. (16)

So we get Dopt(ŷ, z) =
PŶ ,Z(ŷ,z)
νopt(ŷ)

. Plugging this into (16), we obtain:

∑
z

Dopt(ŷ, z) =

∑
z PŶ ,Z(ŷ, z)

νopt(ŷ)
= 1, (17)

which yields:

νopt(ŷ) =
∑
z

PŶ ,Z(ŷ, z) = PŶ (ŷ). (18)

This together with (15) then gives:

Dopt(ŷ, z) =
PŶ ,Z(ŷ, z)

νopt(ŷ)
=

PŶ ,Z(ŷ, z)

PŶ (ŷ)
= D∗(ŷ, z). (19)

This completes the proof of the theorem.

How to express I(Z; Ŷ) in terms of w?

Are we done with expressing I(Z; Ŷ) in terms of w? No. This is because PŶ ,Z(ŷ, z) that appears
in (13) is not available. To resolve this problem, we rely upon the empirical distribution instead:

QŶ ,Z(ŷ(i), z(i)) =
1

m
∀i ∈ {1, . . . ,m}.

In practice, the empirical distribution is very likely to be uniform, since ŷ(i) is real-valued and
hence the pair (ŷ(i), z(i)) is unique with high probability. Now by parametrizing the function
D(·, ·) with another, say θ, we can approximate I(Z; Ŷ) as:

I(Z; Ŷ) ≈ H(Z) + max
θ:
∑
z Dθ(ŷ,z)=1

m∑
i=1

1

m
logDθ(ŷ

(i), z(i)). (20)

From the above parameterization building upon the function optimization (13), we can now
approximately express I(Z; Ŷ) in terms of w and θ.

Implementable optimization

4

Notice in (20) that H(Z) is irrelevant to the introduced optimization variables (w, θ). Hence,
the MI-based optimization (8) can be (approximately) translated into:

min
w

max
θ:
∑
z Dθ(ŷ,z)=1

1

m

{
m∑
i=1

(1− λ)`CE(y(i), ŷ(i)) + λ

m∑
i=1

logDθ(ŷ
(i), z(i))

}
. (21)

The objective function is a function of (w, θ) and hence it is implementable, for instance, via
famous neural networks. Many of the neural-net-based optimizations can readily be solved via a
family of gradient descent algorithms. But here we see “min max”. Hence, we can apply a slight
variant of gradient descent that people often call alternating gradient descent, in which given w,
θ is updated via the inner optimization and then given the updated θ, w is newly updated via
the outer optimization, and this process iterates until it converges.

The architecture of the MI-based optimization (21) is illustrated in Fig. 2. On top of a classifier,
TN2_2

softmax

classifier discriminator

Figure 2: The architecture of the MI-based fair classifier (21). The prediction output ŷ is fed into
the discriminator wherein the goal is to figure out sensitive attribute z from ŷ. The discriminator
output Dθ(ŷ, z) can be interpreted as the probability that ŷ belongs to the attribute z. Here
the softmax function is applied to ensure the sum-up-to-one constraint (11).

we introduce a new entity, called discriminator, which corresponds to the inner optimization. In
discriminator, we wish to find θ∗ that maximizes 1

m

∑m
i=1 logDθ(ŷ

(i), z(i)). On the other hand,
the classifier wants to minimize such term. Hence, Dθ(ŷ, z) can be viewed as the ability to
figure out z from prediction ŷ. Notice that the classifier wishes to minimize such ability for the
purpose of fairness, while the discriminator has the opposite goal. So one natural interpretation
that can be made on Dθ(ŷ, z) is that it captures the probability that z is indeed the ground-
truth sensitive attribute for ŷ. Here the softmax function is applied to ensure the sum-up-to-one
constraint (11).

Analogy with GAN [4]

Since the classifier and the discriminator are competing, one can make an analogy with a famous
generative model: Generative Adversarial Networks (GANs), in which the generator and the
discriminator also compete like a two-player game. While the fair classifier and GANs bear
strong similarity in their nature, these two are distinct in their roles. See Fig. 3 for the detailed
distinctions.

Extension to another fairness measure DEO

So far we have focused on one fairness measure DDP. One can also apply almost the same trick

5

TN2_3

MI-based fair classifier

classifier

GAN

generator

discriminator discriminator

Goal: Distinguish real samples

from fake ones.

Figure out sensitive attribute

from prediction

Generate realistic fake samplesMaximize prediction accuracy

Figure 3: MI-based fair classifier vs. GAN. Both bear similarity in structure (as illustrated in
Fig. 2), yet distinctions in role.

to another measure DEO:

DEO :=
∑
y∈Y

∑
z∈Z
|P(Ỹ = 1|Y = y, Z = z)− P(Ỹ = 1|Y = y)|. (22)

Specifically one can make a similar connection like:

DEO = 0 : Ỹ⊥Z|Y ⇐= I(Z; Ŷ |Y) = 0. (23)

This then leads to an implementable optimization:

min
w

max
θ:
∑
z Dθ(ŷ,z,y)=1

1

m

{
m∑
i=1

(1− λ)`CE(y(i), ŷ(i)) + λ

m∑
i=1

logDθ(ŷ
(i), z(i), y(i))

}
. (24)

Here the only distinction is that we read Dθ(ŷ, z, y) instead of Dθ(ŷ, z).

Experiments

We provide experimental results to demonstrate that the MI-based fair classifier offers a good
fairness performance. For illustrative purpose, we focus on a single yet popular benchmark real
data: COMPAS [5]. Also we consider only one baseline: a non-fair classifier which does not
incorporate any fairness-regularized term. For a sensitive attribute, we consider a race type
(white vs. black), so Z is binary. In COMPAS, X contains prior criminal records, e.g., felony
or misdemeanour and Y denotes whether or not an associated individual reoffends within two
years.

Fig. 4 exhibits accuracy-vs-DDP tradeoff performances for the non-fair and MI-based fair classi-
fiers. Notice that the fair classifier yields a significant fairness performance (reflected in a small

TN2_4

accuracy DDP

non-fair classifier

MI-based

fair classifier

Figure 4: Accuracy-vs-DDP tradeoff. The MI-based fair classifier improves DDP significantly
with a marginal degradation of accuracy.

6

DDP) with a negligible performance degradation in prediction accuracy.

A challenge

While it offers a great tradeoff performance, it comes with a challenge. The challenge is that
the min max structure in the MI-based optimization (21) may lead to training instability. The
training instability problem indeed occurs. The problem is particularly significant when λ is
around 1. See Fig. 5. Here each point represents a performance evaluated on a single seed inTN2_5

DDP

fairness tuning knob

MI-based fair classifer

Figure 5: DDP as a function of the fairness tuning knob λ. Each blue dot corresponds to a
single result w.r.t. one particular seed for training. The spreadness of the blue dots in particular
near λ ≈ 1 implies that the min max optimization framework (21) yields different results with
distinct seeds, thereby incurring training instability.

training. We see different points spread over a wide range of DDP, implying an unstable training
performance.

Look ahead

There has been a recent work [3] that addresses the training instability while offering a better
tradeoff. It is based on a prominent statistical method often employed by information theorists:
kernel density estimation (KDE). Next lecture, we will explore the KDE-based fair classifier.

References

[1] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness constraints: Mechanisms
for fair classification. Artificial Intelligence and Statistics Conference (AISTATS), 2017.

[2] J. Cho, G. Hwang and C. Suh. A fair classifier using mutual information. IEEE International Sypo-
sium on Inofrmation Theory (ISIT), 2020.

[3] J. Cho, G. Hwang and C. Suh. A fair classifier using kernel density estimation. In Advances in Neural
Information Processing Systems 33 (NeurIPS), 2020.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems 27
(NeurIPS), 2014.

[5] J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias: There’s software
used across the country to 272 predict future criminals. And it’s biased against blacks.
https://www.propublica.org/article/machine-bias-risk-assessments-incriminal-sentencing, 2015.

7

