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Recap: Hinge-loss-based GAN
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Discriminator (hinge loss):

Generator (linear loss):

Made a connection w/ total variation distance:

Claimed: This connection gives insights into 

a fair generative model.



Outline of Lecture 5
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1. 

2. 

Introduce a TVD-based regularization term that 

promotes fair sample generation (class-

balanced samples)

Formulate a corresponding optimization.

3. 

4. 

Translate it into an implementable optimization 

that employs hinge loss.

Discuss experimental results. 

Explore a TVD-based fair generative model.



A regularization term for fair sample gen.
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What we want for fair sample generation:

Generator in hinge-loss-based GAN:

a reference distribution 

respecting fair sample gen.

The given real data does not necessarily satisfy 

An issue arises in satisfying this:

Note: Interested scenarios:           biased 



A regularization term for fair sample gen.
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What we want for fair sample generation:

Generator in hinge-loss-based GAN:

a reference distribution 

respecting fair sample gen.

Introduce a new yet small reference dataset 

respecting

A natural way to satisfy this:

5-10% relative to original real data



A regularization term for fair sample gen.
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What we want for fair sample generation:

Generator in hinge-loss-based GAN:

a reference distribution 

respecting fair sample gen.

A nautral regularization term:



TVD-based optimization for a fair gen. model
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Question:

How to solve the optimization?

[Um-Suh ’21]:



Observation
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Remember:                           was a consequence of 

evaluating Generator’s objective at      , which was 

derived from:

[Um-Suh ’21]:



Observation
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Guess:                           is a consequence of evaluating 

Generator’s objective at another        , which is derived 

from:                                    

[Um-Suh ’21]:



Equivalence
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Turns out: Equivalent to

To prove this, need to show:



Proof of equivalence
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Using the technique based on the lemma introduced 

earlier, one can show:
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Proof of equivalence
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Architecture

real (biased)

reference (balanced)

or

or



or

reference (balanced)
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Three-way battle

real (biased)

1. tension btw          &  

or



or
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Three-way battle

real (biased)

2. tension btw             &  

reference (balanced)

or
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Three-way battle

real (biased)

3. tension btw          &  

reference (balanced)

or

or



Experiments
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A benchmark real dataset: CelebA

Female:male ~= 90:10



Performance measure
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1.

2.

A measure for the quality of generated samples  

A measure for fair sample generation

Fréchet Inception Distance (FID):

2nd order Wasserstein distance

Fairness Discrepancy (FD): 



FID vs FD tradeoff
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FID (quality) FD (fairness)

Non-fair model 
(Hinge-loss-based GAN)

TVD-based

fair gen. model



Generated samples
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TVD-based fair generative model:

Female:male = 54:46



Look ahead
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Discuss a couple of other relevant issues.
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