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Two-Way Interference Channel Capacity: How to
Have the Cake and Eat It Too

Changho Suh , Member, IEEE, Jaewoong Cho, Student Member, IEEE, and David Tse, Fellow, IEEE

Abstract— Two-way communication is prevalent and its
fundamental limits are first studied in the point-to-point setting
by Shannon. One natural extension is a two-way interference
channel (IC) with four independent messages: two associated
with each direction of communication. In this paper, we explore
a deterministic two-way IC, which captures the key properties
of the wireless Gaussian channel. Our main contribution lies
in the complete capacity region characterization of the two-
way IC (with respect to the forward and backward sum-rate
pair) via a new achievable scheme and a new converse. One
surprising consequence of this result is that not only we can get
an interaction gain over the one-way non-feedback capacities,
we can sometimes get all the way to perfect feedback capacities
in both directions simultaneously. In addition, our novel outer
bound characterizes channel regimes in which interaction has
no bearing on capacity.

Index Terms— Feedback capacity, interaction, perfect
feedback, two-way interference channels.

I. INTRODUCTION

TWO-WAY communication, where two nodes want to
communicate data to each other, is prevalent. The first

study of such two-way channels was done by Shannon [3] in
the setting of point-to-point memoryless channels. When the
point-to-point channels in the two directions are orthogonal
(such as when the two directions are allocated different time
slots or different frequency bands, or when the transmitted
signal can be canceled perfectly as in full-duplex communi-
cation), the problem is not interesting as feedback does not
increase point-to-point capacity. Hence, communication in one
direction cannot increase the capacity of the other direction
and no interaction gain is possible. One can achieve no more
than the one-way capacity in each direction.

The situation changes in network scenarios where feedback
can increase capacity. In these scenarios, communication in
one direction can potentially increase the capacity of the other
direction by providing feedback in addition to communicating
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Fig. 1. Two interfering two-way communication links, consisting of two
ICs, one in each direction. The ICs are orthogonal to each other and do not
necessarily have the same channel gains.

data. One scenario of particular interest is the setting of
the two-way interference channel (two-way IC), modeling
two interfering two-way communication links (Fig. 1). Not
only is this scenario common in wireless communication
networks, it has also been demonstrated that feedback pro-
vides a significant gain for communication over (one-way)
ICs [4]–[6]. In particular, [5] reveals that the feedback gain
can be unbounded, i.e., the gap between the feedback and
non-feedback capacities can be arbitrarily large for certain
channel parameters. This suggests the potential of signifi-
cant interaction gain in two-way ICs. On the other hand,
the feedback result [5] assumes a dedicated infinite-capacity
feedback link. In the two-way setting, any feedback needs
to be transmitted through a backward IC, which also needs
to carry its own backward data traffic. The question is when
we take in consideration the competition with the backward
traffic, whether there is still any net interaction gain through
feedback?

To answer this question, [7] investigated a two-way IC
under the linear deterministic model [8], which approximates a
Gaussian channel. A scheme is proposed to demonstrate a net
interaction gain, i.e., one can simultaneously achieve better
than the non-feedback capacities in both directions. While
an outer bound is also derived, it has a gap to the lower
bound. Hence, there has been limited understanding on the
maximal gain that can be reaped by feedback. In particular,
whether or not one can get all the way to perfect feedback
capacities in both directions has been unanswered. Recently
Cheng and Devroye [9] derived an outer bound, but it does not
give a proper answer as the result assumes a partial interaction
scenario in which interaction is enabled only at two nodes,
while no interaction is permitted at the other two nodes.

In this work, we settle this open problem and characterize
the capacity of the deterministic two-way IC (w.r.t. the forward
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Fig. 2. When can one have the cake and eat it too? The plot is over two
channel parameters of the deterministic model, α and α̃, where α is the ratio
of the interference-to-noise ratio (in dB) to the signal-to-noise ratio (in dB)
of the IC in the forward direction and α̃ is the corresponding quantity of the
IC in the backward direction. The parameter γ is the ratio of the backward
signal-to-noise ratio (in dB) to the forward signal-to-noise ratio (in dB), and
is fixed to be a value between 1 and 4 in this example. White/blank region:
feedback does not increase capacity in either direction and thus interaction is
not useful. Purple/dots: feedback does increase capacity but interaction cannot
provide such increase. Light-blue/slash: feedback can be provided through
interaction and there is a net interaction gain. Dark-blue/check: interaction is
so efficient that one can achieve perfect feedback capacity simultaneously in
both directions. This implies that one can obtain the maximal feedback gain
without any sacrifice for feedback transmission (have the cake and eat it too).

and backward sum-rate pair) via a new capacity-achieving
transmission scheme as well as a novel outer bound. For
simplicity, we assume the IC in each direction is symmetrical
between the two users; however the ICs in the two directions
are not necessarily the same (for example, they may use
different frequency bands). For some channel gains, the new
scheme simultaneously achieves the perfect feedback sum-
capacities of the ICs in both directions. This occurs even when
feedback offers gains in both directions and thus feedback
must be explicitly or implicitly carried over each IC while
sending the traffic in its own direction. Fig. 2 shows for what
channel gains this happens.

In the new scheme, feedback allows the exploitation of
the following as side information: (i) past received signals;
(ii) users’ own messages; (iii) even the future information via
retrospective decoding (to be detailed later; see Remark 3 in
particular). While the first two were already shown to offer
a feedback gain in literature, the third is newly exploited.
It turns out this new exploitation leads us to achieve the perfect
feedback capacities in both directions, which can never be
done by the prior schemes [5]–[7].

Our new outer bound leads to the characterization of chan-
nel regimes in which interaction provides no gain in capacity.
The bound is not cutset. Also it is far from more sophisticated
bounds such as genie-aided bounds [4], [5], [10]–[14] and the
generalized network sharing bound [15]. We employ a notion
called triple mutual information, also known as interaction
information [16]. In particular, we exploit one key property
of the notion, commutativity, to derive the bound.

Fig. 3. A two-way deterministic interference channel (IC).

II. MODEL

Fig. 3 describes a two-way deterministic IC where user
k wants to send its own message Wk to user k̃, while
user k̃ wishes to send its own message W̃k to user k,
k = 1, 2. We assume that (W1, W2, W̃1, W̃2) are independent
and uniformly distributed. For simplicity, we consider a setting
where both forward and backward ICs are symmetric but not
necessarily the same. In the forward IC, n and m indicate
the number of signal bit levels for direct and cross links
respectively. The corresponding values in the backward IC are
denoted by (ñ, m̃). Let Xk ∈ F

max(n,m)
2 be user k’s transmitted

signal and Vk ∈ F
m
2 be a part of Xk visible to user j̃( �= k̃).

Similarly let X̃k be user k̃’s transmitted signal and Ṽk be a
part of X̃k visible to user j ( �= k). The deterministic model
abstracts broadcast and superposition of signals in the wireless
Gaussian channel. See [8] for explicit details. A signal bit
level observed by both users is broadcasted. If multiple signal
levels arrive at the same signal level at a user, we assume
modulo-2-addition. The encoded signal Xki of user k at time
i is a function of its own message and past received signals:
Xki = fki (Wk, Ỹ i−1

k ). We define Ỹ i−1
k := {Ỹkt }i−1

t=1 where Ỹkt

denotes user k’s received signal at time t , offered through the
backward IC. Similarly the encoded signal X̃ki of user k̃ at
time i is a function of its own message and past received
signals: X̃ki = f̃ki (W̃k , Y i−1

k ).
A rate tuple (R1, R2, R̃1, R̃2) is said to be achievable if there

exists a family of codebooks and encoder/decoder functions
such that the decoding error probabilities go to zero as code
length N tends to infinity. The capacity region is defined as
the closure of the set of achievable four-rate tuples. In this
work, we focus on a sum-rate pair regarding the forward and
backward ICs: (R, R̃) := (R1 + R2, R̃1 + R̃2). We define the
sum-capacity region as the closure of the set of achievable
sum-rate pairs: C = closure{(R, R̃) : (R1, R2, R̃1, R̃2) ∈
Chigh} where Chigh denotes the capacity region w.r.t. the high-
dimensional four-rate tuple.1

1Conventionally the notation C is used to indicate the capacity region. But
here we abuse the simple notation to denote the sum-capacity region as it
frequently appears throughout.
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We remark that the extension to the four-rate tuple case does
not provide any additional key insights, given our results (to be
presented soon) and the tradeoff w.r.t. (R1, R2) (or (R̃1, R̃2))
already characterized in [5]. Rather it requires quite a careful
and detailed analysis as there are so many cases to deal with -
this will be clearer when presenting our achievability. In this
work, we do not focus on such generalization, rather put an
emphasis on understanding the role of interaction in the simple
two-way scenario. Hence, we consider a simpler sum-rate pair
setting.

III. MAIN RESULTS

Our main contribution lies in characterizing the sum-
capacity region of the two-way IC, formally stated below.

Theorem 1: The sum-capacity region C of the two-way IC
is the set of (R, R̃) such that

R ≤ max(2n − m, m) =: Cpf (1)

R̃ ≤ max(2ñ − m̃, m̃) =: C̃pf (2)

R + R̃ ≤ 2(n + ñ) (3)

R + R̃ ≤ 2 max(n − m, m) + 2 max(ñ − m̃, m̃) (4)

where Cpf and C̃pf indicate the perfect feedback sum-
capacities of the forward and backward ICs, respectively [5].

Proof: The achievability proof relies on two novel trans-
mission schemes. In particular, we highlight key features
of the second scheme - that we call retrospective decoding
- which plays a crucial role to achieve perfect feedback
capacities in both directions. The first feature is that it consists
of two stages, each comprising a sufficiently large number L
of time slots. The second feature is that in the second stage,
feedback-aided successive refinement w.r.t. the fresh symbols
sent in the first stage occurs in a retrospective manner: the
fresh symbol sent in time i of stage I is refined in time
2L + 2 − i of stage II where 1 ≤ i ≤ L. See Section IV
for the detailed proof.

For the converse proof, we first note that the first
two bounds (1) and (2) match the perfect-feedback bound
[5], [7], [14]. So one can prove them with a simple modifica-
tion to the proof in the references. The third bound is due to
cutset: R1+ R̃2 ≤ n+ ñ and R2 + R̃1 ≤ n+ ñ. Our contribution
lies in deriving the last bound. See Section V-B for the
proof.

We state two baselines for comparison to our main result.
Baseline 1 [10], [17]: The sum-capacity region Cno for the

non-interactive scenario is the set of (R, R̃) such that

R ≤ min {2 max(n − m, m), max(2n − m, m), 2n} =: Cno

R̃ ≤ min {2 max(ñ − m̃, m̃), max(2ñ − m̃, m̃), 2ñ} =: C̃no.

Baseline 2 [5]: The capacity region for the perfect feed-
back scenario is Cpf = {(R, R̃) : R ≤ Cpf, R̃ ≤ C̃pf}.

With Theorem 1 and Baseline 1, one can readily see that
feedback gain (in terms of capacity region) occurs as long
as (α /∈ [ 2

3 , 2], α̃ /∈ [ 2
3 , 2]), where α := m

n and α̃ := m̃
ñ .

A careful inspection reveals that there are channel regimes in
which one can enhance Cno (or C̃no) without sacrificing the
other counterpart. This implies a net interaction gain.

Definition 1 (Interaction Gain): We say that an interaction
gain occurs if one can achieve (R, R̃) = (Cno + δ, C̃no + δ̃)
for some δ ≥ 0 and δ̃ ≥ 0 such that max(δ, δ̃) > 0.

It has been shown in [7] that the light-blue/slash regime
in Fig. 2 exhibits an interaction gain.

We also find the regimes in which feedback does increase
capacity but interaction cannot provide such increase, meaning
that whenever δ > 0, δ̃ must be −δ and vice versa. These are
(α ≤ 2

3 , α̃ ≤ 2
3 ) and (α ≥ 2, α̃ ≥ 2) marked in purple/dots

in Fig. 2. The cutset bound (3) proves this for (α ≥ 2, α̃ ≥ 2).
The regime of (α ≤ 2

3 , α̃ ≤ 2
3 ) has been open as to whether

both δ and δ̃ can be non-negative. Our novel bound (4) cracks
the open regime, demonstrating that there is no interaction
gain in the regime.

Achieving Perfect Feedback Capacities: One interesting
observation is that there are channel regimes in which both
δ and δ̃ can be strictly positive. This is unexpected because it
implies that not only feedback does not sacrifice one transmis-
sion for the other, it can actually improve both simultaneously.
More interestingly, δ and δ̃ can reach up to the maximal
feedback gains, reflected in Cpf−Cno and C̃pf−C̃no. The dark-
blue/check regimes in Fig. 2 indicate such channel regimes
when 1 ≤ γ := ñ

n ≤ 4. Note that such regimes depend
on γ . The amount of feedback that one can send is limited
by available resources offered by the backward (or forward)
IC. Hence, the feedback gain can be saturated depending on
availability of the resources, which is affected by the channel
asymmetry parameter γ . One point to note here is that for
any γ , there always exists a non-empty set of (α, α̃) in which
perfect feedback capacities can be achieved. Corollary 1 stated
below exhibits all of such channel regimes.

Corollary 1: Consider a case in which feedback helps in
both ICs: Cpf > Cno and C̃pf > C̃no. In this case, the channel
regimes in which C = Cpf are:

(I) α <
2

3
, α̃ > 2, Cpf − Cno ≤ 2m̃ − C̃pf,

C̃pf − C̃no ≤ 2n − Cpf;
(II) α̃ <

2

3
, α > 2, C̃pf − C̃no ≤ 2 m − Cpf,

Cpf − Cno ≤ 2ñ − C̃pf.

Proof: See Appendix D.
Remark 1 (Why the Perfect Feedback Regimes?): When

α < 2/3 and α̃ > 2, 2m̃ indicates the total number of resource
levels at the receivers in the backward channel. Hence, one
can interpret 2m̃ − C̃pf as the remaining resource levels
(resource holes) that can potentially be utilized to aid forward
transmission. It turns out feedback can maximize resource
utilization by filling up the resource holes under-utilized
in the non-interactive case. Note that Cpf − Cno represents
the amount of feedback that needs to be sent for achieving
Cpf. Hence, the condition Cpf − Cno ≤ 2m̃ − C̃pf (similarly
C̃pf − C̃no ≤ 2 n − Cpf) in Corollary 1 implies that as
long as we have enough resource holes, we can get all the
way to perfect feedback capacity. We will later provide an
intuition as to why feedback can do so while describing our
achievability; see Remark 3 in particular. �
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Fig. 4. A perfect feedback scheme for (n, m) = (2, 1) where Cpf = 3 (top);
a nonfeedback scheme for (ñ, m̃) = (1, 2) where C̃pf = C̃no = 2 (bottom).

IV. ACHIEVABILITY PROOF OF THEOREM 1

We first illustrate new transmission schemes via two toy
examples in which the key ingredients of our achievability
idea are well presented. Once the description of the schemes
is done via the examples, we will then outline the proof
for generalization while leaving a detailed proof for arbitrary
channel parameters in Appendix A.

A. Example 1: (n, m) = (2, 1), (ñ, m̃) = (1, 2)

See Fig. 4 for the channel structure of the example. The
claimed sum-rate region in this example reads {(R, R̃) : R ≤
Cpf = 3, R̃ ≤ C̃no = 2}. This is the case in which one
can achieve Cpf while maintaining C̃no. We introduce a new
transmission scheme (that we call Scheme 1) to achieve the
claimed sum-rate region.

Perfect Feedback Scheme: A perfect feedback scheme was
presented in [5]. Here we consider a different scheme which
allows us to resolve the tension between feedback and inde-
pendent messages when translated into a two-way scenario.
The scheme operates in two stages. See Fig. 4. In stage I, four
fresh symbols ((A, a) from user 1 and (B, b) from user 2) are
transmitted. The scheme in [5] feeds a ⊕ B back to user 1,
so that user 1 can decode B which turns out to help refining
the corrupted symbol a in stage II. On the other hand, here
we send a ⊕ B back to user 2. This way, user 2 can get a
by removing its own symbol B . Similarly user 1 can get b.
Now in stage II, user 2 intends to re-send b on the top level,
as the b is corrupted due to A in stage I. But here a challenge
arises. The challenge is that the b causes interference to user
1̃ at the bottom level. But here the symbol b obtained via
feedback at user 1 can play a role. The idea of interference
neutralization [18] comes into play. User 1 sending b on the
bottom level enables neutralizing the interference. This then
allows user 1 to transmit another fresh symbol, say A′, without

Fig. 5. XORing with interferene neutralization for feedback strategy;
Employing interference alignment and neutralization for refinement of the
past corrupted symbols.

being interfered. Similarly user 2 can carry B ′ interference-
free. This way, we send 6 symbols during two time slots, thus
achieving Cpf = 3. As for the backward IC, we employ a
nonfeedback scheme in [17]. User 1̃ and 2̃ send ( Ã, B̃) on top
levels. This yields C̃no = 2.

We are now ready to illustrate our achievability. Like the
perfect feedback scheme, it still operates in two stages and the
operation of stage I remains unchanged. A new idea comes
in feedback strategy. Recall that a ⊕ B is the signal that is
desired to be fed back to user 2. But a ⊕ B has a conflict
with transmission of Ã. It seems an explicit selection needs
to be made between the two competing transmissions. But it
turns out the two transmissions come without the conflict. The
idea is to combine the XORing scheme introduced in network
coding literature [19] with interference neutralization [18]. See
Fig. 5. User 1̃ simply sends the XOR of a ⊕ B and Ã on the
top level. User 1 can then extract Ã ⊕ B by using its own
symbol a as side information. But it is still interfered with
by B . Here a key observation is that B is also available at
user 2̃ - it was received cleanly at the top level in stage I.
User 2̃ sending B on the bottom level enables user 1 to
achieve interference neutralization at the bottom level, thereby
decoding Ã of interest. Now consider user 2 side. User 2 can
exploit B to obtain a⊕ Ã. Note that a⊕ Ã is not the same as a
wanted by user 2 in the perfect feedback scheme. Nonetheless
a⊕ Ã can serve the same role as a and this will be clearer soon.
Similarly, user 2̃ sending B̃ ⊕ (b ⊕ A) on the top level while
user 1̃ sending A (already delivered via the forward IC) on the
bottom level, user 2 can decode B̃ of interest and user 1 can
get b ⊕ B̃.

Now in stage II, we take a similar approach as in the perfect
feedback case. User 2 intends to re-send b on the top level.
Recall in the perfect feedback scheme that user 1 sent the
fedback symbol b on the bottom level, in order to remove
the interference caused to user 1̃. But the situation is different
here. User 1 has b ⊕ B̃ instead. It turns out this can also
play the same role. The idea is to use interference alignment
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and neutralization [18], [20], [21]. User 1 sends b ⊕ B̃ on the
bottom level. Here B̃ seems to cause interference to user 1̃. But
this can be canceled as B̃ is already decoded at user 2 - see the
bottom level at user 2 in the backward channel. User 2 sending
b⊕ B̃ on the top level enables interference neutralization. This
allows user 1 to send another fresh symbol A′ on the bottom
level interference-free. Note that b ⊕ B̃ can be viewed as the
aligned interference w.r.t. A. Similarly user 1 sending a ⊕ Ã
on the top level and user 2 sending B ′ ⊕ (a ⊕ Ã) on the
bottom level, user 1̃ and 2̃ can decode a and B ′ respectively.
This way, we achieve Cpf = 3 as in the perfect feedback case
while maintaining C̃no = 2. Hence, the claimed rate region is
achieved. �

Remark 2 (Exploiting Side Information): Note in Fig. 5
(bottom) that the two backward symbols ( Ã, B̃) and the two
feedback signals (a ⊕ B, b ⊕ A) can be transmitted through
2-bit-sum-capacity backward IC. This is because each user
can cancel the seemingly interfering information by exploiting
what has been received and its own symbols as side informa-
tion. The side information allows the backward IC to have
an effectively larger capacity, thus yielding a gain. This gain
equalizes feedback cost, which in turn enables feedback to
come for free in the end. The nature of the gain offered
by side information coincides with that of the two-way relay
channel [22] and many other examples [5], [23]–[26]. �

B. Example 2: (n, m) = (2, 1), (ñ, m̃) = (0, 1)

Scheme 1 is intended for the regimes in which feedback
provides a gain only in one direction, e.g., Cpf > Cno

and C̃pf = C̃no. For the regimes feedback helps in both
directions, we develop another transmission scheme (that we
call Scheme 2) which enables us to get sometimes all the way
to perfect feedback capacities. In this section, we illustrate the
scheme via Example 2 in which (Cpf = 3 > 2 = Cno, C̃pf =
1 > 0 = C̃no) and one can achieve (R, R̃) = (Cpf, C̃pf). See
Fig. 6 for the channel structure of the example.

Our scheme operates in two stages. But one noticeable
distinction is that each stage comprises a sufficiently large
number of time slots. Specifically stage I consists of L time
slots, while stage II uses L + 1 time slots. It turns out our
scheme ensures transmission of 6L forward symbols and 2L
backward symbols, thus yielding:

(R, R̃) =
(

6L

2L + 1
,

2L

2L + 1

)
−→ (3, 1) = (Cpf, C̃pf).

as L → ∞. Here are details.
Before describing details, let us review the perfect feedback

scheme of the backward IC [5] which takes a relaying idea.
User 1̃ delivers a backward symbol, say ã, to user 1 via
the feedback-assisted path: user 1̃ → user 2 → feedback →
user 2̃ → user 1. Similarly user 2̃ sends b̃ to user 2. This
yields C̃pf = 1.

Stage I: We employ L time slots. In each time slot, we mim-
ick the perfect feedback scheme although we have the tension
between feedback and independent message transmissions.

Time 1: Four fresh symbols are transmitted over the forward
IC. User 1̃ then extracts the signal that is desired to be

fed back: a1 ⊕ B1. Next we send the XOR of a1 ⊕ B1
and a backward symbol, say ã1. Similarly user 2̃ transmits
(b1 ⊕ A1) ⊕ b̃1. User 1 then gets b1 ⊕ b̃1 using its own
symbol A1. Similarly user 2 gets a1 ⊕ ã1.

Time 2: User 1 superimposes b1 ⊕ b̃1 with another new
symbol, say a2, sending the XOR on the bottom level. On the
top level is another fresh symbol A2 transmitted. Similarly
user 2 sends (B2, b2 ⊕ (a1 ⊕ ã1)). User 1̃ transmits (a2 ⊕b1 ⊕
b̃1 ⊕ B2)⊕ ã2. Similarly user 2̃ sends (b2 ⊕a1 ⊕ ã1 ⊕ A2)⊕ b̃2.
User 1 then gets b2 ⊕ ã1 ⊕ b̃2 by using its own signal a1 ⊕ A2.
Similarly user 2 obtains a2⊕b̃1⊕ã2. Repeating the above, one
can readily verify that at time i ∈ {2, . . . , L}, user 1 and 2 get
bi ⊕ ãi−1 ⊕ b̃i−1 and ai ⊕ b̃i−1 ⊕ ãi−1 respectively; similarly
user 1̃ and 2̃ get ai ⊕bi−1⊕b̃i−1 ⊕Bi and bi ⊕ai−1 ⊕ãi−1⊕ Ai

on the bottom levels, respectively. See Fig. 6.
Stage II: We employ L + 1 time slots. We perform refine-

ment w.r.t. the fresh symbols sent in stage I. The novel feature
here is that the successive refinement occurs in a retrospective
manner: the fresh symbol sent at time i is refined at time
2L + 2 − i in stage II where 1 ≤ i ≤ L. Here one key point
to emphasize is that the refined symbol in stage II acts as side
information, which in turn helps refining other past symbols
in later time. In the example, the decoding order reads:

(ãL, b̃L) → (aL, bL) → · · · → (ã1, b̃1) → (a1, b1). (5)

Time L+1: User 1 sends bL ⊕ãL−1⊕b̃L (received at time L)
on the bottom level. It turns out this acts as ignition for refining
all the corrupted symbols in the past. Similarly user 2 sends
aL ⊕ b̃L−1 ⊕ ãL on the bottom level. User 1̃ can then obtain
bL ⊕ b̃L which would be forwarded to user 2. User 2 can then
decode b̃L of interest. Similarly ãL is delivered to user 1.

Time L +2: The decoded symbols (ãL, b̃L) turn out to play
a key role to refine past forward transmission. Remember that
bL sent by user 2 at time L in stage I was corrupted. User 2 re-
transmits the bL on the top level as in the perfect feedback
case. But here the problem is that the situation is different
from that in the perfect feedback case where bL was available
at user 1 and helped nulling interference. Note that bL is
not available here. Instead user 1 has an interfered version:
bL ⊕ b̃L ⊕ ãL−1. Nonetheless we can effectively do the same
as in the perfect feedback case. User 1 sends bL ⊕ b̃L ⊕ ãL−1
on the bottom level. Clearly the neutralization is not perfect
as it contains b̃L . Here the idea is to exploit b̃L as side
information to enable interference alignment and neutraliza-
tion [18], [20], [21]. Note that user 2 can exploit the knowledge
of b̃L to construct the aligned interference bL ⊕ b̃L . Sending
bL ⊕ b̃L on the top level, user 2 can completely neutralize the
interference as in the perfect feedback case. This enables user
1 to deliver A′

1 interference-free on the bottom level. Similarly
we can deliver (aL , B ′

1). On the other hand, exploiting aL

(decoded right before) as side information, user 1̃ can extract
bL−1 ⊕ b̃L−1 ⊕ BL from the signal received at time L. Sending
this then allows user 2 to decode b̃L−1. Similarly ãL−1 can be
decoded at user 1.

Time L + 3 ∼ Time 2L + 1: We repeat the same as
before. At time L + 1 + i where 2 ≤ i ≤ L, exploit-
ing (ãL+1−i , b̃L+1−i) decoded in time L + i , we decode
(aL+1−i , bL+1−i ), which in turn helps decoding (ãL−i , b̃L−i ).
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Fig. 6. Stage I: Employ L time slots. The operation in each time slot is similar to stage I’s operation in the perfect feedback case. We simply forward the
XOR of a feedback signal and a new independent symbol. Here we see the tension between them.

Fig. 7. Stage II: Time L + 1 aims at decoding (ãL , b̃L ). At time L + 1 + i , given (ãL+1−i , b̃L+1−i ) (decoded in time L + i), we decode (aL+1−i , bL+1−i )
which in turn helping decoding (ãL−i , b̃L−i ). We iterate this from i = 1 to i = L .

Now let us compute an achievable sum-rate pair. In stage I,
we sent (4L, 2L) fresh forward and backward symbols.
In stage II, we sent only 2L fresh forward symbols. This yields
the desired rate in the limit of L → ∞.

Remark 3 (Exploiting Future Symbols as Side Information):
Note in Fig. 6 the two types of tension: (1) forward-symbol
feedback vs. backward symbols; (2) the other counterpart.
As illustrated in Fig. 7, our scheme leads us to resolve both
tensions. This then enables us to fully utilize the remaining
resource level 2m̃ − C̃pf = 1 for sending the forward-
symbol feedback of Cpf − Cno = 1, thereby achieving Cpf.
Similarly we can fill up the resource holes 2n − Cpf = 1
with the backward-symbol feedback of C̃pf − C̃no = 1.
This comes from the fact that our feedback scheme exploits

the following as side information: (i) past received signals;
(ii) users’ own symbols; (iii) partially decoded symbols.
While the first two were already shown to be beneficial
in the prior works [5], [7] (as well as in Example 1),
the third type of information is the newly exploited one
which turns out to yield the strong interaction gain. One
can view this as future information. Recall the decoding
order (5). When decoding (ãL−1, b̃L−1), we exploited
(aL, bL) (future symbols w.r.t. (ãL−1, b̃L−1)) as side
information. A conventional belief is that feedback allows
us to know only about the past. In contrast, we discover a
new viewpoint on the role of feedback. Feedback enables
exploiting future information as well via retrospective
decoding. �
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Fig. 8. Regimes to check for achievability proof. By symmetry, it suffices
to consider (R1), (R2), (R3), (R4), (R5).

C. Proof Outline

We categorize regimes depending on the values of channel
parameters. Notice that C = Cno when (α ∈ [ 2

3 , 2], α̃ ∈ [ 2
3 , 2]).

Also by symmetry, it suffices to consider only five regimes -
see Fig. 8:

(R1) α > 2, α̃ > 2;
(R2) α ∈ (0, 2/3), α̃ ∈ (0, 2/3);
(R3) α > 2, α̃ ∈ [2/3, 2];
(R4) α ∈ (0, 2/3), α̃ ∈ [2/3, 2];
(R5) α ∈ (0, 2/3), α̃ > 2.

As illustrated in Fig. 2, (R1) and (R2) are the regimes
in which there is no interaction gain. The proof builds
only upon the perfect feedback scheme [5]. One thing to
note here is that there are many subcases depending on
whether or not available resources offered by a channel are
enough to achieve the perfect feedback bound. Hence, a careful
analysis is required to cover all such subcases. On the other
hand, (R3) and (R4) are the regimes in which there is an
interaction gain but only in one direction. So in this case,
the nonfeedback scheme suffices for the backward IC while a
non-trivial scheme needs to be employed for the forward IC.
It turns out Scheme 1 illustrated in Example 1 plays a key
role in proving the claimed sum-rate pair. (R5) is the regime
in which there is an interaction gain and sometimes one can
get to perfect feedback capacities. We fully utilize the ideas
presented in Scheme 1 and Scheme 2 to prove the claimed
sum-rate region. One key feature to emphasize is that the
idea of network decomposition developed in [27] is utilized to
provide a conceptually simpler proof for generalization. Here
we illustrate the network decomposition idea via Example 3,
while leaving a detailed proof in Appendix A.

Example 3 [(n, m) = (4, 2), (ñ, m̃) = (1, 3)]: Network
decomposition relies on graph coloring. See Fig. 9. For the for-
ward IC, we assign a color (say green) to level 1 and the levels
connected to level 1. The green-colored graph then represents
a subchannel, say (n(1), m(1)) = (2, 1), which has no over-
lap with the remaining uncolored subchannel (n(2), m(2)) =
(2, 1). Following the notation in [27], we represent this by:

(4, 2) −→ (2, 1)× (2, 1). Similarly the backward channel can
be decomposed as: (1, 3) −→ (1, 2)× (0, 1). We then pair up
one forward-subchannel (2, 1) and one backward-subchannel,
say (1, 2), and apply Scheme 1 for the pair as in Fig. 5.
This gives (R(1), R̃(1)) = (3, 2). For the remaining pair of
(2, 1) and (0, 1), we perform Scheme 2 independently. This
yields (R(2), R̃(2)) = (3, 1). Combining these two achieves
the desired rate region: {(R, R̃) : R ≤ Cpf = 6, R̃ ≤
C̃pf = 3}. �

V. CONVERSE PROOF OF THEOREM 1

The first two (1) and (2) are the perfect-feedback bounds
[5], [7], [14]. So the proof is immediate via a slight modifi-
cation. The third bound (3) is cutset: R1 + R̃2 ≤ n + ñ and
R2 + R̃1 ≤ n + ñ. The last is a new bound. For completeness,
we will provide detailed proof for the cutset and perfect
feedback bounds in the subsequent section. We will then derive
the new bound in Section V-B.

A. Proof of the Cutset & Perfect Feedback Bound

Proof of (3): Starting with Fano’s inequality, we get

N(R1 + R̃2 − εN )

≤ I (W1, W̃2; Y N
1 , W̃1, Ỹ N

2 , W2)
(a)=

∑
H (Y1i, Ỹ2i |W̃1, W2, Y i−1

1 , Ỹ i−1
2 , X2i )

(b)=
∑

H (Y1i |W̃1, W2, Y i−1
1 , Ỹ i−1

2 , X2i )

+
∑

H (Ỹ2i |W̃1, W2, Y i
1, Ỹ i−1

2 , X2i , X̃1i )

(c)≤
∑

H (Y1i |X2i ) +
∑

H (Ỹ2i |X̃1i )

(d)≤ N(n + ñ)

where (a) follows from the fact that (W1, W̃2) is independent
of (W2, W̃1), and X2i is a function of (W2, Ỹ i−1

2 ); (b) fol-
lows from the fact that X̃1i is a function of (W̃1, Y i−1

1 );
(c) follows from the fact that conditioning reduces entropy;
(d) follows from the fact that the right-hand-side is maximized
when (X1, X2, X̃1, X̃2) are uniformly distributed and indepen-
dent. Similarly one can show N(R2 + R̃1 − εN ) ≤ N(n + ñ).
If (R1, R2, R̃1, R̃2) is achievable, then εN → 0 as N tends to
infinity. Therefore, we get the desired bound.

Proof of (1): Starting with Fano’s inequality, we get

N(R1 + R2 − εN )
(a)≤ I (W1; Y N

1 |W̃1, W2, W̃2) + I (W2; Y N
2 |W̃2, W̃1)

= H (Y N
1 |W̃1, W2, W̃2) + H (Y N

2 |W̃2, W̃1)

−
{

H (Y N
1 , Y N

2 |W̃1, W2, W̃2) − H (Y N
1 |W̃1, W̃2, W2, Y N

2 )
}

= H (Y N
1 |W̃1, W̃2, W2, Y N

2 ) − H (Y N
2 |W̃1, W2, W̃2, Y N

1 )

+ H (Y N
2 |W̃2, W̃1)

≤ H (Y N
1 |W̃1, W̃2, W2, Y N

2 ) + H (Y N
2 |W̃2, W̃1)

(b)=
∑

H (Y1i |W̃1, W̃2, W2, Y N
2 , Y i−1

1 , X̃ i
1, X̃2i , Ỹ i

2 , X2i , V1i)

+ H (Y N
2 |W̃2, W̃1)

(c)≤
∑

H (Y1i |V1i , X2i ) +
∑

H (Y2i)

≤ N
{
(n − m)+ + max(n, m)

} = N max(2n − m, m)
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Fig. 9. Achievaility for (n, m) = (4, 2), (ñ, m̃) = (1, 3) via network decomposition.

where (a) follows from the independence of (W1, W2,
W̃1, W̃2); (b) follows from the fact that X̃ i

1 is a function
of (W̃1, Y i−1

1 ), X2i is a function of (W2, Ỹ i−1
2 ), and V1i

is a function of (X2i , Y2i ); (c) follows from the fact that
conditioning reduces entropy. This completes the proof.

B. Proof of a Novel Outer Bound

The proof hinges upon several lemmas stated below. The
proof is streamlined with the help of a key notion, called triple
mutual information (or interaction information [16]), which is
defined as

I (X; Y ; Z) := I (X; Y ) − I (X; Y |Z). (6)

It turns out that the commutative property of the notion plays
a crucial role in deriving several key steps in the proof:

I (X; Y ; Z) = I (X; Z; Y ) = · · · = I (Z; Y ; X). (7)

Using this notion and starting with Fano’s inequality,
we get

N(R1 + R2 − εN )

≤ I (W1; Y N
1 , W̃1) + I (W2; Y N

2 , W̃2)

≤ I (W1; Y N
1 , V N

1 |W̃1) + I (W2; Y N
2 , V N

2 |W̃2)

=
∑{

I (W1; Y1i , V1i |W̃1, Y i−1
1 , V i−1

1 )

+ I (W2; Y2i , V2i |W̃2, Y i−1
2 , V i−1

2 )
}

=
∑{

I (V1i ;W1|W̃1, Y i−1
1 , V i−1

1 )+ I (Y1i;W1|W̃1, Y i−1
1 , V i

1 )

+ I (V2i ; W2|W̃2, Y i−1
2 , V i−1

2 )

+ I (Y2i ;W2|W̃2, Y i−1
2 , V i

2 )
}

(a)=
∑{

I (Y1i ; W1, W2, W̃2|W̃1, Y i−1
1 , V i

1 )

+ I (Y2i ; W2, W1, W̃1|W̃2, Y i−1
2 , V i

2 )

+ I (V1i ; W1|W̃1, Y i−1
1 , V i−1

1 )

− I (Y1i ; W2, W̃2|W1, W̃1, Y i−1
1 , V i

1 )

+ I (V2i ; W2|W̃2, Y i−1
2 , V i−1

2 )

− I (Y2i ; W1, W̃1|W2, W̃2, Y i−1
2 , V i

2 )
}

≤
∑{

H (Y1i |V1i) + H (Y2i |V2i)

+ I (V1i ; W1|W̃1, Y i−1
1 , V i−1

1 )

− I (Y1i ; W2, W̃2|W1, W̃1, Y i−1
1 , V i

1 )

+I (V2i ; W2|W̃2, Y i−1
2 , V i−1

2 )

− I (Y2i ; W1, W̃1|W2, W̃2, Y i−1
2 , V i

2 )
}

where (a) follows from a chain rule. By symmetry, we get:

N(R̃1 + R̃2 − εN )

≤
∑{

H (Ỹ1i |Ṽ1i )+H (Ỹ2i |Ṽ2i)+ I (Ṽ1i ; W̃1|W1, Ỹ i−1
1 , Ṽ i−1

1 )

− I (Ỹ1i ; W2, W̃2|W1, W̃1, Ỹ i−1
1 , Ṽ i

1 )

+ I (Ṽ2i ; W̃2|W2, Ỹ i−1
2 , Ṽ i−1

2 )

− I (Ỹ2i ; W1, W̃1|W2, W̃2, Ỹ i−1
2 , Ṽ i

2 )
}

.

Now adding the above two and using Lemma 1 stated below,
we get:

N(R1 + R2 + R̃1 + R̃2 − εN )

≤
∑{

H (Y1i |V1i)+H (Y2i |V2i)+H (Ỹ1i |Ṽ1i)+H (Ỹ2i |Ṽ2i )
}

≤ 2N max(n − m, m) + 2N max(ñ − m̃, m̃).

Hence, we get the desired bound.
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Lemma 1:∑ {
I (V1i ; W1|W̃1, Y i−1

1 , V i−1
1 )

− I (Y1i ; W2, W̃2|W1, W̃1, Y i−1
1 , V i

1 )

+ I (V2i ; W2|W̃2, Y i−1
2 , V i−1

2 )

− I (Y2i ; W1, W̃1|W2, W̃2, Y i−1
2 , V i

2 )

+ I (Ṽ1i ; W̃1|W1, Ỹ i−1
1 , Ṽ i−1

1 )

− I (Ỹ1i ; W̃2, W2|W̃1, W1, Ỹ i−1
1 , Ṽ i

1 )

+ I (Ṽ2i ; W̃2|W2, Ỹ i−1
2 , Ṽ i−1

2 )

− I (Ỹ2i ; W̃1, W1|W̃2, W2, Ỹ i−1
2 , Ṽ i

2 )
}

≤ 0

C. Proof of Lemma 1

First consider:

(1st and 2nd terms in summation of LHS)
(a)=

∑{
I (V1i ; W1|W̃1, Y i−1

1 , V i−1
1 )

−I (Y1i ; W2, W̃2, Ỹ i
1 |W1, W̃1, Y i−1

1 , V i
1 )

(b)=
∑{

I (V1i , Ṽ1i ; W1|W̃1, Y i−1
1 , V i−1

1 , Ṽ i−1
1 )

−I (Y1i ; Ỹ i
1 |W1, W̃1, Y i−1

1 , V i
1 , Ṽ i

1 )

−I (Y1i ; W2, W̃2|W1, W̃1, Ỹ i
1 , Y i−1

1 )
}

(c)=
∑{

I (V1i , Ṽ1i ; W1|W̃1, V i−1
1 , Ṽ i−1

1 )

−I (V1i , Ṽ1i ; W1; Y i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

−I (Y1i ; Ỹ i
1 |W1, W̃1, Y i−1

1 , V i
1 , Ṽ i

1 )

−I (Y1i ; W2, W̃2|W1, W̃1, Ỹ i
1 , Y i−1

1 )
}

where (a) follows from the fact that Ỹ i
1 is a function of

(W1, W̃1, W2, W̃2); (b) follows from the fact that Ṽ i
1 is a

function of (W̃1, Y i−1
1 ); and (c) is due to the definition of

triple mutual information (6).
Using Lemma 2 stated at the end of this section, we get:

(1st and 2nd terms in summation of LHS)

≤
∑ {

I (V1i , Ṽ1i ; W1|W̃1, V i−1
1 , Ṽ i−1

1 )

+ I (Ỹ1i ; Y i−1
1 |W1, W̃1, Ỹ i−1

1 , Ṽ i
1 )

− I (Ṽ1i ; W1, Ỹ i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

− I (Y1i ; W2, W̃2|W1, W̃1, Ỹ i
1 , Y i−1

1 )
}

.

Now combining this with the 5th and 6th terms in summation
of LHS gives:

(1st, 2nd, 5th and 6th terms of LHS in the claimed bound)
(a)≤

∑ {
I (V1i , Ṽ1i ; W1|W̃1, V i−1

1 , Ṽ i−1
1 )

+ I (Ỹ1i ; Y i−1
1 |W1, W̃1, Ỹ i−1

1 , Ṽ i
1 )

− I (Ṽ1i ; W1, Ỹ i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

− I (Y1i ; W2, W̃2|W1, W̃1, Ỹ i
1 , Y i−1

1 )
}

+
∑{

I (Ṽ1i ; W̃1|W1, Ỹ i−1
1 , V i−1

1 , Ṽ i−1
1 )

− I (Ỹ1i ; W̃2, W2, Y i−1
1 |W̃1, W1, Ỹ i−1

1 , Ṽ i
1 )

}
(b)≤

∑{
I (V1i , Ṽ1i ; W1|W̃1, V i−1

1 , Ṽ i−1
1 )

− I (Ṽ1i ; W1, Ỹ i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

− I (Y1i ; W2, W̃2|W1, W̃1, Ỹ i
1 , Y i−1

1 )
}

+
∑{

I (Ṽ1i ; W̃1, W1, Ỹ i−1
1 |V i−1

1 , Ṽ i−1
1 )

− I (Ỹ1i ; W̃2, W2|W̃1, W1, Ỹ i−1
1 , Y i−1

1 )
}

(c)≤
∑{

I (V1i , Ṽ1i ; W1|W̃1, V i−1
1 , Ṽ i−1

1 )

− I (Y1i , Ỹ1i ; W2, W̃2|W1, W̃1, Ỹ i−1
1 , Y i−1

1 )

+ I (V1i , Ṽ1i ; W̃1|V i−1
1 , Ṽ i−1

1 )
}

(d)= I (V N
1 , Ṽ N

1 ; W1, W̃1)

− I (Y N
1 , Ỹ N

1 , V N
2 , Ṽ N

2 ; W2, W̃2|W1, W̃1)

≤ I (V N
1 , Ṽ N

1 ; W1, W̃1) − I (V N
2 , Ṽ N

2 ; W2, W̃2|W1, W̃1)

where (a) follows from the fact that V i−1
1 and Y i−1

1 are
functions of (W1, Ỹ i−1

1 ) and (W1, W2, W̃1, W̃2), respectively;
(b) follows from a chain rule (applied on the last term) and
the non-negativity of mutual information; (c) follows from a
chain rule (combining the 2nd and 4th terms; also combining
the 3rd and 5th terms) and the non-negativity of mutual
information; (d) follows from a chain rule (combining the
1st and 3rd terms) and the fact that (V N

2 , Ṽ N
2 ) is a function

of (W1, W̃1, Y N
1 , Ỹ N

1 ).
Applying the same to the 3rd, 4th, 7th and 8th terms in

summation of LHS, we get:

(LHS in the claimed bound)

≤ I (V N
1 , Ṽ N

1 ; W1, W̃1) − I (V N
2 , Ṽ N

2 ; W2, W̃2|W1, W̃1)

+ I (V N
2 , Ṽ N

2 ; W2, W̃2)

− I (V N
1 , Ṽ N

1 ; W1, W̃1|W2, W̃2)

≤ I (W2, W̃2, V N
1 , Ṽ N

1 ; W1, W̃1)

− I (V N
2 , Ṽ N

2 ; W2, W̃2|W1, W̃1)

+ I (W1, W̃1, V N
2 , Ṽ N

2 ; W2, W̃2)

− I (V N
1 , Ṽ N

1 ; W1, W̃1|W2, W̃2) = 0.

This completes the proof.
Lemma 2:

−
∑{

I (V1i , Ṽ1i ; W1; Y i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

+ I (Y1i ; Ỹ i
1 |W1, W̃1, Y i−1

1 , V i
1 , Ṽ i

1 )
}

≤
∑{

I (Ỹ1i ; Y i−1
1 |W1, W̃1, Ỹ i−1

1 , Ṽ i
1 )

− I (Ṽ1i ; W1, Ỹ i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

}
.

Proof: See Section V-D.
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D. Proof of Lemma 2

−
∑{

I (V1i , Ṽ1i ; W1; Y i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

+ I (Y1i ; Ỹ i
1 |W1, W̃1, Y i−1

1 , V i
1 , Ṽ i

1 )
}

(a)=
∑{

I (V1i , Ṽ1i ; Y i−1
1 |W1, W̃1, V i−1

1 , Ṽ i−1
1 )

− I (V1i , Ṽ1i ; Y i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

− I (Y1i ; Ỹ i
1|W1, W̃1, Y i−1

1 , V i
1 , Ṽ i

1 )
}

(b)≤
∑{

I (V1i , Ṽ1i ; Y i−1
1 |W1, W̃1, V i−1

1 , Ṽ i−1
1 )

− I (Ṽ1i ; Y i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

− I (Y1i ; Ỹ i
1|W1, W̃1, Y i−1

1 , V i
1 , Ṽ i

1 )
}

(c)=
∑{

I (Ỹ i
1 , Ṽ1i ; Y i−1

1 |W1, W̃1, V i−1
1 , Ṽ i−1

1 )

− I (Ỹ i
1; Y i−1

1 |W1, W̃1, V i
1 , Ṽ i

1 )

− I (Ṽ1i ; Y i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

− I (Y1i ; Ỹ i
1|W1, W̃1, Y i−1

1 , V i
1 , Ṽ i

1 )
}

(d)=
∑{

I (Ỹ i
1 , Ṽ1i ; Y i−1

1 |W1, W̃1, V i−1
1 , Ṽ i−1

1 )

− I (Ỹ i
1; Y i

1|W1, W̃1, V i
1 , Ṽ i

1 )

− I (Ṽ1i ; Y i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

}
(e)=

∑{
I (Ỹ1i , Ṽ1i ; Y i−1

1 |W1, W̃1, Ỹ i−1
1 , V i−1

1 , Ṽ i−1
1 )

+ I (Ỹ i−1
1 ; Y i−1

1 |W1, W̃1, V i−1
1 , Ṽ i−1

1 )

−I (Ỹ i
1; Y i

1|W1, W̃1, V i
1 , Ṽ i

1 )

− I (Ṽ1i ; Y i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

}
( f )≤

∑{
I (Ỹ1i , Ṽ1i ; Y i−1

1 |W1, W̃1, Ỹ i−1
1 , V i−1

1 , Ṽ i−1
1 )

− I (Ṽ1i ; Y i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

}
(g)=

∑{
I (Ỹ1i ; Y i−1

1 |W1, W̃1, Ỹ i−1
1 , V i−1

1 , Ṽ i
1 )

− I (Ṽ1i ; Y i−1
1 ; W1, Ỹ i−1

1 |W̃1, V i−1
1 , Ṽ i−1

1 )
}

(h)=
∑{

I (Ỹ1i ; Y i−1
1 |W1, W̃1, Ỹ i−1

1 , Ṽ i
1 )

− I (Ṽ1i ; W1, Ỹ i−1
1 |W̃1, V i−1

1 , Ṽ i−1
1 )

}

where (a) follows from the definition of triple mutual infor-
mation (6); (b) follows from the non-negativity of mutual
information; (c) follows from a chain rule and the fact that
V1i is a function of (W1, Ỹ i

1) (see below)∑
I (V1i , Ṽ1i ; Y i−1

1 |W1, W̃1, V i−1
1 , Ṽ i−1

1 )

=
∑

I (V1i , Ỹ i
1 , Ṽ1i ; Y i−1

1 |W1, W̃1, V i−1
1 , Ṽ i−1

1 )

−
∑

I (Ỹ i
1; Y i−1

1 |W1, W̃1, V i
1 , Ṽ i

1 )

=
∑

I (Ỹ i
1 , Ṽ1i ; Y i−1

1 |W1, W̃1, V i−1
1 , Ṽ i−1

1 )

−
∑

I (Ỹ i
1; Y i−1

1 |W1, W̃1, V i
1 , Ṽ i

1 );
(d) follows from a chain rule (combining the 2nd and 4th
terms); (e) follow from a chain rule (applying to the 1st term);

( f ) follows from

N∑
i=1

I (Ỹ i−1
1 ; Y i−1

1 |W1, W̃1, V i−1
1 , Ṽ i−1

1 )

=
N−1∑
i=0

I (Ỹ i
1; Y i

1 |W1, W̃1, V i
1 , Ṽ i

1 )

≤
N∑

i=1

I (Ỹ i
1; Y i

1 |W1, W̃1, V i
1 , Ṽ i

1 );

(g) follows from a chain rule and the definition of triple mutual
information; (h) follows from the fact that V i−1

1 and Ṽ1i are
a function of (W1, Ỹ i−2

1 ) and (W̃1, Y i−1
1 ), respectively.

VI. DISCUSSION

A. System Implication

As suggested in Fig. 2, an interaction gain occurs when
forward and backward ICs are somewhat different. This asym-
metry occurs naturally in FDD systems where the forward
and backward channels are on completely different bands.
Even in TDD systems, the asymmetry can occur since the
forward and backward channels can be on different subcarri-
ers or different coherent time. Also one can create this asym-
metry by opportunistically pairing subbands for the forward
and backward transmissions. While this asymmetry is not
likely to occur in narrowband systems, it can often occur in
broadband systems where there are a multitude of subchannels
with a wide dynamic range of channel gains. For example,
in 4G-LTE and 5G systems, one can easily expect rich
diversity on channel gains, since an operating bandwidth of the
systems is much larger than coherence bandwidth of typical
wireless channels (around the order of 0.1 MHz).

Fig. 10 illustrates an example which can represent such
scenario where there are a variety of parallel subchannels.
Our results suggest that pairs of (FW(1), BACK(2)) and
(FW(2), BACK(1)), for instance, can provide a significant gain
with interaction. Another interesting observation is that even
though forward-and-backward parallel ICs are identical, there
exist many pairs of forward-backward subchannels that can
yield capacity improvements. In tomorrow’s communication
systems, a broader system bandwidth is expected to support a
variety of multimedia services. Hence, it is believed that our
results will provide detailed guidelines as to how to design
future communication systems.

In this paper, we investigate the benefit of interaction for
a full duplex system. This is only for illustrative purpose.
As suggested in Remarks 2 and 3, the nature of the interaction
gain comes from exploiting the past received signals, partially
decoded symbols and users’ own information as side infor-
mation. This nature is not limited to the full duplex system.
So one can readily see that the interaction gain carries over
to the half duplex system. While the detailed capacity region
of the half-duplex system is distinct, the channel regimes
in which feedback offers a gain remain unchanged. In other
words, we have the same picture as in Fig. 2.
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Fig. 10. Two-way parallel ICs. The rich diversity on channel gains across many parallel subchannels can often occur in broadband systems.

B. Translation to the Gaussian Channel

The deterministic-channel achievability proposed in this
work gives insights into an achievable scheme in the Gaussian
channel. This is inspired by several observations that can be
made from Scheme 1 (see Example 1 in Fig. 5) and Scheme 2
(see Example 2 in Figs. 6 and 7).

(Extracting feedback signals → quantize-&-binning): Note
in Fig. 5 that the fedback signal a ⊕ B at user 1̃ can
be interpreted as a quantized version of the received signal
(A, a ⊕ B) at the level below the clean signal A. This
motivates the use of quantize-and-binning [8], [28] in the
Gaussian channel. There are two points to make. The first is
that the binning scheme [29] can be employed solely without
quantization in this example. Binning the received signal
(A, a ⊕ B) may construct a linear combination of the two
components: a ⊕ B ⊕ A. The distinction is then user 1̃ feeds
back Ã ⊕ (a ⊕ B ⊕ A) instead. Nonetheless, user 1 can still
get Ã of interest, as A is also known. On the other hand,
user 2 obtains a ⊕ A ⊕ Ã instead of a ⊕ Ã. This is not an
issue either. We can still achieve interference alignment and
neutralization in forward transmission at stage II. User 1 send-
ing a ⊕ A ⊕ Ã on the top level (with the help of the decoded
symbol Ã) and user 2 sending B ′ ⊕ (a ⊕ A ⊕ Ã), user 2̃ can
still obtain B ′ interference-free. Also user 1̃ can get a with
the help of A which has already been received in stage I.
The second point to note is that the binning-only approach
might not work properly for other channel parameter regimes.
This is because mixing all the equations may include some
undesirable symbols that prevent the optimal transmission.
In that case, both quantization and binning are desired to be
employed with a careful choice of a quantization level, set to
exclude undesirable symbols.

(XORing with interference neutralization → superposition
with dirty paper coding): Observe in Fig. 5 that the fedback
signal a ⊕ B is XORed with a backward symbol Ã. This
motivates the use of superposition coding in the Gaussian
channel. On the other hand, user 2̃ sends B on the bottom
level for interference neutralization. To this end, we employ
quantization scheme for extracting B from the received signal
(B, b ⊕ A) and utilize dirty paper coding [30] for nulling.

(Interference alignment and neutralization → structured
coding): Note at the second stage in Fig. 5 that user 2 com-
putes the XOR of b (its own symbol) and B̃ (decoded from
the received signal in backward transmission) and then sends
the XOR on a proper level (the top level) for nulling. This
motivates the use of structured coding [31], as computation
needs to be made across appropriate symbols and the com-
puted signal should be placed in a structured location for
nulling.

(Retrospective decoding): To the best of our knowledge,
this is a novel feature that has never been introduced in
network information theory literature. Hence, it requires a
new achievability technique which includes a careful decoding
order as well as sets proper symbols to decode for each time
slot. Also note that decoded symbols in an intermediate time
slot are part of the entire symbols. See Fig. 7 for instance.
Here aL (a decoded symbol in time L + 2) is part of the
entire symbols (AL , aL) sent in time L. Hence, this scheme
needs to be properly combined with Han-Kobayashi message
splitting [32].

Remark 4 (Achievability Proof): The above key techniques
can play a significant role to prove the achievability for the
Gaussian channel. However, as hinted in several places, a com-
plete achievability proof is not that immediate. The reason is
that the proof requires an additional non-straightforward step
which includes (1) a careful choice of a quantization level prior
to binning received signals for feedback; (2) a delicate use
of structured coding in computing across appropriate symbols
and locating the computed signal in a structured location
for nulling. Hence, we consider the complete extension as a
separate piece of work which requires an additional non-trivial
effort, leaving it as a future work. �

C. Unified Achievability

The noisy network coding [28] together with Han-
Kobayashi message splitting is a fairly generic scheme
that yields reasonably good performances for a variety of
multi-user channels. It implements many achievablility tech-
niques such as quantize-and-binning and superposition coding.
However, it has a room for improvement as it does not
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incorporate dirty paper coding and structured coding. An effort
has been made by Nazer and Gastpar [31] for implementing
structured codes.

But this approach still has a room for improvement, as it
does not allow for the key operation that appears in our
achievability: retrospective decoding. As suggested in Exam-
ple 2, the key operation seems required for achieving the
optimal performance. There seems no way to achieve the
perfect feedback bound without an intermediate decoding of
partial symbols which admits a carefully-designed backward
ordering. One future work of interest is to develop a generic
achievable scheme that can be applied to general discrete
memoryless networks as well as unifies all of the techniques
mentioned earlier: (1) quantize-and-binning; (2) superposition
coding (or block Markov coding); (3) structured coding;
(4) Han-Kobayashi message-splitting; (5) retrospective decod-
ing. This development is expected to open the door to charac-
terizing and/or approximating many of interesting interference
networks.

D. Unified Converse

In this work, we develop a new converse technique which
well captures the tension between feedback and independent
message transmissions. Hence, unlike the prior upper bounds
such as cutset [29], genie-aided bounds [4], [5], [10]–[14],
generalized network sharing bounds [15], it gives rise to
the tight capacity characterization of interactive multi-user
channels like the two-way IC. Encouragingly, our novel
bound (4) subsumes the following bounds as special cases:
the nonfeedback-case counterpart R1 + R2 ≤ H (Y1|V1) +
H (Y2|V2) [10]; the rate-limited-feedback-case counterpart
R1 + R2 ≤ H (Y1|V1) + H (Y2|V2) + Cbitpipe

FB1 + Cbitpipe
FB2 [6].

Here Cbitpipe
FBi denotes the capacity of the bit-piped feedback

link that connects user ĩ to user i . One future work of interest is
to extend this bound to arbitrary discrete memoryless networks
in which many nodes interact with each other.

E. Role of Interaction in General Networks

This work focuses on an interference channel setting in
which each user wishes to deliver its own message to its coun-
terpart. As mentioned earlier, the nature of interaction gain is
not limited to this particular setting. So it would be interesting
to explore the role of interaction for a variety of different
settings. While initial efforts along this research direction
have been made for a multicast channel setting [33], function
computation settings [34], [35], and multi-hop network set-
tings [36], an explicit comparison between non-interactive vs
interactive scenarios was not made yet. One research direction
of interest is to investigate the capacity regions of such
channels, thereby discovering two-way scenarios in which one
can achieve a huge interaction gain.

One interesting & practically-relevant setting is the fully-
connected interference network in which the two transmitters
in each side are also connected. Actually the one-way ver-
sion of the setting has been extensively studied in literature
(e.g., [11], [13]) and it has been demonstrated that one can

achieve a gain due to conferencing, as in the feedback case.
Depending on the strength of the conference links, we span
the entire spectrum of the two extreme cases. One extreme
is the case in which the conference links are too strong, thus
achieving the MISO broadcast channel performance. In this
case, there is no gain due to feedback. The other extreme
is the case in which the conference links are too weak, thus
collapsing to the standard interference channel where there can
be a feedback gain. This suggests that the gain due to feedback
depends highly on conference-link parameters. Hence, the gain
picture illustrated in Fig. 2 would change as a function of such
parameters. One future work of great interest is to explore a
two-way version of such setting to establish the corresponding
Fig. 2 (from which one can identify e.g., channel regimes
where perfect feedback capacities are achieved).

VII. CONCLUSION

We characterized the sum-capacity region of the two-way
deterministic IC. As a consequence, we discovered an inter-
esting fact that one can even get to perfect feedback capacities
in both directions. In the process of obtaining this result,
we found a new role of feedback: Feedback enables exploiting
even the future information as side information via retro-
spective decoding. Our future work includes: (1) Translat-
ing to the Gaussian channel; (2) Discovering other two-way
scenarios in which one can achieve a huge interaction gain;
(3) Generalizing our new achievability to broader network
contexts.

APPENDIX A
ACHIEVABILITY PROOF OF THEOREM 1: GENERALIZATION

TO ARBITRARY (n, m, ñ, m̃)

One key idea for generalization is to use the network
decomposition in [27] (also illustrated via Example 3 in
Fig. 9). The idea provides a conceptually simpler proof by
decomposing a general (n, m) (or (ñ, m̃)) channel into mul-
tiple elementary subchannels and taking a proper matching
across forward and backward subchannels. See Theorem 2
(stated below) for the identified elementary subchannels,
which we will use to complete the proof in the subsequent
subsections.

Theorem 2 (Network Decomposition [27]): For an arbi-
trary (n, m) channel, the following network decomposition
holds:

(n, m) −→ (1, 0)n−2m × (2, 1)m, α ∈ [0, 1/2]; (8)

(n, m) −→ (2, 1)2n−3m × (3, 2)2m−n, α ∈ [1/2, 2/3]; (9)

(n, m) −→ (0, 1)m−2n × (1, 2)n, α ≥ 2. (10)

Here the symbol × indicates the concatenation of orthogonal
channels and (i, j)� denotes the �-fold concatenation of the
(i, j) channel.

A. Proof of (R1) α > 2, α̃ > 2 & (R2) α ∈ (0, 2
3 ), α̃ ∈ (0, 2

3 )

The following achievability w.r.t. the elementary subchan-
nels identified in Theorem 2 forms the basis of the proof for
the regimes of (R1) and (R2).
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Fig. 11. Four types of shapes of an achievable rate region for the regimes of (R1) α > 2, α̃ > 2 and (R2) α < 2
3 , α̃ < 2

3 .

Lemma 3: The following rates are achievable:
(i) For the pair of (n, m) = (0, 1)i and (ñ, m̃) = (1, 2) j

where i ≤ 2 j : (R, R̃) = (i, 2 j − i);
(ii) For the pair of (n, m) = (2, 1)i and (ñ, m̃) = (1, 0) j ×

(2, 1)k where i ≤ 2 j + 2k: (R, R̃) = (3i, 2 j + 2k − i);
(iii) For the pair of (n, m) = (2, 1)i and (ñ, m̃) = (2, 1) j ×

(3, 2)k where i ≤ 2 j + 4k: (R, R̃) = (3i, 2 j + 4k − i).

Proof: The proof builds upon the perfect feedback scheme
in [5]. See Appendix B for the detailed proof.

For the considered regimes, the claimed achievable region
reads:

{(R, R̃) : R ≤ Cpf, R̃ ≤ C̃pf, R + R̃ ≤ Cno + C̃no}.
We see that there is no feedback gain in sum capacity. This
means that one bit of a capacity increase due to feedback costs
exactly one bit. Depending on whether or not Cpf (or C̃pf)
exceeds Cno + C̃no, we have four subcases, each of which
forms a different shape of the region. See Fig. 11.

(I) (Cpf − Cno ≤ C̃no), (C̃pf − C̃no ≤ Cno): The first case
is the one in which the amount of feedback for maximal
improvement, reflected in Cpf −Cno (or C̃pf − C̃no), is smaller
than the available resources offered by the backward IC (or the
forward IC). In other words, in this case, we have a sufficient
amount of resources such that one can achieve the perfect
feedback bound in one direction. By symmetry, it suffices
to focus on one corner point that favors the rate of forward
transmission: (R, R̃) = (Cpf, C̃no − (Cpf − Cno)).

(R1) α > 2, α̃ > 2: For this regime, the network decompo-
sition (10) yields:

(n, m) −→ (0, 1)Cpf−Cno × (1, 2)n,

(ñ, m̃) −→ (0, 1)m̃−2ñ × (1, 2)ñ.

Here we use the fact that Cpf−Cno = m−2n in the considered
case. We now apply Lemma 3-(i) for the pair of (0, 1)Cpf−Cno

and (1, 2)ñ . Note that the condition in Lemma 3-(i) holds:
Cpf − Cno ≤ C̃no = 2ñ. This then gives: R(1) = Cpf − Cno;
R̃(1) = 2ñ − (Cpf − Cno). For the remaining subchannels,
we apply the nonfeedback scheme, yielding: R(2) = 2n;
R̃(2) = 0. Aggregating these two, we achieve the claimed
corner point:

R = Cpf − Cno + 2n = Cpf − Cno + Cno = Cpf,

R̃ = 2ñ − (Cpf − Cno) = C̃no − (Cpf − Cno).

(R2) α ∈ (0, 2
3 ), α̃ ∈ (0, 2

3 ): Applying the network decom-
positions (8) and (9) to this regime, we get:

(n, m) −→
{

(1, 0)n−2m × (2, 1)Cpf−Cno , α ∈ (0, 1/2];

(2, 1)Cpf−Cno × (3, 2)2m−n, α ∈ (1/2, 2/3);

(ñ, m̃) −→
{

(1, 0)ñ−2m̃ × (2, 1)m̃, α ∈ (0, 1/2];

(2, 1)2ñ−3m̃ × (3, 2)2m̃−ñ, α ∈ (1/2, 2/3).

Here we use the fact that Cpf − Cno = m for α ∈ (0, 1
2 ]

and takes 2n − 3m for α ∈ ( 1
2 , 2

3 ). When α ∈ (0, 1
2 ] and

α̃ ∈ (0, 1
2 ], we apply Lemma 3-(ii) for the pair of (2, 1)Cpf−Cno

and (1, 0)ñ−2m̃ ×(2, 1)m̃ , yielding R(1) = 3(Cpf −Cno) = 3 m
and R̃(1) = 2(ñ − 2m̃) + 2m̃ − m. Notice that the condition in
Lemma 3-(ii) is satisfied: Cpf −Cpf ≤ C̃no = 2(ñ −2m̃)+2m̃.
For the rest, we apply the nonfeedback scheme to achieve
R(2) = 2(n − 2m). This then gives:

R = 3m + 2(n − 2m) = 2n − m = Cpf,

R̃ = 2(ñ − 2m̃) + 2m̃ − m = 2(ñ − m̃) − m

= C̃no − (Cpf − Cno).

When α ∈ (0, 1
2 ] and α̃ ∈ ( 1

2 , 2
3 ), we apply Lemma 3-(iii)

for the pair of (2, 1)Cpf−Cno and (2, 1)2ñ−3m̃ × (3, 2)2m̃−ñ ,
yielding R(1) = 3(Cpf − Cno) = 3m and R̃(1) = 2(2ñ −
3m̃)+4(2m̃− ñ)−m. Note that the associated condition holds:
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Cpf − Cpf ≤ C̃no = 2(2ñ − 3m̃)+ 4(m̃ − ñ). For the remaining
subchannels, we apply the nonfeedback scheme to achieve
R(2) = 2(n − 2m). This then gives:

R = 3 m + 2(n − 2m) = 2n − m = Cpf,

R̃ = 2(2ñ − 3m̃) + 4(2m̃ − ñ) − m = 2m̃ − m

= C̃no − (Cpf − Cno).

The proof for the other regimes of [α ∈ ( 1
2 , 2

3 ), α̃ ∈ (0, 2
3 )]

and [α ∈ ( 1
2 , 2

3 ), α̃ ∈ ( 1
2 , 2

3 )] follows similarly.
As seen from all the cases above, one key observation to

make is that the capacity increase due to feedback Cpf − Cno

plus the backward transmission rate is always C̃no, meaning
that there is one-to-one tradeoff between feedback and inde-
pendent message transmissions, i.e., one bit of feedback costs
one bit.

(II) Cpf − Cno ≤ C̃no, C̃pf − C̃no ≥ Cno: Also in this case,
one can readily prove the same one-to-one tradeoff relationship
in achieving one corner point (R, R̃) = (Cpf, C̃no − (Cpf −
Cno)). Hence, we omit the detailed proof. On the other hand,
there is a limitation in achieving the other counterpart. Note
that the maximal feedback gain C̃pf − C̃no for backward
transmission does exceed the resource limit Cno offered by
the forward channel. This leads the maximal achievable rate
for backward transmission to be saturated by R̃ ≤ C̃no + Cno.
So the other corner point reads (R, R̃) = (0, C̃no + Cno)
instead. For completeness, we will show this is indeed the
case as below. By symmetry, we omit the case of (II’).

(R1) α > 2, α̃ > 2: For this regime,

(n, m) −→ (0, 1)m−2n × (1, 2)
Cno

2

(ñ, m̃) −→ (0, 1)Cno × (0, 1)(C̃pf−C̃no)−Cno × (1, 2)ñ .

Here we use the fact that C̃pf − C̃no = m̃ − 2ñ and Cno
2 = n

in the considered case. We now apply a symmetric version
of Lemma 3-(i) for the pair of (1, 2)

Cno
2 and (0, 1)Cno . This

then gives: R(1) = 2 Cno
2 − Cno = 0; R̃(1) = Cno. For the

rest, we apply the nonfeedback scheme to achieve: R(2) = 0;
R̃(2) = 2ñ = 2C̃no. Hence, we achieve the claimed corner
point: (R, R̃) = (0, C̃no + Cno).

(R2) α ∈ (0, 2
3 ), α̃ ∈ (0, 2

3 ): For this regime, the network
decompositions (8) and (9) yield:

(n, m) −→
{

(1, 0)n−2m × (2, 1)m, α ∈ (0, 1/2];

(2, 1)2n−3m × (3, 2)2m−n, α ∈ ( 1
2 , 2

3

)
;

(ñ, m̃) −→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, 0)ñ−2m̃ × (2, 1)Cno × (2, 1)C̃pf−C̃no−Cno,

α ∈ (0, 1/2];

(2, 1)Cno × (2, 1)C̃pf−C̃no−Cno × (3, 2)2m̃−ñ,

α ∈ ( 1
2 , 2

3

)
.

Here we use the fact that C̃pf − C̃no = m̃ for α̃ ∈ (0, 1
2 ]

and takes 2ñ − 3m̃ for α̃ ∈ ( 1
2 , 2

3 ). When α ∈ (0, 1
2 ] and

α̃ ∈ (0, 1
2 ], we apply a symmetric version of Lemma 3-(ii)

for the pair of (1, 0)n−2m × (2, 1)m and (2, 1)Cno . So we get:
R(1) = 2(n − 2m) + 2 m − Cno = 0; R̃(1) = 3 Cno. For
the rest, we apply the nonfeedback scheme to achieve: R(2) =
0; R̃(2) = 2(ñ−2m̃)+2(C̃pf−C̃no−Cno) = 2ñ−2m̃−2 Cno =
C̃no − 2 Cno. Hence we achieve: (R, R̃) = (0, C̃no + Cno).

When α ∈ ( 1
2 , 2

3 ) and α̃ ∈ (0, 1
2 ], we apply a symmetric ver-

sion of Lemma 3-(iii) for the pair of (2, 1)2n−3m × (3, 2)2m−n

and (2, 1)Cno , thus giving: R(1) = 2(2n − 3m) + 4(2m −
n) − Cno = 0; R̃(1) = 3 Cno. For the rest, we apply the

nonfeedback scheme to achieve: R(2) = 0; R̃(2) = 2(C̃pf −
C̃no − Cno) + 4(2m̃ − ñ) = 2m̃ − 2 Cno. Hence we prove:
(R, R̃) = (0, C̃no + Cno). The proof of the other regimes
[α ∈ ( 1

2 , 2
3 ), α̃ ∈ (0, 2

3 )] and [α ∈ ( 1
2 , 2

3 ), α̃ ∈ ( 1
2 , 2

3 )] follows
similarly.

(III) Cpf − Cno ≥ C̃no, C̃pf − C̃no ≥ Cno: This is the
case in which there are limitations now in achieving both
R = Cpf and R̃ = C̃pf. Due to the same argument as above,
what we can maximally achieve for R (or R̃) in exchange
of the other channel is Cno + C̃no which implies (R, R̃) =
(Cno + C̃no, 0) or (0, Cno + C̃no). The proof follows exactly
the same as above; hence, we omit it.

B. Proof of (R3) α > 2, α̃ ∈ [ 2
3 , 2]

In the regime (R3), C̃pf = C̃no and Cno + 2ñ = 2n +
2ñ ≤ 2 max(n −m, m)+2 max(ñ − m̃, m̃). Hence, the claimed
achievable region evaluated under the regime (R3) is:

{(R, R̃) : R ≤ Cpf, R̃ ≤ C̃no, R + R̃ ≤ Cno + 2ñ}.
Unlike the (R1) and (R2) regimes, there is an interaction
gain. Note that the sum-rate bound exceeds Cno + C̃no in the
regime. The backward IC has no feedback gain. The network
decomposition (3) together with the fact that Cpf − Cno =
m − 2n in the regime gives:

(n, m) −→ (0, 1)Cpf−Cno × (1, 2)n.

We find that the shape of the region depends on where
Cpf − Cno lies in between 2ñ − C̃no and 2ñ. See Fig. 12.

(I) Cpf − Cno ≤ 2ñ − C̃no: The first case is the one in
which the amount of feedback for maximal improvement,
reflected in Cpf − Cno, is small enough to achieve the max-
imal feedback gain without degrading the performance of
backward transmission. Now let us prove how to achieve
(R, R̃) = (Cpf, C̃no).

The decomposition idea is to pair up (0, 1)Cpf−Cno and
(ñ, m̃) while applying the nonfeedback scheme for the remain-
ing forward subchannel (1, 2)n . To give an achievability
idea for the first pair, let us consider a simple example of
(n, m) = (0, 1) and (ñ, m̃) = (3, 2). See Fig. 13.

In each time, user 1 sends its own symbol ai . Unlike the
previous regimes (R1) and (R2), an interesting observation is
made in feedback transmission. In the backward IC, C̃no =
max(2ñ − m̃, m̃) (= 4 in this example) levels are utilized
to send the backward symbols. For feedback, user 2̃ sends
user 1’s received symbols ai ’s back to user 2 through the
remaining direct-link level. Here one can make two key obser-
vations. The first is that such feedback signal ai is interfered
with by user 1̃’s transmission but it turns out the interference
does not cause any problem. Notice in the example that a
feedback signal, say a1, is mixed with Ã1 and hence user 2
receives a1 ⊕ Ã1 instead of a1 which is desired to be fed
back. Nonetheless user 2 sending a1 ⊕ Ã1 in time 2, user 1̃
can decode a1 of interest with the help of its own symbol Ã1.
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Fig. 12. Three types of shapes of an achievable rate region for the regime (R3) α > 2, α̃ ∈ [ 2
3 , 2].

Fig. 13. Illustration of achievability for the (R3) regime via an example of (n, m) = (0, 1), (ñ, m̃) = (3, 2). This is an instance in which we have a
sufficient amount of resources that enables achieving the perfect feedback bound in the forward IC: Cpf − Cno = 1 ≤ 2 = 2ñ − C̃no. Hence, we achieve
(R, R̃) = (Cpf, C̃no) = (1, 4).

This implies that feedback and independent backward message
transmissions do not interfere with each other and thus one can
maximally utilize available resource levels: the total number
of direct-link levels 2ñ. So the 2ñ − C̃no levels can be
exploited for feedback. In the general case of (0, 1)Cpf−Cno ,
the maximal feedback gain Cpf − Cno does not exceed the
limit on the exploitable levels 2ñ − C̃no under the considered
regime. Hence, we achieve R(1) = Cpf −Cno. Now the second
observation is that the feedback transmission of ai ’s does not
cause any interference to user 1. This ensures R̃(1) = C̃no.
On the other hand, for the remaining suchanneles (1, 2)n ,
we apply the nonfeedback scheme to achieve R(2) = 2n.

Combining all of the above, we get:

R = Cpf − Cno + 2 n = Cpf − Cno + Cno = Cpf

R̃ = C̃no.

(II) Cpf−Cno ≥ 2ñ: In this case, we do not have a sufficient
amount of resources for achieving R = Cpf. The maximally
achievable forward rate is saturated by Cno + 2ñ and this
occurs when R̃ = 0. On the other hand, under the constraint of
R̃ = C̃no, what one can achieve for R is Cno + (2ñ − C̃no).

(III) 2ñ − C̃no < Cpf − Cno < 2ñ: This is the case in
which we have a sufficient amount of resources for achieving
R = Cpf, but not enough to achieve R̃ = C̃no simultaneously.
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Fig. 14. Three types of shapes of an achievable rate region for the regime (R4) α ∈ (0, 2
3 ], α̃ ∈ [ 2

3 , 2].

Hence, aiming at R = Cpf, R̃ is saturated by 2ñ −
(Cpf − Cno).

C. Proof of (R4) α ∈ (0, 2
3 ], α̃ ∈ [ 2

3 , 2]

For the regime of (R4), the claimed achievable rate region is:

{(R, R̃) : R ≤ Cpf, R̃ ≤ C̃no, R + R̃ ≤ Cno + 2m̃}.
This rate region is almost the same as that of (R3). The only
difference is that the sum-rate bound now reads Cno + 2m̃
instead of Cno + 2ñ. Hence, the shape of the region depends
now on where Cpf − Cno lies in between 2m̃ − C̃no and 2m̃.
See Fig. 14. Here we will describe the proof for the case (I)
Cpf − Cno ≤ 2m̃ − C̃no in which we have a sufficient amount
of resources in achieving (R, R̃) = (Cpf, C̃no). For the other
cases of (II) and (III), one can make the same arguments as
those in the (R3) regime; hence, we omit them.

Here what we need to demonstrate are two-folded. First,
feedback and independent backward message transmissions do
not interfere with each other. Second, the maximum number of
resource levels utilized for sending feedback and independent
backward symbols is limited by the total number of cross-
link levels: 2m̃. The idea for feedback strategy is to employ
Scheme 1 that we illustrated via Example 1 in Section IV-A.
We will show that the above two indeed hold when we use
this idea.

Note in Fig. 5 the tension between forward-symbol feedback
and backward symbols, e.g., a ⊕ B vs. Ã. Scheme 1 based
on XORing with interference neutralization leads us to com-
pletely resolve the tension. Observe that user 1 could decode Ã
of interest since user 2̃ transmitted B through the second cross-
link level to neutralize the inference B at the bottom level at
user 1. This contributes one bit (the number of the second
cross-link level) to the backward symbol rate (w.r.t. Ã). At the
same time, user 2 could obtain a⊕ Ã (which would be used for
the purpose of refinement in stage II) through the first cross-
link level. This contributes one bit (the number of the first
cross-link level) to the feedback rate (w.r.t. a ⊕ Ã). Similarly
b ⊕ A and B̃ were successfully transmitted to user 1 and 2

respectively, and the contributed 2 bits correspond to the
number of the remaining cross-link levels. We can now see
that feedback and independent backward symbols do not cause
any interference to each other and the total transmission rate
is limited by the total number of cross link levels: 2m̃. Since
the maximal amount of feedback Cpf −Cno plus the backward
symbol rate C̃no does not exceed 2m̃ in the considered case,
we can indeed achieve (R, R̃) = (Cpf, C̃no).

D. Proof of (R5) α ∈ (0, 2
3 ), α̃ > 2

For the regime of (R5), the claimed achievable rate
region is:{

(R, R̃) : R ≤ Cpf, R̃ ≤ C̃pf,

R + R̃ ≤ 2n + C̃no, R + R̃ ≤ Cno + 2m̃
}

.

Remember that Cpf − Cno indicates the maximum amount of
feedback w.r.t. forward symbols and we interpret 2m̃ − C̃pf as
the remaining resource levels that can potentially be utilized
to aid forward transmission. Whether or not Cpf − Cno ≤
2m̃ − C̃pf (i.e., we have enough resource levels to achieve
R = Cpf), the shape of the above claimed region is changed.
Note that the last inequality in the rate region becomes inactive
when Cpf − Cno ≤ 2m̃ − C̃pf. Similarly the third inequality is
inactive when C̃pf − C̃no ≤ 2 n − Cpf (i.e., we have enough
resources for achieving R̃ = C̃pf). One can readily verify that
Cpf −Cno > 2m̃ − C̃pf and C̃pf − C̃no > 2 n −Cpf do not hold
simultaneously. Hence, it suffices to consider the following
three cases:

(I) Cpf − Cno ≤ 2m̃ − C̃pf, C̃pf − C̃no ≤ 2 n − Cpf;
(II) Cpf − Cno ≤ 2m̃ − C̃pf, C̃pf − C̃no > 2 n − Cpf;

(III) Cpf − Cno > 2m̃ − C̃pf, C̃pf − C̃no ≤ 2 n − Cpf.

As mentioned earlier in Example 3, the key idea for
the proof is to use the network decomposition. Specifically,
the following lemma that describes achievability for the ele-
mentary subchannels in the considered regime forms the basis
of the proof.
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Fig. 15. Three types of shapes of an achievable rate region for the regime (R5) α ∈ (0, 2
3 ], α̃ > 2 and the case (II) Cpf−Cno ≤ 2m̃−C̃pf, C̃pf−C̃no > 2n−Cpf .

Lemma 4: The following rates are achievable:

(i) For the pair of (n, m) = (2, 1) and (ñ, m̃) = (0, 1):
(R, R̃) = (3, 1);

(ii) For the pair of (n, m) = (2, 1)i and (ñ, m̃) = (1, 2) j

where i ≤ 2 j : (R, R̃) = (3i, 2 j);
(iii) For the pair of (n, m) = (3, 2)i and (ñ, m̃) = (0, 1) j

where 2i ≥ j : (R, R̃) = (4i, j);
(iv) For the pair of (n, m) = (2, 1) and (ñ, m̃) = (0, 1)2:

(R, R̃) = (2, 2);
(v) For the pair of (n, m) = (2, 1)2 and (ñ, m̃) = (0, 1):

(R, R̃) = (6, 0).

Proof: See Appendix C.
(I) Cpf−Cno ≤ 2m̃−C̃pf, C̃pf−C̃no ≤ 2n−Cpf: In this case,

the rate region claims that we can get all the way to perfect
feedback capacities: (R, R̃) = (Cpf, C̃pf). First consider the
regime of α ∈ (0, 1

2 ] in which the network decompositions (8)
and (10) yield:

(n, m) −→(2, 1)C̃pf−C̃no ×(2, 1)Cpf−Cno−(C̃pf−C̃no)×(1, 0)n−2m;
(ñ, m̃) −→(0, 1)C̃pf−C̃no × (1, 2)ñ.

Here we use the fact that Cpf − Cno = m and that C̃pf −
C̃no ≤ Cpf − Cno = 2n − Cpf in the considered regime.

We now apply Lemma 4-(i) for the pair of (2, 1)C̃pf−C̃no and

(0, 1)C̃pf−C̃no . Also we apply Lemma 4-(ii) for the pair of
(2, 1)Cpf−Cno−(C̃pf−C̃no) and (1, 2)ñ . Note that Cpf − Cno −
(C̃pf − C̃no) ≤ 2ñ in the considered regime: Cpf − Cno ≤
2m̃ − C̃pf. Lastly we apply the nonfeedback scheme for the
remaining subchannel (1, 0)n−2m . This yields:

R = 3 × (C̃pf − C̃no) + 3 × {Cpf − Cno − (C̃pf − C̃no)}
+ 2 × (n − 2m) = 2n − m = Cpf,

R̃ = 1 × (C̃pf − C̃no) + 2 × ñ = m̃ = C̃pf.

Next consider the regime of α ∈ [ 1
2 , 2

3 ]. In this regime, there
are two subcases depending on whether or not Cpf − Cno ≥

C̃pf − C̃no. When Cpf − Cno ≥ C̃pf − C̃no,

(n, m) −→ (2, 1)C̃pf−C̃no × (2, 1)Cpf−Cno−(C̃pf−C̃no)

× (3, 2)2m−n;
(ñ, m̃) −→ (0, 1)C̃pf−C̃no × (1, 2)ñ.

We apply Lemma 4-(i) for the pair of (2, 1)C̃pf−C̃no

and (0, 1)C̃pf−C̃no ; apply Lemma 4-(ii) for the pair of
(2, 1)Cpf−Cno−(C̃pf−C̃no) and (1, 2)ñ (note that Cpf − Cno −
(C̃pf − C̃no) ≤ 2ñ in the considered regime Cpf − Cno ≤
2m̃−C̃pf); apply the nonfeedback scheme for (3, 2)2m−n . This
gives:

R = 3 × (C̃pf − C̃no) + 3 × {Cpf − Cno − (C̃pf − C̃no)}
+ 4 × (2m − n) = 2n − m = Cpf,

R̃ = 1 × (C̃pf − C̃no) + 2 × ñ = m̃ = C̃pf.

For the other case Cpf − Cno < C̃pf − C̃no,

(n, m) −→ (2, 1)Cpf−Cno × (3, 2)2m−n,

(ñ, m̃) −→ (0, 1)Cpf−Cno × (0, 1)C̃pf−C̃no−(Cpf−Cno) × (1, 2)ñ .

Using Lemma 4 and making similar arguments as earlier, one
can show that

R = 3 × (Cpf − Cno) + 4 × (2m − n) = 2n − m = Cpf,

R̃ = 1 × (Cpf − Cno) + 1 × {C̃pf − C̃no − (Cpf − Cno)}
+ 2 × ñ = m̃ = C̃pf.

(II) Cpf − Cno ≤ 2m̃ − C̃pf, C̃pf − C̃no > 2n − Cpf: In this
case, there are two corner points to achieve. The first corner
point is (R, R̃) = (Cpf, C̃no + 2n − Cpf). The second corner
point depends on where C̃pf − C̃no lies in between 2n − Cno,
2n and beyond. See Fig. 15. For the cases of (II-1) and (II-2),
the corner point reads (R, R̃) = (2n−(C̃pf −C̃no), C̃pf), while
for (II-3), (R, R̃) = (0, C̃no + 2n).
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Let us first prove (R, R̃) = (Cpf, C̃no + 2n − Cpf). For the
regime α ∈ (0, 1

2 ],
(n, m) −→ (2, 1)Cpf−Cno × (1, 0)n−2m,

(ñ, m̃) −→ (0, 1)Cpf−Cno × (0, 1)C̃pf−C̃no−(Cpf−Cno) × (1, 2)ñ.

Note that C̃pf − C̃no > Cpf − Cno in the considered regime
C̃pf − C̃no > 2n − Cpf. We apply Lemma 4-(i) for the pair of
(2, 1)Cpf−Cno and (0, 1)Cpf−Cno ; apply the nonfeedback scheme
for the rest. This yields:

R = 3 × (Cpf − Cno) + 2 × (n − 2m) = 2n − m = Cpf,

R̃ = 1 × (Cpf − Cno) + 2 × ñ = C̃no + 2n − Cpf.

For the regime α ∈ [ 1
2 , 2

3 ],
(n, m) −→ (2, 1)Cpf−Cno × (3, 2)2m−n,

(ñ, m̃) −→ (0, 1)Cpf−Cno × (0, 1)2(2m−n)

×(0, 1)C̃pf−C̃no−(Cpf−Cno)−2(2m−n) × (1, 2)ñ.

Note that C̃pf −C̃no > Cpf −Cno+2(2m−n) in the considered
regime C̃pf − C̃no > 2n − Cpf. We apply Lemma 4-(i) for the
pair of (2, 1)Cpf−Cno and (0, 1)Cpf−Cno ; apply Lemma 4-(iii)
for the pair of (3, 2)2m−n and (0, 1)2(2m−n); apply the non-
feedback scheme for the rest. This yields:

R = 3 × (Cpf − Cno) + 4(2m − n) = 2n − m = Cpf,

R̃ = 1 × (Cpf − Cno) + 1 × 2(2m − n) + 2ñ

= C̃no + 2n − Cpf.

We are now ready to prove the second corner point which
favors R̃. Depending on the quantity of C̃pf − C̃no, we have
three subcases.

(II-1) 2n − Cpf < C̃pf − C̃no ≤ 2n − Cno: For the regime
α ∈ (0, 1

2 ],
(n, m) −→ (2, 1)2n−Cno−(C̃pf−C̃no)

×(2, 1)C̃pf−C̃no−(2n−Cpf) × (1, 0)n−2m,

(ñ, m̃) −→ (0, 1)2n−Cno−(C̃pf−C̃no)

×(0, 1)2{C̃pf−C̃no−(2n−Cpf)} × (1, 2)ñ.

We apply Lemma 4-(i) for the pair of (2, 1)2n−Cno−(C̃pf−C̃no)

and (0, 1)2n−Cno−(C̃pf−C̃no); apply Lemma 4-(iv) for the pair of
(2, 1)C̃pf−C̃no−(2n−Cpf) and (0, 1)2{C̃pf−C̃no−(2n−Cpf)}; apply the
non-feedback scheme for the rest. This then gives:

R = 3{2n − Cno − (C̃pf − C̃no)}
+ 2{C̃pf − C̃no − (2n − Cpf)} + 2(n − 2m)

= 2n − (C̃pf − C̃no),

R̃ = {2n − Cno − (C̃pf − C̃no)}
+ 2{C̃pf − C̃no − (2n − Cpf)} + 2ñ = C̃pf.

For the regime α ∈ [ 1
2 , 2

3 ],
(n, m) −→ (2, 1)2n−Cno−(C̃pf−C̃no)

×(2, 1)C̃pf−C̃no−(2n−Cpf) × (3, 2)2m−n,

(ñ, m̃) −→ (0, 1)2n−Cno−(C̃pf−C̃no) × (0, 1)2{C̃pf−C̃no−(2n−Cpf)}

×(0, 1)2(2m−n) × (1, 2)ñ.

We apply Lemma 4-(i) for the pair of (2, 1)2n−Cno−(C̃pf−C̃no)

and (0, 1)2n−Cno−(C̃pf−C̃no); apply Lemma 4-(iv) for the pair
of (2, 1)C̃pf−C̃no−(2n−Cpf) and (0, 1)2{C̃pf−C̃no−(2n−Cpf)}; apply
Lemma 4-(iii) for the pair of (3, 2)2m−n and (0, 1)2(2m−n);
apply the nonfeedback scheme for the rest. This then gives:

R = 3{2n − Cno − (C̃pf − C̃no)}
+ 2{C̃pf − C̃no − (2n − Cpf)} + 4(2m − n)

= 2n − (C̃pf − C̃no),

R̃ = {2n − Cno − (C̃pf − C̃no)}
+ 2{C̃pf − C̃no − (2n − Cpf)} + 12(2m − n) + 2ñ

= C̃pf.

(II-2) 2n − Cno < C̃pf − C̃no ≤ 2n: It turns out in this
case proving achievability only via the network decomposition
is a bit involved. So for illustrative purpose, we will first
show achievability for one point that lies on the 45-degree
line connecting the two corner points. Later we will slightly
perturb the scheme to prove achievability for the second corner
point that we intend to achieve.

First consider the regime α ∈ (0, 1
2 ]. In this case,

(n, m) −→ (2, 1)Cpf−Cno × (1, 0)n−2m ,

(ñ, m̃) −→ (0, 1)2(Cpf−Cno)×(0, 1)C̃pf−C̃no−2(Cpf−Cno)×(1, 2)ñ.

Note that C̃pf − C̃no > 2(Cpf − Cno) in the considered regime
C̃pf − C̃no > 2n − Cno. We apply Lemma 4-(iv) for the pair
of (2, 1)Cpf−Cno and (0, 1)2(Cpf−Cno); apply the nonfeedback
scheme for the rest. This then yields:

R = 2 × (Cpf − Cno) + 2 × (n − 2m),

R̃ = 2 × (Cpf − Cno) + 2 × ñ.

As mentioned earlier, this is an intermediate point that lies
on the 45-degree line connecting the two corner points. Now
we tune the scheme which yields the above rate to prove
the achievability of the second corner point. We use part
of the forward channel for aiding backward transmission
instead of sending its own traffic. Specifically we utilize C̃pf −
C̃no − 2(Cpf − Cno) number of bottom levels in the forward
channel in an effort to relay backward-symbol feedback. This
naive change incurs one-to-one tradeoff between feedback and
independent message transmission, thus yielding:

R = 2 × (Cpf − Cno) + 2 × (n − 2m)

−{C̃pf − C̃no − 2(Cpf − Cno)}
= 2n − (C̃pf − C̃no),

R̃ = 2 × (Cpf − Cno) + 2 × ñ + {C̃pf − C̃no − 2(Cpf − Cno)}
= C̃pf.

For the regime α ∈ [ 1
2 , 2

3 ],
(n, m) −→ (2, 1)Cpf−Cno × (3, 2)2m−n,

(ñ, m̃) −→ (0, 1)2(Cpf−Cno) × (0, 1)2(2m−n)

×(0, 1)C̃pf−C̃no−2(Cpf−Cno)−2(2m−n) × (1, 2)ñ.

We apply Lemma 4-(iv) for the pair of (2, 1)Cpf−Cno and
(0, 1)2(Cpf−Cno); apply Lemma 4-(iii) for the pair of (3, 2)2m−n
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Fig. 16. Three types of shapes of an achievable rate region for the regime (R5) α ∈ (0, 2
3 ], α̃ > 2 and the case (III) Cpf−Cno > 2m̃−C̃pf, C̃pf−C̃no ≤ 2n−Cpf .

and (0, 1)2(2m−n); apply the nonfeedback scheme for the rest.
This then gives:

R = 2 × (Cpf − Cno) + 4 × (2m − n),

R̃ = 2 × (Cpf − Cno) + 1 × 2(2m − n) + 2ñ.

This is an intermediate point that lies on the 45-degree line
connecting the two corner points. Now sacrificing C̃pf −C̃no−
2(Cpf − Cno) − 2(2m − n) number of resource levels in
the forward channel for aiding backward transmission, we
achieve:

R = 2(Cpf − Cno) + 4(2m − n)

−{C̃pf − C̃no − 2(Cpf − Cno) − 2(2m − n)}
= 2n − (C̃pf − C̃no),

R̃ = 2(Cpf − Cno) + 2(2m − n) + 2ñ

+{C̃pf − C̃no − 2(Cpf − Cno) − 2(2m − n)}
= C̃pf.

(II-3) C̃pf − C̃no > 2n: In this case, we sacrifice all of the
2n direct links in the forward channel only for the purpose
of helping backward transmission. This then gives: (R, R̃) =
(0, C̃no + 2n).

(III) Cpf − Cno > 2m̃ − C̃pf, C̃pf − C̃no ≤ 2n − Cpf:
Similarly this case requires the proof of two corner points.
The first corner point is: (R, R̃) = (Cno + 2m̃ − C̃pf, C̃pf).
The second corner point depends on where Cpf − Cno lies in.
See Fig. 16. While the proof is similar to that in the previous
case, we provide details for completeness.

First focus on the proof of the first corner point (R, R̃) =
(Cno + 2m̃ − C̃pf, C̃pf). Notice that for the regime α ∈
(0, 1

2 ], α̃ > 2, we encounter a contradiction as follows:

Cpf − Cno > 2m̃ − C̃pf ⇒ Cpf − Cno > C̃pf − C̃no;
C̃pf − C̃no ≤ 2n − Cpf ⇒ Cpf − Cno ≤ C̃pf − C̃no.

Hence, we will not consider this regime. For the regime
α ∈ [ 1

2 , 2
3 ],

(n, m) −→ (2, 1)C̃pf−C̃no × (2, 1)2ñ

×(2, 1)Cpf−Cno−(C̃pf−C̃no)−2ñ × (3, 2)2m−n,

(ñ, m̃) −→ (0, 1)C̃pf−C̃no × (1, 2)ñ.

Note that Cpf−Cno > C̃pf −C̃no+2ñ in the considered regime
Cpf−Cno > 2m̃−C̃pf. We now apply Lemma 4-(i) for the pair

of (2, 1)C̃pf−C̃no and (0, 1)C̃pf−C̃no ; apply Lemma 4-(ii) for the
pair of (2, 1)2ñ and (1, 2)ñ; apply the nonfeedback scheme for
the rest. This gives:

R = 3(C̃pf − C̃no) + 3 · 2ñ

+ 2{Cpf − Cno − (C̃pf − C̃no) − 2ñ} + 4(2m − n)

= Cno + 2m̃ − C̃pf,

R̃ = (C̃pf − C̃no) + 2ñ = C̃pf.

Let us now prove the second corner point which favours R.
As mentioned earlier, we have three subcases depending on
the quantity of Cpf − Cno.

(III-1) 2m̃ − C̃pf < Cpf − Cno ≤ 2m̃ − C̃no: In this case,
we have:

(n, m) −→ (2, 1)2m̃−C̃no−(Cpf−Cno)

×(2, 1)2{Cpf−Cno−(2m̃−C̃pf)}×(2, 1)2ñ×(3, 2)2m−n,

(ñ, m̃) −→ (0, 1)2m̃−C̃no−(Cpf−Cno)

×(0, 1)Cpf−Cno−(2m̃−C̃pf) × (1, 2)ñ.

We now apply Lemma 4-(i) for the pair of
(2, 1)2m̃−C̃no−(Cpf−Cno) and (0, 1)2m̃−C̃no−(Cpf−Cno); apply
Lemma 4-(v) for the pair of (2, 1)2{Cpf−Cno−(2m̃−C̃pf)} and
(0, 1)Cpf−Cno−(2m̃−C̃pf); apply the nonfeedback scheme for
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Fig. 17. For the pair of (n, m) = (0, 1), (ñ, m̃) = (1, 2), one can achieve (R, R̃) = (1, 1).

the rest. This then yields:

R = 3{2m̃ − C̃no − (Cpf − Cno)}
+ 3 · 2{Cpf − Cno − (2m̃ − C̃pf)} + 3 · 2ñ + 4(2m − n)

= Cpf,

R̃ = {2m̃ − C̃no − (Cpf − Cno)} + 2ñ = 2m̃ − (Cpf − Cno).

(III-2) 2m̃ − C̃no < Cpf − Cno ≤ 2m̃: In this case, we will
take the two-step approach: first obtaining an intermediate
point that lies on the 45-degree line and then perturbing the
scheme to prove achievability of the second corner point of
interest.

In the considered regime, we have:

(n, m) −→ (2, 1)2(C̃pf−C̃no) × (2, 1)2ñ

×(2, 1)Cpf−Cno−2×(C̃pf−C̃no)−2ñ × (3, 2)2m−n,

(ñ, m̃) −→ (0, 1)C̃pf−C̃no × (1, 2)ñ.

Here we use the fact that Cpf − Cno > 2(C̃pf − C̃no)+ 2ñ due
to Cpf −Cno > 2m̃ − C̃no. We now apply Lemma 4-(v) for the

pair of (2, 1)2(C̃pf−C̃no) and (0, 1)C̃pf−C̃no ; apply Lemma 4-(ii)
for the pair of (2, 1)2ñ and (1, 2)ñ; apply the nonfeedback
scheme for the rest. This gives:

R = 3 × 2(C̃pf − C̃no) + 3 × 2ñ

+ 2×{Cpf−Cno−2×(C̃pf−C̃no)−2ñ} + 4 × (2m − n),

R̃ = 2ñ.

We now change the scheme that achieves the above rate pair
to prove achievability of the second corner point. Specifically
we utilize Cpf − Cno − 2 × (C̃pf − C̃no) − 2ñ number of cross
links in the backward channel to help forward transmission.

This way, we can achieve:

R = 3 × 2(C̃pf − C̃no) + 3 × 2ñ

+ 2×{Cpf−Cno−2×(C̃pf−C̃no) − 2ñ} + 4 × (2m − n)

+ {Cpf − Cno − 2 × (C̃pf − C̃no) − 2ñ}
= 2n − m = Cpf,

R̃ = 2ñ − {Cpf − Cno − 2 × (C̃pf − C̃no) − 2ñ}
= 2m̃ − (Cpf − Cno).

(III-3) Cpf − Cno > 2m̃: In this case, all of the 2m̃
cross-link levels in the backward channel are used solely for
aiding forward transmission. So we can achieve: (R, R̃) =
(Cno + 2m̃, 0).

APPENDIX B
PROOF OF LEMMA 3

(i): We will illustrate achievability via the simplest example
in which (i, j) = (1, 1). See Fig. 17. In the forward channel
(0, 1), only one user (say user 1) intends to send one symbol
(say ai ) every time slot. User 2̃ then feeds the symbol back to
user 2 using the top level in the backward channel. Next user
2 delivers the fed back symbol to user 1̃. This way, we achieve
R = 1. Now for (n, m) = (0, 1)i and (ñ, m̃) = (1, 2) j ,
consider sending i number of feedback symbols from user 2̃ to
user 2. Since the total number of resource levels at user 2 in
the backward channel is 2 j , one can ensure R = i as long
as i ≤ 2 j . On the other hand, the remaining 2 j − i resource
levels at user 2 are used for backward traffic. In the example,
2 j − i = 1, so one backward symbol Ãi is transmitted per
time. Notice that this transmission also occupies a resource
level at user 1. This prevents from squeezing more backward
symbols, thus yielding R̃ = 2 j − i . Here one key observa-
tion to make is that feedback for increasing R by one bit
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Fig. 18. For the pair of (n, m) = (2, 1), (ñ, m̃) = (1, 0), one can achieve (R, R̃) = (3, 1).

incurs one bit of degradation w.r.t. R̃, meaning that there is
one-to-one tradeoff between feedback and backward message
transmissions, as demonstrated in [5].

(ii): We will describe achievability via a special case of
(i, j, k) = (1, 1, 0): (n, m) = (2, 1) and (ñ, m̃) = (1, 0).
See Fig. 18. In the forward channel (2, 1), user 1 sends two
symbols (ai , Ai ) per time, while user 2 sends only one symbol
Bi on the bottom level. The symbol Bi is interfered with ai .
User 2̃ then sends the interfered signal ai ⊕ Bi back to user 2,
which in turn enables user 2 to decode ai . User 2 forwarding
ai through the top level in the next time allows user 2̃ to
refine the corrupted symbol. For instance, at time 2, user 2̃
can decode B1 by subtracting a1 from a1 ⊕ B1. This way,
we achieve R = 3N−1

N → 3 as code length N tends to infinity.
Now for (n, m) = (2, 1)i and (ñ, m̃) = (1, 0) j , consider
sending i number of feedback symbols either from user 2̃ to
user 2 (as in the example) or from user 1̃ to user 1 (this is the
case in which user 2 sends more compared to user 1). Then,
we can achieve R = 3i as long as i does not exceed the total
number 2 j of resource levels in the backward channel which
corresponds to the nonfeedback sum-rate. For the remaining
resource levels 2 j − i , we employ the nonfeedback scheme
to achieve R̃ = 2 j − i . As in the previous case (i), we see
one-to-one tradeoff. One can apply the same argument for
(n, m) = (2, 1)i and (ñ, m̃) = (2, 1)k to observe the same
one-to-one tradeoff relationship. The only distinction is that in
this case, the nonfeedback sum-rate of the backward channel
is 2k. Hence, we achieve (R, R̃) = (3i, 2k − i) under i ≤ 2k.
Now for the general (i, j, k) case, combining the above two,
we get (R, R̃) = (3i, 2 j + 2k − i) if i ≤ 2 j + 2k.

(iii): For (n, m) = (2, 1)i and (ñ, m̃) = (2, 1) j , the proof
in the (i i) case yields (R, R̃) = (3i, 2 j − i) under i ≤ 2 j .
For (n, m) = (2, 1)i and (ñ, m̃) = (3, 2)k , using the same

argument and the fact that the nonfeedback sum-rate of
the backward channel is 4k, one can show that (R, R̃) =
(3i, 4k − i) under i ≤ 4k. Now for the general (i, j, k)
case, combining the above two, we can achieve (R, R̃) =
(3i, 2 j + 4k − i) as long as i ≤ 2 j + 4k. This completes the
proof.

APPENDIX C
PROOF OF LEMMA 4

(i): See Scheme 2 in Section IV.
(ii): Obviously (n, m) = (2, 1)i = (2i, i) and (ñ, m̃) =

(1, 2) j = ( j, 2 j). Note in this case that Cpf = 3i > 2i =
Cno and C̃no = 2 j and hence the channel belongs to the
(R4) regime. Since the condition i ≤ 2 j corresponds to Cpf −
Cno ≤ 2m̃ − C̃no, the achievability for the (R4) regime yields
(R, R̃) = (Cpf, C̃no).

(iii): Obviously (n, m) = (3, 2)i = (3i, 2i) and (ñ, m̃) =
(0, 1) j = (0, j). Note in this case that Cno = 4i and
C̃pf = j > 0 = C̃no and hence the channel belongs to
the (R3’) regime (the symmetric counterpart of (R3)). Since
the condition 2i ≥ j corresponds to C̃pf − C̃no ≤ 2n −
Cno, the achievability for the (R3’) regime yields (R, R̃) =
(Cno, C̃pf).

(iv): In the forward channel, each user sends one bit
on the bottom level every time, while the upper level is
utilized to relay backward-symbol feedback. See Fig. 19. Here
the backward-symbol feedback, say b̃1, does not cause any
interference to user 2̃ as it is already known. Hence, two
feedback symbols can be delivered every time and this yields
(R, R̃) = (2, 2).

(v): The backward channel is used solely for feeding back
forward-symbol feeddback. One can easily verify that this
enables us to achieve R = Cpf = 2 × 3 = 6.
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Fig. 19. For the pair of (n, m) = (2, 1) and (ñ, m̃) = (0, 1)2, one can achieve (R, R̃) = (2, 2).

APPENDIX D
PROOF OF COROLLARY 1

By symmetry, focus on (I). When α < 2/3 and α̃ > 2,
clearly we have: Cpf = 2n − m > max(2n − 2m, 2m) = Cno;
and C̃pf = m̃ > 2ñ = C̃no. In this regime, the condition
C̃pf − C̃no ≤ 2n − Cpf implies m̃ ≤ 2ñ + m. This then yields:

Cpf + C̃pf = 2n − m + m̃ ≤ 2n + 2ñ. (11)

We now consider two subcases: α < 1/2; 1/2 ≤ α < 2/3.
When α < 1/2, the condition Cpf − Cno ≤ 2m̃ − C̃pf implies
m ≤ m̃. This then gives:

Cpf + C̃pf = 2n − m + m̃

≤ 2n − 2m + 2m̃

= 2 max(n − m, m) + 2 max(ñ − m̃, m̃). (12)

For 1/2 ≤ α < 2/3, Cpf −Cno ≤ 2m̃ − C̃pf implies 2n −3m ≤
m̃. This then gives:

Cpf + C̃pf = 2n − m + m̃

≤ 2m + 2m̃

= 2 max(n − m, m) + 2 max(ñ − m̃, m̃). (13)

This together with (11) and (12) proves C = Cpf.

REFERENCES

[1] C. Suh, D. Tse, and J. Cho, “To feedback or not to feedback,” in Proc.
IEEE Int. Symp. Inf. Theory, Jul. 2016, pp. 290–294.

[2] C. Suh, J. Cho, and D. Tse, “Two-way interference channel capacity:
How to have the cake and eat it too,” in Proc. IEEE Int. Symp. Inf.
Theory, Jun. 2017, pp. 634–638.

[3] C. E. Shannon, “Two-way communication channels,” in Proc. 4th
Berkeley Symp. Math. Stat. Prob., 1961, pp. 611–644.

[4] G. Kramer, “Feedback strategies for white Gaussian interference net-
works,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1423–1438,
Jun. 2002.

[5] C. Suh and D. N. C. Tse, “Feedback capacity of the Gaussian interfer-
ence channel to within 2 bits,” IEEE Trans. Inf. Theory, vol. 57, no. 5,
pp. 2667–2685, May 2011.

[6] A. Vahid, C. Suh, and A. S. Avestimehr, “Interference channels
with rate-limited feedback,” IEEE Trans. Inf. Theory, vol. 58, no. 5,
pp. 2788–2812, May 2012.

[7] C. Suh, I.-H. Wang, and D. Tse, “Two-way interference channels,” in
Proc. IEEE Int. Symp. Inf. Theory, Jul. 2012, pp. 2801–2805.

[8] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, “Wireless network
information flow: A deterministic approach,” IEEE Trans. Inf. Theory,
vol. 57, no. 4, pp. 1872–1905, Apr. 2011.

[9] Z. Cheng and N. Devroye, “Two-way networks: When adaptation is
useless,” IEEE Trans. Inf. Theory, vol. 60, no. 3, pp. 1793–1813,
Mar. 2014.

[10] A. El Gamal and M. Costa, “The capacity region of a class of
deterministic interference channels,” IEEE Trans. Inf. Theory, vol. IT-28,
no. 2, pp. 343–346, Mar. 1982.

[11] S. Rini, D. Tuninetti, and N. Devroye, “New inner and outer bounds for
the memoryless cognitive interference channel and some new capacity
results,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4087–4109,
Jul. 2011.

[12] I.-H. Wang and D. N. C. Tse, “Interference mitigation through lim-
ited receiver cooperation,” IEEE Trans. Inf. Theory, vol. 57, no. 5,
pp. 2913–2940, May 2011.

[13] V. Prabhakaran and P. Viswanath, “Interference channels with source
cooperation,” IEEE Trans. Inf. Theory, vol. 57, no. 1, pp. 156–186,
Jan. 2011.

[14] A. Sahai, V. Aggarwal, M. Yüksel, and A. Sabharwal, “On channel
output feedback in deterministic interference channels,” in Proc. IEEE
Inf. Theory Workshop, Oct. 2009, pp. 298–302.

[15] S. Kamath and Y.-H. Kim, “Chop and roll: Improving the cutset
bound,” in Proc. 52nd Annu. Allerton Conf. Commun., Control, Comput.,
Sep./Oct. 2014, pp. 921–927.

[16] W. J. McGill, “Multivariate information transmission,” Psychometrika,
vol. 19, no. 2, pp. 97–116, 1954.

[17] G. Bresler and D. Tse, “The two-user Gaussian interference chan-
nel: A deterministic view,” Eur. Trans. Telecommun., vol. 19, no. 4,
pp. 333–354, Jun. 2008.

[18] S. Mohajer, S. N. Diggavi, C. Fragouli, and D. N. C. Tse, “Approximate
capacity of a class of Gaussian interference-relay networks,” IEEE Trans.
Inf. Theory, vol. 57, no. 5, pp. 2837–2864, May 2011.

[19] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.



SUH et al.: TWO-WAY IC CAPACITY: HOW TO HAVE THE CAKE AND EAT IT TOO 4281

[20] M. A. Maddah-Ali, A. S. Motahari, and A. K. Khandani, “Communi-
cation over MIMO X channels: Interference alignment, decomposition,
and performance analysis,” IEEE Trans. Inf. Theory, vol. 54, no. 8,
pp. 3457–3470, Aug. 2008.

[21] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of
freedom of the K -user interference channel,” IEEE Trans. Inf. Theory,
vol. 54, no. 8, pp. 3425–3441, Aug. 2008.

[22] Y. Wu, P. A. Chou, and S. Y. Kung, “Information exchange in wireless
networks with network coding and physical-layer broadcast,” in Proc.
39th Annu. Conf. CISS, 2005, pp. 1–6.

[23] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” ACM SIGCOMM
Comput. Commun. Rev., vol. 36, no. 4, pp. 243–254, Oct. 2006.

[24] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with
side information,” in Proc. 47th Annu. IEEE Symp. Found. Comput. Sci.,
Oct. 2006, pp. 197–206.

[25] M. A. Maddah-Ali and D. Tse, “Completely stale transmitter channel
state information is still very useful,” IEEE Trans. Inf. Theory, vol. 58,
no. 7, pp. 4418–4431, Jul. 2012.

[26] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of
caching,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867,
May 2014.

[27] C. Suh, N. Goela, and M. Gastpar, “Computation in multicast networks:
Function alignment and converse theorems,” IEEE Trans. Inf. Theory,
vol. 62, no. 4, pp. 1866–1877, Apr. 2016.

[28] S. H. Lim, Y.-H. Kim, A. El Gamal, and S.-Y. Chung, “Noisy network
coding,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3132–3152,
May 2011.

[29] A. A. El Gamal and Y.-H. Kim, Network Information Theory, 1st ed.
Cambridge, MA, USA: Cambridge University Press, Jan. 2012.

[30] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory,
vol. IT-29, no. 3, pp. 439–441, May 1983.

[31] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing
interference through structured codes,” IEEE Trans. Inf. Theory, vol. 57,
no. 10, pp. 6463–6486, Oct. 2011.

[32] T. Han and K. Kobayashi, “A new achievable rate region for the
interference channel,” IEEE Trans. Inf. Theory, vol. IT-27, no. 1,
pp. 49–60, Jan. 1981.

[33] C. Suh, N. Goela, and M. Gastpar, “Approximate feedback capacity of
the Gaussian multicast channel,” in Proc. IEEE Int. Symp. Inf. Theory,
Jul. 2012, pp. 2909–2913.

[34] C. Suh and M. Gastpar, “Interactive function computation,” in Proc.
IEEE Int. Symp. Inf. Theory, Jul. 2013, pp. 2329–2333.

[35] S. Shin and C. Suh, “Two-way function computation,” in Proc.
52nd Annu. Allerton Conf. Commun., Control, Comput., Oct. 2014,
pp. 1309–1316.

[36] J. Chen, A. Ozgür, and S. Diggavi, “Feedback through overhearing,”
in Proc. 52nd Annu. Allerton Conf. Commun., Control, Comput.,
Sep./Oct. 2014, pp. 358–365.

Changho Suh (S’10–M’12) is an Ewon Associate Professor in the School of
Electrical Engineering at Korea Advanced Institute of Science and Technology
(KAIST). He received the B.S. and M.S. degrees in Electrical Engineering
from KAIST in 2000 and 2002 respectively, and the Ph.D. degree in Electrical
Engineering and Computer Sciences from UC-Berkeley in 2011. From 2011 to
2012, he was a postdoctoral associate at the Research Laboratory of Electron-
ics in MIT. From 2002 to 2006, he had been with the Telecommunication R&D
Center, Samsung Electronics.

Dr. Suh received the 2015 IEIE Haedong Young Engineer Award,
a 2015 Bell Labs Prize finalist, the 2013 IEEE Communications Society
Stephen O. Rice Prize, the 2011 David J. Sakrison Memorial Prize (top
research award in the UC-Berkeley EECS Department), and the 2009 IEEE
ISIT Best Student Paper Award.

Jaewoong Cho (S’16) is a Ph.D. student in the School of Electrical Engi-
neering at Korea Advanced Institute of Science and Technology (KAIST).
He received the B.S. and M.S. degrees in Electrical Engineering from KAIST
in 2014 and 2016 respectively. His research interests include information
theory and its applications in wireless communications and machine learning.

David Tse (M’96–SM’07–F’09) received the B.A.Sc. degree in systems
design engineering from University of Waterloo in 1989, and the M.S.
and Ph.D. degrees in electrical engineering from Massachusetts Institute of
Technology in 1991 and 1994 respectively. From 1994 to 1995, he was a
postdoctoral member of technical staff at A.T. & T. Bell Laboratories. From
1995 to 2014, he was on the faculty of the University of California at Berkeley.
He is currently the Thomas Kailath and Guanghan Xu Professor at Stanford
University.

David Tse was elected member of the U.S. National Academy of Engineer-
ing in 2018. He was the recipient of the Claude E. Shannon Award in 2017.
Previously, he received a NSF CAREER award in 1998, the Erlang Prize from
the INFORMS Applied Probability Society in 2000 and a Gilbreth Lectureship
from the National Academy of Engineering in 2012. He received multiple best
paper awards, including the Information Theory Society Paper Award in 2003,
the IEEE Communications Society and Information Theory Society Joint
Paper Awards in 2000, 2013 and 2015, the Signal Processing Society Best
Paper Award in 2012 and the IEEE Communications Society Stephen O. Rice
Prize in 2013. For his contributions to education, he received the Outstanding
Teaching Award from the Department of Electrical Engineering and Computer
Sciences at U.C. Berkeley in 2008 and the Frederick Emmons Terman Award
from the American Society for Engineering Education in 2009. He is a
coauthor, with Pramod Viswanath, of the text Fundamentals of Wireless
Communication, which has been used in over 60 institutions around the world.
He is the inventor of the proportional-fair scheduling algorithm used in all
third and fourth-generation cellular systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


