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Lecture 1: Fair machine learning & overview

AI is prevalent

This tutorial touches upon a role of information theory and statistics in the trending field of
AI. As AI becomes prevalent in our daily lives, we anticipate AI can play a significant role in
a widening array of domains ranging from emerging killer applications such as AI assistant and
self driving, to sensitive human-right-concerned applications like job hiring, judgement and loan
decision.
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Figure 1: AI plays a powerful role in many applications.

Trustworthy AI

As AI becomes more and more powerful, one critical aspect that people wish to equip AI systems
with is trustworthiness. To this end, major IT companies such as Google and IBM set out some
promising directions towards trustworthy AI. Google targets responsibility for AI systems.

(Google): “AI has significant potential to help solve challenging problems, including by advancing

medicine, understanding language, and fueling scientific discovery. To realize that potential,

it’s critical that AI is used and developed responsibly.”

IBM pursues a new design paradigm centered around trustworthy AI.

(IBM): “Moving forward, “build for performance” will not suffice as an AI design paradigm.

We must learn how to build, evaluate and monitor for trust.”

There are five aspects that people take into account for enabling trustworthy AI. See Fig. 2.
The first is fairness, which aims to design a model that does not discriminate among different
demographics and/or individuals. The second is robustness. We desire to protect against noisy
and possibly adversarial data. The third is explainability. A trained model should be explainable
and interpretable so that people can readily be convinced by model’s decision. The fourth is value
alignment, meaning that a decision based on model’s output should be aligned with actually what
people want in reality. The last is transparency. A model should be developed in a transparent
manner, being possibly be open to public. Obviously it is not that simple to satisfy all of these
requirements. Recently, significant ongoing efforts have been made towards achieving the five
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Figure 2: Five requirements for enabling trustworthy AI: (i) fairness across different demograph-
ics and/or individuals; (ii) robustness to data poisoning; (iii) explanability of trained models;
(iv) alignment of model’s output with actually what people want in reality; and (v) transparency
of model development.

aspects. This tutorial targets only one: the fairness topic which we have made some recent
progress on via some tools of information theory and statistics.

Two fairness contexts of this tutorial’s focus

Specifically we will explore fairness issues in the context of two prominent machine learning
models. The first concerns a supervised learning setup. That is, fair classifiers which intend to
make unbiased decisions in light of different groups and/or individuals. The second is about an
unsupervised learning setup. That is, fair generative models wherein the goal is to synthesize
fake samples that resemble real data while ensuring fairness.

Fairness in the context of classifiers

To figure out what we are going to study in detail, let me first explain what it means by fairness
in the context of classifiers. There are many fairness concepts that people have considered in
this context. One prominent concept of this tutorial’s focus is the so called group fairness. It is
about prediction outcomes. The group fairness pursues predictions to exhibit similar statistics
regardless of sensitive attributes of individuals such as race, gender, age and religion. Why
do we care about this? The reason is obvious. It is because there are many applications
concerning such sensitive attributes. Two applications are highlighted in Fig. 3: (i) job hiring;
(ii) parole decision. In these applications, fair classifiers serve to ensure fairness among differentTN1_3

job hiring parole decision

Figure 3: Two important applications of fair classifiers: (i) job hiring in which applicants want no
discrimination depending on their race and/or sex; (ii) parole decision for which a fair predictor
of recidivism (reoffending) score can play a crucial role.
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demographics.

Demographic Parity (DP)

One concrete fairness condition (in the realm of group fairness) that is very popular and simple,
and therefore I would like to focus on in this tutorial is the so called Demographic Parity (DP)
condition [1, 2]. Let me explain what the DP condition is in the context of the recidivism score
prediction. Let Z be a sensitive attribute, say 0 for black and 1 for white. Let Ỹ be a prediction
output made in hard decision, e.g., Ỹ = 1 (reoffending in the near future, say within two years)
or 0 (not reoffending). The DP condition simply means the independence between prediction
and sensitive attribute, Ỹ⊥Z, formally stated as:

P(Ỹ = 1|Z = z) = P(Ỹ = 1), ∀z ∈ Z (1)

where Z denotes the alphabet set of Z; in this example, Z = {0, 1}. There are many ways to
quantify the DP condition. One natural way that we will take in this tutorial is to quantify the
degree of fairness via the Difference between two interested probabilities that arise in the DP
condition (1) (DDP for short):

DDP :=
∑
z∈Z
|P(Ỹ = 1|Z = z)− P(Ỹ = 1)|. (2)

Notice that the independence implies DDP = 0 and vice versa. Hence, the smaller DDP, the
prediction Ỹ is more independent of Z, thereby representing a fairer scenario.

Equalized Odds (EO)

The DP condition might not be desirable when the ground-truth outcomes of the two groups
are far apart with each other, i.e., P(Y = 1|Z = 1) � P(Y = 1|Z = 0) or vice versa. In this
case, the DP condition is quite distinct from the ground-truth label distribution, and therefore
enforcing the DP condition may aggravate prediction accuracy significantly. This shortcom-
ing motivated the use of the following condition, named Equalized Odds, which pursues the
conditional independence: Ỹ⊥Z|Y , i.e.,

P(Ỹ = 1|Y = y, Z = z) = P(Ỹ = 1|Y = y), ∀z ∈ Z, ∀y ∈ Y. (3)

Notice that this condition may have nothing to do with such asymmetric case P(Y = 1|Z = 1)�
P(Y = 1|Z = 0). Hence, enforcing the EO condition may not necessarily degrade predication
accuracy. Similar to DDP, the EO condition can be quantified via the Difference between the
two interested probabilities in the EO condition (3) (DEO for short):

DEO :=
∑
y∈Y

∑
z∈Z
|P(Ỹ = 1|Y = y, Z = z)− P(Ỹ = 1|Y = y)|. (4)

Many recent works on fair classifiers

There has been a proliferation of fairness algorithms that intend to minimize DDP or DEO.
Fig. 4 exhibits only a partial list of the relevant references. These are chronologically listed up,
yet categorized into two columns. The references in the second column are the ones which are
relevant to information theory & statistics of this audience’s interest and hence I would like
to put a particular emphasis on. Specifically Zafar et al. [2] employ a well-known statistical
measure, called Pearson correlation, which also often arises in information theory. Baharlouei
et al. [12] and Lee et al. [14] rely upon other prominent measures, Rényi correlation and HGR
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[Hardt-Price-Srebo NeurIPS16] [Cho-Hwang-Suh ISIT20]

[Cho-Hwang-Suh NeurIPS20]

[Agarwal et al. ICML18]

[Pleiss et al. NeurIPS17]

[Zafar et al. AISTATS17]

[Zhang et al. AIES18]

[Donini et al. NeurIPS18]

[Roh-Lee-Whang-Suh ICML20]

[Roh-Lee-Whang-Suh ICLR 21]

[Baharlouei et al. ICLR20]

[Feldman et al. SIGKDD15]

[Lee et al. arXiv 20]

[Jiang et al. UAI20]

Figure 4: A partial list of references regarding fair classifiers.
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[Cho-Hwang-Suh ISIT20]
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[Zafar et al. AISTATS17]

[Roh-Lee-Whang-Suh ICML20]

[Baharlouei et al. ICLR20]

[Lee et al. arXiv 20]

[Jiang et al. UAI20]

Pearson correlation

Mutual information

Kernel density estimation

Renyi correlation

Wassertein distance

HGR maximal correlation

Figure 5: References taking approaches relevant to information theory.

(Hirchfeld-Gebelein-Rényi) maximal correlation, respectively. Jiang et al. [13] employ the famous
Wasserstein distance. Cho-Hwang-Suh [9] and Roh-Lee-Whang-Suh [10] employ arguably the
most powerful and prominent information-theoretic measure, mutual information. There is
another work [11] which exploits a well-known statistical method: Kernel Density Estimation
(KDE).

Among these, we will focus on the following three works concerning mutual information and
KDE: Cho-Hwang-Suh [9], Roh-Lee-Whang-Suh [10] and Cho-Hwang-Suh [11]. A couple of
reasons why I made such a choice. The first and obvious reason is that I can teach them well,
as I was involved in as a co-author. Second, the references [9, 10] concern the very famous
mutual information that some of you guys are excited about and/or familiar with. Third, the
last reference [11] proposes a simple yet powerful fair classifier which I believe is the state of the
art.

Here are what we are going to cover in detail during the upcoming lectures. In Lecture 2, we
will study an interesting connection between fairness measures (DDP and DEO) and mutual
information (MI), and then will build upon the connection to investigate an MI-inspired fair
classifier developed in [9]. In Lecture 3, we will explore the state of the art based on KDE [11].

Fairness in the context of generative models

From Lecture 4 onwards, we will switch-gear to explore another context: fair generative models.
To figure out what we will study in detail, let me first explain what it means by fairness in this
context. Similar to the prior context, there are also many fairness concepts. One important con-
cept that this tutorial will focus on is the so called fair representation. It pursues class-balanced
generated samples even when trained with size-biased real data across different demographics.
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To better understand the concept, let us consider a scenario in which fake samples are generated
via a partial set of CelebA [23] which exhibits an asymmetric ratio of female to male samples
∼ 85 : 15. Fig. 6 shows generated fake samples trained with the size-biased real data. We see
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Figure 6: Generated fake samples trained with biased real data taking the female-to-male ratio
as ∼ 85

15 .

that the generated samples are indeed biased as we expect. The female samples are dominant. A
natural goal in this context is to develop a fair generative model that promotes fair representation
even under such imbalanced real data.

A measure for fair representation

In an effort to quantify the degree of fair representation, a measure has been introduced, named
Fairness Discrepancy (FD) [20]. It is defined as the `2-norm distance between the distribu-
tion PG(z) of generated samples w.r.t. sensitive attribute z ∈ Z and the desired distribution
Pdesired(z), e.g., uniform:

FD :=

∥∥∥∥∥∥∥
 PG(z1)

...
PG(z|Z|)

−
 Pdesired(z1)

...
Pdesired(z|Z|)


∥∥∥∥∥∥∥
2

=

√∑
z∈Z

(PG(z)− Pdesired(z))2. (5)
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[Xu et al. BigData19]

[Um-Suh ‘21]

[Sattigeri et al. IBM-Journal19]

[Choi et al. ICML20]

[Yu et al. ECCV20][Xu et al. BigData18]

[Tan et al. arXiv20]

[Jalal et al. ICML21]

Figure 7: References regarding fair generative models.

Recent works on fair generative models
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There are some recent works along this research direction. Fig. 7 shows a list of the associated
references. The references in the second column concern fair representation of this tutorial’s
focus. These are further categorized into two groups. One group exploits demographic labels toTN1_6

[Um-Suh ‘21]

[Choi et al. ICML20]

[Yu et al. ECCV20]

[Tan et al. arXiv20]

w/ demographic labels 

w/o demographic labels

Figure 8: Reference for fair representation.

design a generative model that promotes fair representation. The paper by Yu et al. [19] belongs
to this. The other group does not require the knowledge of such demographic labels [20, 21, 22].

Focus of this tutorial

This tutorial puts an emphasis on one recent work [22] of the second category. The reasons
are similar as before. I can teach it well since I am a co-author of the paper. Also, it tar-
gets challenging yet more realistic scenarios where demographic labels are often unavailable in
practice due to privacy. In addition, it employs a well-known statistical measure that often
arises in information theory and hence that you may be interested in: total variation distance
(TVD). Further, it is the state of the art, performing well both in FD (fairness) and the quality
of samples.

But there is one thing we need to be prepared to understand the technique in [22]. Actually it is
built upon a famous GAN (Generative Adversarial Network) that some people often call hinge
GAN [24, 25]. So in Lecture 4, we will first study hinge GAN, as well as make an interesting
with TVD. Building upon the connection, we will then explore the TVD-based fair generative
model in Lecture 5. In Lecture 6, we will discuss a couple of other issues. Specifically we will
investigate some of our recent works that address the robustness aspect in addition to fairness.
We will also discuss other fairness contexts beyond fair classifiers and fair generative models.

Look ahead

Next lecture, we will embark on fair classifiers and explore a connection between fairness mea-
sures and mutual information.
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