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A fair classifier
using kernel density estimation

Reading: TN3



Outline of Lecture 3: Fair classifier #2

1.
2.

Revisit the MI-based optimization.

Explore a way to directly compute the fairness
measure DDP.

Introduce a trick that allows us to well approximate

DDP:
Kernel Density Estimation (KDE)

Develop a KDE-based optimization for a fair
classifier.

Study how to solve the optimization.



Revisit: Ml-based optimization

I—A .
min ZECE @ 4N+ X-I(Z;Y)

Rationale behind the training instability:
1(Z:Y) = “max’ optimization

:> ‘min-max” optimization often suffers from
training instabllity.

How to address this?



Go back to the fairness measure DDP

o~

DDP:= ) [P(Y =1|Z =2) - P(Y = 1)
ZEZ
Let’s try to compute this directly.

First focus on:

Ca

P(Y =1)=P( > 1) Y :=1{Y > 7}
™~ pdf uknown!
Instead: We are given samples {g’)(l), e ,Q(m)}

Question: A way to infer the pdf from samples?



Kernel density estimation (KDE)

a smoothing parameter a kernel function
(bandwidth) (e.g., Gaussian kernel)




Accuracy of KDE

t_yf‘(’i))

P 1 .
Jiang ICML17: | /(1) — f(t)]ec S — ,dim. of an
mt

Interested r.v.
- Yields an inaccurate estimate under high-dim. cases

Good news: In our setting, d =1
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Approximation via KDE
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Approximation via KDE

~ - 1 7 — ()
P(Y:U:EZQ( ; )
i=1

Remember: DDP := Y [P(Y =1|Z =2) —P(Y = 1)
zZEZ
Similarly, one can obtain:

~ 1 T — 4
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Approximated DDP

o~

DDP := ) |P(Y =1|Z =2)—P(Y = 1)

z€Z

~ Y B(Y =1|Z =2) - B(Y = 1)

zeEZX
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Can express DDP in terms of samples (thus w)
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KDE-based optimization  cho-Hwang-Suh NeurlPS20

Algorithm: Gradient descent

Issues: How to deal with the absolute function?

How to choose bandwidth h?
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How to deal with the absolution func?

Instead, one can employ Huber loss:

Hs(z) = -x if || <6

s

1
O (x| — =0 otherwise
2

This enables us to readily obtain gradient.
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How to choose bandwidth h?

Turns out:

There Is a sweet spot for A that miminizes the mean
sqguare error of KDE estimate.

Advise us to find ~A™ that minimizes the MSE.

See [Cho-Hwang-Suh NeurlPS20] for detalls.
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Extension to another fairness measure DEO

DEO =Y Y [P(Y =1]Y =y, Z =2) - P(Y = 1|Y =y)|

(VISRFASY
~Y Y PY =1Y =y, Z=2)-BY =1y =y)
yey zeZ
~Y YL Y e o L Z S
oy aer | MW L. My
yd \

1y {i:y\ =y, 2" = 2}
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Experiments

A benmark real dataset;: COMPAS

(z,2,y)
]

criminal records

black or white

reoffend or not
IN near future
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A challenge

D[t?zPﬁ f‘ . MIl-based fair classifer
RN B
0.20 . ’ i ; -

KDE-based approach offers training stability!

® ° -
0.05 | ' : KDE—'based fair clasgifer
0.00 - ¢ : | ﬁ

0.1 02 0.3 04 05 06 07 0.8 0.9
fairness tuning knob A
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Accuracy vs DDP tradeoff

DDP 1 MI-based fair classifer
°g°
]
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prediction accuracy
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Summary of Lectures 1/2/3

1. Explore fairness measures in fair classifiers.

2. Study an MI-based fair classifier which yields a
good tradeoff while suffering from training instabllity.

3. Investigate another fair classifer based on KDE,
which addresses the training instability issue.

17



Look ahead

Will move onto the 29 context:
Fair generative models
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