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EE210 Probability and Introductory Random Processes March 2, 2021
KAIST, Spring 2021 Changho Suh (chsuh@kaist.ac.kr)

Lecture 1: Logistics and Overview

About instructor

Welcome to EE210: Probability and introductory random processes! My name is Changho
Suh, an instructor of this course. A brief introduction of myself. A long time ago, I was
one of the students in KAIST like you. I spent six years at KAIST to obtain the Bachelor
and Master degrees all from Electrical Engineering in 2000 and 2002, respectively. In 2002, I
joined Samsung electronics where I worked on the design of wireless communication systems like
4G/5G. Spending four and a half years, I left industry, joining UC Berkeley where I obtained
the PhD degree in 2011. Spending around one year at MIT as a postdoc, I came back to KAIST
in 2012. My research interests include information theory and machine learning which of course
have something to do with the concepts of probability and random processes that I am going to
cover in this course.

Today’s lecture

Today we will cover two very basic stuffs. The first is logistics of this course: details as to
how the course is organized and will proceed. The second thing to cover is a brief overview to
this course. Specifically I am going to first explain the basic concept of probability and why
it is of interest in the department of Electrical Engineering. I will then argue that probability
serves as an essential tool in a wide range of applications from various fields including Electrical
Engineering. Lastly I will provide you with specific topics that we will cover throughout this
course.

My contact information, office hours and TAs’ information

See syllabus uploaded on the course website. One special note: if you cannot make it neither
for my office hours nor for TAs’ ones, please send me or TAs an email to make an appointment
in different time slots. Office hours are basically in person, but zoom calls may be open upon
request.

Prerequisite

A prerequisite for this course is to have some mathematical maturity and exposure to program-
ming. High school level knowledge about the concept of probability suffices, as long as you were
in the science division (“ik-gwa”). Some knowledge on random processes helps indeed although
it is not mandatory. For programming, we will use Python, so basic familiarity with Python
helps a lot. Even though you never learned about Python, it may be okay as long as you are
familiar with the programming concept. We will offer a Python tutorial so that you can learn
about the language by yourself. It will be issued right before Python is firstly used. If you still
think that you lack these prerequisites, please consult with me so that I can help you as much
as possible.

Course website

We have a course website on klms system. You can simply login with your portal ID. If you
want to only sit in this course (or cannot register the course for some reason), please let me or
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head TA (Moonseok Choi) know your email address. Upon request, we are willing to distribute
course materials to the email address that you sent us.

Text

There is no required textbook for this course. Instead I am going to provide you with two
materials which I believe enough: (i) lecture slides (LSs for short) which I will use during
lectures; (ii) course notes (CNs for short) like the one that you are now reading. Most times,
these materials will be posted at night on a day before class, but sometimes course notes may be
uploaded after lectures. These materials are almost self-contained, and cover the entire contents
that will show up in homeworks and exams. So if you want to make a minimal effort to this
course, these materials may suffice to pass the course with a reasonable grade. The recording
of the livestream, which we call Lecture Videos (LVs), will be uploaded on youtube at the end
of the corresponding week. TA0 (Youngsu Jang) will take care of this, and inform you of the
youtube link once uploaded. As supplement, you can also consult with a very easy-to-follow
course note at MIT (already uploaded on the course website):

Bertsekas and Tsitsiklis, “Introduction to Probability,” Course Notes @ MIT.

For those who have enough energy, passion and time, I recommend you to consult with another
reference: Jean Walrand, “Probability in Electrical Engineering and Computer Science: An
Application-driven Course,” Amazon, 2014. Sometimes, I will make some homework problems
from these references. If so, I will let you know and upload a soft copy of the relevant part of
the materials.

Problem sets

There will be weekly or bi-weekly problem sets. So there would be around seven problem
sets in total. Each homework will be graded by a subset of TAs only among TA1 ∼ TA6
(excluding head TA and TA0), and a responsible TA will be assigned to each problem (this
information will be indicated in the problem set as well). If you have some question about
a problem, I strongly recommend you to first ask the responsible TA and then the head TA
(if needed), potentially ccing me. The submission is via klms – detailed instruction will be
announced by the head TA around when the first problem set is issued. Solutions will be
usually available at the end of the due date. This means that in principle, we do not accept
any late submission. We encourage you to cooperate with each other in solving the problem
sets. However, you should write down (and/or type via any edit tools such as latex and docs)
your own solutions. You are welcome to flag confusing topics in the problem sets; this will not
lower your grade. Some problems require programming and simulations in Python. To this end,
we will be using Jupyter notebook: https://jupyter.org/. Please refer to the installation guide if
needed: https://jupyter.readthedocs.io/en/latest/install.html.

Exams

As usual, there will be two exams: midterm and final. We follow the schedule that our institution
assigns by default: Tuesday 9:00–11:30 am on the exam week for this course. Please let us know
if someone cannot make it for the schedule. Upon a reasonable rationale, we can change the
schedule or can offer a chance for you to take an exam in a different time slot that we will
organize individually.

Three things to notice. First, an exam runs live online via Zoom. We are supposed to host
8 individual meetings, each being proctored by one responsible TA. For exams, you should be
prepared with: (i) a video camera (smartphone camera suffices); (ii) a quiet place; (iii) a printer;
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(iv) a scanner (smartphone app scanner suffices). An exam starts from 9 am and ends at 11:30
am sharp. Exam sheets would be uploaded at 8:30 am on klms, so you would have around
30 minutes for printing. You should turn in your solution to a corresponding TA until noon
(30 minutes for scanning). You must turn on your camera from 9 am to your submission time
(including your scanning time).

Second, for both exams, you are allowed to use one cheating sheet, A4-sized and double-sided.
So it is a kind of semi-closed-book exam. It can be either typed or hand-written. Basically you
can do whatever you want yet within one sheet of paper.

Lastly, for your convenience, we will provide an instruction note for each exam, which contains
detailed guidelines as to how to prepare for the exam. Such information includes: (1) how many
problems are in the exam; (2) what types of problems are dealt with in what contexts; (3) the
best way to prepare for such problems.

Course grade

Here is a rule for the course grade that you are mostly interested in perhaps. The grade
will be decided based on four factors: problem sets (22%); midterm (32%); final (40%); and
participation (6%). Here the participation means any type of interaction with me: attendance,
in-class participation, questions, discussion, email exchange, to name a few.

Overview

Now let’s move onto the second part. Here is information for reading materials: “CN01”. In
this part, I will explain the basic concept of probability of our main interest and its role in
the context of various applications. I will then list up specific topics that we will learn about
throughout the course.

Probability and uncertainty

Let’s start from the beginning. What is probability? The not-very-rigorous yet very intuitive
definition is the following. Probability is defined as the fraction of the occurrence of an interested
event over the total number of possible cases. To get a concrete feel as to what it means, let’s
think about rolling a dice. Suppose that an interested event is getting a particular number,
say 1, as a result of rolling. Since there are six possible cases for the result, from 1 to 6, the
probability simply reads 1

6 . Now then why do we care about probability particularly within the
department of Electrical Engineering that seems to have nothing to do with rolling a dice? This
is because life is full of uncertainty. There are tons of scenarios in the real world (including
many applications in Electrical Engineering) wherein one cannot predict the future with 100%,
and hence one can talk about future occurrence only in a probabilistic manner.

Many applications

In old days, the theory of probability has been developed mainly for the purpose of earning some
money from gambling. People wanted to figure out probability-theory-based best strategies for
card games, dice, roulette wheels. But today it serves as an essential tool in a widening array
of applications from various fields. For instance, it is instrumental in designing best systems for
communication, internet and control. It also helps to build up key methodologies for artificial
intelligence and machine learning, called algorithms in the field. Often times, it plays a crucial
role in understanding many important theories and principles that arise in science. Many other
applications include: cloud storage, peer-to-peer file sharing, speech recognition, ranking of
webpages, network multiplexing, GPS (positioning), DNA sequencing, etc. Among many of
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such applications, let’s focus on the following three killer applications to explain the role of
probability in depth: (1) communication; (2) machine learning; (3) speech recognition.

Application #1: Communication

Communication is the transfer of information (often digital information, a sequence of 0/1
binary digits, simply called bits) from one end (called the transmitter) to the other end (called
the receiver), over a physical medium (like an air) between the two ends. The physical medium
is so called the channel. See Fig. ??. CN01_1

channel

noise (random signals)

0 0 1 1 0 1 0 ... 0 1 1 1 1 1 0 ...

transmitter receiver

Figure 1: Communication is the transfer of information from the transmitter to the receiver
over a channel. The channel introduces random noise signals which can then be modeled as a
key concept in probability: a sequence of random variables (also called a random process).

Here the channel is the one that relates the concept of probability to communication. If you
think about how the channel behaves, then you can easily see why. First of all, the channel is a
sort of system (in other words, a function) which takes a transmitted signal as an input and a
received signal as an output. Here one big problem arises in the system. The problem is that
it is not a deterministic function. If the channel is deterministic and one-to-one mapping, then
one can easily reconstruct the input from the output. So there is no problem in transferring
information from the transmitter to the receiver. However, the channel is not deterministic in
reality. It is actually a random function. In other words, there is a random entity (also known
as noise in the field) added into the system. In typical communication systems, the noise is
additive: a received signal is the sum of a transmitted signal and the noise. In general, we have
no idea of the noise. It turns out the random noise signals can be mathematically modeled as
the one that you may often hear of during high school days: a sequence of random variables,
also simply called a random process. Random variable and random processes are indeed key
concepts in probability. Here we see its relevance to probability.

Actually it is more than that if we think about the goal of communication. The goal of commu-
nication is to reconstruct the original transmitted signals (0011010 · · · in the example in Fig. ??)
from the corrupted received signals (0111110 · · · in the example). So one natural desire in this
context is to figure out the best way of reconstruction. It turns out the best way builds upon
one key principle in probability: Maximum A Posteriori (MAP) estimation. Many of you guys
may not hear of the MAP estimation. Don’t worry. That is exactly the reason that you are
taking this course. We will study the MAP principle in depth from this course.

Application #2: Machine learning

Probability is also essential in understanding a very trending field nowadays that most of you
guys are sort of forced to be interested in: Machine learning. Machine learning is a methodology
for training a machine so that the trained machine can perform like human beings. See Fig. ??.
Here one key feature of machine learning is that we use data in the process of training a machine.
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machine
input output

data

Figure 2: Machine learning is a methodology for training a machine so that it can perform as
much as like human beings. For certain yet interested scenarios, the best training methodology
builds upon one key principle in probability: Maximum Likelihood estimation.

The data often refers to input-output paired samples, denoted by:

{(x(i), y(i))}mi=1, (1)

where (x(i), y(i)) indicates the ith input-output sample (or called a training sample or an exam-
ple) and m denotes the number of samples.

In fact, probability is related to a training methodology. It turns out under certain scenarios that
the best way of training a machine hinges upon another key principle in probability: Maximum
Likelihood (ML) estimation. Most of you guys may not hear of the ML estimation. Again, don’t
worry. This is why you are here. We will explore in depth this important principle.

Application #3: Speech recognition

Probability is also known to be instrumental in designing a popular system prevalent in our
daily life: Speech recognition. Siri in the iphone is one such example. Amazon Alexa is another.
Actually, you can see its relevance to probability if you think about the goal of speech recognition.
The goal of speech recognition is to transform voice signals (comprising spoken words picked
up from microphone) into a written command, which can then be represented in the form of a
text without losing the meaning of the spoken words. See Fig. ??. Here the key observation is

CN01_3

speech
recognition

text

Figure 3: The goal of speech recognition is to transform voice signals into a written command.
Here voice characteristics (also called pronunciations) vary over different speakers. Hence, the
voice signals with uncertainty can be modeled as a random process. Also it is well known that
the best way for designing a speech recognition system is based on a key principle in probability:
Maximum A Posteriori (MAP) estimation.

that voice characteristics vary over different speakers, which in turn incurs uncertainty on voice
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signals. So one can model the voice signals with uncertainty as a random process. Another
relevance comes from a way of designing speech recognition systems. It turns out that the
problem of speech recognition can be cast into the communication problem that we discussed in
Fig. ??, so the best way of designing speech recognition is again based on the MAP estimation.

Contents to be covered

From the earlier killer applications, we see several key concepts and principles: (i) random
variables; (ii) random processes; (iii) MAP estimation; (iv) ML estimation. Actually these are
the main contents that I would like to explain to you from this course. A little bit exaggeratedly
speaking, with a deep understanding only on these, you can do almost whatever you want at
least within the field of Electrical Engineering. Unfortunately, however, understanding these
requires some knowledge on more basic concepts of probability. That’s why I structured the
course with the following three parts.

Course outline

In Part I, we will study such basic concepts of probability. These are actually the ones that
you may hear of from your high school math: sample space, events, conditional probability,
independence, total probability law, random variable, probability mass function, density and
expectation. In Part II, we will then move onto the key principles: MAP and ML estimation. It
turns out that the derivation of the MAP and ML estimation requires two more key principles:
(a) Law of Large Number; (b) Central Limit Theorem. We will also study these in Part II. In
addition, we will cover popular inequality techniques that are useful in proving the theorems
concerning the key principles: Markov’s inequality and Chebyshev’s inequality. In the last third
part, we will explore the three killer applications (communication, machine learning, speech
recognition) and will emphasize the role of the key concepts again yet more convincingly using
the knowledge acquired in Parts I and II.
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EE210 Probability and Introductory Random Processes March 4, 2021
KAIST, Spring 2021 Changho Suh (chsuh@kaist.ac.kr)

Lecture 2: Sample space and events

Recap

Last time, we introduced the non-rigorous yet intuitive definition of probability: the fraction
of the occurrences of an interested event over all the possible outcomes of an experiment. We
then emphasized the role of probability while explaining its role in the context of the following
three killer applications: (i) communication; (ii) machine learning; and (iii) speech recognition.
In particular, we put a special emphasis on two key concepts and two key principles. The two
concepts are: (i) random variables; (ii) random processes. The two principles are: (i) MAP
(Maximum A Posteriori) estimation; (ii) ML (Maximum Likelihood) estimation.

At the end of the last lecture, however, I claimed that understanding these requires some knowl-
edge on more basic concepts of probability like sample space, events, conditional probability,
independence and total probability law. During several upcoming lectures, we will explore them
in depth.

Today’s lecture

Today we will learn about the first two: sample space and events. Specifically what we are
going to cover are four folded. First we will introduce the definition of sample space. We will
then study its relevant concept, called the probability (or probabilistic) model, which builds
upon the sample space and also play a role in bridging the sample space to events. Next we
will investigate the definition of an event, as well as study how to compute the probability of an
interested event. Finally we will exercise ourselves on the learned concepts via several examples:
five easy and one non-trivial examples.

Sample space

The sample space is defined as the set of all possible outcomes of an experiment. To get a
concrete feel, let’s think about a simple experiment where we toss a coin four times. In this
case, what are the possible outcomes? They would read: HHHH, HHHT, HHTH, HHTT, all
the way up to, TTTH, TTTT. See Fig. 1. So the sample space, usually denoted by Ω, would

CN02_1

HHHH HHHT HHTH HHTT

HTHH HTHT HTTH HTTT

THHH THHT THTH THTT

TTHH TTHT TTTH TTTT

sample space

element

Figure 1: Sample space for an experiment of tossing a coin four times. The sample space is
defined as the set of all possible outcomes, and is conventionally denoted by Ω. Here H and T
stand for “Head” and “Tail” respectively. An element in the set indicates each possible outcome
and is conventionally denoted by a small letter ω.

be: Ω = {HHHT,HHHT,HHTH,HHTT, . . . , TTTH, TTTT}. Here an element in the set,
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usually denoted by ω ∈ Ω, indicates each outcome. The sample space is connected to the concept
of events via another relevant concept: probability model.

Probability model

A probability (or probabilistic) model is a mathematical description that consists of the following
two entities. One is the sample space Ω. The second is a so called probability assignment, denoted
by P(ω), for each ω ∈ Ω. Here the probability assignment (also called the probability distribution)
should respect the non-negativity and sum-up-to-one properties:

0 ≤ P(ω) ≤ 1 for all ω ∈ Ω; (1)∑
ω∈Ω

P(ω) = 1. (2)

The easiest way to assign probabilities to outcomes is to give all of them the same probability
(as we saw earlier in the coin tossing example; see Fig. 1): P(ω) = 1

|Ω| ∀ω ∈ Ω. Here the symbol

“∀” means “for all” and |Ω| indicates the number of all the elements in Ω, simply called the
cardinality of Ω. This distribution is known as a uniform distribution. Of course, not all the
probability distributions are uniform. We will also see examples of non-uniform distributions
soon. Notice that while there are many outcomes in the sample space, the experiment results in
exactly only one of these outcomes. However, we do not know in advance the future outcome,
so lies the randomness here. The only thing that we can do is to talk about such occurrence in
a probabilistic manner via proper modeling of the probability distribution P(ω).

Events

In the context of probability theory, an event means a certain interested occurrence in an exper-
iment. To get a concrete feel as to what it means, let’s recall the earlier coin-tossing example;
again see Fig. 1. Suppose we are interested in an occurrence where we get “two heads” as a
result of four-times coin tossing. Then, the corresponding outcomes would be: HHTT, HTHT,
HTTH, THHT, THTH, TTHH. Here an event, say E, is just an aggregation of all such out-
comes. Formally speaking, the event E is defined as the set of all the outcomes corresponding
to an interested occurrence. See Fig. 2. Obviously, the event E is a subset of the sample space:

CN02_2

HHHH HHHT HHTH HHTT

HTHH HTHT HTTH HTTT

THHH THHT THTH THTT

TTHH TTHT TTTH TTTT

Event 

“two heads”

Figure 2: An event E is defined as the set of all the outcomes that respect a condition requested
by an interested occurrence, “getting two heads out of four-times coin tossing” in this example.

E ⊆ Ω.

One natural question that arises is then: How should we define the probability of an event E?
Naturally we should just add up the probabilities of the associated outcomes in E. In other
words, for any event E ⊆ Ω, we define the probability of E to be:

P(E) :=
∑
ω∈E

P(ω) (3)
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where the symbol “:=” means “is defined as”. In the prior example in Fig. 1, the probability of
getting two heads in four coin tosses can be calculated as:

P(E) =

(
4

2

)
· 1

16
=

6

16
. (4)

There are |Ω| = 16 possible outcomes for flipping four coins, and each outcome ω ∈ Ω has the
same probability 1

16 . As we saw above, there are six (“4-choose-2”=
(

4
2

)
) outcomes in E, yielding

P(E) = 6
16 . Here one key observation that we can make is:

Observation : For uniform distribution, the probability calcuation of an event E boils down to

counting the corresponindg outcomes in E.

Easy examples

In an effort to be familiar with all of the above concepts (sample space, probability model,
events), let’s exercise ourselves via several examples.

1. Tossing a fair coin once: Here the sample space is obviously Ω = {H,T}. Since the coin is
fair, the probability assignment is straightforward: P(ω) = 1

2 ∀ω ∈ Ω. An interested event
is either “Head” or “Tail”. Hence, P(H) = P(T ) = 1

2 .

2. Tossing still a fair coin yet now three times: Here the sample space would be:

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}. (5)

Since the coin is still fair, every outcome is equally likely. So the natural probability assign-
ment would be: P(ω) = 1

|Ω| = 1
8 ∀ω ∈ Ω. Suppose an interested event E is “getting two

heads”. Then, the probability of E would be:

P(E) =

(
3
2

)
8

=
3

8
(6)

as there are 3 (=
(

3
2

)
) possible outcomes. For a different event like “All three are same”,

P(E) = 1
8 + 1

8 , as there are only two such outcomes: E = {HHH,TTT}.

3. Tossing now a biased coin once: Regardless of the coin characteristic, the sample space is
the same of that in the first example: Ω = {H,T}. But the bias characteristic of the coin
would indeed affect the probability distribution. Suppose that “Head” is twice probable
relative to “Tail”. Then, the right way to assign probabilities would be:

P(H) =
2

3
, P(T ) =

1

3
.

You may want to consider this as the first simplest example in which the outcomes have
non-uniform probabilities.

4. Tossing the biased coin yet now twice: Again, the sample space is easy to come up with:
Ω = {HH,HT, TH, TT}. But it is not immediately obvious how to assign probabilities to
the outcomes. This is because the bias of the coin only tells us how to assign probabilities
to the outcome of one flip, not the outcome of multiple flips. The only thing that we
are 100% sure about is that the probabilities of the outcomes should not be uniform. I
understand some of you guys might argue P(HH) = 2

3 ×
2
3 . Yes, that’s a right way to go.

But it is actually based on your intuition and/or your prior knowledge on the concept of
independence that you learned from high school math. Since we did not learn about the
independence yet in this course, let’s defer a rigorous discussion to a later lecture when we
will dig into details on the independence. Please be patient.
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5. Rolling two fair dice: In this case, the sample space reads:

Ω = {(1, 1), (1, 2), (1, 3), . . . , (4, 6), (5, 6), (6, 6)}.

Each of the 36 outcomes has equal probability 1
36 . Suppose an interested event E is that

the sum of the dice is at least 10. Again, since the probability distribution is uniform, we
can compute the probability of E simply via counting the interested outcomes:

(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6).

Hence, P(E) = 6
36 .

A non-trivial example

We have thus far examined only easy examples. So you may be too much confident about the
concepts of sample space, probability assignment, and events. But it turns out these concepts
are not that simple. There are tons of examples in which it is extremely tricky to come up with
a proper sample space and/or to compute the probability of an interested event. You know
what? Even expert mathematicians in probability theory often make mistakes in computing
the probability of an event due to non-smart handling of the sample space and probability
assignment. Frankly speaking, the field of probability is still most difficult to me, although
I have been experiencing this field for more than 20 years. Actually, there are lots of smart
techniques that help us to easily compute the probability of an event. Here I would like to
introduce one of them via a non-trivial example.

The example is a famous one. Consider a situation in which there are 3 students in a classroom
and they have their own birthdays. For the sake of simplicity, let us assume that a year has
exactly 365 days – forget about “leap year” (“yoon-nien”). First of all, what is the sample space
Ω? It would be the set of triplets, each indicating a birthday of each student, say from 1 to 365:

Ω = {(1, 1, 1), (1, 1, 2), (1, 1, 3), . . . , (365, 365, 364), (365, 365, 365)}.

So, its cardinality is |Ω| = 3653. Suppose a birthday of each student is equally likely over
different 365 days, and it has nothing to do with those of other students. Then, a natural
probability assignment would be uniform: P(ω) = 1

3653
∀ω ∈ Ω.

Now consider the following event E: “At least two students have the same birthday”. Since it is
uniform, the only thing that matters is to count such outcomes. How many are such outcomes?
There may be: only two students having the same birthday, or all of three having the same. One
would expect that there would be many. Actually, if we consider a more general case in which
we have n students in a classroom, counting the number of such outcomes would be very much
complicated. This is where an interesting trick kicks in. The trick is: whenever you encounter
the situation where counting looks complicated (in many cases, the interested event contains a
phrase like “at least”), think about its complement : Ec := {ω : ω ∈ Ω, ω /∈ E}. It turns out this
is exactly the case where counting |Ec| is much easier. To see this, consider the complement of
E: “No one has the same birthday”. How to count such outcomes? Yes, the permutation comes
to rescue! There are 365 choices for the first student, 364 choices for the second student (to be
distinct with that of the first), and 363 choices for the last. So it is the same as the number of
possible ways to select 3 out of 365 choices (here the order matters):

|Ec| = 365P3 =
365!

(365− 3)!
= 365× 364× 363 (7)
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where n! := n× (n− 1)× · · · × 2× 1. Using this, we can then easily compute:

P(E) =
|Ω| − |Ec|
|Ω|

= 1− 365P3

3653
. (8)

One can also readily extend this to a general case in which there are n students. In this case,
the probability of the interested event E would be:

P(E) =
|Ω| − |Ec|
|Ω|

= 1− 365Pn

365n
. (9)

Birthday paradox

As mentioned earlier, it is a very famous example – even it has an interesting name. The naming
comes from the fact that the exact value of P(E) goes somewhat against many people’s intuition.
That’s why it is called “Birthday paradox”. People initially thought that the probability of hav-
ing two students with the same probability is not that large because there are many candidates
(365 days) for a birthday. But the exact computation says: for n = 23, P(E) is over 50%; for
n = 60, P(E) is over 99%.

Look ahead

Like I said, there are many non-trivial examples in which computing the probability of an
interested event is difficult. Next time, we will investigate one more such example, which is also
very famous. The example that I will introduce is the one where coming up with a proper sample
space is somewhat highly non-straightforward and we can easily make mistakes if we rush into
probability computation while relying upon intuition. From the example, I will then emphasize
the importance of the systematic & rigorous approach based on the probability model: first
defining a sample space; and then computing the probability of an interested event based on the
sample space.
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EE210 Probability and Introductory Random Processes March 9, 2021
KAIST, Spring 2021 Changho Suh (chsuh@kaist.ac.kr)

Lecture 3: Monty Hall Problem

Recap

Last time, we have studied the most basic concepts in probability: sample space, probability
model and events. The sample space Ω is the set of all the outcomes in an experiment. The
probability model is a framework comprising the sample space Ω and the probability distribution
P(ω) subject to the non-negativity and sum-up-to-one constraints:

0 ≤ P(ω) ≤ 1 for all ω ∈ Ω; (1)∑
ω∈Ω

P(ω) = 1. (2)

An event E is a subset of Ω that contains certain elements (outcomes) associated with an
interested occurrence, and its probability is defined as:

P(E) :=
∑
ω∈E

P(ω). (3)

We also exercised ourselves via several examples. At the end of the last lecture, I then claimed
that there are many non-trivial counter-intuitive examples in which one can easily make mistakes.

Today’s lecture

Today we will investigate one such prominent example. Specifically what we are going to do
are four folded. First I will explain the context of the example: how the example comes up in
what context. We will then investigate an interested question that was raised in the example.
It turns out the interested question can easily be wrongly answered once we rely only upon
intuition. Next we will come up with a proper sample space and probability model that lead to
the correct answer. Finally I will emphasize the importance of the systematic approach based
on the sample space and the probability model.

CN03_1

Figure 1: (Left) Logo of the famous American game show in the past; (Right) Picture of Monty
Hall, the original host of the game show. The “Monty Hall Problem” is named after him.

Context

An interesting problem that I would like to discuss in depth in this lecture is the one posed in
a famous American television game show, named “Let’s Make A Deal” (many people simply
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called it LMAD at the time). The problem is named after its host: Monty Hall. Hence, it is
called the Monty Hall Problem. The format of the show is as follows. A person is selected from
the audience and the person (called the “trader”) makes a deal with the game show host: Monty
Hall. The famous Monty Hall Problem was one such problem that arose in the process of a deal.

Monty Hall Problem

Here is the setting of the problem. There are three doors. The prize “car” is behind one door,
but this fact is unknown to the trader while being revealed to the host. Behind the other two
doors are “goats”. See Fig. 2.
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Figure 2: The setting of the Monty Hall Problem. The prize “car” is hidden behind a door,
which is unknown to the trader. There are goats (sort of “qquang”) behind the other two doors.
The host knows about this setting.

Given the setting, a deal begins as follows. First the trader is asked to pick one door in the
hope that there is the prize “car” behind the chosen door. The host, who knows which behind
each door, opens another door behind which there is a goat, which we simply call “goat-door”.
One instance is illustrated in Fig. 3. The trader has chosen door 1 (luckily the car-door) and
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open

Figure 3: (Step 1) The trader is asked to pick a door for the prize “car”; (Step 2) The host
opens another door having a goat; (Step 3) The trader is given a choice between sticking with
the initial choice vs switching to another unopened door.

the host opened door 3 (a goat-door). Notice that such goat-door always exists because there
are two goat-doors in the setting. Even if the trader picks a goat-door initially (say, door 2 in
this example), there is always another goat-door left (door 3 in this case).

Next the trader is given a choice between the following two strategies: (i) sticking with his/her
initial choice of a door (door 1 in the example); or (ii) switching to another unopened door (door
2 in the example). See Fig. 4. To make a smart choice, of course, the trader has to figure out
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openvs
switchingsticking

Figure 4: Sticking with the initial choice vs switching to another unopened door.

which strategy is more beneficial. In other words, the following two probabilities are of interest:

P(win w/ sticking) vs P(win w/ switching).

Initial reaction of many people

For the first probability, many people at the time could easily come up with an answer:

P(win w/ sticking) =
1

3
.

There are three doors and the car is behind one door. Hence, given no action (sticking), the
winning probability would remain the same as 1

3 . Now what about the second probability?
Many people at the time thought that it may be the same as 1

3 because there is no car-goat
locational change (the car and goats did not move at all), so nothing changes:

(Initial guess): P(win w/ switching) =
1

3
. (4)

Actually this was also my initial guess when I first encountered this problem from my probability
teacher at UC Berkeley, Jean Walrand. Later I realized from wikipedia that even Paul Erdős,
one of the most prolific mathematicians in history, believed so.

Switching is more beneficial!

As I hinted before, however, you can easily imagine that it is not the case. I told you this is a
non-trivial & counter-intuitive example. So the answer must be: the second probability is not
the same as 1

3 . It turns out it is indeed the case. Now then, you may wonder what the second
probability is. To figure this out, you may be forced to think about something changed between
two timings: (i) the initial timing; (ii) the later timing when an option is given to the trader
(between sticking vs switching). The key distinction is that in the later timing, a goat-door is
opened by the host. In this case, the opened door is eliminated for a choice. Hence, this may
naturally motivate you to guess about the second probability as:

(Second guess): P(win w/ switching) =
1

2
, (5)

as there are only two doors left and one is a goat-door while the other is the car-door for sure.
Actually this was exactly my second guess when Jean Walrand told me that my initial guess
was wrong. It turns out this guess is still wrong. You may wonder what happened. That was
also my initial reaction – I felt very unconfident about my probability skills at the time. It turns
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out the correct answer is that the winning probability with switching is twice larger than that
with sticking:

(Correct answer): P(win w/ switching) =
2

3
. (6)

From next sections onwards, I will provide a rigorous proof of (6).

Sample space

For a rigorous proof, we need to rely upon sample space instead of intuition which can potentially
be very shaky. Now how to construct a sample space? To this end, we first need to think about
where uncertainty comes up. There are three sources of uncertainty in the problem setting: (i)
car’s location; (ii) trader’s initial choice; (iii) host’s choice. So one can think of the following
triplet:

(car’s location, trader’s choice,host’s choice). (7)

A next question is then: What are the possible triplets? To easily come up with these, let’s
consider two cases:

(Case I): car’s location = trader’s choice;

(Case II): car’s location 6= trader’s choice.

In Case I (e.g., car’s location and trader’s choice is door 1 as in Fig. 5(Left)), there are two
goat-doors left. So host’s choice would be either door 2 or door 3. The following six triplets are
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→ Host’s choice: Either 2 or 3

1 2 3

→ Host’s choice: 3!

Figure 5: (Left) Case I: car’s location = trader’s choice; (Right) Case II: car’s location 6= trader’s
choice.

of this category:

(1, 1, 2), (1, 1, 3), (2, 2, 3), (2, 2, 1), (3, 3, 1), (3, 3, 2).

In Case II (e.g., car’s location is door 1 while trader’s choice is door 2 as in Fig. 5(Right)), there
is only one goat-door left. Hence, host’s choice must be door 3! There are six such triplets.
Why? Think about 3P2 = 3× 2 = 6. Hence, the followings are of this category:

(1, 2, 3), (2, 1, 3), (1, 3, 2), (3, 1, 2), (2, 3, 1), (3, 2, 1).

Aggregating all of the above possible triplets, we construct a sample space as:

Ω = {(1, 1, 2), (1, 1, 3), (2, 2, 3), (2, 2, 1), (3, 3, 1), (3, 3, 2)

(1, 2, 3), (2, 1, 3), (1, 3, 2), (3, 1, 2), (2, 3, 1), (3, 2, 1)} .
(8)
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Probability distribution

The next thing to do is to come up with the probability distribution: P(ω) for all ω ∈ Ω. To this
end, consider all the possible configurations that depend on car’s location and trader’s choice.
Since there are three possible choices for each, we have 9 (= 3× 3) cases in total. These choices
are random. Hence, one can assume that such 9 cases are equi-probable. This motivates us to
construct the probability distribution as:

P((1, 2, 3)) = P((2, 1, 3)) = P((1, 3, 2)) = P((3, 1, 2)) = P((2, 3, 1)) = P((3, 2, 1)) =
1

9
; (9)

P((1, 1, 2)) + P((1, 1, 3)) = P((2, 2, 3)) + P((2, 2, 1)) = P((3, 3, 1)) + P((3, 3, 2)) =
1

9
. (10)

Here we add two probabilities when car’s location is the same as trader’s choice, e.g., P((1, 1, 2))+
P((1, 1, 3)) = 1

9 . The reason is that for such case, there are two sub-cases. This is also illustrated
in Fig. 6.

CN03_6

Car’s location Trader’s choice Host’s choice

9 equi-proable cases

Figure 6: Probability distribution: Depending on random choices of car’s location and trader’s
choice, there are 9 (= 3 × 3) equi-probable cases. Hence, the probability 1

9 is assigned to each
of the 9 cases. For instance, P((1, 2, 3)) = 1

9 . But there are two sub-cases when car’s location is
the same as trader’s choice. So in this case, we map: P((1, 1, 2)) + P((1, 1, 3)) = 1

9 .

Now let us assume that if car’s location is the same as trader’s choice, then host’s choice is
random between two goat-doors left. We can then assign equal probabilities for two sub-cases:

P((1, 1, 2)) = P((1, 1, 3)) = P((2, 2, 3)) = P((2, 2, 1)) = P((3, 3, 1)) = P((3, 3, 2)) =
1

18
. (11)

Computation of P(win w/ switching)

We are now ready to prove (6). The event of winning with switching corresponds to all the
triplets where car’s location differs from trader’s choice (marked in red) in the sample space Ω.
This together with (9) yields:

P(win w/ switching) = P((1, 2, 3)) + P((2, 1, 3)) + P((1, 3, 2))

+ P((3, 1, 2)) + P((2, 3, 1)) + P((3, 2, 1)) =
6

9
=

2

3
.
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We can also double-check the sticking-winning probability that we guessed as 1
3 before. The

winning event under this sticking strategy corresponds to all the triplets where car’s location is
the same as trader’s initial choice (marked in blue). Hence, we get:

P(win w/ sticking) = P((1, 1, 2)) + P((1, 1, 3)) + P((2, 2, 3))

+ P((2, 2, 1)) + P((3, 3, 1)) + P((3, 3, 2)) =
6

18
=

1

3
.

Lesson

Before concluding this lecture, I would like to emphasize one lesson that I learned from the
Monty Hall Problem. That is,

Don’t rely solely upon intuition. Go back to the basics if you feel shaky.

The reason that I was wrong for the above two guesses ((4) and (5)) was that I relied only upon
my intuition and never tried to compute the probability based on the probability model. So I
realized that if I am not 100% sure about my intuition, then I should dig into the probability
model and try to get a reliable answer out of it.

In fact, there is one more thing that you can do even after a rigorous proof. That is to confirm
the proof with a computer simulation. You know what? Often times, some very smart and
ego-centric experts do not believe other people’s proof although the proof looks rigorous. The
only way to convince such stubborn guys is to show them a simulation result confirming the
proof. Actually Paul Erdős, the math hero in history, did not trust in the proof of (6) until
he was shown a confirming computer simulation. This is one of the reasons that you should be
very good at programming. In an effort to help you out, I made one coding exercise problem in
PS1 where you can confirm (6) with a Python code simulation.

Look ahead

So far we have studied the basic concepts of sample space, probability model and events, with the
help of several examples. Next time, we will study another set of basis concepts in probability:
conditional probability, total probability law and Bayes’ law.
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Lecture 4: Conditional probability & total probability law

Recap

Last time, we investigated one prominent yet counter-intuitive problem in which one (even
experts) can easily make mistakes: the Monty Hall Problem. One lesson that I wished to deliver
from the problem was that: “Don’t rely solely upon intuition. Instead go back to the basics if
you feel shaky.” In the context of probability, what the lesson means is that: “First construct
a sample space, then come up with the corresponding probability distribution; lastly compute
the probability of an interested event based on the probability model.”

Today’s lecture

Today we will move onto other important basic concepts in probability: conditional probability,
total probability law, and Bayes’ law. Specifically what we are going to cover are five folded.
First we will introduce the definition of conditional probability. I will then explain the rationale
behind the definition. Next we will exercise ourselves on the learned concept with one very
popular problem, named the disease testing. In fact, there is another relevant theorem that
arises in the process of solving the problem: total probability law. So in the fourth part, we will
study the law. There is another important and useful theorem used in the context of the disease
testing problem: Bayes’ law. In the last part, we will discuss it.

Definition of conditional probability

Conditional probability is defined with respect to (w.r.t.) multiple events. For simplicity, con-
sider a situation where we are interested in two events, say A and B. The probability of A
conditioned on B is denoted by P(A|B) and defined as:

P(A|B) :=
P(A ∩B)

P(B)
. (1)

Here one thing that we should be very careful about is that the notation P(·) used in the right
hand side is different from P(·|·) used in the left hand side, although we employ the same notation
P. Of course, these two can be differentiated since the number of arguments is different: P(·)
takes one argument while P(·|·) takes two. To differentiate these more clearly, one may use the
following notations:

PB(A) = P(A|B), PΩ(A) = P(A). (2)

Here we put the sample space in the subscript of P. In the case of P(·), the sample space is
Ω, while for P(·|·), the sample space becomes restricted to the particular event B, as B already
happened (that’s what it means by being conditioned on). But the convention is not to use such
subscript notation. So we will take the convention to employ the same notation P:

P(A|B), P(A). (3)

Again, these two can be differentiated from the different number of arguments taken.

Rationale behind the definition P(A|B) := P(A∩B)
P(B)

1



Now you may wonder why we define conditional probability like (1). There is always a good
reason behind any definition. The reason can readily be explained from a Venn diagram as
illustrated in Fig. 1. Here one key observation is that conditioned on B, the event B becomes

CN04_1

Figure 1: Conditioned on the event B: B becomes the new sample space, as the event already
occurred. We do not need to worry about other outcomes lying in Bc.

the new sample space. Since the event already happened, any outcome outside the event never
occurred.

Given the new sample space, the next thing to do is to come up with the corresponding prob-
ability distribution. Let P(ω|B) be the probability distribution w.r.t. the new sample space.
Remember that there is the sum-up-to-one constraint on the probability assignment:∑

ω∈B
P(ω|B) = 1. (4)

Now how to define P(ω|B)? The following observation gives a hint. The probability of B reads:∑
ω∈B

P(ω) = P(B). (5)

Dividing both sides by P(B), we get: ∑
ω∈B

P(ω)

P(B)
= 1. (6)

Looking at (4) and (6), one natural definition for P(ω|B) is:

P(ω|B) :=
P(ω)

P(B)
. (7)

Only in light of (4) and (6), there could be other ways to define P(ω|B), as the equality for
summation does not necessarily imply the equality for every individual participating in the
summation. But normalizing P(ω) by P(B) like (7) is also the way to preserve the probability
behaviour w.r.t. ω. Hence, people take it as the definition.

Now in the new sample space B, the probability of A is calculated as:

P(A|B) =
∑

ω∈A∩B
P(ω|B). (8)

This is because the event A conditioned on B reads A ∩B; also see Fig. 2. Applying the
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Figure 2: Conditioned on B, the occurrence of A can be interpreted as the intersection between
A and B.

definition (7) to (8), we get:

P(A|B) =
∑

ω∈A∩B
P(ω|B)

:=
∑

ω∈A∩B

P(ω)

P(B)

=
P(A ∩B)

P(B)

(9)

where the last equality comes from the definition of P(A∩B). We see that this exactly coincides
with the definition (1) of conditional probability.

A very popular problem: the disease testing problem

Let us explore one very prominent problem where the concept of conditional probability plays
a crucial role. The problem is so called the disease testing problem. To get a concrete feel, let
us consider the cancer testing problem.

Suppose that the cancer test of a person reads “positive”. Then, the person would obviously be
very interested in the correctness of the test. The person would want to believe that the test
result is wrong. In an effort to verify the correctness of the test, the person often wants to figure
out:

Probability that the person has indeed cancer given the test result is positive.

This is where conditional probability kicks in. Why? Letting A be the event that the person has
indeed cancer and B be the event that the test result is positive, we can interpret the interested
probability as P(A|B).

Now how to compute P(A|B)? Recalling the definition:

P(A|B) :=
P(A ∩B)

P(B)
, (10)

we immediately see that we need to compute two quantities: P(A ∩B) and P(B).

Computation of P(A ∩B)

Let us first consider the computation of the numerator. Here comes a challenge though. The
challenge is that the ground truth of such probability P(A∩B) is unknown. But there is a good
news. The good news is that we can somehow infer the quantity from statistical data based on
clinical trials. In order to understand what it means, see Fig. 3. In clinical trials, one can often
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95% positivetest

5% negative

Has cancer Test is positive

Figure 3: In clinical trials, one can obtain test results for a certain population, say cancer
population, as shown in this example. Suppose that around 95% of the tests are positive. Then,
one can use this positive rate as the ground-truth of the conditional probability P(B|A) = 0.95.
The negative rate 0.05 can also be used as its flipped counterpart P(Bc|A) = 0.05.

obtain test results given a certain population. For instance, suppose that tested people are all
from cancer population as in Fig. 3. We test many times for many of such people and gather
test results. Suppose that around 95% of the tested people read “positive”. Then, what we can
say from this is that a good estimate of P(B|A) might be the fraction 0.95. The estimate would
be more and more accurate as the number of tested people grows. In reality, such tests are often
done for the purpose of measuring the correctness of the test: the larger the faction is, the more
accurate the test is. In the above case, 95% accuracy (often called the true positive rate, TPR
for short) and 5% misdetection rate (or called the false negative rate, FNR for short).

Now are we done for the computation of P(A ∩ B) with a good estimate of P(B|A)? Not yet.
To see this, using the definition of conditional probability, let us rewrite P(A ∩B) as:

P(A ∩B) = P(A)P(B|A).

Here the problem is that we also need to figure out P(A). Again, statistical data comes to rescue.
Statistical data for the cancer-vs-normal populations are often available in the real world. So
we can use them to come up with a good estimation of P(A). For instance, suppose statistics
says that 10% of the entire population have cancer. Then, one can somehow assume P(A) = 0.1.
Using this together with the above estimate of P(B|A), we can then compute:

P(A ∩B) = P(A)P(B|A)

= 0.1× 0.95.
(11)

Computation of P(B)

Next consider the computation of the denominator P(B) in (10). The computation of P(B) is
a bit tricky. First of all, similar to P(B|A), we can also obtain a good estimate of P(B|Ac)
now by relying upon clinical data obtained from testing on the normal population Ac. Suppose
the fraction of test results being positive on the normal population reads 0.2 (called the false
alarm rate or false positive rate, FPR for short). Then, the number 0.2 can serve as an estimate
of P(B|Ac). Hence, in reality, P(B|A) and P(B|Ac) are estimable from testing. However, the
interested quantity P(B) is not directly available. But there is an indirect way to compute P(B).
The way is based on the total probability law !

Total probability law

4



The total probability law is extremely simple yet powerful. Let us first explain what it says.
First manipulate the event B as:

B = (A ∩B) ∪ (Ac ∩B).

This is immediate from the Venn diagram in Fig. 4. Here a key observation is that the two
CN04_4

disjoint

Figure 4: Total probability law: an event B can be represented as the union of A ∩ B and
Ac ∩B. Since these subsets are distinct, P(B) is simply the sum of the individual probabilities:
P(B) = P(A ∩B) + P(Ac ∩B).

individual events A ∩B and Ac ∩B are disjoint. This is obvious because A and Ac are disjoint.
Hence,

P(B) = P(A ∩B) + P(Ac ∩B). (12)

Why? Think about the definition of the probability of an event. The equality (12) is exactly
what the total probability law says.

Using the total probability law (12) together with the above estimates of P(B|A), P(B|Ac) and
P(A), we can now compute the interested probability:

P(B) = P(A ∩B) + P(Ac ∩B)

= P(A)P(B|A) + P(Ac)P(B|Ac)

= 0.1× 0.95 + 0.9× 0.2

(13)

where the second equality is due to the definition of conditional probability and the last comes
from the estimates.

Computation of P(A|B)

We are now ready to compute the conditional probability P(A|B). Applying (11) and (13)
into (10), we get:

P(A|B) :=
P(A ∩B)

P(B)
=

P(A)P(B|A)

P(A)P(B|A) + P(Ac)P(B|Ac)

=
0.1× 0.95

0.1× 0.95 + 0.9× 0.2
≈ 0.3455.

(14)

Discussion on P(A|B)
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Notice that the probability (14) reads around 35%. This number can somewhat relieve the
person. Why? Because the probability P(A|B) that the person has indeed the cancer is less
than 50% although the test result reads “positive”. Actually, this is often the case in reality:
even under the positive test result, it is more likely that the tested people are normal. This is
one of the main reasons why many people who got positive on cancer testing are trying to get
another test from a different hospital.

Then, you may wonder why we have a small value of P(A|B) in reality. This is because the cancer
population A itself is very small, 10% in this example. The smaller the cancer population is, the
smaller the interested probability P(A|B) is. This is somehow well reflected in the definition of
conditional probability:

P(A|B) :=
P(A ∩B)

P(B)
= P(A) · P(B|A)

P(B)
(15)

where the second equality comes from P(B|A) := P(A∩B)
P(A) . Here we see P(A) is multiplied

in front. The precise look says that P(A) also affects P(B) placed in the denominator, as
P(B) = P(A)P(B|A) +P(Ac)P(B|Ac). But the decrease of P(A) does not directly decrease P(B)
due to the other term P(Ac)P(B|Ac). It turns out the term P(A) placed in front plays a more
dominant role in changing P(A|B). Hence, the smaller P(A), the smaller P(A|B). From this
example, we can also see that the concept of conditional probability provides such interesting
interpretation.

Bayes’ law

Lastly I would like to put an emphasis on a very simple yet powerful law that arose in the
process of computing P(A|B): the Bayes’ law. What the law says is extremely simple. It is just
a consequence of applying the definition of conditional probability twice:

P(A|B) :=
P(A ∩B)

P(B)
=

P(A)P(B|A)

P(B)
. (16)

where the second equality comes from P(B|A) := P(A∩B)
P(A) . Since this is too immediate, you may

wonder why we care about this seemingly-trivial law. Of course, there is a reason. The reason
is that the application of the Bayes’ law is pretty wide. It turns out there are many interesting
scenarios where one wants to compute P(A|B) but one is given P(B|A) instead, i.e., only its
flipped version is available. You will check such examples in homework.

Look ahead

The main focus of this lecture is the concept of conditional probability. There is a very natural
follow-up concept: independence. Next time, we will study the concept of independence in depth.
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Lecture 5: Independence

Recap

Last time, we have studied one important concept: conditional probability defined as below:

P(A|B) :=
P(A ∩B)

P(B)
. (1)

I also explained the rationale behind this definition, using the new sample space B (the sample
space after being conditioned on B) together with the corresponding probability distribution
denoted by P(ω|B) where ω ∈ B. We then studied one very relevant and popular problem: dis-
ease testing problem tailored for one particular disease, cancer. While we were investigating how
conditional probability plays a role in solving the cancer testing problem, I also emphasized two
important laws that arose in the process of computing an interested probability in the problem
context. One is the total probability law which allows us to easily compute the denominator
in (??):

P(B) = P(A ∩B) + P(Ac ∩B). (2)

The proof of this is obvious. This is because of the following two: (i) two events A ∩B and
Ac ∩B are disjoint ; (ii) P(B) is computed by aggregating over all ω ∈ B = (A ∩B) ∪ (Ac ∩B).
The second is the Bayes’ law :

P(A|B) =
P(A)P(B|A)

P(B)
. (3)

The proof of this is also immediate. It is just a consequence of applying the definition of
conditional probability twice. I told you that Bayes’ law is beneficial particularly when one
wants to compute P(A|B) but one is given P(B|A) instead.

Today’s lecture

Today we will go forward, exploring another follow-up and very relevant concept: independence.
Specifically what we are going to do are four folded. First we will introduce the definition
of independence for a simple setting in which only two events are taken into consideration. I
will then explain the rationale behind the definition under the simple context. Next we will
generalize the definition to more-than-two-events cases. As we did during the past lectures, in
the last part, we will exercise ourselves on the learned concept with a couple of examples.

Definition of independence for two events

First consider a simple setting where we are interested in two events, say A and B. We say
that events A and B are independent if the probability of the intersected event is the product
of individual probabilities:

P(A ∩B) = P(A)P(B). (4)

You may wonder why we define the independence as above. Of course, there must be a reason.

Rationale behind the definition (??)
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The reason is obviously related to a natural definition that we can think of for independence.
In a natural sense, we should say that A and B are independent if the probability of A has
nothing to do with whether or not the event B occurs, i.e., P(A) remains the same whether B
is conditioned on:

P(A|B) = P(A). (5)

Using the definition of conditional probability, we can then rewrite the natural condition (??)
as:

P(A ∩B)

P(B)
= P(A). (6)

We see this is exactly the same as the original definition (??): P(A ∩B) = P(A)P(B).

Now you may wonder why we do not employ the above more intuitive condition (??) instead
of (??). The reason is that in such a way, we need another condition:

P(B) > 0,

as otherwise P(A|B) is not definable. Or we need P(A) > 0 if we take the flipped-around
condition P(B|A) = P(B). On the other hand, in the original definition (??), we do not need
such conditions, which is obviously better.

Definition for the three events case

Next let’s think about the three-events case where we have say A, B and C. In this case, we
say that A, B and C are mutually independent if any paired intersected event is the product of
the individual probabilities and similarly for the tripled intersected event A ∩B ∩ C:

P(A ∩B) = P(A)P(B);

P(B ∩ C) = P(B)P(C);

P(C ∩A) = P(C)P(A);

P(A ∩B ∩ C) = P(A)P(B)P(C).

(7)

The rationale behind this definition is the same as before. This comes from the naturally-looking
conditions expressed in terms of conditional probability and its unconditional counterpart. See
below. Here the naturally-looking conditions try to indicate that the occurrence of any num-

CN05_1

Figure 1: The definition of independence is motivated from the natural conditions (marked in
red) expressed in terms of conditional probability and its unconditional counterpart.

ber of the events carries no information on the remaining events. In Fig. ??, we list only
part of such conditions. Notice that P(A|B ∩ C) = P(A) together with P(B|C) = P(B) yields
P(A ∩ B ∩ C) = P(A)P(B)P(C). Of course, there are a bunch of other ways. For instance,
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P(A ∩B|C) = P(A ∩B) together with P(A|B) = P(B) yields P(A ∩ B ∩ C) = P(A)P(B)P(C).
From this, we see another good thing about the original definition (??): its expression is more
succinct than the one based on the naturally-looking conditions.

Another important thing to mention here is that we call such independence, mutual indepen-
dence, instead of just independence. This is because there is another different definition of
independence, named the pairwise independence. We say that A, B and C are pairwise inde-
pendent if only the paired intersected events are the product of their individuals:

P(A ∩B) = P(A)P(B);

P(B ∩ C) = P(B)P(C);

P(C ∩A) = P(C)P(A).

(8)

It turns out there are many cases in which events are pairwise independent, but not mutually
independent. See one such example in the next section.

On a different note, some curious students may wonder whether the following condition only

P(A ∩B ∩ C) = P(A)P(B)P(C) (that we call the three-way independence) (9)

implies the pairwise independence of any events. It turns out this does not hold either. There
are many contrived counter-examples. See one such example in the next next section.

At this point, you may be very confused about the concept of independence, from three events
onwards. Yes, it is indeed confusing. Here is my recommendation which may serve you to be
less confused. Just remember the original definition (??) and check whether all the conditions
therein are satisfied – don’t be bothered by others. This is another reason that you should
memorize the definition. Indeed, the mathematics is a field of memorization.

Example: Pairwise independent but not mutually independent

Consider an experiment of flipping a fair coin twice. Let A and B be the events that the 1st
and 2nd flips show “Head” and “Tail”, respectively. Let C be the event that the 1st and 2nd
flips are different. Notice that the occurrence of the event C is determined by the events A and
B. Hence, you intuition says these are not mutually independent. Yes, you are right. Let’s also
verify that via the definition (??). First compute:

P(A ∩B ∩ C) = P(A ∩B)P(C|A ∩B)

= P(A ∩B)

=
1

4

(10)

where the 1st equality is due the definition of conditional probability; the 2nd equality comes
from the fact that given A and B, the event C must occur, i.e., P(C|A∩B) = 1; and the last is
because HT is one of the four events {HH,HT, TH, TT} equally likely. On the other hand,

P(A)P(B)P(C) =
1

2
× 1

2
× 1

2
=

1

8
6= 1

4
. (11)

Here, the event C is associated with {HT, TH} out of four; hence, P(C) = 2
4 = 1

2 . From this,
we see that (A,B,C) are not mutually independent.

But these are pairwise independent. To see this, we first check:

P(A ∩B) =
1

4
=

1

2
× 1

2
= P(A)P(B). (12)
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What about A and C? We first compute:

P(A ∩ C) = P(A)P(C|A)

=
1

2
P(B|A)

=
1

2
P(B)

=
1

2
× 1

2

(13)

where the 2nd equality comes from the fact that conditioned on A (1st flip is “Head”), the
event C (two are different) is equivalent to B (2nd flip is “Tail”); and the 3rd is because of the
independence of A and B. As we computed earlier, P(C) = 1

2 . This together with P(A) = 1
2

and (??) proves the independence of A and C. By symmetry, one can also prove the independence
of B and C. Hence, (A,B,C) are pairwise independent.

Example: Three-way independent but not pairwise independent

Let’s consider a contrived and highly non-intuitive example where the three-way independence
does not necessarily imply the pairwise independence. Consider an experiment of rolling two
fair dice, and the following three events:

A = {1st shows 1, 2 or 3};
B = {1st shows 3, 4 or 5};
C = {the sum of the two dice is 9}.

(14)

The event A∩B∩C is associated with (3, 6) out of 36 events equally likely, so P(A∩B∩C) = 1
36 .

We also compute: P(A) = 3
6 = 1

2 , P(B) = 3
6 = 1

2 , and P(C) = 4
36 = 1

9 ({(3, 6), (4, 5), (5, 4), (6, 3)}).
Hence,

P(A ∩B ∩ C) =
1

36
=

1

2
× 1

2
× 1

9
= P(A)P(B)P(C). (15)

On the other hand, these are not pairwise independent. For instance,

P(A ∩B) =
1

6
6= 1

2
× 1

2
= P(A)P(B).

Mutual independence for n events

Now consider a really general case in which there are an arbitrary number of events, say A1, all
the way up to, An. We say that the events (A1, . . . , An) are mutually independent if for every
subset I ⊆ {1, 2, . . . , n}, the probability of the intersection of the events associated with I is the
product of the corresponding individuals:

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai) (16)

where
⋂

i∈I Ai := Ai1 ∩ · · · ∩ Ai|I| ,
∏

i∈I P(Ai) := P(Ai1) · · ·P(Ai|I|) and (i1, . . . , i|I|) are the
elements of I. The rationale behind this definition is exactly the same as the one in the three-
events case. Again, my recommendation is to just remember this definition and apply.
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We are done with the definition of independence. As mentioned in the beginning, let’s now
exercise ourselves on the concept of independence via a couple of examples. We will investigate
four examples in total.

Example #1: Tossing the 2
3
-biased coin twice

The first example is the one that we already explored in Lecture 2 only with intuition yet not
with a rigorous step. That is the experiment of tossing a biased coin (with 2

3 probability of
showing “Head”) twice. In this case, the natural sample space is:

Ω = {HH,HT, TH, TT}.

Remember we were asking what the probability distribution is, say P(HH). We can now con-
struct the probability distribution in a rigorous manner. Let A and B be the events that the
1st and 2nd flips show “Head”, respectively. Then, we can represent P(HH) as:

P(HH) = P(A ∩B)

= P(A)P(B)

=
2

3
× 2

3

where the second equality is due to the reasonable assumption that two flips are independent.

Example #2: Monty Hall Problem

The second example is the one that we studied in Lecture 3: the Monty Hall Problem. See
Fig. ??. In Lecture 3, we considered the sample space in which each element takes a triplet:

CN05_3

1 2 3

Figure 2: The setting of the Monty Hall Problem. The prize “car” is hidden behind a door,
which is unknown to the trader. There are goats (sort of “qquang”) behind the other two doors.
The host knows about this setting. The trader is asked to pick a door for the prize “car”.

(car’s location, trader’s choice, host’s choice). Here we construct another sample space in which
only two uncertainties are taken into consideration: car’s location and trader’s choice:

Ω = {(1, 1), (1, 2), (1, 3), . . . , (2, 3), (3, 3)}.

In this case, what is the probability distribution? It is obviously uniform. There are 9 cases
and each case is not particularly different from the others due to symmetry. Hence, it should
be uniform. We can also rigorously prove that it is indeed uniform, using the concept of inde-
pendence. Let A be the event that car is located behind door i, and B the event that trader’s
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choice is door j. Then, we can rewrite P((i, j)) as:

P((i, j)) = P(A ∩B)

= P(A)P(B)

=
1

3
× 1

3

(17)

where the 2nd equality follows from the independence of car’s location and trader’s choice.

Example #3: Balls & Bins

The third example is the one which we did not explore, but which is very famous. That is
a problem, so called the Balls-&-Bins problem. See Fig. ??. There are k balls and n binsCN05_4

k balls

n bins

Figure 3: Balls-&-Bins Problem: Throw each ball into a bin, uniformly at random. Repeat this
independently from other balls.

(“baguni” in Korean). We throw each ball into one of the n bins, uniformly at random. This
throwing is done independently from the other remaining balls.

Suppose we are interested in figuring out the probability that the 1st bin is still empty even
after throwing all of the k balls. Let Ai be the event that the ith ball is not placed in bin 1.
Using these notations, we can then compute the probability as:

P(1st bin empty) = P(A1 ∩A2 ∩ · · · ∩Ak)

= P(A1) ∩ P(A2) ∩ · · · ∩ P(Ak)

= P(A1)P(A2) · · ·P(Ak)

=

(
n− 1

n

)k

(18)

where the 2nd equality is due to the mutual independence of (A1, . . . , Ak); and the last equality
is due to P(Ai) = n−1

n ∀i ∈ {1, 2, . . . , k}.

Example #4: Fair vs biased coins

The last example is a bit tricky one. See Fig. ??. There are two coins. One is fair and the other
is biased with probability p of showing “Head”. We consider two experiments. In Experiment
1, we randomly choose a coin between the two and then flip the coin once. We repeat such a
procedure one more time in an independent manner. An interested question is: What is P(HH)?
To figure this out, let Ai be the event that the ith flip is “Head”, and Bi the event that the fair
coin is chosen in the ith flip. We then can rewrite P(HH) as:

P(HH) = P(A1 ∩A2)

= P(A1)P(A2)
(19)
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Experiment #1: Experiment #2:

Choose a coin btw the two.

Flip the coin.

Repeat this independently

Choose a coin btw the two.

Flip the coin twice.

Figure 4: Fair-vs-biased coins: There are two coins: one is fair and the other is biased with
the “Head” probability is p; (Experiment 1): We randomly choose a coin between the two and
then flip the coin. We repeat this independently; (Experiment 2): We randomly choose a coin
between the two. We then flip the same coin twice.

where the last equality is because two trials in Experiment 1 are independent with each other.
We focus on one probability:

P(A1) = P(B1 ∩A1) + P(Bc
1 ∩A1)

= P(B1)P(A1|B1) + P(Bc
1)P(A1|Bc

1)

=
1

2

(
1

2
+ p

)
where the 1st equality is due to the total probability law and the 2nd follows from the definition
of conditional probability. Plugging this into (??) and apply the symmetry argument w.r.t.
P(A2), we get:

P(HH) = P(A1 ∩A2) =
1

4

(
1

2
+ p

)2

. (20)

Now consider Experiment 2. Here the procedure is slightly different. First, we randomly choose
a coin between the two. We then flip the same chosen coin twice. We ask the same question:
What is P(HH)? We know that

P(HH) = P(A1 ∩A2). (21)

One natural question is then: are Ai’s independent? It turns out it is not the case. So we need
to compute the interested probability in a different manner. Here one key event that we need
to introduce is the one, say B, that the initially chosen coin is fair. Using this together with the
total probability law, we can then obtain:

P(HH) = P(A1 ∩A2)

= P(B ∩A1 ∩A2) + P(Bc ∩A1 ∩A2)

= P(B)P(A1 ∩A2|B) + P(Bc)P(A1 ∩A2|Bc)

=
1

2

(
1

4
+ p2

) (22)

where the 2nd and 3rd equalities follow from the total probability law and the definition of
conditional probability, respectively. Here the last step is the key. Once a coin is chosen, say
given the event B (the initially chosen coin is fair), flipping the coin in the first is independent
of the second trial. Hence, given B, A1 and A2 are independent:

P(A1 ∩A2|B) = P(A1|B)P(A2|B) =
1

2
× 1

2
=

1

4
.

7



Similarly,

P(A1 ∩A2|Bc) = P(A1|Bc)P(A2|Bc) = p× p = p2.

So we obtain the last equality in (??). Here one thing that you may notice is that two dependent
events can be conditionally independent. The formal definition of conditional independence is:
We say that events A and B are conditionally independent w.r.t. C if

P(A ∩B|C) = P(A|C)P(B|C). (23)

Also, there are many cases in which two independent events can be conditionally dependent. One
such example is the one that we investigated earlier as a counter-example in which events are
pairwise independent but not mutually independent. Why? Think about it.

Finally let us verify what I claimed as above: the two events A1 and A2 are dependent. To see
this, we compute:

P(A1) = P(B)P(A1|B) + P(Bc)P(A1|Bc)

=
1

2

(
1

2
+ p

)
(24)

where the 1st equality comes again from the total probability law and the definition of conditional
probability. Hence, we verify the dependence via:

P(A1 ∩A2) =
1

2

(
1

4
+ p2

)
6= 1

4

(
1

2
+ p

)2

= P(A1)P(A2).

Look ahead

So far we have exercised ourselves with somewhat easy examples. So you may be very confident
about the concept of independence. As a matter of fact, the independence concept is very deep
and tricky. There are tons of non-trivial examples where we can answer interested questions
only via smart handling of the concept. Next time, we will investigate one such example, called
the coupon collector problem.
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Lecture 6: Coupon Collector Problem

Recap

Last time, we learned about an important concept: independence. For a simple setting where
there are two interested events, the definition was simple and intuitive particularly with the help
of the definition of conditional probability. We say that two events A and B are independent if

P(A ∩B) = P(A)P(B). (1)

But the general case in which there are an arbitrary number of events involved was tricky. There
are many types of “something” independence: mutual independence, pairwise independence, and
more generally k-way independence. There are tons of cases in which one type of independence
holds while the other does not. Given this chaos, my recommendation was to simply memorize
the definition of mutual independence and then start from there. We say that events (A1, . . . , An)
are mutually independent if

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai) ∀I ⊆ {1, 2, . . . , n}. (2)

We also exercised ourselves on the independence concept with several examples which are not
that difficult. At the end of the last lecture, however, I claimed that there are many non-trivial
examples in which the independence plays a crucial role, yet it is non-straightforward to apply
though.

Today’s lecture

Today we will study one such example in depth: the Coupon Collector Problem. This lecture
consists of four parts. In the first part, I will explain what the problem is and introduce an
interesting question that arose in the problem context. It turns out directly addressing the
question is difficult, but there is a simpler version of the question that can give some insights.
So in the second part, we will investigate the simpler version particularly with the help of the
concept of independence. Next we will study one important technique that serves to address
the original difficult question together with the solution of the simpler version. Lastly we will
employ the technique to come up with a solution to the original question.

Coupon Collector Problem

The problem that we will study is a very famous one, called the Coupon Collector Problem. Here
is the setting of the problem. Consider a snack that contains a coupon inside. One such snack
is “Cheetos” that you might enjoy like my son. In the case of Cheetos, the coupon looks like the
one in Fig. 1 – it is like “ddack-ji” in Korean. Suppose that there are n different kinds of coupons,
and each snack has a coupon chosen from n possibilities uniformly at random, independently of
the other snacks. One very prominent question that was raised in this problem context is:

How many snacks need to buy to have at least a 90% chance of collecting all the coupons?

1
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k snacks

n different coupons

Figure 1: The coupon collector problem: There are n different coupons. A coupon is chosen
uniformly at random (out of n) to be contained in a snack (“Cheetos” in this example). Suppose
we buy k snacks.

This question can be formally written as follows. Let k be the number of snacks purchased.
What is k such that

P(obtain every coupon from k snanks) ≥ 0.9? (3)

As mentioned in the beginning, directly addressing the question is not that easy. So let’s
introduce a simpler version of the question that turns out to shed light.

A simpler version of the question (3)

The simpler version is concerned about obtaining only one interested coupon, say Coupon 1. So
the corresponding question reads: What is k such that

P(obtain “Coupon 1” from k snanks) ≥ 0.9? (4)

It turns out one can readily answer this question using the concept of independence. The
important step for the use of the independence concept is to smartly introduce multiple events
so that they are independent. Inspired by the fact that each snack having a coupon is independent
of the other snacks, one can think of the following events. Let Ai be the event that the ith snack
contains “Coupon 1”. These events are then independent due to our underlying assumption.
Then, the above probability (the left-hand-side in (4)) can be written as:

P(obtain “Coupon 1” from k snanks)

= P(A1 ∪A2 ∪ · · · ∪Ak).
(5)

But here comes an issue. The issue is that the interested event is expressed in terms of the
union of the events Ai’s. Hence, this prevents us from exploiting the independence property:
P(A1 ∩ A2 ∩ · · · ∩ Ak). But there is a trick which allows us to resolve the issue. The trick is
the one that we learned in Lecture 2. It is the complement trick. Here the complement trick
together one important law that you learned (De Morgan’s law) comes to rescue. Applying the
De Morgan’s law ((A1 ∪A2)

c = Ac
1 ∩Ac

2)) into (5) k − 1 times, we get:

P(obtain “Coupon 1” from k snanks)

= P(A1 ∪A2 ∪ · · · ∪Ak)

= 1− P(Ac
1 ∩Ac

2 ∩ · · · ∩Ac
k)

(6)

Here one key observation is that the events (Ac
1, . . . , A

c
k) are also mutually independent. This

is again because of our assumption that each snack contains a coupon uniformly at random,
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independently of the other snacks. Applying the independence property, we get:

P(obtain “Coupon 1” from k snanks)

= 1− P(Ac
1 ∩Ac

2 ∩ · · · ∩Ac
k)

= 1− P(Ac
1) · · ·P(Ac

k)

= 1−
(

1− 1

n

)k

(7)

where the last equality follows from P(Ac
i ) = n−1

n ∀i ∈ {1, 2, . . . , k}. Putting this into (4)
together with a proper massaging, we get:

k log

(
1− 1

n

)
≤ log 0.1

Since log
(
1− 1

n

)
< 0, diving both sides by log

(
1− 1

n

)
gives:

k ≥ log 0.1

log
(
1− 1

n

) . (8)

Focusing on one extreme case in which n is very large, we can simplify the expression (8) so
that is looks a bit more intuitive. The simplification builds upon an approximation based on
Taylor’s series. Let f(x) = log(1 + x). Here log indicates log to the base e. Then, for a very
small x,

log(1 + x) ≈ f(0) +
f ′(0)

1!
x = x, (9)

as f ′(0) = 1
1+x

∣∣∣
x=0

= 1. Applying this into log
(
1− 1

n

)
for a very large n, we can map x to − 1

n ,

thus yielding:

log

(
1− 1

n

)
≈ − 1

n
.

Apply this approximation into (8), we get:

k ≥ log 0.1

log
(
1− 1

n

) ≈ n log 10.

This result means that in order to obtain one coupon of interest, we need to buy snacks as many
as the number that grows linearly in n.

Go back to the original question (3)

Now let us go back to the original question which concerns the following probability:

P(obtain every coupon from k snanks︸ ︷︷ ︸
=:E

).

Letting by E the interested event, our goal is to compute P(E). In an effort to build upon the
simpler version, denote by Ei the event that we obtain “Coupon i” from k snacks. Then, the
interested event E can be written as E = E1 ∩ E2 ∩ · · · ∩ En. Hence, we get:

P(E) = P(E1 ∩ E2 ∩ · · · ∩ En). (10)
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In (7), P(E1) = 1−
(
1− 1

n

)k
. By symmetry, P(E1) = · · · = P(En). This then gives:

P(Ei) = 1−
(

1− 1

n

)k

. (11)

Gazing at (10) and (11), you may be highly tempted to believe that (E1, . . . , En) are mutually
independent. Unfortunately, it turns out this is not the case. Here is a counterexample for a
simple setting (n, k) = (2, 2). In this case,

P(Ei) = 1−
(

1− 1

2

)2

=
3

4
−→ P(E1)P(E2) =

9

16
. (12)

On the other hand,

P(E1 ∩ E2) = P(obtain every coupon from two snacks)

= P(two coupons in the two snacks are different)

=
2

4
=

1

2

(13)

where the second last equality comes from the fact that there are two coupon configurations for
the desired event (marked in blue below) out of 4:

{(Coupon 1,Coupon 1), (Coupon 1,Coupon 2), (Coupon 2,Coupon 1), (Coupon 2,Coupon 2)}.

With (12) and (13), we check the dependence of (E1, E2):

P(E1 ∩ E2) =
1

2
6= 9

16
= P(E1)P(E2). (14)

Relax the goal

Now what can we do then in the difficult situation that comes from the dependence of (E1, . . . , En)
in (10)? Actually, there is one important work-around that we can take whenever we encounter
a situation where the computation of an interested probability is difficult. That is to relax the
situation. What it means by relaxing in the context of probability is to derive a lower or upper
bound on the interested probability instead of targeting the exact probability. To figure out what
this means in our problem setting, let’s recall the original question raised. What is k such that

P(obtain every coupon from k snanks) = P(E) ≥ 0.9? (15)

Consider a lower bound, say Lbound, on P(E): P(E) ≥ Lbound. Here one key observation that we
can make is: whenever the lower bound is above the target chance 0.9, so is the exact probability:

Lbound ≥ 0.9 =⇒ P(E) ≥ 0.9. (16)

This observation can lead us to set up the following relaxed goal: Finding k such that

P(E) ≥ Lbound ≥ 0.9. (17)

Under this relaxed goal, we are then interested in computing Lbound instead. It turns out there
is an important bounding technique that leads us to compute Lbound: the union bound.

Union bound
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The union bound is very simple to state. For two events, say A and B, it says:

P(A ∪B) ≤ P(A) + P(B). (18)

The proof of this is straightforward. Using the definition of an event,

P(A ∪B) = P(A) + P(B)− P(A ∩B). (19)

Why? Think about a Venn diagram. Since P(A ∩B) ≥ 0, we get (18).

Now how to apply the union bound into the interested probability:

P(E) = P(E1 ∩ E2 ∩ · · · ∩ En)? (20)

To this end, using De Morgan’s law, we first get:

P(Ec) = P(Ec
1 ∪ Ec

2 ∪ · · · ∪ Ec
n). (21)

Applying the union bound (18) into the above multiple times (precisely n− 1 times), we get:

P(Ec) = P(Ec
1 ∪ Ec

2 ∪ · · · ∪ Ec
n)

≤ P(Ec
1) + P(Ec

2 ∪ · · · ∪ Ec
n)

...

≤ P(Ec
1) + P(Ec

2) + · · ·+ P(Ec
n)

= n

(
1− 1

n

)k

(22)

where the last equality follows from P(Ec
i ) =

(
1− 1

n

)k ∀i ∈ {1, . . . , n}; see (11). Hence, we get:

P(E) = 1− P(Ec) ≥ 1− n

(
1− 1

n

)k

=: Lbound. (23)

How many snacks do we need to buy under the relaxed goal?

Now let’s figure out the number of snacks required to complete all the coupons under the relaxed
goal targeting:

P(E) ≥ Lbound ≥ 0.9. (24)

Putting (23) into the above, we get:

k log

(
1− 1

n

)
≤ log

0.1

n
.

Dividing log
(
1− 1

n

)
< 0 on both sides,

k ≥
log 0.1

n

log
(
1− 1

n

) . (25)

Again, focusing on one extreme case in which n is very large, we obtain:

log

(
1− 1

n

)
≈ − 1

n
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using Taylor’s series approximation. Apply this into (25), we get:

k ≥
log 0.1

n

log
(
1− 1

n

) ≈ n log(10n).

What this results means is that in order to collect all of the n coupons, we need to buy many
snacks so that the number grows super-linearly in n.

Look ahead

We have thus far studied many important concepts, laws and techniques: sample space, probabil-
ity model, probability distribution, events, conditional probability, total probability law, Bayes’
law, independence and union bound. Unfortunately, there are several more concepts that we
need to figure out in order to understand the MAP and ML estimation principles that we aimed
at learning in the first lecture. Next time, we will investigate one of the remaining concepts:
random variables.
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Lecture 7: Random variables

Recap

During the past lectures, we have explored numerous concepts, laws and techniques: sample
space, probability model, probability distribution, events, the complement counting trick, con-
ditional probability, total probability law, Bayes’ law, independence, De Morgan’s law and union
bound. I believe you have been very much familiar with those particularly with the help of a
couple of non-trivial examples such as the birthday paradox problem, the Monty Hall problem,
the disease testing problem, and the coupon collector problem. While you may now feel confi-
dent about the probability, this is not the end of the story in light of the goal that we set out in
Lecture 1: understanding the two key principles: the MAP and ML estimation principles. At
the end of the last lecture, I mentioned that in order to figure these out, we need to learn about
two more concepts: (i) random variables; and (ii) random processes.

Today’s lecture

Today we will investigate one of them: Random variables. Specifically what we are going to do
are five folded. First we will introduce the definition of a random variable. It turns out there is
a probability model associated with a random variable. So we will next study the corresponding
probability model. As you may imagine, similar to events, there is a concept of the independence
w.r.t. random variables. In the 3rd part, we will introduce the definition of independence tailored
for random variables. As we will figure out soon, a random variable can also be expressed in
terms of other more basic random variables. So in the 4th part, we will investigate a function of
random variables together with its corresponding probability model. In particular, we will focus
on one specific yet popular function: summation. Lastly, as usual, we will exercise ourselves on
the learned concepts with some examples.

Definition of a random variable
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1st dice number

Figure 1: One example of a random variable: the 1st dice number in an experiment of rolling
two fair dice with a sample space Ω = {(1, 1), (1, 2), . . . , (5, 6), (6, 6)}. The random variable, say
X, is simply a function that outputs a real-valued number fed by an outcome in Ω. For instance,
X = 1 is mapped from 6 outcomes with the 1st dice number being 1: (1, 1), (1, 2), . . . , (1, 6).

A random variable is a function that maps something to another. Here the “something” (formally
referred to as the domain) is an outcome in a sample space Ω, and the “another” (formally
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referred to as the range) indicates a real-valued number. So it is nothing but a transformation
that converts outcomes (not necessarily numerical values) into numbers. In order to get a
concrete feel as to what it means, let’s consider one of the experiments that we investigated
earlier: Rolling two fair dice. See Fig. 1. Here the sample space consists of a bunch of pairs
(ω1, ω2) where ω1 and ω2 denote the 1st and 2nd dice numbers, respectively. We have 6 × 6
elements and these are visualized as dots in the two-dimensional picture; see the left figure for
illustration. In this example, we consider a random variable that takes the 1st dice number ω1

from an outcome ω = (ω1, ω2). Usually the random variable is denoted by a capital letter, so
let’s say X. To emphasize it is a function of an outcome ω, some people denote it by X(ω),
but many people prefer to use a simpler expression X, as it can easily be figured out from the
context. As illustrated via cyan-blue arrows, the random variable X is a mapping that yields
the 1st dice number from outcome pairs (ω1, ω2). For instance, X(ω) = 1 (simply denoted by
X = 1) is mapped from six outcomes: (1, 1), (1, 2), . . . , (1, 6).

Since a random variable is a function, you can easily image that there could be many random
variables. Yes, we can construct many. Another natural random variable, say Y , that you can
think of is a function that outputs the 2nd dice number from an outcome. Or a bit twisted
random variable, say S, is the one that yields the sum of the two dice number. See Fig. 2.
In this case, a particular value of S, say S(ω) = 4 (S = 4) is mapped from three outcomes:
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sum of the two

Figure 2: Another random variable S: a function that yields the sum of the two dice number.
The event S = s is mapped from multiple outcomes subject to ω1 + ω2 = s where (ω1, ω2) ∈ Ω.
For instance, S = 4 is associated with three outcomes: (1, 3), (2, 2), (3, 1).

(1, 3), (2, 2), (3, 1), marked in a green diagonal rounded-square.

Rationale behind the definition

Now you may wonder why we define random variables. In other words, why do we care about such
from-outcomes-to-numbers mappings? The reason is that we are often interested in numerical
values w.r.t outcomes. Rolling two dice is just one such experiment. There are many more
experiments that concern numerical values. For instance, we may be interested in: (i) the
number of “Head”s in an experiment of flipping a coin n times; (ii) the number of students who
have the same birthday in the birthday paradox problem; or (iii) the number of collected coupons
from k snacks bought in the coupon collector problem. These are merely a few instances. As
you may imagine, there are tons of examples.

Probability model of a random variable

In Lecture 2, we learned about one important concept: the probability model that consists of a
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sample space and its corresponding probability distribution. In the context of random variables,
the same thing happens. We also have a probability model w.r.t. a random variable. As before,
the probability model is composed of two entities. The first is the set of values that an interested
random variable, say X, can take on. It is usually denoted by a caligraphic version X of the
letter X used to denote the random variable:

X = {x1, x2, . . . , xn}

where xi indicates a numerical value that X can take on as one particular realization. By
convention, we use a small letter to indicate a certain realization. The set X is simply called
the range.

The second entity is the probability distribution. Relative to the probability distribution w.r.t.
the sample space P(ω), a slightly different notation is used: PX(x) ∀x ∈ X . This is because we
want to differentiate it from P(ω). We place the random variable X in the subscript. There is
another name for the probability distribution: the probability mass function, “pmf” for short.
Its computation can be done exactly in the same manner as we do for an event. This is because
X = x can be seen as a particular event:

PX(x) = P(X = x) =
∑

ω∈Ω:ω
X−→x

P(ω). (1)

Here “ω ∈ Ω : ω
X−→ x” placed below in the summation means “over all ω’s such that ω yields

x via the mapping X. Usually in mathematics, the symbol colon “:” means “such that” or
“subject to”.

In the above rolling-two-dice experiment, we can readily construct the probability model. For
X (1st dice number), the range reads X = {1, 2, . . . , 6}, and its probability distribution is

PX(x) :=
∑

ω=(ω1,ω2)∈Ω: ω1=x

P(ω) =
6

36
=

1

6
.

Again, “ω = (ω1, ω2) ∈ Ω : ω1 = x” placed below in the summation means “over all ω’s
subject to ω1 = x”. For another random variable S, on the other hand, the range reads:
S = {2, 3, . . . , 12}. The corresponding probability distribution can be computed as follows:
for instance, when s = 4,

PS(4) :=
∑

ω=(ω1,ω2)∈Ω: ω1+ω2=4

P(ω) =
3

36
.

One key property of the probability distribution

There is one key property that the probability distribution should respect. The property comes
from two observations that hold for any random variables. For illustrative purpose, let us explain
them via the random variable S. The first is that any two events, say S = s1 and S = s2, are
disjoint whenever s1 6= s2. It is because the two events never occur at the same time for s1 6= s2.
This can also be understood by the property of a function which a random variable belongs to:
a single input of a function cannot yield two different outputs, although the other way around
holds, i.e., one output can be mapped from many distinct inputs. The second observation is
that the union of all the disjoint events covers the entire sample space Ω. For every outcome
ω ∈ Ω, there is a mapping to a particular event; hence, all of the possible events should span
all the elements in Ω. These two observations are illustrated in Fig. 3. These two observations
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Figure 3: Two observations that hold for any random variables: (i) the events S = s are disjoint
for different s’s; (ii) for every outcome ω ∈ Ω, there is a mapping to a particular s, and therefore
all of the possible events should span all the elements in Ω.

then yield: ∑
s∈S

PS(s) =
∑
s∈S

P(S = s)

=
∑
s∈S

∑
ω∈Ω:S(ω)=s

P(ω)

=
∑
ω∈Ω

P(ω) = 1

(2)

where the last equality follows from the fact that the events S = s are disjoint for different s’s (1st
observation) and the union of all the disjoint events spans Ω (2nd observation). Similar to the
sum-up-to-one constraint in the sample space, you can view this as a sort of its random-variable
counterpart.
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Figure 4: Histogram visualization of the probability distribution of the random variable S that
indicates the sum of the two dice number in an experiment of rolling two fair dice.

The probability distribution is often visualized via histogram. For instance, PS(s) looks like
Fig. 4. Here the height of each bar denotes its associated probability. From this, we can also check
that the sum of PS(s) for all s’s is indeed 1: 1

36(1 + 2 + · · ·+ 5 + 6+5 + · · ·+ 2 + 1) = 21+15
36 = 1.

Independence of random variables
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Similar to events, we have the independence concept for random variables. For two random
variables, say X and Y , X and Y are said to be independent if

any two events {X = x} and {Y = y} are independent ∀x ∈ X , ∀y ∈ Y. (3)

In the general case with an arbitrary number of random variables, we say that (X1, . . . , Xn) are
mutually independent if

({X1 = x1}, . . . , {Xn = xn}) are mutually independent ∀x1 ∈ X1, . . . ,∀xn ∈ Xn. (4)

A function of random variables

Since a random variable is a function, one can also think of a function of the function, i.e., a
composite function. The composite function can be interpreted as a function of sort of basic
random variables. Obviously it is also a random variable. As the most prominent and useful
function, people often consider “summation”. So in this section, we explore something relevant
to the sum of random variables.

To be concrete, we will do this exploration via the previous example regarding S (the sum of the
two dice number in the rolling-two-dice experiment). As you can readily imagine, S can also be
represented in terms of more basic random variables X and Y (the 1st and 2nd dice numbers):

S = X + Y.

So it is a perfect example that concerns the sum of random variables.

One thing that I would like to put a special emphasis on is about a way to compute PS(s).
Remember in the previous section that we computed PS(s) via counting the number of cases
ω’s that yield ω1 + ω2 = s. It turns out there is another way for such computation using the
probability distributions of the component random variables PX(x) and PY (y). Here is the way.
We first obtain:

PS(s) = P(X + Y = s).

This is because S = X + Y = s can be seen as an event. Here one key observation that we can
make is that there are two sources of uncertainties in the event X + Y = s: one is w.r.t. X; the
other is w.r.t. Y . Due to multiple uncertainties, there are many subcases that yield the event
X+Y = s. There is one very important law (that we learned), which plays a crucial role in such
many-subcases scenario. That is, the total probability law. So using the TPL, we then write:

PS(s) = P(X + Y = s)

=

s−1∑
x=1

P({X = x} ∩ {Y = s− x}).

Here the expression that includes “∩” is a bit dirty. So people often use the following simpler
expression: P({X = x} ∩ {Y = s − x}) = P(X = x, Y = s − x), where the symbol comma “,”
means “and”. Adopting this simpler expression, we get:

PS(s) = P(X + Y = s)

=

s−1∑
x=1

P(X = x, Y = s− x)

=

s−1∑
x=1

P(X = x)︸ ︷︷ ︸
PX(x)

P(Y = s− x)︸ ︷︷ ︸
PY (s−x)
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where the last equality comes from the fact that the events X = x and Y = s−x are independent
(i.e., X and Y are independent). Recognizing P(X = x) and P(Y = s−x) as PX(x) and PY (s−x)
respectively, we finally obtain:

PS(s) =
s−1∑
x=1

PX(x)PY (s− x). (5)

Here the complicated-looking expression in the right-hand-side is actually the very famous op-
eration that some of you may be familiar with. That is, convolution, denoted by (PX ∗ PY )(s).
The convolution is a prominent operation that is particularly powerful in the field of Electrical
Engineering. So it is covered in several basic courses offered in the department of Electrical
Engineering. One such basic course is “EE202 Signals & Systems”. So the students who are
taking this course may be learning about the convolution. The formal definition is given by

(PX ∗ PY )(s) :=
s∑

x=0

PX(x)PY (s− x)

where the starting point is 0 and the end point is s (the interested point). This does not exactly
match with the right-hand-side in (5). But these are actually matching. This is because the
two points x = 0 and x = s do not contribute to the summation, as PX(0) = 0 and PY (0) = 0.
Hence, we get:

PS(s) =
s−1∑
x=1

PX(x)PY (s− x)

=
s∑

x=0

PX(x)PY (s− x)

=: (PX ∗ PY )(s).

(6)

Actually, the convolution operation appears in the case where X and Y are independent. If they
are dependent, (6) does not hold any more. In this case, we need to think about another way to
compute PS(s), which may differ depending on scenarios.

Example #1: Tossing a p-biased coin n times

Let us investigate two examples which are relevant to the sum of random variables. The first
is a very simple example in which we toss a p-biased coin n times. Here the “p-biased” means
that the probability of showing “Head” is p.

Suppose we are interested in the total number of “Head”s. Then, the number can be represented
as the sum of the following basic random variables Xi’s:

Xi =

{
1, if the ith flips shows “Head”;
0, otherwise.

Someone may prefer a shorthand notation: Xi = 1{ith flips shows “Head”} where 1{·} is the
indicator function that returns 1 when (·) is true while returning 0 otherwise. Using these, we
write:

S = X1 + X2 + · · ·+ Xn

where the range is S = {0, 1, . . . , n}.
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Now how to compute the probability distribution PS(s)? Someone may wish to use the con-
volution operation (6) to proceed. But it turns out there is a much simpler way to go. The
way is the one that exploits the symmetry property. Consider an event S = s. There are many
configurations that yield S = s, but their corresponding probabilities are equal by symmetry.
Hence,

PS(s) = (number of flip patterns yielding s)× P(X1 = 1, . . . , Xs = 1, Xs+1 = 0, . . . , Xn = 0).

Here the number of flip patterns yielding s is
(
n
s

)
. The second probability can readily be

computed using the independence (4) of (X1, . . . , Xn):

P(X1 = 1, . . . , Xs = 1, Xs+1 = 0, . . . , Xn = 0) = P(X1 = 1) · · ·P(Xs = 1)P(Xs+1 = 0) · · ·P(Xn = 0)

= ps(1− p)n−s.

This together with the counting number
(
n
s

)
then gives:

PS(s) =

(
n

s

)
ps(1− p)n−s, s ∈ S = {0, 1, . . . , n}.

Actually this is a very famous distribution, named the Binomial distribution. It is simply
denoted by S ∼ Bin(n, p) where the symbol “∼” means “is distributed according to”. Fig. 5
illustrates some pdf examples which show how the distribution looks like.

CN07_4

large small

Figure 5: Histogram visualization of the binomial distribution. (Left): The case of (n, p) =
(10, 0.5); (Right): The case where n is large and p is small, e.g., (n, p) = (30, 0.12).

Example #2: Homework matching

Consider another example in which an interested random variable can also be represented in
terms of basic random variables, yet its distribution computation is not that simple. See Fig. 6.
The homeworks of n students are collected in. The homeworks are randomly shuffled and then
returned to students, so each student may not receive his/her own homework.

Suppose we are interested in the number of students who receive their own homeworks. Then,
the number can be expressed as the sum of the following basic random variables Xi’s:

Xi =

{
1, if the ith student receives her own homework;
0, otherwise.

S = X1 + X2 + · · ·+ Xn.
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student 1’s 

homework H2 Hn

S1 S2 Sn

Figure 6: Homework matching problem: The homeworks collected from n students are shuf-
fled and returned back to the students. Each student receives only one homework (one-to-one
matching), yet the returned homework is not necessarily his/her own homework.

Similar to the prior example, we can use the symmetry property to obtain:

PS(s) = (# of matching patterns yielding s)× P(X1 = 1, . . . , Xs = 1, Xs+1 = 0, . . . , Xn = 0).

However, a challenge arises here. The challenge is two folded. The first is that the computation
of the number of matching patterns yielding s is complicated. The second is a more serious one:
the second probability quantity is difficult to compute. This is because Xi’s are dependent. To
see this, first compute P(X1 = 1) = 1

n . But its conditional probability reads P(X1 = 1|X2 =
1) = 1

n−1 , as the 2nd student receiving her own homework means there is one possibility for

matching out of n− 1 candidates. Hence, P(X1 = 1) = 1
n 6=

1
n−1 = P(X1 = 1|X2 = 1). It turns

out these challenges make the computation of PS(s) quite difficult. So we will not attempt to
do the computation.

Look ahead

In this lecture, we have focused on the probability model w.r.t. a single random variable. Of
course, there is a probability model for multiple random variables. Next time, we will touch upon
the content. We will also investigate one deterministic quantity that can somehow represent a
random variable with uncertainty. That is, expectation.
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Lecture 8: Joint probability distribution & expectation

Recap

Last time, we have embarked on one key concept in probability: random variables. A random
variable is simply a function that maps an outcome in a sample space into a real value. Its
corresponding probability model consists of the range X = {x1, x2, . . . , xn} and the probability
distribution PX(x) ∀x ∈ X . As a special function of random variables, we focused on sum-
mation, e.g., S = X + Y . When (X,Y ) are independent, we showed that PS(s) can be nicely
represented as the convolution of individual probability distributions:

PS(s) = (PX ∗ PY )(s).

We also found that its computation can be quite complicated when (X,Y ) are dependent. The
probability model that we have studied thus far is about a single random variable. Of course,
there is a probability model associated with multiple random variables.

Today’s lecture

Today we will investigate such probability model. This lecture consists of five parts. In the first
part, we will discuss in depth two components that form the probability model: the range and
the probability distribution. It turns out the probability distribution is intimately related to the
distributions of individual random variables. So such relationship would be figured out explicitly.
Next we will introduce one important concept that can serve as a representative & deterministic
quantity of a random variable. That is, expectation. I will explain its definition together with
the rationale behind the definition. In fact, there are two key properties regarding expectation
that play a powerful role in making some complicated-looking computations easy. In the 3rd
part, we will investigate the first property, named the function invariance property. Next, we
will explore the other property, called the linearity of expectation. Lastly we will demonstrate
the power of the properties via three examples.

Probability model of multiple random variables

Consider a simple two-random-variables case: X and Y . As usual, a corresponding probability
model consists of two entities. The first is the range, which in this case refers to the set of pairs
that (X,Y ) can take on. To see this clearly, first let X = {x1, . . . , xn} and Y = {y1, . . . , yk}.
Then, the range is denoted by X × Y and defined as:

X × Y := {(x1, y1), (x1, y2), . . . , (x1, yk),

(x2, y1), (x2, y2), . . . , (x2, yk),

...
...

...

(xn, y1), (xn, y2), . . . , (xn, yk)} .

(1)

Notice that its cardinality is the product of two individuals: |X × Y| = |X | · |Y|.
The second entity is the probability distribution, denoted by:

PX,Y (x, y) ∀(x, y) ∈ X × Y. (2)

1



Its computation is almost the same as that w.r.t. a single random variable:

PX,Y (x, y) = P(X = x, Y = y) =
∑

ω∈Ω:ω
X−→x,ω

Y−→y

P(ω) (3)

where Ω is the sample space and the colon “:” (placed below the summation) means “such that”.
In order to differentiate it from the probability distribution w.r.t. a single random variable,
people name it the joint probability distribution (or joint pmf). Or it is simply called the joint
distribution. Since (X,Y ) = (x1, y1) and (X,Y ) = (x2, y2) are disjoint for (x1, y1) 6= (x2, y2)
and the union of all the events spans Ω, the sum-up-to-one constraint holds:∑

(x,y)∈X×Y

PX,Y (x, y) =
∑
ω∈Ω

P(ω) = 1. (4)

Relationship between PX,Y (x, y) and (PX(x),PY (y))

As mentioned earlier, there is a close relationship between PX,Y (x, y) and (PX(x),PY (y)). The
relationship says: ∑

y∈Y
PX,Y (x, y) =

∑
y∈Y

P(X = x, Y = y)

= PX(x)

where the second equality is due to the total probability law. Similarly, we get:∑
x∈X

PX,Y (x, y) = PY (y).

This is nothing but a consequence of applying the total probability law. This summation process
applied w.r.t. one particular random variable (marked in blue in the above) is called marginal-
ization. The resulting individuals (PX(x),PY (y)) are called the marginal distributions.

Expectation

A random variable is a value of uncertainty, so it can only be represented in terms of the
probability distribution that specifies the likelihood of the occurrence of a certain value. People
wanted to represent such random quantity in terms of a single & deterministic value. This is
where the notion of expectation comes in. For a random variable X, its expectation is denoted
by E[X] and defined as:

E[X] :=
∑
x∈X

x · PX(x). (5)

Of course, there is a reason why the expectation is defined as above. The reason is that in such
a way, the expectation can be interpreted as a weighted average of all the possible values. Since
the weight (marked in red in (5)) quantifies the frequency of the occurrence of x, it makes sense
to view it as a representative average.

Two simple examples for expectation computation. First consider an experiment of rolling a
dice. Let X be the dice number. Then, expectation computation is straightforward:

E[X] =
1

6
(1 + 2 + · · ·+ 6) =

21

6
= 3.5.
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Figure 1: The probability distribution of the random variable S: the sum of the two dice number
in the rolling-two-dice experiment.

Consider another experiment of rolling now two fair dice. Let S be the sum of the two dice
number. Fig. 1 shows the probability distribution that we already computed in Lecture 7. This
together with a tedious calculation yields:

E[S] =
1

36
(2 · 1 + 3 · 2 + · · ·+ 6 · 5 + 7 · 6 + 8 · 5 + · · ·+ 12 · 1) = 7.

Property #1: Function invariance of expectation

As mentioned in the beginning, there are two important properties w.r.t. expectation. The first
is the one w.r.t. a function of a random variable, and it is called the function invariance of
expectation. Here is what it says. Consider a random variable, say X. A function of X, say
Y = g(X), satisfies:

E[Y ] =
∑
x∈X

g(x)PX(x). (6)

Notice that the expectation of Y is computed directly via PX(x) instead of PY (y). The good
thing about this property is that it allows us not to rely upon the derivation PY (y) which might
be cumbersome. The knowledge solely on the function g(·) and PX(x) suffices to compute E[Y ].

Here is the proof of (6). Starting with the definition of E[Y ], we get:

E[Y ] =
∑
y∈Y

yPY (y)

=
∑
y∈Y

yP(g(X) = y)

=
∑
y∈Y

y
∑

x∈X :g(x)=y

PX(x)

(7)

where the 2nd equality comes from the fact that the event Y = y is equivalent to g(X) = y; and
the last equality follows the definition of the event g(X) = y.

Now consider the order of the summation in the last line of (7). We first fix y ∈ Y and then
choose all x’s such that g(x) = y. Next we aggregate PX(x) over all such x’s. We repeat this
for all of the other y’s in Y. To get a concrete feel about how it is computed, let’s consider
one particular instance, illustrated in Fig. 2 (Left). Here (x1, x2) yield g(x1) = g(x2) = y1; for
others, we have g(x3) = g(x4) = y2 and g(x5) = g(x6) = y3. In this case, we have:∑

y∈Y
y

∑
x∈X :g(x)=y

PX(x)

= y1(PX(x1) + PX(x2)) + y2(PX(x3) + PX(x4)) + y3(PX(x5) + PX(x6)).

(8)

Now consider the reverse order of the summation. We first fix x ∈ X and then find a corre-
sponding y = g(x). We then aggregate all of them over all x’s. Under the same instance (see
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Figure 2: (Left): Illustration of the computation of
∑

y∈Y y
∑

x∈X :g(x)=y PX(x). We first fix a
particular value of y. Next we find all of x’s such that g(x) = y. We then aggregate all of
them over all y’s; (Right): Illustration of the computation of

∑
x∈X g(x)PX(x). We first fix a

particular value of x. Next we find a corresponding y = g(x). We then aggregate all of them
over all x’s.

Fig. 2 (Right)), it can then be represented as:

y1(PX(x1) + PX(x2)) + y2(PX(x3) + PX(x4)) + y3(PX(x5) + PX(x6))

= g(x1)PX(x1) + g(x2)PX(x2) + g(x3)PX(x3) + g(x4)PX(x4) + g(x5)PX(x5) + g(x6)PX(x6).

(9)

This is because g(x1) = g(x2) = y1, g(x3) = g(x4) = y2 and g(x5) = g(x6) = y3. A succinct way
to represent the above is:

g(x1)PX(x1) + g(x2)PX(x2) + g(x3)PX(x3) + g(x4)PX(x4) + g(x5)PX(x5) + g(x6)PX(x6)

=
∑
x∈X

g(x)PX(x). (10)

This together with (9), (8) and (7) gives the claimed result:

E[Y ] =
∑
y∈Y

y
∑

x∈X :g(x)=y

PX(x) =
∑
x∈X

g(x)PX(x). (11)

You may wonder whether this holds for the particular instance illustrated in Fig. 2. As you
may guess, this holds in general cases as well. The reason is similar to the one that I offered in
Lecture 7 in the process of explaining two observations w.r.t. the sum-up-to-one constraint of a
random variable. The reason is that (i) all possible y’s span the entire domain X , i.e., for every
x ∈ X , there always exists a particular y; and (ii) one-to-many mapping of a function is invalid,
i.e., each x ∈ X yields the unique output y.

Property #2: Linearity of expectation

The second is a very powerful property, named the linearity of expectation. The property
consists of two subproperties. The first is the additivity property:

E[X + Y ] = E[X] + E[Y ]. (12)
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Here the expectation in the left-hand-side is w.r.t. PX,Y (x, y). On the other hand, the ex-
pectations in the right-hand-side are w.r.t. PX(x) and PY (y), respectively. The second is the
homogeneity property:

E[cX] = cE[X] for any constant c. (13)

The proofs are straightforward. First we obtain:

E[X + Y ] =
∑
x∈X

∑
y∈Y

(x + y)PX,Y (x, y)

=
∑
x∈X

x
∑
y∈Y

PX,Y (x, y) +
∑
y∈Y

y
∑
x∈Y

PX,Y (x, y)

=
∑
x∈X

xPX(x) +
∑
y∈Y

yPY (y)

= E[X] + E[Y ]

where the 1st and last equalities are due to the definition of expectation; and the 3rd follows
from the total probability law. For the proof of homogeneity, we get:

E[cX] =
∑
x∈X

(cx)PX(x)

= c
∑
x∈X

xPX(x) = cE[X]

where the 1st equality is due to the function invariance property (6).

It turns out the linearity property (reflected in (12) and (13)) plays a powerful role in making
many complicated-looking computations tractable. Here we focus on three such examples.

Example #1: Rolling two dice

The first example is the one that we investigated earlier in this lecture: Rolling two fair dice.
Consider S = X + Y where X and Y indicate the 1st and 2nd dice number, respectively.
Previously, we computed E[S] via PS(s). However, by exploiting the linearity property particu-
larly (12), we can simplify the computation as:

E[S] = E[X] + E[Y ] = 3.5 + 3.5 = 7.

Example #2: Tossing a p-biased coin n times

The second is the example that we explored in the previous lecture: Tossing a p-biased coin n
times. Consider the total number of “Head”s: S. Focus on E[S]. Remember that we expressed
S as the sum of the following basic random variables:

Xi =

{
1, if the ith flips shows “Head”;
0, otherwise;

S = X1 + X2 + · · ·+ Xn.

We also computed the probability distribution of S:

PS(s) =

(
n

s

)
ps(1− p)n−s, ∀s ∈ S = {0, 1, . . . , n}.
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One naive way to compute E[S] is to simply apply the definition of expectation with PS(s):

E[S] =
n∑

s=0

s ·
(
n

s

)
ps(1− p)n−s. (14)

How do you feel about (14)? Do you want to try it? If I were you, I would not. Instead,
exploiting again the linearity of expectation, one can greatly simplify the computation as:

E[S] = E[X1] + · · ·+ E[Xn] = np (15)

where the 2nd equality follows from E[Xi] = p · 1 + (1− p) · 0 = p, ∀i ∈ {1, 2, . . . , n}.

Example #3: Homework matching

The last example is the one in which we gave up computing the probability distribution: the
homework matching problem. See Fig. 3. Consider the number of students S who receive their

CN08_3

H1 H2 Hn

S1 S2 Sn

Interest: # students who receive their own HW

Figure 3: Homework matching problem: The homeworks collected from n students are shuf-
fled and returned back to the students. Each student receives only one homework (one-to-one
matching), yet the returned homework is not necessarily his/her own homework.

own homeworks. Remember we expressed S as the sum of the following basic random variables:

Xi =

{
1, if the ith student receives her own homework;
0, otherwise;

S = X1 + X2 + · · ·+ Xn.

In the previous lecture, I mentioned that the dependence of Xi’s makes the computation of
PS(s) intractable. That’s why we gave up computing PS(s). Here the linearity of expectation
comes to rescue:

E[S] = E[X1] + · · ·+ E[Xn] =
1

n
· n = 1

where the 2nd equality follows from E[Xi] = 1
n ∀i ∈ {1, 2, . . . , n}.

Look ahead

In this lecture, I claimed that expectation serves as a deterministic quantity that can well repre-
sent a random variable with uncertainty. But the expectation might not be quite representative
especially when the interested random variable takes many different values with high chances.

6



One such extreme example might be the number X chosen from {1, 2, . . . , 100} uniformly at
random. In this case, E[X] = 1+2···+100

100 = 50.5 might be far away from one particular realiza-
tion, say 13, which has the same chance among 100 possibilities. Then, can we say E[X] well
represent a random number X? It turns out there is a measure that quantifies the degree of
well representing. Next time, we will investigate the measure: variance.

7



EE210 Probability and Introductory Random Processes March 30, 2021
KAIST, Spring 2021 Changho Suh (chsuh@kaist.ac.kr)

Lecture 9: Variance

Recap

Last time, we studied the notion of expectation that can serve as a deterministic representative
for a random variable with uncertainty. Its definition reads:

E[X] :=
∑
x∈X

x · PX(x). (1)

We also investigated two important properties. The first is the function invariance property that
plays a role in enabling the direct computation of E[Y ] without relying upon the computation
of PY (y) for Y = g(X). The property says:

E[Y ] =
∑
x∈X

g(x)PX(x). (2)

The second is the linearity property consisting of two subproperties:

(Additivity): E[X + Y ] = E[X] + E[Y ];

(Homogeneity): E[cX] = cE[X] for any constant c.
(3)

At the end of the last lecture, I raised one natural question: Can the expectation well represent
the uncertain random variable? I then claimed that there is a measure that quantifies the degree
of well representing. The measure is variance.

Today’s lecture

Today we will explore details on the variance. This lecture consists of four parts. In the first part,
we will introduce the definition of variance together with the rationale behind the definition. It
turns out there is a very useful fact which allows us to compute the variance efficiently. So in the
second part, we will study the useful fact. Next we will study two important properties that play
significant roles in addressing some challenging situations, wherein the variance computation is
very difficult if we rely solely upon the definition. Lastly we will explore one prominent inequality
that serves to quantify the degree of well representing more precisely, relative to the variance
itself. That is, Chebyshev’s inequality.

Definition of variance

Let’s start from the beginning. For a random variable X, its variance is denoted by Var(X) and
defined as:

Var(X) := E[(X − µ)2] (4)

where µ := E[X]. As usual, there must be a reason that the variance is defined as above. At
first glance, this definition is a bit unnatural. A more natural definition might be E[X − µ],
as it indicates indeed the averaged deviation from the center µ. But this is not informative at
all, as E[X − µ] is always 0 (due to the linearity of expectation (3)) no matter what PX(x)
is. The reason of E[X − µ] being 0 all the time is that the sign of X − µ is either plus or
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minus with the same frequency. So as another natural definition, people thought of a measure
that takes always a plus sign. The measure was E[|X − µ|]. Now it is never 0 unless X is
a deterministic constant. So it can act as a proper measure. However, this was not selected
because people found its computation often very difficult. As the 3rd candidate, people came
up with Var(X) := E[(X − µ)2] and tried many instances to check whether its computation is
more-or-less okay. It turns out the computation is often tractable. This is the sole reason why
the variance is defined as (4). I am sure that the choice was E[|X − µ|] if its computation were
not that difficult.

However, there was still an issue on the definition (4). Due to the power 2 in the definition,
the unit of Var(X) does not match with that of X. If the unit of X is meter, then the unit of
Var(X) would be meter2. So it does not properly capture the deviation from the center. This
is where another measure that you may hear of comes in. That is, standard deviation, simply
defined as the square root of variance:

σ(X) :=
√

Var(X). (5)

Actually, this is a bit annoying situation. Sometimes, mathematicians introduce many seemingly-
redundant notions (like variance and standard deviation) only because of the beauty of math.
They pursue the beauty and tractability, and variance is the one that comes as a consequence
of such an attitude.

A useful fact

There is a very useful fact which allows us to compute the variance a bit more efficiently. The
fact is:

Var(X) = E[X2]− µ2. (6)

The proof of this is straightforward. Starting with the definition of variance, we get:

Var(X) := E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E[X2] + E[−2µX] + E[µ2]

= E[X2]− 2µE[X] + E[µ2]

= E[X2]− µ2

where the 3rd and 4th steps are due to the additivity and homogeneity properties of expecta-
tion (3), respectively. It turns out in many cases, the computation of E[X2] is a bit easier than
that of its translated version E[(X − µ)2]. That’s why people often employ (6) instead of the
original definition (4).

Here is one such example where the computation of E[X2] is indeed easier. Let X be a uniformly
distributed random variable that takes one value from X := {1, 2, . . . , n}. Let PX(x) = 1

n
be the corresponding probability distribution where x ∈ X . The expectation reads E[X] =
1
n(1 + 2 + · · ·+ n) = n+1

2 . The expectation of X2 (or called the 2nd moment) is:

E[X2] =
1

n
(12 + 22 + · · ·+ n2)

=
1

n
· n(n+ 1)(2n+ 1)

6

=
(n+ 1)(2n+ 1)

6

2



where the 2nd equality follows from the fact that you learned from calculus:
∑n

i=1 i
2 = n(n+1)(2n+1)

6
(Did you forget how to prove this? If so, think about f(n+ 1)−f(n) where f(n) := n3). Hence,

Var(X) = E[X2]− (E[X])2

=
(n+ 1)(2n+ 1)

6
− (n+ 1)2

4

= (n+ 1)

(
n− 1

12

)
=
n2 − 1

12
.

Two important properties

As mentioned in the beginning, there are two important properties that help us to address
challenging situations where a direct way of computing variance is non-trivial. These are about
independent random variables. For illustrative purpose, let’s focus on a simple setting where
there are two independent random variables, say X and Y . The first property is the one called
the uncorrelatedness, which says that the expectation of the product is the product of individuals:

E[XY ] = E[X]E[Y ]. (7)

The second is the one called the additivity, which says that the variance of the sum is the sum
of individuals:

Var(X + Y ) = Var(X) + Var(Y ). (8)

The proofs of these are not that difficult. First let’s prove (7). Starting with the definition of
expectation, we get:

E[XY ] =
∑
x∈X

∑
y∈Y

xyPX,Y (x, y)

=
∑
x∈X

∑
y∈Y

xyPX(x)PY (y)

=
∑
x∈X

xPX(x)
∑
y∈Y

yPY (y)

= E[X]E[Y ]

where the 2nd equality is due to the independence of (X,Y ). The proof of (8) is also easy
particularly with the help of (7). Let µX = E[X] and µY = E[Y ]. Starting with the useful
fact (6), we have:

Var(X + Y ) = E[(X + Y )2]− (µX + µY )2

= E[X2] + E[Y 2] + 2E[XY ]− (µX + µY )2

= E[X2] + E[Y 2] + 2E[X]E[Y ]− (µX + µY )2

= E[X2]− µ2X + E[Y 2]− µ2Y
= Var(X) + Var(Y )

where the 2nd equality is due to the linearity of expectation (3); the 3rd equality follows from
the uncorrelateness property (7).

Example: Tossing a p-biased coin n times
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Here is one example wherein the two properties (the second property in particular) play a role.
The example is the one that we frequently explored in the past lectures: Tossing a p-biased coin
n times. Let S be the total number of “Head”s. Here the focus is to compute Var(S). Using the
useful fact (6), we obtain:

Var(S) = E[S2]− (E[S])2. (9)

Since we have already figured out from Lecture 7 that S follows the prominent Binomial distri-
bution, one natural way is to compute (E[S],E[S2]) (called the 1st and 2nd moments) and then
to plug them into the above (9). But this way turns out to be by far much complicated, relative
to the one that we will take in the sequel.

The different way that we will take is to exploit the additivity property (8). To this end, as we
did before, we first express S as the sum of the following basic random variables:

S = X1 +X2 + · · ·+Xn

where Xi = 1{ith flips shows “Head”}. Here the key observation is that Xi’s are independent.
Hence, by applying (8) several times (n− 1 times precisely), we get:

Var(S) = Var(X1) + Var(X2 + · · ·+Xn)

= Var(X1) + Var(X2) + Var(X3 + · · ·+Xn)

...

= Var(X1) + Var(X2) + · · ·+ Var(Xn).

(10)

Here, the variance of one particular random variable, say X1, is:

Var(X1) = E[X2
1 ]− (E[X1])

2 = p− p2 = p(1− p). (11)

By symmetry, Var(X1) = · · · = Var(Xn). This together with (10) yields:

Var(S) = Var(X1) + · · ·+ Var(Xn) = np(1− p).

A more precise measure of how well E[X] represents X

Remember that we introduced the variance, (more properly saying, the standard deviation for
the purpose of matching the unit), as a measure that quantifies how well the expectation E[X]
represents the uncertain random variable X:

σ(X) :=
√

Var(X), Var(X) := E[(X − µ)2].

But there is a limitation on this measure. The measure quantifies only the degree of the spread-
ness around the center. It does not translate to a concrete probabilistic number. For instance,
someone may be interested in the explicit probability numbers like:

The probability of how often X deviates from µ by a certain distance, say d.

The above probability, simply called the tail probability, can be formally written as:

P(|X − µ| ≥ d). (12)

The smaller this measure is, the higher representation capability. Hence, the tail probability
can serve as a more precise measure. Now how to compute (12)? It turns out the computation
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of (12) is often very difficult. What can we do then? As I mentioned in Lecture 6, whenever
facing with challenges in the probability world, the idea for overcoming the challenges is to relax
the goal. Here what it means by relaxing the goal is to obtain a bound on the tail probability.
Which bound is helpful between upper and lower bounds? Here having a smaller tail probability,
the better situation we have in terms of representation capability. Hence, an upper bound helps
because a smaller upper bound shrinks down the tail probability. There is a prominent inequality
that offers an upper bound on the tail probability. That is, Chebyshev’s inequality :

P(|X − µ| ≥ d) ≤ Var(X)

d2
. (13)

This inequality makes an intuitive sense. A small variance yields a small upper bound, forcing
the tail probability to decrease. A large deviation d from the center should give obviously a
small chance of |X − µ| ≥ d. This is well reflected in the inequality.

Proof of Chebyshev’s inequality (13)

There are different proofs for Chebyshev’s inequality (13). Here I will provide one elementary-
level proof which requires only the definitions while not relying upon any other new techniques.
In PS3, you will have a chance to try another proof that requires another bounding technique.
Although the proof considered herein hinges solely upon the definitions, it contains a certain
non-trivial trick. The trick is to smartly define a new random variable, say Y , from X. We
define Y such that PY (y) is the same as PX(y) when |y−µ| < d; takes an aggregated probability
P(X − µ ≥ d) when y − µ = d; and takes the other-side aggregated probability P(X − µ ≤ −d)
when y − µ = −d:

PY (y) =


PX(y), if |y − µ| < d;
P(X − µ ≥ d), if y − µ = d;
P(X − µ ≤ −d), if y − µ = −d;
0, if |y − µ| > d.

(14)

See Fig. 1 for a clearer illustration. You will soon figure out why such Y helps in the proof.
First observe that

Var(X) ≥ Var(Y ). (15)

This is immediate because Y is more densely located around µ. If you are not convinced about
this sort of intuitive reasoning, you may want to do a rigorous proof via massaging Var(X) to
relate to Var(Y ) with the help of (14). Please try it if you feel so. With (15) and (13), it suffices
to show that

Var(Y ) ≥ d2P(|X − µ| ≥ d). (16)

This can be proved via the following steps:

Var(Y ) =
∑

y:|y−µ|<d

(y − µ)2PY (y) +
∑

y:|y−µ|≥d

(y − µ)2PY (y)

≥
∑

y:|y−µ|≥d

(y − µ)2PY (y)

≥ d2
∑

y:|y−µ|≥d

PY (y)

= d2P(|X − µ| ≥ d)

5
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Figure 1: (Top): Probability distribution of a random variable X; (Bottom): Probability dis-
tribution of a newly defined random variable Y . We define Y such that PY (y) is the same as
PX(y) when |y − µ| ≤ d; takes an aggregated probability P(X − µ ≥ d) when y − µ = d; and
takes the other-side aggregated probability P(X − µ ≤ −d) when y − µ = −d.

where the 2nd last step is because (y− µ)2 ≥ d2 in the considered range of summation; and the
last equality follows from PY (µ + d) = P(X − µ ≥ d) and PY (µ − d) = P(X − µ ≤ −d) due
to (14).

Look ahead

So far we have considered a particular type of random variables: discrete random variables. In
reality, however, there are many scenarios concerning continuous-valued random quantities. One
such scenario is communication that we will touch upon in great details in Part III: Applications.
As I mentioned in Lecture 1, there is an enemy in communication systems. The enemy is
noise which can be modeled as a continuous-valued random signal. There is a relevant concept
concerning such continuous random signal. That is, continuous random variable. So next time,
we will investigate the continuous random variable.
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Lecture 9: Variance

Recap

Last time, we studied the notion of expectation that can serve as a deterministic representative
for a random variable with uncertainty. Its definition reads:

E[X] :=
∑
x∈X

x · PX(x). (1)

We also investigated two important properties. The first is the function invariance property that
plays a role in enabling the direct computation of E[Y ] without relying upon the computation
of PY (y) for Y = g(X). The property says:

E[Y ] =
∑
x∈X

g(x)PX(x). (2)

The second is the linearity property consisting of two subproperties:

(Additivity): E[X + Y ] = E[X] + E[Y ];

(Homogeneity): E[cX] = cE[X] for any constant c.
(3)

At the end of the last lecture, I raised one natural question: Can the expectation well represent
the uncertain random variable? I then claimed that there is a measure that quantifies the degree
of well representing. The measure is variance.

Today’s lecture

Today we will explore details on the variance. This lecture consists of four parts. In the first part,
we will introduce the definition of variance together with the rationale behind the definition. It
turns out there is a very useful fact which allows us to compute the variance efficiently. So in the
second part, we will study the useful fact. Next we will study two important properties that play
significant roles in addressing some challenging situations, wherein the variance computation is
very difficult if we rely solely upon the definition. Lastly we will explore one prominent inequality
that serves to quantify the degree of well representing more precisely, relative to the variance
itself. That is, Chebyshev’s inequality.

Definition of variance

Let’s start from the beginning. For a random variable X, its variance is denoted by Var(X) and
defined as:

Var(X) := E[(X − µ)2] (4)

where µ := E[X]. As usual, there must be a reason that the variance is defined as above. At
first glance, this definition is a bit unnatural. A more natural definition might be E[X − µ],
as it indicates indeed the averaged deviation from the center µ. But this is not informative at
all, as E[X − µ] is always 0 (due to the linearity of expectation (3)) no matter what PX(x)
is. The reason of E[X − µ] being 0 all the time is that the sign of X − µ is either plus or
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minus with the same frequency. So as another natural definition, people thought of a measure
that takes always a plus sign. The measure was E[|X − µ|]. Now it is never 0 unless X is
a deterministic constant. So it can act as a proper measure. However, this was not selected
because people found its computation often very difficult. As the 3rd candidate, people came
up with Var(X) := E[(X − µ)2] and tried many instances to check whether its computation is
more-or-less okay. It turns out the computation is often tractable. This is the sole reason why
the variance is defined as (4). I am sure that the choice was E[|X − µ|] if its computation were
not that difficult.

However, there was still an issue on the definition (4). Due to the power 2 in the definition,
the unit of Var(X) does not match with that of X. If the unit of X is meter, then the unit of
Var(X) would be meter2. So it does not properly capture the deviation from the center. This
is where another measure that you may hear of comes in. That is, standard deviation, simply
defined as the square root of variance:

σ(X) :=
√

Var(X). (5)

Actually, this is a bit annoying situation. Sometimes, mathematicians introduce many seemingly-
redundant notions (like variance and standard deviation) only because of the beauty of math.
They pursue the beauty and tractability, and variance is the one that comes as a consequence
of such an attitude.

A useful fact

There is a very useful fact which allows us to compute the variance a bit more efficiently. The
fact is:

Var(X) = E[X2]− µ2. (6)

The proof of this is straightforward. Starting with the definition of variance, we get:

Var(X) := E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E[X2] + E[−2µX] + E[µ2]

= E[X2]− 2µE[X] + E[µ2]

= E[X2]− µ2

where the 3rd and 4th steps are due to the additivity and homogeneity properties of expecta-
tion (3), respectively. It turns out in many cases, the computation of E[X2] is a bit easier than
that of its translated version E[(X − µ)2]. That’s why people often employ (6) instead of the
original definition (4).

Here is one such example where the computation of E[X2] is indeed easier. Let X be a uniformly
distributed random variable that takes one value from X := {1, 2, . . . , n}. Let PX(x) = 1

n
be the corresponding probability distribution where x ∈ X . The expectation reads E[X] =
1
n(1 + 2 + · · ·+ n) = n+1

2 . The expectation of X2 (or called the 2nd moment) is:

E[X2] =
1

n
(12 + 22 + · · ·+ n2)

=
1

n
· n(n+ 1)(2n+ 1)

6

=
(n+ 1)(2n+ 1)

6
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where the 2nd equality follows from the fact that you learned from calculus:
∑n

i=1 i
2 = n(n+1)(2n+1)

6
(Did you forget how to prove this? If so, think about f(n+ 1)−f(n) where f(n) := n3). Hence,

Var(X) = E[X2]− (E[X])2

=
(n+ 1)(2n+ 1)

6
− (n+ 1)2

4

= (n+ 1)

(
n− 1

12

)
=
n2 − 1

12
.

Two important properties

As mentioned in the beginning, there are two important properties that help us to address
challenging situations where a direct way of computing variance is non-trivial. These are about
independent random variables. For illustrative purpose, let’s focus on a simple setting where
there are two independent random variables, say X and Y . The first property is the one called
the uncorrelatedness, which says that the expectation of the product is the product of individuals:

E[XY ] = E[X]E[Y ]. (7)

The second is the one called the additivity, which says that the variance of the sum is the sum
of individuals:

Var(X + Y ) = Var(X) + Var(Y ). (8)

The proofs of these are not that difficult. First let’s prove (7). Starting with the definition of
expectation, we get:

E[XY ] =
∑
x∈X

∑
y∈Y

xyPX,Y (x, y)

=
∑
x∈X

∑
y∈Y

xyPX(x)PY (y)

=
∑
x∈X

xPX(x)
∑
y∈Y

yPY (y)

= E[X]E[Y ]

where the 2nd equality is due to the independence of (X,Y ). The proof of (8) is also easy
particularly with the help of (7). Let µX = E[X] and µY = E[Y ]. Starting with the useful
fact (6), we have:

Var(X + Y ) = E[(X + Y )2]− (µX + µY )2

= E[X2] + E[Y 2] + 2E[XY ]− (µX + µY )2

= E[X2] + E[Y 2] + 2E[X]E[Y ]− (µX + µY )2

= E[X2]− µ2X + E[Y 2]− µ2Y
= Var(X) + Var(Y )

where the 2nd equality is due to the linearity of expectation (3); the 3rd equality follows from
the uncorrelateness property (7).

Example: Tossing a p-biased coin n times
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Here is one example wherein the two properties (the second property in particular) play a role.
The example is the one that we frequently explored in the past lectures: Tossing a p-biased coin
n times. Let S be the total number of “Head”s. Here the focus is to compute Var(S). Using the
useful fact (6), we obtain:

Var(S) = E[S2]− (E[S])2. (9)

Since we have already figured out from Lecture 7 that S follows the prominent Binomial distri-
bution, one natural way is to compute (E[S],E[S2]) (called the 1st and 2nd moments) and then
to plug them into the above (9). But this way turns out to be by far much complicated, relative
to the one that we will take in the sequel.

The different way that we will take is to exploit the additivity property (8). To this end, as we
did before, we first express S as the sum of the following basic random variables:

S = X1 +X2 + · · ·+Xn

where Xi = 1{ith flips shows “Head”}. Here the key observation is that Xi’s are independent.
Hence, by applying (8) several times (n− 1 times precisely), we get:

Var(S) = Var(X1) + Var(X2 + · · ·+Xn)

= Var(X1) + Var(X2) + Var(X3 + · · ·+Xn)

...

= Var(X1) + Var(X2) + · · ·+ Var(Xn).

(10)

Here, the variance of one particular random variable, say X1, is:

Var(X1) = E[X2
1 ]− (E[X1])

2 = p− p2 = p(1− p). (11)

By symmetry, Var(X1) = · · · = Var(Xn). This together with (10) yields:

Var(S) = Var(X1) + · · ·+ Var(Xn) = np(1− p).

A more precise measure of how well E[X] represents X

Remember that we introduced the variance, (more properly saying, the standard deviation for
the purpose of matching the unit), as a measure that quantifies how well the expectation E[X]
represents the uncertain random variable X:

σ(X) :=
√

Var(X), Var(X) := E[(X − µ)2].

But there is a limitation on this measure. The measure quantifies only the degree of the spread-
ness around the center. It does not translate to a concrete probabilistic number. For instance,
someone may be interested in the explicit probability numbers like:

The probability of how often X deviates from µ by a certain distance, say d.

The above probability, simply called the tail probability, can be formally written as:

P(|X − µ| ≥ d). (12)

The smaller this measure is, the higher representation capability. Hence, the tail probability
can serve as a more precise measure. Now how to compute (12)? It turns out the computation
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of (12) is often very difficult. What can we do then? As I mentioned in Lecture 6, whenever
facing with challenges in the probability world, the idea for overcoming the challenges is to relax
the goal. Here what it means by relaxing the goal is to obtain a bound on the tail probability.
Which bound is helpful between upper and lower bounds? Here having a smaller tail probability,
the better situation we have in terms of representation capability. Hence, an upper bound helps
because a smaller upper bound shrinks down the tail probability. There is a prominent inequality
that offers an upper bound on the tail probability. That is, Chebyshev’s inequality :

P(|X − µ| ≥ d) ≤ Var(X)

d2
. (13)

This inequality makes an intuitive sense. A small variance yields a small upper bound, forcing
the tail probability to decrease. A large deviation d from the center should give obviously a
small chance of |X − µ| ≥ d. This is well reflected in the inequality.

Proof of Chebyshev’s inequality (13)

The proof is very easy once we employ another popular inequality, named Markov’ inequality :
for a nonnegative random variable Y and d > 0,

P(Y ≥ d) ≤ E[Y ]

d
. (14)

Using Markov’s inequality, we get:

P(|X − µ| ≥ d) = P((X − µ)2 ≥ d2)

≤ E[(X − µ)2]

d2
=

Var(X)

d2

where the 1st equality follows from the fact that {(X − µ)2 ≥ d2} is an equivalent event to
{|X − µ| ≥ d}; and the last step is due to the definition of variance.

Proof of Markov’s inequality (14)

We start with a key observation:

Y ≥ d · 1{Y ≥ d}. (15)

This is immediate because the RHS reads 0 when Y < d (while the LHS is Y ≥ 0) ; otherwise,
i.e., when Y ≥ d, the RHS reads d while the LHS is Y ≥ d. Since (15) holds for any Y , the
inequality still holds when taking expectation on both sides:

E[Y ] ≥ d · E[1{Y ≥ d}]
= d · P(Y ≥ d).

Hence, we complete the proof.

Look ahead

So far we have considered a particular type of random variables: discrete random variables. In
reality, however, there are many scenarios concerning continuous-valued random quantities. One
such scenario is communication that we will touch upon in great details in Part III: Applications.
As I mentioned in Lecture 1, there is an enemy in communication systems. The enemy is
noise which can be modeled as a continuous-valued random signal. There is a relevant concept
concerning such continuous random signal. That is, continuous random variable. So next time,
we will investigate the continuous random variable.
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Lecture 10: Continuous random variables

Recap

Last time, we learned about another concept in probability: variance, which is shown to be
instrumental in quantifying how often a random variable X deviates from the expectation E[X].
Its definition reads:

Var(X) := E[(X − µ)2] (1)

where µ := E[X]. We next learned about a useful fact which often eases the variance calculation:

Var(X) = E[X2]− µ2. (2)

We also investigated two properties w.r.t. independent random variables X and Y :

(Uncorrelatedness): E[XY ] = E[X]E[Y ];

(Additivity): Var(X + Y ) = Var(X) + Var(Y ).
(3)

So far we have considered only one type of random variables in which we take discrete-valued real
numbers. In reality, however, there are many scenarios concerning continuous-valued random
quantities. One such important scenario is communication. In the context of communication,
noise is added into the system and it can be mathematically modeled as a continuous-valued
random quantity. At the end of the last lecture, I mentioned that there is a relevant concept
concerning such continuous random signal. That is, continuous random variable.

Today’s lecture

Today we will investigate the continuous random variable. Specifically what we are going to
cover are four folded. We will first introduce the concept of a continuous random variable in the
context of a new type of sample space that we did not explore. We will then study a new concept
called the probability density function that arises in the context of a continuous random variable.
Next we will study a relevant concept named the cumulative density function. Finally we will
investigate the definitions of expectation and variance w.r.t. a continuous random variable.

A new type of sample space

So far we have considered a special type of sample space which is a countable set, i.e., either
a finite set or a countably infinite set. In real life, however, there are tons of situations where
a sample space is not countable. To see this clearly, consider an experiment of picking up a
point in the [0, 1] interval, uniformly at random. See Fig. 1. Notice that an element ω in Ω
is a continuous value. So the sample space is not countable. A continuous random variable
can easily come up in such a context. One natural continuous random variable that one can
think of is a mapping that just outputs the fed element: X(ω) = ω. From this, one can readily
image what a continuous random variable means. Its definition is exactly the same as that of
the discrete counterpart, except that it takes a continuous value in the range.

How to define the probability distribution?

1
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Figure 1: A new type of sample space: An element in Ω is a continuous value that lies in between
0 and 1. Here X(ω) = ω is the simplest continuous random variable that one can naturally
think of.

For such continuous random variable, we should also worry about how to define its probability
distribution. One natural choice might be the discrete counterpart: PX(x) = P(X = x). But
there is an issue in this naive choice. The issue is that in this case, we should set P(X = x) = 0
for all x ∈ X , no matter how X behaves. Why? Suppose we assign some tiny yet positive value ε
to P(X = x) = ε for all x ∈ X . By uniformity this probability should be the same for all x. But
then, the sum of all probabilities P(X = x) will be ∞, violating the sum-up-to-one constraint.
Hence, P(X = x) must be zero for all x ∈ X . Obviously it is not a proper way to go.

To avoid such uninteresting situations, we may consider the probability of X being now in an
interval :

P(X ∈ [a, b]) (4)

where 0 ≤ a ≤ b ≤ 1. In this case, the natural probability assignment would be to take the
length of the associated interval [a, b] normalized by the entire interval [0, 1]:

P(X ∈ [a, b]) =
length of [a, b]

length of [0, 1]
= b− a. (5)

This is indeed a proper choice. Why? The probability increases with the length of the associated
interval. So it makes an intuitive sense. It also satisfies the sum-up-to-one constraint that the
probability distribution of a discrete random variable respects. To see this, consider disjoint
intervals Ii’s such that

⋃
i Ii = [0, 1]. Then,

∑
i

P(X ∈ Ii) = P

(⋃
i

Ii

)
= 1 (6)

where the 1st equality follows from the fact that Ii’s are disjoint.

Probability density function

Now what about for general cases, not necessarily such uniform distribution case? In light of (4),
for generality, we need to specify P(X ∈ [a, b]) for all intervals [a, b], not limited to the [0, 1]
interval. Also, P(X ∈ [a, b]) may not be a sole function of the interval length b − a. It may
also depend on how often X belongs to the interval. This is where the concept of a probability
density function (pdf for short) kicks in. It turns out that the pdf serves to formally specify the
probability distribution. A pdf is denoted by f(x) and is defined as a function that satisfies:

P(a ≤ X ≤ b) =

∫ b

a
f(x)dx ∀a, b ∈ R such that a ≤ b (7)

where f(x) is assumed to be continuous everywhere, i.e., integrable. Notice that this definition
allows us to specify the interested probabilities P(a ≤ X ≤ b) with the pdf f(x). Someone may
want to use a different notation like fX(x) to highlight an associated random variable X. But
many people including me use a simpler notation f(x) as above. Here we have integration of

2



f(x). So it has a geometric interpretation: the area under the function f(x) spanned by an
associated interval. So the pictorial meaning of P(a ≤ X ≤ b) in (7) is the area below the pdf in
the associated interval [a, b], as illustrated in Fig. 2. So we see that the pdf plays a similar role

CN10_2

Figure 2: Pictorial illustration of a probability density function f(x) that shows the relationship
with P(a ≤ X ≤ b).

as the histogram that was used for illustration of the probability distribution w.r.t. a discrete
random variable.

Two properties of the pdf

Similar to the histogram in the discrete counterpart, there are two properties w.r.t. the pdf.
The first is the non-negativity property:

f(x) ≥ 0. (8)

This is due to the definition of the pdf (7). Suppose f(x) < 0 for some value, say t. Then, one
can find an interval that includes t so that the integral over the interval in (7) is negative. So we
would have a negative probability for such an event, which violates the non-negativity property
of the probability distribution. The second is the sum-up-to-one property:∫ ∞

−∞
f(x)dx = P(−∞ ≤ X ≤ ∞) = 1 (9)

where the 1st equality is due to the definition of the pdf (7); and the 2nd equality is because X
must take on some value in the real line R.

Two caveats

However, there are significant distinctions w.r.t. the histogram. These are reflected in the
following two caveats. The first is that the integration in (7) may not be well defined. But this
is a very rare and practically-irrelevant case. So we will not worry about this throughout the
course. Actually forgetting about this is indeed okay unless you wish to do something related
to the hardcore probability theory in the future. I assume you may not be interested in the
hardcore probability, as most of you guys are from engineering-related departments. If you
do so, then you may want to take a graduate-level hardcore probability course, e.g., “measure
theory”.

The second caveat is that the pdf is not a probability quantity. This can easily been seen from the
following example. Consider a uniformly distributed random variable X that takes a continuous
value in [0, 0.5]. In this case, f(x) = 2 due to (9). Since the pdf f(x) = 2 exceeds 1, it is
obviously not a probability quantity. You may then ask: What does the pdf mean? How is
the pdf related to the probability quantity? To answer this, consider a very small interval, say

3



[x, x+ δ], wherein one can approximate:

P(x ≤ X ≤ x+ δ) =

∫ x+δ

x
f(x)dx ≈ δf(x).

This approximation becomes more accurate as δ → 0, as the integration becomes closer to the
area of the rectangle with width δ and height f(x). More formally, in the limit of δ → 0, we get:

f(x) = lim
δ→0

P(x ≤ X ≤ x+ δ)

δ
. (10)

Hence, the pdf can be interpreted as the probability per unit length. Actually this is the very
reason that people use the word “density” in the naming.
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Figure 3: Experiment of throwing darts. Let X be a continuous random variable that indicates
a distance from the center to the place that the dart lands in.

Example: Throwing darts

Let’s do some exercise on how to compute f(x) via an example. Consider an experiment of
throwing a dart into a circle-shaped target with a unit radius. See Fig. 3. Suppose we are
interested in the distance from the center to the location that the thrown dart points to. Denote
the distance by a continuous random variable X. The range of a continuous random variable
is always the real line X = [−∞,∞]. But in this experiment, X cannot be negative. So a
reasonable assumption is P(X < 0) = 0. Also, let us ignore the case where the dart is out of the
target circle, so we assume P(X > 1) = 0.

Now how to compute the probability density function f(x) in the interested range x ∈ [0, 1]? To
this end, we first need to compute P(x ≤ X ≤ x+ δ) in light of (10). This probability must be
proportional to the area of the ring squeezed between the x-radius circle and the (x+ δ)-radius
circle. See the green-colored ring in Fig. 4. Hence, it should read:

P(x ≤ X ≤ x+ δ) =
ring area

π(1)2

=
π(x+ δ)2 − πx2

π
= 2δx+ δ2

where the 1st equality is due to the normalization by the unit-circle area π(1)2 = π. Why
normalized? This is because of the sum-up-to-one constraint. This together with (10) and the
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Figure 4: The probability P(x ≤ X ≤ x + δ) corresponds to the area of the green-colored ring
placed in between the x-radius circle and the (x+ δ)-radius circle.

assumption P(X > 1) = P(X < 0) = 0 gives:

f(x) =


0, if x < 0;
2x, if 0 ≤ x ≤ 1;
0, if x > 1.

(11)

If you think about it, reading f(x) = 2x in the interested range makes an intuitive sense. Why?
A ring farther away from the center has a larger area than a ring closer to the center with the
same width δ.

Cumulative density function

In the discrete random variable case, the histogram fully specifies the statistical behaviour of a
random variable. So you may guess that only the pdf (playing a similar role as the histogram)
is needed in the context of continuous random variables. But it turns out the story is a bit
different in the continuous case. We should worry about another relevant concept. To see this,
first recall the relationship between the pdf and the probability measure:

f(x) = lim
δ→0

P(x ≤ X ≤ x+ δ)

δ
. (12)

Here a key observation that one can make is:

P(x ≤ X ≤ x+ δ) = P(X ≤ x+ δ)− P(X < x)

= P(X ≤ x+ δ)− P(X ≤ x)
(13)

where the 1st equality is because the event {X ≤ x+δ} can be decomposed into the two disjoint
events {X < x} and {x ≤ X ≤ x + δ}; and the 2nd equality follows from P(X = x) = 0 for a
continuous random variable X. Defining F (x) := P(X ≤ x), we can then rewrite (12) as:

f(x) = lim
δ→0

F (x+ δ)− F (x)

δ
.

What does this remind you of? Yes, it is the derivative d
dxF (x)! Hence, we get:

f(x) =
d

dx
F (x). (14)
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Taking integration on both sides, we also obtain another equivalent representation:

F (x) =

∫ x

−∞
f(t)dt. (15)

Here F (x) is an important function that we need to worry about in the context of continuous
random variables. Prior to talking about its importance, let us interpret what F (x) means
from (15). Pictorially, F (x) indicates the area under f(x) spanned by the interval [−∞, x]. See
Fig. 5. So F (x) can be interpreted as the area accumulated up to x. Hence, it is called the
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Figure 5: Illustration of the cumulative density function, usually denoted by F (x). The pictorial
meaning of F (x) is the area below f(x) from −∞ up to x.

cumulative density function, cdf for short.

Importance of the cdf

Pondering

f(x) =
d

dx
F (x), F (x) =

∫ x

−∞
f(t)dt, (16)

we see that the pdf and cdf contain exactly the same information: one implies the other and
vice versa. Why? f(x) = d

dxF (x) implies F (x) =
∫ x
−∞ f(t)dt+ C. But C should be zero due to

F (∞) := P(X ≤ ∞) = 1 =
∫∞
−∞ f(t)dt. The other direction is straightforward.

Now you may wonder why we care about the concept of cdf? Isn’t the pdf enough? The reason
is that it turns out for many problems, the cdf is much easier to compute relative to the pdf.
Hence, usually we first compute the cdf and then compute the pdf from the cdf. Like the pdf,
the cdf has similar properties:

1. (Non-negativity): 0 ≤ F (x) ≤ 1;

2. (Terminal point): F (∞) =
∫∞
−∞ f(t)dt = 1;

3. (Initial point): F (−∞) = 0.

Expectation and variance

For a continuous random variable X, the expectation is defined as:

E[X] :=

∫ ∞
−∞

xf(x)dx. (17)

The rationale behind the definition is the same as the discrete-case counterpart. Here, f(x)dx
acts as a proper weight that captures the frequency of the occurrence of x, as PX(x) does in the
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discrete case. Similarly we define the variance as:

Var(X) := E[(X − µ)2] (18)

where µ := E[X]. We also have a useful fact as in the discrete case:

Var(X) = E[(X − µ)2]

= E[X2]− µ2

=

∫ ∞
−∞

x2f(x)dx− µ2

where the 2nd equality is due to the linearity of expectation.

Look ahead

As I mentioned earlier, one of the main reasons that we study continuous random variables is
in their relevancy to the noise in communication systems that we will delve into in Part III:
Applications. It turns out the noise signal can be modeled as a very popular continuous random
variable. That is, the Gaussian random variable. So next time, we will investigate the Gaussian
random variable.

7



EE210 Probability and Introductory Random Processes April 6, 2021
KAIST, Spring 2021 Changho Suh (chsuh@kaist.ac.kr)

Lecture 11: Gaussian random variables

Recap

Last time we have studied another type of random variables: continuous random variables. Like
a discrete random variable, it is also a function that maps an element in Ω into a real-valued
number. But the key distinction is that it takes a continuous value in the range, while the
discrete counterpart takes a concretely specified value called the discrete (or countable) value.
Since the natural probability assignment for an event of a continuous random variable taking a
particular value exactly is zero, a proper probability distribution of interest is the probability
that it belongs to an interested interval. So in this context, we need to specify P(a ≤ X ≤ b)
all admissible intervals [a, b]. In order to formally specify such probabilities, a new concept that
plays a similar role as the histogram in the discrete counterpart has been introduced. That is,
the probability density function (pdf) f(x), defined as a function that satisfies:

P(a ≤ X ≤ b) =

∫ b

a
f(x)dx ∀a, b ∈ R such that a ≤ b. (1)

The word “density” in the naming comes from the fact that it can be interpreted as the prob-
ability per unit length in light of another expression: f(x) = limδ→0

P(x≤X≤x+δ)
δ . We have

also introduced another seemingly-redundant concept: the cumulative density function (cdf)
F (x) := P(X ≤ x), which has the the following relationship with f(x):

f(x) =
d

dx
F (x), F (x) =

∫ x

−∞
f(t)dt. (2)

The rationale behind the introduction of the cdf is that in many problems, the cdf is much easier
to compute; hence people often try to compute the cdf and then obtain the pdf accordingly.

Like I said earlier, there is one very popular continuous random variable that is quite instrumen-
tal in many applications: the Gaussian random variable. As a prominent example, I mentioned
that a noise signal in communication systems of one focused topic in Part III can be modeled
as a Gaussian random variable.

Today’s lecture

Today we will investigate details on the Gaussian random variable. This lecture is comprised of
four parts. As usual, we will start by introducing the definition of the Gaussian random variable.
As you will see soon, it is defined via a particular form of a pdf. In the second part, we will
verify that the pdf indeed satisfies the sum-up-to-one constraint, and we will also compute its
mean and variance. Next we will study one important property, called normality preservation,
which says that any linear transform of a Gaussian random variable is still Gaussian. It turns
out this property enables us to compute the cdf of any Gaussian random variable efficiently. So
in the last part, we will study how to compute the cdf of a Gaussian random variable with the
property.

Definition of a Gaussian random variable

1



We say that a random variable X is Gaussian if its pdf reads:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 ∀x ∈ R (3)

where µ and σ2 > 0 are some constants which are shown to be mean and variance, respectively
(this will be verified soon). We ignore the trivial case σ2 = 0 that leads to a deterministic X.
This will be clearer soon. As I mentioned earlier, it often (normally) appears in a wide variety of
scenarios. Hence, it is also called the normal random variable. Here the function f(x) is named
the Gaussian (or normal) distribution.

Why Gaussian random variables become popular?

The reason can be explained via the following two sequential facts. The first is that in many
scenarios (like communication), a signal of interest (like a noise signal) is shown to be expressed
as the sum of many independent random variables. Second, there is a prominent theorem which
says that the sum with a proper scaling can be approximated as a Gaussian random variable
as the number of involved variables in the summation grows large. The theorem is the very
famous Central Limit Theorem (CLT) that you may hear of. This is the key reason behind the
popularity of the Gaussian distribution. We will discuss more details later particularly in Part
III where we will talk about the communication application.

Sum-up-to-one constraint

As promised in the beginning, let us verify that the Gaussian distribution (3) indeed satisfies
the sum-up-to-one constraint: ∫ ∞

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx = 1. (4)

Since the pdf form is a bit dirty involving parameters like µ and σ2, we first simplify it via a
well-known technique called the change of variable. Taking t = x−µ

σ , we get dt = dx
σ . Putting

all these into the LHS in the above, we obtain:∫ ∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx =

∫ ∞
−∞

1√
2π
e−

t2

2 dt. (5)

Although we did simplification, we feel a bit stuck because there is no concrete integral formula
for e−t

2/2. Now is the moment that you need to exploit your knowledge and experience obtained
from Calculus: converting into Polar coordinate. To understand what it means, first observe
that the integral in (5) is positive due to the positive pdf. Hence, it suffices to prove the square
of the integral is 1: (∫ ∞

−∞

1√
2π
e−

t2

2 dt

)2

= 1.

By using two different dummy variables (say x and y) in the double integral, we can rewrite the
LHS in the above as: (∫ ∞

−∞

1√
2π
e−

t2

2 dt

)2

=
1

2π

∫ ∞
−∞

e−
x2

2 dx

∫ ∞
−∞

e−
y2

2 dy

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−
x2+y2

2 dxdy

2



This is where the Polar coordinate (r, θ) kicks in:

x = r cos θ, y = r sin θ.

Using the fact that (sin θ)2+(cos θ)2 = 1, we get x2+y2 = r2. Now how to express dxdy in terms
of (dr, dθ)? By visualizing the area change due to transition from (r, θ) into (r+ dr, θ+ dθ), we
can figure out:

area change ≈ dr × (width change due to dθ)

= dr × (rdθ) = rdrdθ.
(6)

Hence, the area change dxdy in the Cartesian coordinate can be translated into that of the Polar
coordinate: rdrdθ. This together with x2 + y2 = r2 yields:(∫ ∞

−∞

1√
2π
e−

t2

2 dt

)2

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−
x2+y2

2 dxdy

=
1

2π

∫ 2π

0

∫ ∞
0

e−
r2

2 rdrdθ

=

∫ ∞
0

e−
r2

2 rdr

=

∫ ∞
0

e−udu

=
[
−e−u

]∞
0

= 1

where the 3rd equality is due to the integration over θ from 0 to 2π; and the 2nd last equality
follows from the change of variable: u = r2

2 and du = rdr. This completes the proof of (4).

Computation of E[X] and Var(X)

The expectation calculation is straightforward. By linearity, we first get:

E[X − µ] = E[X]− µ. (7)

We then manipulate E[X − µ] as:

E[X − µ] =

∫ ∞
−∞

(x− µ) · 1√
2πσ

e−
(x−µ)2

2σ2 dx

=

∫ ∞
−∞

t · 1√
2πσ

e−
t2

2σ2 dt

= 0

where the 2nd equality is due to the change of variable t = x−µ; and the last equality is because
the pdf (marked in blue) is symmetric around t = 0 and hence the interested function multiplied
by t is an odd function. Applying this into (7), we obtain the expectation as:

E[X] = µ.

Next let us calculate the variance. The variance computation is a bit tricky. Using the definition
of Var(X) together with the change of variable t = x−µ

σ , we get:

Var(X) :=

∫ ∞
−∞

(x− µ)2 · 1√
2πσ

e−
(x−µ)2

2σ2 dx

=
σ2√
2π

∫ ∞
−∞

t2e−
t2

2 dt.
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Now how to integrate t2e−t
2/2? Again, you may feel headache because there is no concrete

integral formula for the function. This is where another well-known technique that you learned
from Calculus comes in. That is, integration by parts:∫

f · g′ = fg −
∫
f ′ · g. (8)

Defining f = −t and g′ = −te−t2/2, and applying the “integration by parts” (8), we get:

Var(X) :=

∫ ∞
−∞

(x− µ)2 · 1√
2πσ

e−
(x−µ)2

2σ2 dx

=
σ2√
2π

∫ ∞
−∞

t2e−
t2

2 dt

=
σ2√
2π

∫ ∞
−∞
−t︸︷︷︸
f

·
(
−te−

t2

2

)
︸ ︷︷ ︸

g′

dt

=
σ2√
2π

[
−t · e−

t2

2

]∞
−∞
− σ2√

2π

∫ ∞
−∞

(−1) · e−
t2

2 dt

= σ2 · 1√
2π

∫ ∞
−∞

e−
t2

2 dt

= σ2

where the last equality is due to the sum-up-to-one constraint of the Gaussian distribution
(marked in blue). Since E[X] = µ and Var(X) = σ2, the Gaussian distribution looks like the one
in Fig. 1. It is sort of “bell-shaped”, centered at (and symmetric around) x = µ, and “width”CN11_1

Figure 1: The Gaussian distribution with mean µ and variance σ2.

determined by the standard deviation σ.

Normality preservation property

So far we have done some boring stuffs that require complicated-looking integrations. Let us
now switch gears to touch upon some exciting and very useful stuffs. One such stuff is a very
important property called “normality preservation”. Let X be a Gaussian random variable with
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mean µ and variance σ2. It is simply denoted by X ∼ N (µ, σ2) where N stands for “Normal”.
The normality preservation property says that any linear transformation of X also respects the
normal distribution: for any constants (c1, c2),

Y = c1X + c2 ∼ N (c1µ+ c2, c
2
1σ

2). (9)

The proof of this is as follows. The case c1 = 0 is trivial. In this case, Y = c2. First consider
the case c1 > 0. Using the definition of the cdf, we get:

FY (y) := P(Y ≤ y)

= P(c1X + c2 ≤ y)

= P
(
X ≤ y − c2

c1

)
= FX

(
y − c2
c1

)
where the 3rd equality is due to c1 > 0. Taking derivatives w.r.t. y on both sides, we obtain:

Case c1 > 0 : fY (y) =
d

dy
FX

(
y − c2
c1

)
=

d

dx
FX

(
y − c2
c1

)
· d
dy

(
y − c2
c1

)
=

1

c1
fX

(
y − c2
c1

)
=

1

c1
· 1√

2πσ
e−

( y−c2c1
−µ)

2

2σ2

=
1√

2πc1σ
e
− (y−(c1µ+c2))

2

2c21σ
2

(10)

where the 2nd equality is due to the chain rule ( ddyg(x) = d
dxg(x) · dxdy ); and the 2nd last equality

follows from the formula of the Gaussian distribution (3). The case c1 < 0 is similar. In this
case, one can readily verify that:

Case c1 < 0 : fY (y) = −1 · 1√
2πc1σ

e
− (y−(c1µ+c2))

2

2c21σ
2

. (11)

If you are not convinced, please check this. This together with (10) gives:

Y ∼ N (c1µ+ c2, c
2
1σ

2). (12)

We can also double-check in part via the following calculations:

E[Y ] = c1E[X] + c2 = c1µ+ c2;

Var(Y ) := E[(Y − (c1µ+ c2))
2]

= E[c21(X − µ)2]

= c21E[(X − µ)2] = c21σ
2.

(13)

Computation of the cdf of a Gaussian random variable
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One significant consequence of the normality preservation property (9) is that any Gaussian
random variable, sayX ∼ N (µ, σ2), can be represented as a linear transformation of the standard
Gaussian random variable with mean 0 and variance 1, say Z ∼ N (0, 1):

X = σZ + µ. (14)

It turns out this property (14) enables us to compute the cdf of any Gaussian random variable
efficiently. To see this, first observe the cdf of X ∼ N (µ, σ2):

FX(x) = P(X ≤ x)

=

∫ x

−∞

1√
2πσ

e−
(t−µ)2

2σ2 dt.
(15)

Here we are faced with a sort of challenge, as it requires the computation of integration which
has no closed form solution. This is where the property (14) plays a role. Using the property, we
can convert the integration into a function of tractable integration associated with the standard
Gaussian N (0, 1). The good thing about N (0, 1) is that we can obtain a numerical value of such
integration although we do not have a closed formula. See below for details:

FX(x) = P(X ≤ x)

= P
(
X − µ
σ

≤ x− µ
σ

)
=

∫ x−µ
σ

−∞

1√
2π
e−

z2

2 dz =: Φ

(
x− µ
σ

) (16)

where Z = X−µ
σ ∼ N (0, 1). Here the cdf of the standard Gaussian distribution is denoted by

Φ(z) := P(Z ≤ z). As mentioned earlier, it has already be computed numerically and tabulated
in many places including many books and Wikipedia.

Numerical values of Φ(z) are even accessible in Python via a function named “scipy.stats.norm.cdf”:

norm.cdf(z) = Φ(z). (17)

Applying this into (16), we get:

FX(x) = Φ

(
x− µ
σ

)
= norm.cdf

(
x− µ
σ

)
. (18)

Look ahead

We have thus far studied numerous concepts, laws and techniques: sample space, probability
model, events, conditional probability, total probability law, Bayes’ law, independence, union
bound, discrete random variables, pmf, expectation, variance, Chebyshev’s inequality, Markov’s
inequality, continuous random variables, pdf, cdf, Gaussian random variables. These form the
contents of Part I.

Unfortunately, there is one more concept required to understand the two key principles (MAP
and ML estimation) that we aimed at in Lecture 1. That is, the concept of random processes.
So next time, we will investigate random processes. This is the beginning of Part II. For the
rest of Part II, we will study the two key principles (finally!) together with relevant important
theorems: the Law of Large Numbers and the Central Limit Theorem.
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Lecture 12: Random processes

Recap

In Part I, we have studied various fundamental stuffs in probability. These include: (i) numerous
concepts like sample space, events, conditional probability, independence, random variables,
pmf, pdf and cdf; (ii) important laws such as total probability law, Bayes’ law and De Morgan’s
law; and (iii) useful techniques like the complement counting trick, the union bound, Markov’s
inequality and Chebyshev’s inequality.

In Part II, we will attack the two key principles that we targeted in the first lecture: MAP and
ML estimation. But prior to this, we need to learn about one more important concept: random
processes.

Today’s lecture

Today we will embark on Part II, exploring the first topic: random processes. Specifically
what we are going to cover are three folded. First of all, we will introduce the definition of
random processes, together with the rationale behind the definition as usual. It turns out many
interested signals in reality can be modeled as one particular type of random processes, named
the stationary process. So in the second part, we will study the stationary process together
with its special yet very famous version, called the i.i.d. process. Lastly we will investigate
three prominent examples (of such stationary process class) which are shown to be practically
relevant, as well as which we will study in depth about in Part III: Applications. These are: (i)
Bernoulli process; (ii) Gaussian process; and (iii) Markov process.

Definition of a random process

The definition is extremely simple to state. A random process is simply a sequence of random
variables. That’s it – period! Two useful remarks though. First, it is mostly a time-series
sequence, i.e., the associated random variables often evolve in time. Second, the sequence can
be either finite or infinite. Hence, it is denoted by (X1, X2, . . . , Xn) or (X1, X2, . . . , Xn, . . . ).
The simpler notation is: {Xi}ni=1 or {Xi}∞i=1. Let Xi ∈ Xi for all i. Then, the range reads:

X := X1 ×X2 × · · · × Xn × · · ·

In general, we have two type of notations for the probability distribution depending on whether
Xi is discrete or continuous. For simplicity, we ignore a rare yet possible mixed scenario in
which some are discrete while the others are continuous. For the discrete case, we use the thick
P notation. For all finite subsets of {xi}∞i=1, e.g., for {xi}ni=1:

P(x1, x2, . . . , xn). (1)

To distinguish it from the probability distribution w.r.t. a sample space Ω, one may prefer the
following more formal notation:

PX1,...,Xn(x1, x2, . . . , xn).

But this notation looks complicated, as it puts lots of stuffs in the subscript. Hence, people like
me prefer the simpler notation (1). Since it involves many random variables, it is also called the

1



joint distribution. On the other hand, for the continuous case, we employ the f notation. For
all finite subsets of {xi}∞i=1, e.g., for {xi}ni=1:

f(x1, x2, . . . , xn). (2)

Applications of random processes

Why do we care about random processes? Obviously it is because there are many applications.
In Lecture 1, I put a particular emphasis on the following three killer applications: (i) communi-
cation; (ii) speech recognition; (iii) machine learning. In communication systems, noise signals
that evolve in time can be modeled as a random process, more precisely, the Gaussian process
that we will figure out soon. In speech recognition, voice signals that are fed as an input to the
system can be modeled as a random process, more precisely, the Markov process that we will
also investigate soon. In machine learning, data samples, e.g., input samples which we denoted
by {x(i)}mi=1, can be interpreted as a random process, more precisely, the i.i.d. process that we
will study as well. Of course, that’s just the tip of the iceberg. There are tons of instances in
reality that can be modeled as a random process, like a sequence of daily stock prices; a sequence
of daily temperatures measured every morning; a sequence of call inter-arrival times.

Two important types of random processes

There is a particular type of random processes which is quite instrumental in modeling many
signals of interest in reality. That is, the stationary process. The definition is also simple to state.
We say that (X1, X2, . . . , Xn, . . . ) is stationary if its shifted version (X1+`, X2+`, . . . , Xn+`, . . . )
is a statistical copy of the original sequence for all shifts `’s. Here what it means by “statistical
copy” is having the same joint distribution.

There is another much simpler process, named the i.i.d. process. It is a special yet very
famous version of the stationary process. We say that (X1, X2, . . . , Xn, . . . ) is i.i.d. if the
associated random variables are mutually independent, and each has the same distribution
(identically distributed). You may be able to figure out what the i.i.d. means. Yes, it stands for
“independent & identically distributed”. Here the mutual independence for an infinite number
of random variables means that for all finite subsets of the random variables. Notice that the
i.i.d. process is obviously stationary because its shifted version has the same joint distribution.

Example #1: Bernoulli process

Below we list three prominent examples which belong to either the i.i.d. process or the stationary
process. The first is a very simple and famous one, called the Bernoulli process. It is named after
one of the math heroes in history, Jacob Bernoulli. See Fig. 1. We say that (X1, X2, . . . , Xn, . . . )
is the Bernoulli process if Xi’s are i.i.d. and each is binary, i.e., Xi ∈ {0, 1}, with P(Xi = 1) = p.
Each random variable is simply denoted by Xi ∼ Bern(p). In fact, Jacob Bernoulli employed
such a simple process in the course of discovering one of the foundational laws in mathematics,
called the Law of Large Numbers (LLN). Due to the importance of the great discovery, people
named the employed random process the Bernoulli process. Later we will have a chance to study
the LLN in depth. Please be patient until we get to the point.

As you may figure out, we already saw the Bernoulli process in past lectures. Remember the
experiment of flipping a p-biased coin n times where p indicates the probability of each flip
showing “Head”. In the experiment, the basic random variables that we defined were:

Xi = 1 {ith flip shows “Head”} ∀i ∈ {1, 2, . . . , n}.
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Jacob Bernoulli

(1655 ~ 1705)

Figure 1: Picture of Jacob Bernoulli. He is a Swiss mathematician in the 1600s. He is very
famous for discovering the number e and one of the foundational laws in mathematics, called
the Law of Large Numbers (LLN).

This is indeed the Bernoulli process.

The Bernoulli process also forms the basis of many other interested random variables. One such
random variable is the total number S of “Head”s out of n flips. Again, this is also what we
investigated before. Remember that its probability distribution is binomial:

PS(s) =

(
n

s

)
ps(1− p)n−s ∀s ∈ {0, 1, . . . , n}.

Another random variable is the total number X of flips until we see “Head”. Again, this is also
what you saw, not in class, but in PS3. Yes, it is the geometric distribution:

PX(x) = (1− p)x−1p ∀x ∈ {1, 2, 3, . . . }.

An application of the Bernoulli process

You may feel bored about the flipping-coin example. The Bernoulli process is useful also in
more practically-relevant settings. One such application is the call arrivals problem. See Fig. 2.
Suppose the entire time window is discretized into n small intervals and each interval receives

CN12_4

Figure 2: Call arrivals problem.

only one call if any, i.e., only two events can happen: either no call initiation is made or exactly
one. We also assume that each interval has a call arrival with probability p, and call arrivals are
independent from interval to interval. Let

Xi = 1 {ith interval has a call arrival} . (3)

Then, we can immediately see that {Xi}ni=1 is the Bernoulli process, each being distributed
according to Xi ∼ Bern(p).

Example #2: Gaussian process
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The second prominent example is the Gaussian process, in particular, being tailored for the i.i.d.
case. In the i.i.d. case, it is named the i.i.d. Gaussian process. We say that (X1, X2, . . . , Xn, . . . )
is i.i.d. Gaussian if Xi’s are i.i.d., and each follows the Gaussian distribution, say Xi ∼ N (µ, σ2):

fXi(x) =
1√
2πσ

e−
(x−µ)2

2σ2 ∀x ∈ R and ∀i = {1, 2, . . . }.

As hinted earlier, one important application of the i.i.d. Gaussian process is communication.
Noise signals in communication can be modeled as the i.i.d. Gaussian process. We will develop
this modeling in Part III.

Example #3: Markov process

The last example is arguably the most famous and useful stationary process, named the Markov
process. This is named after Andrey Markov, a Russian mathematician in the 1900s. See Fig. 3.
In reality, the i.i.d. assumption does not often hold. One such concrete example is an English
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Andrey Markov

(1856 ~ 1922)

Figure 3: Andrey Markov is a Russian mathematician who made important achievements w.r.t.
a random process that people later named the Markov process.

text. Suppose we read the first and second letters as “t” and “h”, respectively. Then, the next
letter would be highly likely to be “e” because there are many “the” in an English text. From
this, we see that letters are highly dependent with each other.

On the other hand, the stationarity assumption is often practically relevant. Think about the
same English text example. Notice that the statistics of a 10-year-old text would be almost the
same as that of a nowadays text; for instance, the frequency of “the” in an old text would be
roughly the same as that of a current text. The Markov process is one such stationary process
that well respects this scenario.

We say that (X1, X2, . . . , Xn, . . . ) is a Markov process if it satisfies the following certain condi-
tion:

P(xm+1|xm, xm−1, . . . , x1) = P(xm+1|xm). (4)

Here what this condition means is that given the current value xm, the future xm+1 and the past
values (xm−1, . . . , x1) are independent with each other. The key condition is called the Markov
property. In fact, the dependency of random variables in reality can be much more complicated
than that imposed by the simple Markov property (4). It turns out that we can properly
capture such complicated yet more realistic dependency by invoking a so-called generalized

4



Markov process that is characterized by

P(xm+1|xm, . . . , xm−`+1, xm−`, . . . , x1) = P(xm+1|xm, . . . , xm−`+1). (5)

Observe that the dependency of xm+1 on the past is now through possibly more past values, say
` values, xm, . . . , xm−`+1. One can readily see that this is indeed a generalized Markov process,
as it subsumes the Markov process as a special case of ` = 1.

As I mentioned earlier, voice signals in speech recognition can be modeled as a generalized
Markov process. We will discuss details on this in Part III.

Visualization of the Markov process

In statistics and machine learning, the Markov property (4) is usually represented by an insightful
picture which illustrates the relation across random variables. That is, a graphical model. In fact,
the graphical model is concerning a generic random process, say (X1, X2, . . . , Xn), not limited to
the Markov process. It captures the statistical structure of a random process with two entities:
(1) nodes (corresponding to random variables); (2) edges (reflecting the dependency of a pair of
two random variables involved). One interpretation of a graph is as follows. If we can disconnect
the interested graph into two subgraphs G1 and G2 by removing a certain node, say Xi, then
we say that the random variables in G1 are independent of those in G2, conditioned on Xi. For
instance, consider (X1, X2, X3) with P(x1, x2, x3) = P(x1)P(x2|x1)P(x3|x2). One can easily see
from the relation that P(x3|x2, x1) = P(x3|x2), which in turn implies that

P(x1, x3|x2) = P(x1|x2)P(x3|x2, x1)
= P(x1|x2)P(x3|x2)

(6)

where the 1st equality is due the definition of condition probability; and the 2nd equality follows
from P(x3|x2, x1) = P(x3|x2). This then implies that X1 are X3 are independent conditioned on
X2. So the graph is illustrated as:

X1 −X2 −X3. (7)

Note that the removal of X2 disconnects X1 and X3. Applying this logic to the Markov process
(X1, X2, . . . , Xn, . . . ), we can then obtain the graphical model as:

X1 −X2 −X3 − · · · −Xn − · · · (8)

Observe that if we remove any xm, then xm+1 and (x1, . . . , xm−1) are disconnected, thus implying
that xm+1 and (x1, . . . , xm−1) are independent conditioned on xm. This is called the Markov
chain as it looks like a chain. Some curious students may wonder whether no directionality of
the chain (8) implies that given the current value xm, the one-step past value is independent of
all the future values:

P(xm−1|xm, xm+1, xm+2, . . . ) = P(xm−1|xm). (9)

It turns out this is the case. Please check this in PS4.

Look ahead

Actually, there are many other interesting examples and concepts w.r.t. random processes. But
we will stop here because studying further details may distract you so that you may lose interest
in this important topic. Just keep in mind that there are many things to learn about and it is
crucial that you should be strong at random processes. In fact, you will have a great chance
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to know more via a graduate-level course: EE528 Engineering Random Processes. I strongly
recommend you to take the course later on if you wish to do something related to probability.

Instead we will move forward towards the two main targets: MAP and ML estimation principles.
Next time, we will investigate the MAP estimation.
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Lecture 13: MAP principle

Recap

Last time, we investigated a bit tricky concept: random process. While it is a non-trivial
animal, its definition is very simple to state. It is just a sequence of random variables. Among
many kinds of random processes, we focused on the following two types: (i) stationary process
wherein every shifted version has the same joint distribution; and (ii) i.i.d. process, a special
yet often-appearing instance of the stationary process in which the associated random variables
are mutually independent and identically distributed. I then put a particular emphasis on the
following three examples that have something to do with the focused applications to be dealt
with later on: (i) Bernoulli process; (ii) i.i.d. Gaussian process; and (iii) Markov process.

We are now ready to study the two key principles that I mentioned several times earlier: (i)
MAP (Maximum A Posteriori) estimation; and (ii) ML (Maximum Likelihood) estimation.

Today’s lecture

Today we will investigate the first: the MAP principle. This lecture consists of four parts. In
fact, the cancer testing problem that we explored in Lecture 4 is a very good example which
helps us to figure out the essence of the MAP principle. In the first part, we will simply recall
the problem setup. By introducing proper notations, I will then re-interpret several concepts
that we already saw in Lecture 4, yet via a different language that is usually employed in the
context of the MAP principle. Next I will emphasize the last key concept that plays a central
role in MAP: A Posteriori probability. Lastly we will study the MAP estimation.

Revisit: Cancer testing problem

Here is the setup of the cancer testing problem. See Fig. 1. A person is tested for cancer disease.
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negative
or

Figure 1: Cancer testing problem.

The test result reads either positive or negative. In Lecture 4, the key question that we were
interested in was: What is the probability that the person has indeed cancer given that the test
result is positive?

P(has indeed cancer|positive test). (1)

Now let us introduce some notations that will help us to relate the interested probability (1)
to the MAP principle. Let X be a binary random variable that indicates whether a person has
indeed cancer: X = 1 for cancer; 0 otherwise. Let Y be another binary random variable for a
test result: Y = 1 for positive; Y = 0 for negative. See Fig. 2. Prior to digging into (1), let us
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Figure 2: Re-interpretation of the center testing problem with new notations: X indicates
whether a person has indeed cancer; Y denotes the test result.

first interpret several quantities that appeared in the course of computing the probability (1).

A priori probability

The first quantity is the cancer population ratio. In terms of X, it reads:

P(X = 1) =: p. (2)

In fact, this is one of the very important concepts. It is so called the “a priori probability”. Here
“Priori” is a Latin word that means “before”. So it can be interpreted as the probability we
have prior knowledge on. In Lecture 4, we made a natural assumption that the probability is
given as a small quantity like p = 0.1.

True Positive Rate (TPR) and False Negative Rate (FNR)

Remember we investigated two quantities that can be inferred from many clinical trials. One
is the True Positive Rate (TPR), the probability that the test result is positive for a cancer
individual. In terms of (X,Y ) notations, it can be written as:

P(Y = 1|X = 1). (3)

The other is the False Negative Rate (FNR), or called the misdetection rate:

P(Y = 0|X = 1). (4)

Obviously we desire to have very high TPR, i.e., very small FNR. In the past example, we
assumed that the misdetection rate is 5%, FNR is 0.05, which in turn leads to TPR = 0.95.

False Positive Rate (FPR) and True Negative Rate (TNR)

There were two more statistical quantities but now w.r.t. normal population. The first is the
probability that the test reads positive for a normal person: the False Positive Rate (FPR), or
called the false alarm rate:

P(Y = 1|X = 0). (5)

The other is the True Negative Rate (TNR): P(Y = 0|X = 0).

Tradeoff between FPR and TPR

Of course, it is good to have a small FPR (i.e., a large TNR). In reality, however, targeting
too small FPR can be problematic. Why? To see this clearly, consider one extreme case where
we aim at exactly zero FPR. In order to ensure zero FPR, the test result should be always
negative no matter what and whatsoever. Otherwise it would be strictly positive as long as

2



there is normal population. This then leads to zero TPR as well, which is definitely not a
desired situation. Actually there is a tradeoff relationship between FPR and TPR:

Tradeoff: P(Y = 1|X = 0) ↓ =⇒ P(Y = 1|X = 1) ↓ .

In order to decrease FPR, the test should be designed so that the event of declaring positive
(Y = 1) is less likely. But this affects TPR negatively (i.e., decreases TPR). On the other hand,
in order to increase TPR, the test should be designed to yield a high chance of positive result,
which in turns affects FPR negatively (i.e., increases FPR).

Then, what can we do? Here one good thing about FPR is that FPR does not have to be very
small because false alarm for cancer is acceptable in reality. False alarm is indeed annoying, but
it is endurable because it has nothing to do with death-or-live matters. On the other hand, TPR
should be high enough, as the misdetection is indeed disastrous to cancer person. Hence, it is
crucial to find a good balanced point between the two. One typical rule-of-thumb is to increase
FPR (sacrifice for a non-fatal measure) up to a point where TPR degradation is minimized. In
the past example, the exemplary desired values for FPR and TPR were:

FPR: P(Y = 1|X = 0) = 0.2 not very small, but somewhat small;

TPR: P(Y = 1|X = 0) = 0.95 very close to 1.

In general, the test should be designed so as to respect the following configuration:

TPR : P(Y = 1|X = 1) = 1− ε1
FNR : P(Y = 0|X = 1) = ε1 very small

FPR : P(Y = 1|X = 0) = ε2 somewhat small

TNR : P(Y = 0|X = 0) = 1− ε2.

(6)

A Posteriori probability

We are now ready to attack the targeted probability (1). In terms of (X,Y ) notations, it is
written as:

P(X = 1|Y = 1). (7)

Notice that it takes a similar expression, compared to the “a priori probability” P(X = 1).
The distinction is that it has a conditioned event Y = 1 (marked in purple). Actually one can
interpret the test result Y = 1 as a sort of observation. Hence, the probability (7) can be
interpreted as the one after making an observation. People wanted to use a similar Latin-style
name for the probability (7). “A posteriori” is a Latin word that means “after”. Hence, it is
named the “A posteriori probability”. This is the last key concept that plays a central role in
the MAP principle.

Inference problem

The MAP principle arises in the context of a so-called inference problem. An inference problem
is defined as the one wherein the goal is to infer an interested entity when the entity is proba-
bilistically related to the observation given in the problem. In the context of cancer testing, a
natural inference problem that we can think of is the one illustrated in Fig. 3. Here we wish to
infer X (the ground truth indicting whether a person has cancer) from the observation Y (test
result) which has a statistical relationship with X. Remember that P(Y = y|X = x)’s in (6) (for
x, y ∈ {0, 1}) capture the statistical relationship, and the conditional probabilities (determined
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Figure 3: An inference problem.

by ε1 and ε2) are fixed once the test mechanism is designed. The “inference” block in Fig. 3
takes Y as an input to yield an estimate X̂. Notice that X̂ is a function of a random variable Y ;
hence, it is also a random variable. But once the test result is revealed as Y = y (y ∈ {0, 1}), it
becomes a fixed value, as long as there is no new randomness introduced in the inference block.
Here we call such small y, a realization of the random variable Y .

MAP estimation

Suppose the test result is revealed as Y = y where y ∈ {0, 1}. Given the realization Y = y, the
optimal inference (estimation) for X is defined as the one that maximizes the correction decision
probability :

P(X = X̂|Y = y).

Notice that X = X̂ is an event that we make a correct decision. Since the observation Y = y is
given in the problem, we take into consideration the conditioned version. Here X̂ is the one that
we can choose as per our inference mechanism. In cancer testing, there are only two choices for
X between 0 and 1. Hence, the optimal estimation for X can be written as:

X̂opt := arg max
x̂∈{0,1}

P(X = x̂|Y = y)︸ ︷︷ ︸
A Posteriori probability

(8)

where the notation “arg max” means “is the one that maximizes”. Here the small x̂ is a dummy
variable that serves as a candidate that X̂ can take on.

Note that the objective probability (colored in blue) is the “A posteriori probability”. Hence, one
can interpret the optimal estimator as the one that Maximizes A Posteriori probability (MAP).
So, another name of the optimal estimator is the MAP estimator, X̂MAP:

X̂opt = X̂MAP = arg max
x̂∈{0,1}

P(X = x̂|Y = y). (9)

Derivation of the MAP estimation

How to compute X̂MAP? First observe that the “a posteriori probability” can be written as:

P(X = x̂|Y = y) =
P(X = x̂, Y = y)

P(Y = y)
.

This is due to the definition of conditional probability. Here one key observation that we can
make is that the denominator P(Y = y) has nothing to do with the variation of X = x̂, i.e., it
is not a function X = x̂. Hence, we can simplify the MAP estimator (9) as:

X̂MAP = arg max
x̂∈{0,1}

P(X = x̂, Y = y)

= arg max
x̂∈{0,1}

P(X = x̂)P(Y = y|X = x̂)
(10)
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where the 2nd equality is due to the definition of conditional probability. Using (6), we can
express the objective probability as:

P(X = 1)P(Y = y|X = 1) =

{
p(1− ε1), if y = 1;
pε1, if y = 0,

P(X = 0)P(Y = y|X = 0) =

{
pε2, if y = 1;
p(1− ε2), if y = 0.

A more succinct representation for the above is:

P(X = 1)P(Y = y|X = 1) = p(1− ε1)yε11−y;
P(X = 0)P(Y = y|X = 0) = (1− p)(1− ε2)1−yε2y.

(11)

Applying this to (10), we obtain the explicit MAP decision rule:

p(1− ε1)yε11−y
X̂MAP=1

≷
X̂MAP=0

(1− p)(1− ε2)1−yε2y. (12)

Here you may wonder what if the LHS and RHS are exactly the same. In such a very rare case,
we flip a fair coin to decide, or simply declare one (say X̂MAP = 1) out of the two. Even such a
dumb-looking decision does not violate the MAP decision rule (taking the one that maximizes
a posteriori probability), as both the a posteriori probabilities are the same.

A different expression of the MAP decision rule (12)

Someone may want to obtain a different yet possibly insightful expression for (12). Taking an
increasing function log(·) on both sides in (12), we get:

log p+ y log(1− ε1) + (1− y) log ε1
X̂MAP=1

≷
X̂MAP=0

log(1− p) + (1− y) log(1− ε2) + y log ε2. (13)

Massaging the above a bit, we obtain:

y log
(1− ε1)(1− ε2)

ε1ε2

X̂MAP=1

≷
X̂MAP=0

log
1− p
p

+ log
1− ε2
ε1

. (14)

Since the multiplied term log (1−ε1)(1−ε2)
ε1ε2

in the LHS is positive in a natural test design setting

where ε1 <
1
2 and ε2 <

1
2 , we get:

y
X̂MAP=1

≷
X̂MAP=0

log 1−p
p

log (1−ε1)(1−ε2)
ε1ε2

+
log 1−ε2

ε1

log (1−ε1)(1−ε2)
ε1ε2

. (15)

Example: p = 0.1, ε1 = 0.05, ε2 = 0.2

Let us see how the MAP estimation (15) works in the past example where p = 0.1, ε1 = 0.05,
ε2 = 0.2. In this case,

log 1−p
p

log (1−ε1)(1−ε2)
ε1ε2

≈ 0.5074
log (1−ε2)

ε1

log (1−ε1)(1−ε2)
ε1ε2

≈ 0.6402.
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Putting this into (15),

y
1
≷
0

0.5074 + 0.6402 = 1.1476. (16)

In this case, we declare X̂MAP = 0 no matter what the test result y is. This looks like a dumb
decision, although it is indeed the optimal decision rule and we did not make any mistake in
the derivation. Then, why does this happen? This is because the “a priori probability” p = 0.1
(cancer population) affects the decision significantly. In (16), the number 0.6402 (colored in
green) is a quantity that depends solely on test accuracy, as it is a function of ε1 and ε2. On the
other hand, the other number 0.5074 (colored in purple) is a quantity that is affected by a priori
probability p. If there were no bias in cancer population ratio, i.e., p = 0.5, the purple quantity
would be 0. In this case, we make a plausible decision: declaring 1 if positive; 0 otherwise.
However, in the biased yet realistic situation p = 0.1, the number 0.5074 makes the decision
threshold above 1, leading to the dumb-looking decision X̂MAP = 0.

This decision definitely relieves the person who got positive, to some extent. But not fully
because the decision looks silly: declaring 0 no matter what.

Look ahead

Now one natural question that arises in this context is then: Is there any other way that is more
reliable and trustable? Next time, we will address this question.
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Lecture 14: MAP under multiple observations

Recap

Last time, we explored one of the two key principles: MAP estimation. We figured out the
essence of the principle in the context of the inference problem for cancer prediction. See Fig. 1.
Given a realization of test result Y = y ∈ {0, 1}, the optimal estimator is proven to be the MAP

CN14_1

test result

testing

person

inference

cancer (1) positive (1)
negative (0)

Figure 1: Inference problem for cancer prediction with a priori knowledge on cancer population
ratio P(X = 1) = p. The goal of the problem is to infer whether an interested person has cancer
X = 1 given a test result Y .

estimator that Maximizes A Posteriori probability:

X̂opt = X̂MAP = arg max
x̂∈{0,1}

P(X = x̂|Y = y)︸ ︷︷ ︸
A Posteriori probability

= arg max
x̂∈{0,1}

P(X = x̂)P(Y = y|X = x̂)

(1)

where the 2nd equality is because P(X = x̂|Y = y) = P(X=x̂,Y=y)
P(Y=y) and the denominator P(Y = y)

is not a function of X = x̂. Under the following reasonable setting:

TPR : P(Y = 1|X = 1) = 1− ε1
FNR : P(Y = 0|X = 1) = ε1 very small

FPR : P(Y = 1|X = 0) = ε2 somewhat small

TNR : P(Y = 0|X = 0) = 1− ε2,

(2)

we then obtained the explicit MAP decision rule:

y
X̂MAP=1

≷
X̂MAP=0

log 1−p
p

log (1−ε1)(1−ε2)
ε1ε2

+
log 1−ε2

ε1

log (1−ε1)(1−ε2)
ε1ε2

. (3)

At the end of the last lecture, however, I mentioned that this decision rule is sort of untrustable
as it declares the same X̂MAP = 0 no matter what and whatsoever, in realistic scenarios like the
one where p = 0.1, ε1 = 0.05 and ε2 = 0.2:

y
1
≷
0

0.5074 + 0.6402 = 1.1476 −→ X̂MAP = 0. (4)

Even if the decision says “no cancer” under the positive test result, people would not believe
this dumb-looking decision, as the estimator yields the same answer for any person tested and
any test result. So a natural question is: Is there a trustable way to take?

Today’s lecture

1



Today we will answer the question. It turns out there is an easy way to equip the test with
trustability. That is, to repeat the test as many as possible. In this lecture, we will first
derive the optimal decision rule (i.e., the MAP rule) under the multiple-test setting and then
demonstrate that the derived rule gets indeed more trustable with an increase in the number
of tests. Specifically what we are going to do are three folded. First of all, we will make a
specific yet reasonable assumption in the multiple-test setting which turns out to ease the MAP
derivation. Next we will derive the MAP decision rule. Lastly we will figure out the decision
rule is indeed more reliable as the number of tests increases.

Multiple tests

Here is the multiple-test setting. See Fig. 2. Given the multiple observations of the test results,

CN14_2

test result

testing

person

MAPtesting

testing

Figure 2: Inference problem for cancer prediction under multiple test results (Y1, . . . , Yn).

say (Y1, . . . , Yn) = (y1, . . . , yn) where yi ∈ {0, 1} for all i’s, we wish to infer X. As shown earlier,
the optimal estimator is always MAP by the definition of the optimal estimation (the one that
maximizes the correct decision probability, equivalently the a posteriori probability). Hence, we
focus on the MAP estimator as depicted in Fig. 2.

As mentioned earlier, we will make one important assumption. The assumption is based on the
following observation. For the same person, test results depend solely on testing environments
such as testing device variation per trial. Naturally one may imagine that such environments
are independent across trials and each trial has the same statistical behaviour. Here we will
take this as an assumption. Formally, we assume that Yi’s are conditionally independent and
identically distributed given X = x:

(Assumption): Given X = x, {Yi}ni=1 are i.i.d. (5)

Recalling from (2) that P(Yi = 1|X = 1) = 1 − ε1 and P(Yi = 1|X = 0) = ε2, the assumption
implies:

Yi ∼ Bern(1− ε1) when X = 1;

Yi ∼ Bern(ε2) when X = 0.
(6)

MAP derivation

Given (Y1, . . . , Yn) = (y1, . . . , yn), the MAP estimator reads:

X̂MAP = arg max
x̂∈{0,1}

P(X = x̂|Y1 = y1, . . . , Yn = yn). (7)
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The only distinction w.r.t. the single-test case is that now the conditioned event includes many
test results. Again, due to the definition of conditional probability,

P(X = x̂|Y1 = y1, . . . , Yn = yn) =
P(X = x̂, Y1 = y1, . . . , Yn = yn)

P(Y1 = y1, . . . , Yn = yn)
.

Since P(Y1 = y1, . . . , Yn = yn) is not a function of X = x̂, the estimator (7) can be written as:

X̂MAP = arg max
x̂∈{0,1}

P(X = x̂)P(Y1 = y1, . . . , Yn = yn|X = x̂). (8)

Due to the i.i.d. assumption (5) of {Yi}ni=1 given X = x̂, P(Y1 = y1, . . . , Yn = yn|X = x̂) =∏n
i=1 P(Yi = yi|X = x̂). This then yields:

X̂MAP = arg max
x̂∈{0,1}

P(X = x̂)

n∏
i=1

P(Yi = yi|X = x̂). (9)

Using (2), we can then compute the objective probability in the above as:

P(X = 1)
n∏
i=1

P(Yi = yi|X = 1) = p(1− ε1)
∑n

i=1 yiε1
n−

∑n
i=1 yi ;

P(X = 0)
n∏
i=1

P(Yi = yi|X = 0) = (1− p)(1− ε2)n−
∑n

i=1 yiε2
∑n

i=1 yi .

(10)

This expression is very similar to the single-test-case counterpart; see (11) in Lecture 13. The
key distinction lies in the exponents in the RHSs. Instead of y, we have

∑n
i=1 yi. For notational

simplicity, let s :=
∑n

i=1 yi. Then, the MAP rule can be simplified as:

p(1− ε1)sε1n−s
X̂MAP=1

≷
X̂MAP=0

(1− p)(1− ε2)n−sε2s. (11)

Like the single-test case, we can massage this to obtain a more insightful expression. Taking
log(·) on both sides, we get:

log p+ s log(1− ε1) + (n− s) log ε1
1
≷
0

log(1− p) + (n− s) log(1− ε2) + s log ε2. (12)

Aggregating the terms w.r.t. s in the LHS, we obtain:

s log
(1− ε1)(1− ε2)

ε1ε2

1
≷
0
n log

1− ε2
ε1

+ log
1− p
p

. (13)

Since log (1−ε1)(1−ε2)
ε1ε2

is positive in an interested setting (ε1 <
1
2 and ε2 <

1
2), we get:

s

n︸︷︷︸
fraction of postive tests

1
≷
0

log 1−ε2
ε1

log (1−ε1)(1−ε2)
ε1ε2

+
1

n
·

log 1−p
p

log (1−ε1)(1−ε2)
ε1ε2︸ ︷︷ ︸

threshold

. (14)

Here we intentionally divide both by n, in order to read the LHS as an intuitive term: the

empirical average s
n =

∑n
i=1 yi
n (the fraction of positive test results). This way, we see that this
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decision rule makes an intuitive sense. If the fraction of positive results is above the threshold
(RHS), we declare X̂MAP = 1; otherwise X̂MAP = 0.

Reliability of the MAP estimator (14)

In order to have a deeper understanding on the threshold (the RHS in (14)) in light of the
reliability of the MAP estimator, let’s focus on the past example: p = 0.1, ε1 = 0.05 and
ε2 = 0.2. In this case, the two quantities in the RHS are around:

log 1−ε2
ε1

log (1−ε1)(1−ε2)
ε1ε2

≈ 0.6402.
log 1−p

p

log (1−ε1)(1−ε2)
ε1ε2

≈ 0.5074.

Putting this into (14), the rule can be simply stated as:

s

n

1
≷
0

0.6402 +
0.5074

n
. (15)

The number 0.6402 (colored in green) is a quantity that depends solely on test accuracy, as it
is a function of ε1 and ε2. On the other hand, the other number 0.5074 (colored in purple) is a
quantity that is also affected by the a priori probability p.

In the single-test case n = 1, the RHS in (15) is 0.6402+ 0.5074
1 = 1.1476 (exceeding 1); therefore

the MAP rule declares X̂MAP = 0 all the time. In the multiple-test case, however, as n increases,
the term 0.5074

n (depending on the a priori probability p) vanishes; hence, the MAP rule becomes
dominant solely by the first term 0.6402 that captures test accuracy dictated by ε1 and ε2. If
the test accuracies w.r.t. cancer and normal populations were the same, i.e., ε1 = ε2, then the
green term would be 0.5:

log 1−ε2
ε1

log (1−ε1)(1−ε2)
ε1ε2

=
log 1−ε1

ε1

2 log 1−ε1
ε1

=
1

2
, (16)

which is exactly “majority voting”.

CN14_4

Figure 3: Decision threshold as a function of ε2 (False Positive Rate) when 1−TPR = ε1 = 0.05
and n→∞.

Since the test is designed to allow for a bit larger ε2 (relative to ε1) due to the tradeoff relationship
between TPR and FPR, the tests would yield positive outcomes more likely; hence, the threshold
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0.6402 here is set to be larger than 0.5. For a larger ε2, the threshold would be higher; see Fig. 3.
Here we plot the green term as a function of ε2 when ε1 = 0.05. Notice that when ε2 = ε1 = 0.05,
the threshold is exactly 0.5 and it grows with an increase in ε2. In the focused example ε2 = 0.2,
the MAP estimator provide a sort of “a bit biased majority voting” in the limit of n: declaring
X̂MAP = 1 with more than ≈ 64% positive test results.

From the above example, we see that the MAP rule depends only on test accuracy with an
increase in n; hence, it would be more trustable as n grows, as long as the test accuracy is better
than that of random guessing, i.e., ε1 <

1
2 , ε2 <

1
2 .

Look ahead

During the past two lectures, we have studied the MAP estimation via a certain yet prominent
example: the inference problem for cancer prediction. As mentioned before, there are many
instances where the MAP principle is quite instrumental. We will delve into a couple of such
instances later in Part III. Instead next time, we will investigate the 2nd key principle: Maximum
Likelihood (ML) estimation.
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Lecture 15: Maximum Likelihood Estimation (MLE)

Recap

During the past two lectures, we have explored the MAP principle in the context of the inference
problem illustrated as in Fig. 1. In this setting, the essential fact that we figured out is that

CN15_1

observation

statistics

interest

inference

Figure 1: The goal of the inference problem is to infer whether an interested entity, usually
denoted by X, from some observation Y that has a statistical relationship with X.

the optimal inference (defined as the one that maximizes the correction decision probability) is
equivalent to the MAP estimation that Maximizes A Posteriori probability:

X̂opt = X̂MAP = arg max
x̂∈X

P(X = x̂|Y = y)︸ ︷︷ ︸
A Posteriori probability

= arg max
x̂∈X

P(X = x̂)P(Y = y|X = x̂)

(1)

where the 2nd equality is because P(X = x̂|Y = y) = P(X=x̂,Y=y)
P(Y=y) and the denominator P(Y = y)

is not a function of X = x̂.

Here the key assumption that we made is:

(Assumption): The “a priori probability” P(X = x̂) is known! (2)

In reality, however, there are many inference scenarios in which we may not have such prior
knowledge on the interested entity. This is where the Maximum Likelihood (ML) principle kicks
in.

Today’s lecture

Today we will investigate the ML principle in depth. In particular, we will cover the following
four contents. We will first introduce one prominent setting wherein we have no prior knowledge
on the statistics of an interested entity. It turns out the optimal inference in the no-prior-
knowledge setting reduces the ML estimation. So in the second part, we will figure this out.
Next we will derive the ML estimator. Lastly we will demonstrate that the ML estimator offers
a reasonable good performance as the number of observations grows.

A parameter estimation setting

The prominent setting that we will focus on is parameter estimation. Let me explain what
parameter estimation is in a very simple context that concerns the Bernoulli process with pa-
rameter p. See Fig. 2. As per the Bernoulli parameter p, i.i.d. samples {Yi}ni=1 are generated.
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Figure 2: Bernoulli parameter p estimation from multiple i.i.d samples generated according to
Bern(p).

The goal of the problem is to estimate the parameter p from such observations. In this problem
setting, one key distinction w.r.t. the inference problem for cancer prediction with the prior
knowledge of cancer population ratio is that usually we have no idea about the statistics of the
parameter p. Since p is a continuous value, the distinction means that the pdf fp(·) of p is
unknown. Now what is the optimal inference for p in this setting? To figure this out, let us start
with pondering “correction decision probability” which plays a key role in deriving the optimal
estimate.

Correct-decision probability density

Consider the correct-decision probability: P(p = p̂). You can immediately see an issue here.
The issue is that since p is continuous, the probability always reads 0:

P(p = p̂) = 0. (3)

In order to have a meaningful non-zero quantity, we should consider its density as we did for
continuous random variable:

lim
δ→0

P(p ∈ [p̂, p̂+ δ])

δ
=: fp(p̂). (4)

Since the observations are given in the problem, we consider its conditional counterpart:

lim
δ→0

P(p ∈ [p̂, p̂+ δ])|Y1 = y1, . . . , Yn = yn)

δ
=: fp(p̂|Y1 = y1, . . . , Yn = yn). (5)

Optimal estimator

With the conditional correct-decision probability density (5), we can define the optimal estimator
as:

p̂opt := arg max
t∈[0,1]

fp(t|Y1 = y1, . . . , Yn = yn) (6)

where t indicates a dummy variable for the choice of p̂ and t ∈ [0, 1] as it is a candidate for the
Bernoulli parameter. Using the Bayes’ law (applying the definition of conditional probability
twice), we get:

fp(t|Y1 = y1, . . . , Yn = yn) =
fp,Y1,...,Yn(t, y1, . . . , yn)

P(Y1 = y1, . . . , Yn = yn)

=
fp(t)P(Y1 = y1, . . . , Yn = yn|p = t)

P(Y1 = y1, . . . , Yn = yn)

(7)
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where fp,Y1,...,Yn(t, y1, . . . , yn) denotes the joint distribution w.r.t. p and {Yi}ni=1 defined as:

fp,Y1,...,Yn(t, y1, . . . , yn) := lim
δ→0

P(p ∈ [t, t+ δ], Y1 = y1, . . . , Yn = yn)

δ
. (8)

In (7), the denominator P(Y1 = y1, . . . , Yn = yn) is not a function of t. So the optimal estimator
reduces to:

p̂opt = arg max
t∈[0,1]

fp(t)P(Y1 = y1, . . . , Yn = yn|p = t). (9)

Now remember that we know nothing about the pdf fp(t). What can we do then? One reasonable
way to take in such a case is to be equally open for all possible choices. In an effort to put no
biased weight for a particular value, people often assume:

fp(t) is uniformly distributed. (10)

Maximum Likelihood Estimation (MLE)

Since fp(t) is irrelevant to t under the assumption (10), the optimal estimator (9) reads:

p̂opt = arg max
t∈[0,1]

P(Y1 = y1, . . . , Yn = yn|p = t)︸ ︷︷ ︸
Likelihood

. (11)

Here the objective conditional probability (marked in blue)) is a very famous notion, called the
likelihood. So one can interpret the estimator as the one that Maximizes Likelihood. Hence, it
is called the ML estimator.

p̂opt = p̂ML = arg max
t∈[0,1]

P(Y1 = y1, . . . , Yn = yn|p = t). (12)

MLE derivation

Now how to compute the MLE (12)? First observe that given p = t, {Yi}ni=1 is i.i.d., each being
according to Bern(t). Hence,

P(Y1 = y1, . . . , Yn = yn|p = t) =
n∏
i=1

P(Yi = yi|p = t)

= t(# of 1’s)(1− t)(# of 0’s)

= t
∑n

i=1 yi(1− t)n−
∑n

i=1 yi .

(13)

Let s :=
∑n

i=1 yi. Using this and applying (13) to (12), the ML estimator can be simplified as:

p̂ML = arg max
t∈[0,1]

ts(1− t)n−s. (14)

How to figure out the maximizer, say t∗, in the above? Notice that the objective function is
non-negative and achieves 0 at t = 0 and t = 1. So one can readily image that it goes up and
down as t moves from 0 to 1. It turns out it is indeed the case as illustrated in Fig. 3. The
function in Fig. 3 is an example curve when (n, s) = (4, 2). Some very sharp and curious students
might ask how we can guarantee there is only one “up-&-down” movement, not multiple “up-&-
down”s. To answer this, we should check if there is only one stationary point in the open interval
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Figure 3: A shape of the objective ts(1− t)n−s as a function of t ∈ [0, 1] when (n, s) = (4, 2).

t ∈ (0, 1). Here the stationary point is a very well-known terminology in the optimization field
that indicates the point where the slope (derivative) is 0. So we should compute its derivative:

d

dt
ts(1− t)n−s = sts−1(1− t)n−s + ts(n− s)(1− t)n−s−1 · (−1)

= ts−1(1− t)n−s−1 {s(1− t)− t(n− s)} .
(15)

where the 1st equality is due to the well-known property that you are familiar with: (f · g)′ =
f ′ · g+ f · g′. Observe that except for t = 0 and t = 1, there is only one stationary point t∗ that
satisfies:

s(1− t∗)− t∗(n− s) = 0. (16)

Hence, the shape indeed looks like the one in Fig. 3. As you learned from the course on Calculus,
its maximum point occurs at the stationary point:

t∗ =
s

n
=

∑n
i=1 yi
n

. (17)

Hence, the ML estimator is exactly the above. This is only for a particular realization {yi}ni=1.
So for the random process {Yi}ni=1, the ML estimator should read:

p̂ML =
s

n
=

∑n
i=1 Yi
n

. (18)

If you think about it, the solution makes quite an intuitive sense. It coincides with the sample
mean that you might guess initially as the optimal estimate.

Law of Large Numbers (LLN)

Now one natural question that you can ask is: Does p̂ML converge to the ground truth p as n
goes to infinity? It turns out it is indeed the case. The ground for this is based on one very
important law in the probability history, called the Law of Large Numbers (LLN for short).
Here what the LLN says. Suppose {Xi}ni=1 is i.i.d. with E[Xi] = µ and a finite Var(Xi) (often
denoted by Var(Xi) < ∞). Then, the sample mean of {Xi}ni=1 converges to its true mean µ in
probability as n tends to infinity:

Sn :=

∑n
i=1Xi

n

in probability−→ E[Xi] = µ. (19)
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Here we should be careful about stating the “convergence in probability”. Notice that Sn
is another random variable, as it is a function of random variables {Xi}ni=1. Hence the con-
verged quantity is not guaranteed to be deterministic. So in order to compare potentially the
non-deterministic converged quantity with the deterministic µ, we should make a probabilistic
statement. Here what it means by “convergence in probability” is that

P(|Sn − µ| ≥ ε) −→ 0 for any ε > 0. (20)

Applying the LLN (19) to the Bernoulli process case of our interest, we obtain:

p̂ML =

∑n
i=1 Yi
n

in prob−→ p. (21)

Proof of LLN (19)

The proof of the LLN is straightforward if we rely upon one inequality technique that we learned:
Chebyshev’s inequality. Using Chebyshev’s inequality, we get:

P(|Sn − µ| ≥ ε) = P(|Sn − E[Sn]| ≥ ε)

≤ Var(Sn)

ε2

(22)

where the 1st equality is due to E[Sn] = E[X1+···+Xn]
n = nµ

µ = µ. Notice that

Var(Sn) = Var

(
1

n

∑
i=1

Xi

)

= E

 1

n2

(∑
i=1

Xi

)2
−(E[ 1

n

∑
i=1

Xi

])2

=
1

n2

E

(∑
i=1

Xi

)2
−(E[∑

i=1

Xi

])2


=
1

n2

n∑
i=1

Var(Xi)

=
Var(Xi)

n

where the 2nd and 4th equalities are due to the useful fact for the variance; the 2nd last inequality
comes from the independence of Xi’s; and the last is because Xi’s are identically distributed.
Putting this to (22),

P(|Sn − µ| ≥ ε) ≤
Var(Sn)

ε2

=
Var(Xi)

ε2n
−→ 0 as n→∞.

Look ahead

In fact, parameter estimation is a very important problem that arises in a wide variety of
scenarios. One crucial problem that often appears in many contexts is: Gaussian distribution
estimation. So next time, we will investigate the MLE for Gaussian distribution.
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Lecture 16: MLE for Gaussian distribution

Recap

Last time we have studied the ML principle in the context of an important parameter estimation
problem for the Bernoulli process, as illustrated in Fig. 1. According to the Bernoulli parameterCN16_1

i.i.d. samples

inference

Figure 1: A Bernoulli parameter estimation problem.

p ∈ [0, 1], the i.i.d. samples {Yi}ni=1 are generated. Given such generated samples, we wish to
estimate the parameter p, assuming no prior knowledge on the statistics of p. We showed that
the optimal estimate under the setting reduces to the ML estimate:

p̂opt = p̂ML = arg max
t∈[0,1]

P(Y1 = y1, . . . , Yn = yn|p = t)︸ ︷︷ ︸
likelihood

= arg max
t∈[0,1]

t
∑n

i=1 yi(1− t)n−
∑n

i=1 yi
(1)

where the 2nd equality follows from the fact that {Yi}ni=1 is i.i.d. ∼ Bern(t) given p = t. Finding
the stationary point in the open interval (0, 1) by taking the derivative w.r.t. t, we showed that
the maximizer matches with our intuition, sample mean:

p̂ML =

∑n
i=1 Yi
n

.

Using the Law of Large Numbers (LLN), we also proved that the ML estimate converges to the
ground truth p (in probability) as the number n of observations tends to infinity:∑n

i=1 Yi
n

in prob−→ E[Yi] = p as n→∞,

i.e., P
(∣∣∣∣∑n

i=1 Yi
n

− p
∣∣∣∣ ≥ ε) as n→∞−→ 0 for any ε > 0.

At the end of the last lecture, I emphasized that parameter estimation is a very important
problem that often arises in statistics and machine learning. In particular, parameter estimation
for Gaussian distribution often arises in practice, and therefore be of significant interest in a
wide variety of contexts. This forms the content of today’s lecture.

Today’s lecture

1



Today we will explore the optimal estimation for Gaussian distribution parameters: mean and
variance. Specifically what we are going to do are four folded. First off, we will introduce the
problem setting and make some reasonable assumptions which turn out to ease the derivation
of the optimal estimator. We will then show that the optimal estimator reduces to the ML
estimator, as in the Bernoulli case. Next we will derive the ML estimator. Lastly we will
demonstrate that the ML estimate converges to the ground truth as the number of observations
grows.

Gaussian distribution estimation

Consider the problem setting for Gaussian parameter estimation, illustrated in Fig. 2. Let
CN16_2

estimation

i.i.d. samples

Figure 2: Gaussian parameter estimation.

(µ, σ2) be the mean and variance of the Gaussian distribution. The i.i.d. samples {Yi}ni=1 are
generated according to the parameters and are fed as input to the estimation block. As in the
Bernoulli case, we assume no prior knowledge on the statistics of (µ, σ2). As before, let us just
start by computing “correct-decision probability” and figure out what to do without such prior
knowledge.

Correct-decision probability density

Again, since the interested entities are continuous values, the correct-decision probabilities are
always zero:

P(µ = µ̂, σ = σ̂) = 0. (2)

So we should consider its density counterpart:

lim
δ1,δ2→0

P(µ ∈ [µ̂, µ̂+ δ1], σ ∈ [σ̂, σ̂ + δ2])

δ1δ2
=: fµ,σ(µ̂, σ̂). (3)

Why divide by δ1δ2 in the LHS? Remember how the pdf is defined:

P(µ ∈ [µ̂, µ̂+ δ1], σ ∈ [σ̂, σ̂ + δ2]) =

∫ µ̂+δ1

µ̂

∫ σ̂+δ2

σ̂
fµ,σ(a, b)dadb. (4)

Notice that for very small values of δ1 and δ2, P(µ ∈ [µ̂, µ̂+ δ1], σ ∈ [σ̂, σ̂+ δ2]) ≈ fµ,σ(µ̂, σ̂)δ1δ2.
So the pdf is defined as above in (3). Its conditioned counterpart reads:

fµ,σ(µ̂, σ̂|Y1 ∈ [y1, y1 + δ1], . . . , Yn ∈ [yn, yn + δn]). (5)
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Here we take the interval (marked in purple) for the event w.r.t. Yi’s because {Yi}ni=1 is a
continuous random process. For illustrative purpose, we assume the same-size interval, say
δ = δ1 = · · · = δn. This assumption is okay, as we will drive it to the limit δ → 0 later on.

Optimal estimator

Using (5), we can then define the optimal estimator as:

(µ̂opt, σ̂opt) := arg max
a,b∈R

fµ,σ(a, b|Y1 ∈ [y1, y1 + δ], . . . , Yn ∈ [yn, yn + δ]). (6)

where (a, b), marked in green, are dummy variables for (µ̂, σ̂). Let δ be a very small value. Then,
using the definition of conditional probability,

fµ,σ(a, b|Y1 ∈ [y1, y1 + δ], . . . , Yn ∈ [yn, yn + δ])

=
fµ,σ,Y1,...,Yn(a, b, [y1, y1 + δ], . . . , [yn, yn + δ])

P(Y1 ∈ [y1, y1 + δ], . . . , Yn ∈ [yn, yn + δ])

(7)

where fµ,σ,Y1,...,Yn is the joint distribution w.r.t. (µ, σ2) and (Y1, . . . , Yn) defined as:

fµ,σ,Y1,...,Yn(a, b, [y1, y1 + δ], . . . , [yn, yn + δ])

:= lim
ε→0

P(µ ∈ [a, a+ ε], σ ∈ [b, b+ ε], Y1 ∈ [y1, y1 + δ], . . . , Yn ∈ [yn, yn + δ])

ε2
.

Again we use the same small-sized interval ε = ε1 = ε2 for illustrative purpose. Applying the
definition of condition probability into (7), we get:

fµ,σ(a, b|Y1 ∈ [y1, y1 + δ], . . . , Yn ∈ [yn, yn + δ])

=
fµ,σ,Y1,...,Yn(a, b, [y1, y1 + δ], . . . , [yn, yn + δ])

P(Y1 ∈ [y1, y1 + δ], . . . , Yn ∈ [yn, yn + δ])

=
fµ,σ(a, b)P(Y1 ∈ [y1, y1 + δ], . . . , Yn ∈ [yn, yn + δ]|µ = a, σ = b)

P(Y1 ∈ [y1, y1 + δ], . . . , Yn ∈ [yn, yn + δ])

≈ fµ,σ(a, b)f(y1, . . . , yn|µ = a, σ = b)δn

f(y1, . . . , yn)δn

where the approximation is because we assume a very small δ. Notice that f(y1, . . . , yn) is
irrelevant to (µ, σ) = (a, b). So, the optimal estimator can be written as:

(µ̂opt, σ̂
2
opt) = arg max

a,b∈R
fµ,σ(a, b)f(y1, . . . , yn|µ = a, σ = b). (8)

As we assume no prior knowledge on fµ,σ(a, b), as in the Bernoulli case, one natural assumption
that we can make is:

fµ,σ(a, b) is uniformly distributed. (9)

Maximum Likelihood Estimator (MLE)

Since fµ,σ(a, b) does not change w.r.t. (a, b) under the uniform distribution assumption (9), the
optimal estimator can be simplified as:

(µ̂opt, σ̂opt) = (µ̂ML, σ̂ML) = arg max
a,b∈R

f(y1, . . . , yn|µ = a, σ = b)︸ ︷︷ ︸
likelihood

. (10)
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Again, as in the Bernoulli case, we see that the optimal estimator is MLE.

MLE derivation

Let us now derive the MLE (10). Using the fact that {Yi}ni=1 is i.i.d. ∼ N (a, b2) given (µ, σ) =
(a, b), we get:

f(y1, . . . , yn|µ = a, σ = b) =
n∏
i=1

f(yi|µ = a, σ = b)

=
1

(
√

2πb)n
e−

1
2b2

∑n
i=1(yi−a)2 .

The above expression is a bit ugly, containing a complicated term in the exponent. There is a
conventional technique which allows us to make the expression cleaner. That is, to employ an
increasing function, log(·). Taking the log function, we can simplify the complicated term while
preserving the maximizer. Taking the log function in the RHS of the above, we obtain:

log

(
1

(
√

2πb)n
e−

1
2b2

∑n
i=1(yi−a)2

)
= −n log(

√
2πb)− 1

2b2

n∑
i=1

(yi − a)2. (11)

Taking this instead of the objective function in (10), we get:

(µ̂ML, σ̂ML) = arg max
a,b∈R

−n log(
√

2πb)− 1

2b2

n∑
i=1

(yi − a)2︸ ︷︷ ︸
=:L(a,b)

(12)

where L(a, b) is called the log likelihood function.

Now how to find the maximizer in (12)? From the course on Calculus or elsewhere (or from your
intuition), you may hear and/or learn (or feel) that the stationary point in which the derivative
is zero is often the maximizer. It turns out the above is indeed the case: the maximizer occurs
at the stationary point. Actually, if you want to be convinced with rigour, you should have
some background on convex optimization which you may hear of very often, yet you may not
be familiar with. Here we will simply trust in the above statement, searching for the stationary
point. If you want to know more in depth, you may want to take an introductory course on
convex optimization: EE424 Introduction to Optimization. Don’t worry about the final exam
on this matter. We will not ask for any rigorous explanation as to why the maximizer occurs at
the stationary point.

Relying upon the statement, we search for the stationary point by taking the derivative w.r.t.
a and b:

d

da
L(a, b) = − 1

b2

n∑
i=1

(yi − a) · (−1)

d

db
L(a, b) = − n√

2πb
·
√

2π +
1

b3

n∑
i=1

(yi − a)2.

(13)

Equating them to 0, we obtain the stationary point (a∗, b∗) as below:

d

da
L(a, b)

∣∣∣∣
a=a∗,b=b∗

=
1

b∗2

n∑
i=1

(yi − a∗) = 0 −→ a∗ =

∑n
i=1 yi
n

;

d

db
L(a, b)

∣∣∣∣
a=a∗,b=b∗

= −n+
1

b∗2

n∑
i=1

(yi − a∗)2 = 0 −→ b∗2 =
1

n

n∑
i=1

(yi − a∗)2.
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This solution is for a certain realization {yi}ni=1. So when the random process {Yi}ni=1 is fed into
the estimator, the ML estimator reads:

µ̂ML =

∑n
i=1 Yi
n

, σ̂2ML =
1

n

n∑
i=1

(Yi − µ̂ML)2. (14)

Notice that the first is exactly the sample mean, and the second is the average of (Yi − µ̂ML)2,
so it can be interpreted as the sample variance. So it makes quite an intuitive sense.

MLE in the limit of n

As in the Bernoulli case, one natural question arises. Do µ̂ML and σ̂2ML converge to the ground
truths µ and σ2, respectively, in the limit of n? To figure this out, let’s invoke the LLN again.
Applying the LLN to µ̂ML,

µ̂ML =

∑n
i=1 Yi
n

in prob−→ E[Yi] = µ as n→∞. (15)

So the same mean converges to the true mean.

To see the convergence of σ̂2ML, we first re-write it as:

σ̂2ML =
1

n

n∑
i=1

(Yi − µ̂ML)2

=
1

n

n∑
i=1

Y 2
i − µ̂2ML

(16)

where the 2nd equality is due to µ̂ML =
∑n

i=1 Yi
n . Consider the 1st term in the second line of the

above. Since {Yi}ni=1 is i.i.d., its square counterpart {Y 2
i }ni=1 is also i.i.d. Why? For independent

random variables, say X and Y , any functions, say f(X) and g(Y ), are independent. If you are
not convinced, please check. Now we wish to apply the LLN to {Y 2

i }ni=1. To this end, we first
compute:

E[Y 2
i ] = σ2 + (E[Yi])

2 = σ2 + µ2. (17)

We also need to check the finiteness of Var(Y 2
i ). To figure this out, consider:

Var(Y 2
i ) = E[Y 4

i ]− (σ2 + µ2)2 (18)

In fact, the computation of E[Y 4
i ] is complicated, but it is doable. It turns out E[Y 4

i ] = 3σ4 +
6µ2σ2 + µ4. Putting this into the above,

Var(Y 2
i ) = E[Y 4

i ]− (σ2 + µ2)2 = 2σ4 + 4µ2σ2. (19)

Hence, it is indeed finite. As you may guess, the exact computation of the variance is not that
important. The only thing that matters is to check the finiteness. So don’t be bothered by the
exact computation of E[Y 4

i ]. Just remember that it is finite.

Applying the LLN to {Y 2
i }ni=1 together with (17),∑n

i=1 Y
2
i

n

in prob−→ E[Y 2
i ] = σ2 + µ2. (20)
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Now remember what you learned from the course on Calculus. Suppose {ai}∞i=1 and {bi}∞i=1 are
convergent sequences. Then, the limit of the sum of the two sequences converges to the sum of
the two individual limits:

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn. (21)

Also, for any non-strange functions including the square function, the limit of the function of
the convergent sequence is the same as the function of the limit. For instance,

lim
n→∞

a2n =
(

lim
n→∞

an

)2
. (22)

These look intuitive. If you don’t remember the proof of the above, you may want to try it
using the definition of convergence. If you forget about the definition of convergence, review the
relevant content in Calculus or search for wikipedia. On the other hand, if you feel comfortable
in accepting the above without the proof, you may not try it at all. That is also okay, unless you
wish to something hardcore-math in your future career. In reality, many facts like (21) and (22)
coincide with our intuition, so forgetting about such hardcore-looking math is okay. Don’t worry
about the final exam on this hardcore math. You will not be asked to prove such convergence
– this is not a course on real analysis, although it is relevant.

A side note: You know what? I was very annoyed by hardcore-looking math during my under-
graduate. No intuition. No motivation. Too many definitions which are ugly-looking and highly
non-intuitive. Even worse, no one explained to me about the rationale behind them. This is
exactly why I decided not be a mathematician.

It turns out the convergence facts ((21) and (22)) also hold for the convergence in probability.
Again, don’t worry about the proof. Applying these to (16) together with (15), we get:

σ2ML =
1

n

n∑
i=1

Y 2
i − µ̂2ML

in prob−→ (σ2 + µ2)− µ2 = σ2. (23)

As expected, σ2ML converges to the ground truth σ2.

Look ahead

In Part II, we have thus far studied several concepts and key principles: (i) random processes,
Bernoulli process, Gaussian process, Markov process; (ii) MAP principle in the context of the
inference problem for cancer prediction; (iii) ML principle and its application to Bernoulli and
Gaussian parameter estimation; (iv) Law of Large Numbers.

As mentioned earlier, prior to embarking on Part III (dedicated to applications), we need to
study one more important theorem that plays a crucial role for Gaussian noise modeling. That
is, the Central Limit Theorem (CLT). So next time, we will investigate the CLT.
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Lecture 17: Central Limit Theorem (CLT)

Recap

Last time, we have studied the MLE for one prominent problem: Gaussian parameter estimation.
As per the mean and variance (µ, σ2), the i.i.d. Gaussian samples {Yi}ni=1 are generated and fed
into the estimation block, as illustrated in Fig. 1. Assuming no prior knowledge on the statistics

CN17_1

estimation

i.i.d. samples

Figure 1: Gaussian parameter estimation.

of the parameters, we showed that the optimal estimate is equivalent to the ML estimate:

(µ̂opt, σ̂
2
opt) = (µ̂ML, σ̂

2
ML) = arg max

a,b∈R
f(y1, . . . , yn|µ = a, σ = b)︸ ︷︷ ︸

likelihood

= arg max
a,b∈R

1

(
√

2πb)n
e−

1
2b2

∑n
i=1(yi−a)2

= arg max
a,b∈R

−n log(
√

2πb)− 1

2b2

n∑
i=1

(yi − a)2

(1)

where the 2nd equality follows from the fact that {Yi}ni=1 is i.i.d. ∼ N (a, b2) given (µ, σ) = (a, b);
and the last equality is because taking the increasing function log(·) does not alter the optimal
solution. Finding the stationary point by taking the derivative, we showed that the maximizer
matches with our intuition, sample mean & sample variance:

µ̂ML =

∑n
i=1 Yi
n

, σ̂2ML =
1

n

n∑
i=1

(Yi − µ̂ML)2.

Using the Law of Large Numbers (LLN), we also proved that the ML estimate converges to the
ground truth (in probability) as the number n of observations tends to infinity: as n→∞,

µ̂ML =

∑n
i=1 Yi
n

in prob−→ E[Yi] = µ,

σ̂2ML =
1

n

n∑
i=1

(Yi − µ̂ML)2 =
1

n

n∑
i=1

Y 2
i − µ̂2ML

in prob−→ (σ2 + µ2)− µ2 = σ2.

At the end of the last lecture, I mentioned that prior to Part III (dedicated to applications), we
need to study one more theorem that plays a crucial role for Gaussian modeling of noise that
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often appears in many contexts: the Central Limit Theorem (CLT). This is the topic of this
lecture.

Today’s lecture

Today we will investigate the CLT in depth. This lecture consists of three parts. We will first
make the precise statement of the CLT. Next we will study two claims that play an important
role in the proof: (i) Claim #1, concerning the sum of multiple independent continuous random
variables; (ii) Claim #2, enabling a simpler expression of a complicated-looking pdf via Laplace
transform. Finally we will use the two claims to prove the theorem.

Rough statement of CLT

Let {Xi}∞i=1 be an i.i.d. process with mean E[Xi] = µ and finite variance Var(Xi) = σ2 <∞. A
rough statement of the CLT is that in the limit of n→∞,

X1 +X2 + · · ·+Xn converges to a continuous r.v. with the Gaussian distribution.

Here the mean of the sum should read E[X1 + · · ·+Xn] = nE[X1] = nµ and its variance is:

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+ Var(Xn)

= nVar(X1) = nσ2
(2)

where the 1st equality is due to the independence of {Xi}ni=1. Perhaps one surprising fact in
the CLT is that the density of the converged random variable is Gaussian no matter what the
initial distribution of the original random process is.

Precise statement of CLT

The above statement is a bit rough in the following two reasons. First, the converged random
variable has infinite mean and variance. Second, the meaning of the convergence to another
random variable is not rigorously defined. To make the converged random variable have finite
mean and variance, people often do normalization (subtracting the mean and dividing it by the
standard deviation):

Zn :=
X1 +X2 + · · ·+Xn − nµ√

nσ2
. (3)

This way, we get: E[Zn] = 0 and Var(Zn) = 1. The precise statement of the CLT is then:

Zn =
X1 +X2 + · · ·+Xn − nµ√

nσ2
in distribution−→ Z ∼ N (0, 1). (4)

Here what it means by “convergence in distribution” is that the cumulative density distribution
of Zn is the same as that of Z in the limit:

lim
n→∞

FZn(z) =

∫ z

−∞

1√
2π
e−

1
2
t2dt ∀z ∈ R. (5)

A side note: There is a reason why the convergence in distribution is defined w.r.t. the cdf
instead of the pdf. The reason is that there are some tricky yet unusual situations in which
the cdf converges while the pdf does not. But for illustrative simplicity, we are going to use
the pdf instead of the cdf from now on. If you want to know more in detail, unfortunately you
should take a hardcore-math course like “measure theory” which has been driving me to sit in
the Department of Electrical Engineering.
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Remember the convergence in probability. It concerns the probabilistic comparison between a
random variable and a deterministic converged quantity. On the other hand, the convergence
in distribution is about comparison with regard to distribution between two random variables
(Zn and Z in the above case). So you may now understand why we have multiple definitions of
convergence when dealing with random processes (not deterministic sequences).

Equivalent statement of CLT

There is a simpler and equivalent expression of (4) which I prefer and we will prove in this
lecture. The expression is based on the following observation:

X1 +X2 + · · ·+Xn − nµ√
nσ2

=
X1 − µ√
nσ2︸ ︷︷ ︸

=:X′
1

+
X2 − µ√
nσ2︸ ︷︷ ︸

=:X′
2

+ · · ·+ Xn − µ√
nσ2︸ ︷︷ ︸

=:X′
n

. (6)

Here X ′i is just a shifted version of Xi. So {X ′i}∞i=1 is also i.i.d. yet with mean E[X ′i] = 0 and
variance

Var(X ′i) = Var

(
X1 − µ√
nσ2

)
=

1

nσ2
Var (X1 − µ)

=
σ2

nσ2
=

1

n

where the 2nd equality is due to Var(cX) = E[(cX)2]− (E[cX])2 = c2Var(X) for any constant c
and a random variable X; and the 3rd equality is because Var(X1 − µ) = Var(X1) = σ2 (Why
a constant shift does not alter the variance? Think about it). Hence, in terms of {X ′i}∞i=1, the
CLT says:

X ′1 +X ′2 + · · ·+X ′n
in dist−→ Z ∼ N (0, 1). (7)

For notational simplicity, let’s re-use the simpler non-prime notation: {Xi}∞i=1. With the simpler
notation, the CLT then says:

Zn := X1 +X2 + · · ·+Xn
in dist−→ Z ∼ N (0, 1). (8)

where {Xi}∞i=1 is i.i.d. with E[Xi] = 0 and variance Var(Xi) = 1
n . In this lecture, we will prove

the equivalent statement (8), i.e.,

lim
n→∞

fZn(z) =
1√
2π
e−

1
2
z2 ∀z ∈ R. (9)

It turns out there are two important claims that play a crucial role in streamlining the proof.
So we will first investigate the two claims and then use them to complete the proof (9).

Claim #1

Notice in (8) that there are many sums in relating Zn to {Xi}ni=1. At the end of the day, we are
interested in figuring out the pdf of Zn summed by many Xi’s. The first claim is about the pdf
of the sum of multiple independent random variables. For illustrative purpose, consider only
two random variables, say X and Y . Let Z = X + Y . Remember the discrete random variable
case where the pmf of the sum of two independent discrete random variables is expressed as

3



the convolution of the individual pmfs. Claim #1 says that it holds also for continuous random
variables:

(Claim #1): fZ(z) = (fX ∗ fY )(z) :=

∫ ∞
−∞

fX(x)fY (z − x)dx. (10)

The proof of this is not that difficult, so we will omit the proof here. Instead you will have a
chance to prove it in PS5.

Claim #2

Recall the interested random variable Zn:

Zn = X1 +X2 + · · ·+Xn.

Applying Claim#1 (10) many times, we obtain:

fZn(z) = (fX1 ∗ fX2 ∗ · · · ∗ fXn)(z). (11)

We have many convolutions. The convolution formula is complicated, as the meaning of the
word “convoluted” suggests. So the expression of fZn(z) is very much complicated. This is
where Claim #2 kicks in. What Claim #2 says is that the convolutions can be significantly
simplified in the Laplace transform domain. To understand what it means in detail, let us
consider the above setting in which there are only two independent random variables, X and Y ,
and Z = X + Y . Claim #2 says that the Laplace transform FZ(s) of fZ(z) can be expressed as
the product of the individual Laplace transforms (FX(s), FY (s)) w.r.t. (fX(x), fY (y)):

(Claim #2): FZ(s) = FX(s)FY (s) (12)

where the Laplace transform is defined as:

FZ(s) :=

∫ +∞

−∞
e−szfZ(z)dz. (13)

The proof of this is also easy, relying only upon the “change-of-variable” technique that we
exercised with several times earlier. Hence, we skip the proof as well. But you can check it in
PS5.

Setup for the proof of CLT

We are now ready to prove the CLT (8). Applying Claim #2 into (11) many times (more
precisely, n− 1 times), we get:

FZn(s) = FX1(s)FX2(s) · · ·FXn(s)

= [FX1(s)]n
(14)

where the 2nd equality is because each of {Xi}∞i=1 is identically distributed. For simplicity, let’s
not worry about a very rare and practically-irrelevant case where the Laplace transform does
not exist.

Now how to proceed with (14)? More precisely, how to compute FZn(s) with what we know:
E[X1] = 0 and E[X2

1 ] = 1
n? It turns out these moment information (1st and 2nd moments)

play a role to compute. Here a key observation is that these moments appear as coefficients
in the Taylor series expansion of FX1(s). And it turns out this expansion leads to an explicit
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expression for FZn(s), thereby hinting the pdf of Zn. To see this, let us try to obtain the Taylor
series expansion of FX1(s).

Taylor series expansion

To this end, we first need to compute the kth derivative of FX1(s):

F
(k)
X1

(s) :=
dkFX1(s)

dsk

=
dk

dsk

{∫ ∞
−∞

e−sxfX1(x)dx

}
=

∫ ∞
−∞

(−1)kxke−sxfX1(x)dx

(15)

where the 2nd equality is due to the definition of the Laplace transform: FX1(s) :=
∫ +∞
−∞ e−sxfX1(x)dx;

and the 3rd equality is because of the interchangeability of integration and differentiation (let’s
not worry about a very weird situation where it is not interchangeable). Applying the Taylor
expansion at s = 0, we get:

FX1(s) =
∞∑
k=0

F
(k)
X1

(0)

k!
sk. (16)

Plugging s = 0 into (15), we get:

F
(k)
X1

(0) =

∫ ∞
−∞

(−1)kxkfX1(x)dx = (−1)kE[Xk
1 ].

This together with (16) yields:

FX1(s) =

∞∑
k=0

(−1)kE[Xk
1 ]

k!
sk. (17)

Applying E[X1] = 0 and E[X2
1 ] = 1

n to the above, we obtain:

FX1(s) = 1 +
1

2n
s2 +

∞∑
k=3

(−1)kE[Xk
1 ]

k!
sk. (18)

Now what can we say about E[Xk
1 ] for k ≥ 3 in the above? Notice that E[Xk

1 ] = E[(X2
1 )

k
2 ] and

E[X2
1 ] = 1

n scales like 1
n . It turns out this leads to the fact that E[(X2

1 )
k
2 ] decays like 1

nk/2 , which

exhibits a faster decaying rate for k ≥ 3, as compared to 1
n . It turns out this scaling yields:

lim
n→∞

FZn(s) = lim
n→∞

(
1 +

1

2n
s2 +

∞∑
k=3

(−1)kE[Xk
1 ]

k!
sk

)n

= lim
n→∞

(
1 +

1

2n
s2
)n

= e
s2

2

(19)

where the last equality is due to the fact that

ex = lim
n→∞

(
1 +

x

n

)n
. (20)
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Here the rigorous proof for the 2nd equality in (19) is omitted. Instead we only provided the

intuition behind that: E[(X2
1 )

k
2 ] decays like 1

nk/2 , exhibiting a much faster decaying rate than
1
n , for k ≥ 3. In fact, the rigorous proof requires hardcore-math which may incur too much
distraction without giving any insights. That’s why I skipped it. Also, don’t worry about the
final exam. You will not be asked to provide a rigorous proof on this.

Proof of CLT

From (19), what can we say about fZn(z) in the limit of n? To figure this out, we need to do
the Laplace inverse transform:

fZn(z) = InverseLaplace(FZn(s))(z) :=
1

2πi
lim
T→∞

∫ Re(s)+iT

Re(s)−iT
FZn(s)eszds (21)

where Re(s) denotes the real-component value in s. But you may feel headache because it looks
very much complicated. So instead we will do the reverse engineering: guess-&-check. A good
thing about the Laplace transform is that it is an one-to-one mapping. Also in PS4, you have
already computed:

LaplaceTransform

(
1√
2π
e−

z2

2

)
= e

s2

2 .

This together with (19) gives:

lim
n→∞

fZn(z) =
1√
2π
e−

z2

2 , z ∈ R. (22)

This is indeed the Gaussian distribution with mean 0 and variance 1. So this completes the
proof of the CLT.

Look ahead

In Part I, we have studied numerous concepts in probability: sample space, events, conditional
probability, total probability law, independence, random variables. In Part II, we have studied
some deeper concepts and key principles: random processes, MAP principle, ML principle, Law
of Large Numbers and Central Limit Theorem.

The goal of Part III is to demonstrate the role of such concepts and principles in the context of
the following three killer applications: (i) communication; (ii) machine learning; and (iii) speech
recognition. Next time, we will first focus on the communication application.
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Lecture 18: Communication: A probabilistic modeling of noise

Recap

Last time, we have explored an important theorem which forms the basis of the Gaussian
modeling of many interested random quantities: the Central Limit Theorem (CLT). It is about an
i.i.d. random process {Xi}∞i=1. For illustrative purpose, we considered a simple yet generalizable
setup: E[Xi] = 0 and Var(Xi) = 1

n . In this setup, the CLT says:

Zn := X1 +X2 + · · ·+Xn
in dist−→ Z ∼ N (0, 1). (1)

where the meaning of the description
in dist−→ is:

lim
n→∞

fZn(z) =
1√
2π
e−

1
2
z2 ∀z ∈ R. (2)

We used two claims to prove the CLT. Using the 1st claim, we expressed the pdf of Zn as the
convolution of many pdfs w.r.t. Xi’s: fZn(z) = (fX1∗fX2∗· · ·∗fXn)(z). Employing the 2nd claim
that enables a succinct representation via Laplace transform, we obtained: FZn(s) = [FX1(s)]n.
We then used Taylor series expansion to show that:

lim
n→∞

FZn(s) = lim
n→∞

(
1 +

1

2n
s2
)n

= e
s2

2 . (3)

Lastly, exploiting the one-to-one mapping property of Laplace transform together with

LaplaceTransform

(
1√
2π
e−

z2

2

)
= e

s2

2 ,

we finally proved the CLT (2).

Now let’s recall what we have learned so far. In Part I, we have studied many concepts: sample
space, events, conditional probability, independence, random variables, and Gaussian distri-
bution. In Part II, we have investigated a couple of deeper concepts and key principles: (i)
random processes and three prominent examples; (ii) MAP and ML principles; (iii) Law of
Large Numbers; (iv) Central Limit Theorem. The goal of Part III is to demonstrate the role
of such contents in the context of the three killer applications: (i) communication; (ii) machine
learning; (iii) speech recognition.

Today’s lecture

Today we will focus on the first communication application to figure out the connection with
probability. Specifically what we are going to do are five folded. First of all, we will review the
definition of communication and then introduce the architecture of digital communication that
we will put a special emphasis on. Second, we will investigate an uncertain entity that arises in
communication and therefore the one that is intimately related to probability. That is, noise.
As mentioned earlier several times, the noise can be modeled as the famous Gaussian random
variable. In the 3rd and 4th parts, we will study physical properties of the noise and then
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develop a mathematical model based on physics. Lastly we will build upon the mathematical
framework to show that the probability distribution of the noise is Gaussian.

Digital communication

Recall the definition of communication that we studied in Lecture 1. Communication is the
transfer of information from one end to the other end. Here the one end is called the transmitter,
and the other end is called the receiver. Something that lies in between is a physical medium,
called the channel.

Broadly speaking, there are two kinds of communication depending on the type of information
source that we wish to transmit: (i) analog communication in which the information source is
of raw type, like sound waveforms, images, and texts; (ii) digital communication in which the
information source is simply binary string (a sequence of binary digits), simply called the bits.
In this course, we will focus on the digital communication, as it has laid the foundation of almost
all the current communication systems.

The fact that digital communication has been dominating the communication system era is
based on the following key finding by one genius scientist in the mid 1900s: Claude E. Shannon.
What he showed is that any type of information source can be represented as bits without losing
the meaning of the information. One simple example is an English text that comprises English
letters. Here one key observation is that there are only a finite number of candidates that each
letter can take on. This number is the total number of English alphabets, which is 26. Here
we ignore any special characters such as space. From this, we see that dlog2 26e = 5 number of
bits suffices to represent each letter. One can make a similar argument for any other type of
information source.

Fig. 1 illustrates the architecture of digital communication that Shannon introduced. Bits are
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bits encoder bits

Figure 1: The architecture of digital communication.

the information source that we wish to transmit. The transmitter has one white box which
takes the bits as an input to yield a signal that would be transmitted over the channel. Shannon
called the box the encoder. Similarly the receiver has another white box which takes a received
signal to try to reconstruct the bits as perfectly as possible. The box is called the decoder.

Modem

Let me introduce one terminology that you may hear of in the context of communication. The
physical world is definitely analog, so a transmitted signal that is fed into the channel should be
a physical quantity, such as an electromagnetic signal, say an electrical voltage signal. So the
encoder needs to modulate the digital information (bits) into an electrical voltage signal. Also
a received signal (the channel output) is a voltage signal, so the decoder needs to demodulate
the analog signal to reconstruct the bits. Hence, people often call the encoder/decoder simply
the modem, highlighting “mo” and “dem” from modulator and demodulator, respectively. See
Fig. 2.
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Figure 2: MODEM: MOdulator & DEMoluator.

A probabilistic model of the channel

One key feature of the channel is its uncertainty. The received voltage signal is not a deterministic
function of the transmitted signal. Also the channel in most practical scenarios is of the form
of addition: the received signal is the sum of the transmitted signal and an additive noise, as
illustrated in Fig. 3. Hence, the additive noise, say Z, can be described by a random quantity.
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Figure 3: An additive noise channel.

In the language of probability, the random quantity is referred to as a random variable. More
precisely, it is a continuous random variable, which is described by a probability density function.
As mentioned in the beginning, people found that Z can be modeled as the famous Gaussian
random variable. For the rest of this lecture, we will prove it based on physical properties of
the noise.

Physics

Let us first invoke physics, by investigating how such noise occurs in interested communication
systems. Here what I mean by interested communication systems is the one with electronic
circuits, which I simply call electronic communication systems. In such electronic communication
systems, a signal level is determined by its voltage. And according to the basic introductory
course on circuits which many of you may be taking now: the voltage level is intimately related
to the movement of electrons. The less electrons, the higher a voltage level.

In the early 1900s, it was discovered by a physicist, named John B. Johnson, that the behavior of
electrons contributes to inducing a noise that we cannot control over. The discovery was based on
an interesting observation that electrons are randomly agitated by heat. This random agitation
then makes the voltage level be out of control, as it may depend on a non-controllable factor
which is the temperature. So the precise movement control of electrons is almost impossible in
reality. Jonhson interpreted such undesirable random fluctuation as a major source of noise.

At that time, Johnson wanted to figure out the statistical behavior of the noise, but he could
not do so because he was an experimental physicist, not being good at math. Instead he had
a colleague in his workplace, Bell Labs, who is very smart and particularly strong at math.
The colleague was Harry Nyquist. So he shared his experimental observation with Nyquist. As
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Johnson expected, Nyquist could establish a mathematical theory for such noise to demystify its
statistical behavior. The theory formed the basis of the Gaussian noise modeling that we will
study in the sequel. At the time, the noise was named as the thermal noise, as it is dependent
of the temperature.

In reality, the noise may also depend on device imperfections and/or measurement inaccuracies.
But the major source of the randomness is due to the thermal noise. So we are going to focus
on the mathematical theory of the thermal noise done by Nyquist.

Assumptions made on the thermal noise

The mathematical theory starts with making concrete assumptions on physical properties that
the thermal noise respects. These are four folded.

1. As mentioned earlier, the noise is due to the random movement of electrons. And an
electrical signal contains tons of electrons. So one natural assumption that one can make
is: the additive noise is the overall consequence of many additive “sub-noises”. A natural
follow-up assumption is that the number of sub-noises is infinity, which reflects the fact that
there are tons of electrons in an electrical signal.

2. These electrons are known to be typically uncorrelated with each other. So the second
assumption is: the sub-noises are mutually independent.

3. Also, it is known that there is no particularly dominating electron that affects the additive
noise most significantly. So the third assumption that one can make as a simplified version
of this finding is: each sub-noise contributes exactly the same amount of energy to the total
energy in the additive noise.

4. Finally, the noise energy is typically not so big relative to the energy of an interested voltage
signal. Obviously it does not blow up. So the last reasonable assumption is: the noise energy
is finite.

A mathematical model based on the four assumptions

Let us express the above four assumptions in a mathematical language. To this end, we first
introduce some mathematical notations to write the total additive noise Z as the infinite sum
of n sub-noises, say X1, X2, . . . , Xn:

Z = lim
n→∞

X1 +X2 + · · ·+Xn︸ ︷︷ ︸
=:Zn

. (4)

The mathematical expressions for the first and second assumptions are: n→∞ and (X1, . . . , Xn)
are mutually independent. A mathematical assumption that we will take w.r.t. the third as-
sumption is: (X1, . . . , Xn) are identically distributed. So it is the i.i.d. assumption.

Without loss of generality, one can assume that Z has zero-mean. Here what it means by
“without loss of generality” is that the general case can be readily covered with some proper
modification to the ground assumption that follows after the phrase. That’s why here we say
that there is no loss of generality. You may wonder why the zero-mean assumption can serve
as the ground assumption. To see this, consider a general case wherein we have a bias on Z:
E[Z] = µ 6= 0. We can then always subtract the bias from the received signal so that the mean
of the effective noise is zero. More precisely, we subtract the bias µ from the received signal
Y = X + Z (where X denotes the transmitted signal) to obtain:

Y − µ = X + (Z − µ). (5)
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Here Z − µ can be interpreted as the effective noise, and this has indeed zero-mean. Some may
wonder how we can figure out the mean µ. There is a very popular way to estimate µ based
on the maximum likelihood (ML) principle that you learned. This will be explored in depth in
PS6.

Due to the i.i.d. assumption, each sub-noise has the same amount of energy:

E[X2
i ] = E[X2

j ], ∀i, j = 1, . . . , n. (6)

Here the energy is simply represented as the square of the voltage based on the fact that the
energy is proportional to the voltage square. We ignore other factors like “resistance”. The
energy in the aggregated noise Zn is

E[Z2
n] = Var(Zn)

= Var(X1) + Var(X2) + · · ·+ Var(Xn)

= nVar(X1) =: σ2
(7)

where the 1st equality is due to E[Zn] = 0 (the zero-mean assumption); and the 2nd and 3rd
equalities come from the i.i.d. assumption.

Lastly consider the finite energy assumption. Denoting by σ2 this finite energy, we see from (7)
that the energy of the sub-noises must shrink as more and more sub-noises are added:

E[X2
i ] =

σ2

n
, i = 1, . . . , n. (8)

The statistical behavior of the thermal noise in the limit of n

We are interested in the pdf of the random variable Zn in the limit of n. Recall Zn = X1 +X2 +
· · ·+Xn and the above assumptions are summarized as below:

(X1, . . . , Xn) i.i.d.;

E[Xi] = 0 ∀i;

Var(Xi) =
σ2

n
∀i.

(9)

What does this remind you of? Yes, it is the Central Limit Theorem. The only distinction here
is that we read Var(Xi) = σ2

n instead of Var(Xi) = 1
n . This distinction leads to Var(Z) = σ2

instead of Var(Z) = 1. Hence, using the CLT, we get:

Z = lim
n→∞

Zn ∼ N (0, σ2). (10)

Look ahead

In this lecture, we made some physics-inspired assumptions on the additive thermal noise to
demonstrate that the additive noise can precisely be modelled as the Gaussian distribution. See
Fig. 4. Next time, we will explore how to design the transmission and reception strategies under
the Gaussian channel. In the process, we will show that the MAP principle plays a key role.
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Figure 4: Additive Gaussian noise channel.
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Lecture 19: Communication: MAP principle

Recap

Last time we have studied a probabilistic modeling of the noise that appears as a source of
uncertainty in communication. The noise is often added on top of a transmitted signal, as
illustrated in Fig. 1. Due to the uncertain nature of the noise, it is described in terms of a
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Figure 1: The additive Gaussian noise channel.

random variable, say Z. Based on several physical properties of the noise, we showed that Z
can be modeled as a Gaussian random variable. Specifically, the physical properties that we
pointed out were: (i) the noise is a consequence of an aggregation of many “sub-noises”; (ii)
there is almost no correlation across the sub-noises; (iii) there is no dominating sub-noise; and
(iv) it has a finite energy. We then translated the properties into the following mathematical
model:

Z = lim
n→∞

X1 +X2 + · · ·+Xn︸ ︷︷ ︸
=:Zn

(1)

where {Xi}ni=1 are i.i.d. with E[Xi] = 0 and Var(Xi) = σ2

n for all i. Lastly applying the CLT
into the above, we proved:

Z = lim
n→∞

Zn ∼ N (0, σ2). (2)

Today’s lecture

Today we will explore transmission and reception strategies under the additive Gaussian noise
channel. One crucial point that I would like to point out in the process is that the optimal receiver
is based on the MAP and ML principles that have been emphasized throughout. Specifically
what we are going to do are four folded. We will first consider a simple yet wide-employed
transmission scheme. Under the simple transmission, we will then guess a reasonably good
reception scheme based solely upon intuition. Next we will derive the optimal receiver based
on the MAP principle. Lastly we will show that under a reasonable assumption, the optimal
decision rule reduces to the ML estimation and furthermore it coincides with the initial guess.

A simple transmission scheme for sending one bit

As a simple setting, we consider the case of sending only one bit, say B. Since the transmitted
bit is unknown to the receiver, the interested bit B can be viewed as a binary random variable.
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Figure 2: Pulse Amplitude Modulation (PAM): Mapping the value of one bit into one of the
two possible voltage levels.

In an electronic communication system, a transmitted signal must be an analog voltage signal.
So B should be modulated into a voltage signal. To this end, we consider a simple binary
mapping; see Fig. 2. The case B = 0 is mapped to a voltage level v0. Similarly v1 corresponds
to B = 1. How to choose v0 and v1? The choice is related to a communication budget given as a
constraint in the system. Physically, the voltage transmitted corresponds to some energy being
spent. According to the circuit theory that many of you guys are familiar with, the energy is
proportional to the square of the voltage. For simplicity, let us assume that the energy spent
in transmitting a voltage v Volts is exactly v2 Joules. Under this assumption, a good choice of
(v0, v1) might be the one that maximizes the distance |v0 − v1| (the larger distance, the easier
to distinguish the two levels), given the energy budget constraint v2i ≤ E for i = 0, 1. This is
an easy optimization problem wherein the solution is simply obtained at the boundary point:
v0 = −

√
E and v1 = +

√
E. Hence we take this choice, as illustrated in Fig. 2. Actually this is

a prominent well-known scheme called the Pulse Amplitude Modulation (PAM). Notice that the
bit information is reflected via perturbing (modulating) a voltage-pulse amplitude level.

Guess a reasonably good reception scheme

Under the above transmission strategy, what is a good reception scheme? To figure this out, let’s
first consider two main factors that affect a reception rule. The first is the a priori probability :
P(B = 0) and P(B = 1). Why does this matter? You can easily see why if you think about one
extreme case where we somehow knew (prior to the communication process) that the information
bit is 0 for sure. In this case, we do not need to take a look at the received voltage at all. We
can simply declare that the information bit is always 0, no matter what and whatsoever. In
reality, however, we often times have no access to such prior information. In this case, what we
can do is to simply assume that the information bit is equally likely to be 1 or 0. So here we
will take this assumption:

(Assumption): P(B = 0) = P(B = 1) =
1

2
. (3)

The second factor is noise statistics. Knowing the statistical behavior of the noise will help the
receiver make a decision. To see this, we consider the Gaussian noise of interest. The Gaussian
noise is more likely to be near zero, as illustrated in Fig. 3. Here the height at a certain point
of a bell-shaped curve indicates the frequency density of the occurrence at the point. In this
case, your intuition says that a good receiver would be the one that picks the nearer of the
two possible transmitted voltages as compared to the received voltage. In other words, if the
received voltage is above the middle (0 in this case) of the two possible voltages (±

√
E), we

declare B̂ = 1; otherwise, B̂ = 0. Actually this is an intuitive and famous rule, named the
Nearest Neighbor (NN) rule. So one can image that the optimal decision rule in the Gaussian
noise case might be the NN rule. It turns out this is indeed the case. For the rest of this lecture,
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Intuition says:

Figure 3: A guess about the optimal receiver.

we will prove this.

The optimal decision rule

Recall by definition that the optimal decision rule is the one that maximizes correct-decision
probability. So we focus on the interested probability. Given a particular realization of the
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Figure 4: The optimal receiver is the one that maximizes P(B = B̂|Y = y).

received signal, say Y = y, the correct-decision probability reads:

P(B = B̂|Y = y) (4)

where B̂ is the estimate of B; see Fig. 4. Hence, the optimal decision rule is MAP :

B̂opt = B̂MAP = arg max
b̂∈{0,1}

P(B = b̂|Y = y). (5)

MAP derivation

Let us massage the MAP solution (5) to obtain an explicit rule. As we did a couple of times
earlier, using Bayes’ rule, we can express P(B = b̂|Y = y) as:

P(B = b̂|Y = y) =
P(B = b̂)fY (y|B = b̂)

fY (y)
. (6)

Here we introduce the density function fY (y) to properly deal with the annoying probability-zero
event Y = y. Since fY (y) is not a function of B = b̂, the MAP rule is simplified as:

B̂MAP = arg max
b̂∈{0,1}

P(B = b̂)fY (y|B = b̂). (7)
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Recall the assumption (3): P(B = 0) = P(B = 1) = 1
2 . Hence, under this assumption, it

becomes the ML rule:

B̂MAP = B̂ML = arg max
b̂∈{0,1}

fY (y|B = b̂)︸ ︷︷ ︸
likelihood

. (8)

Relationship with the NN rule

Let us prove that the optimal ML rule coincides with our initial guess: the NN rule. We first
see that for the Gaussian channel, fY (y|B = 1) can be rewritten as:

fY (y|B = 1) = fY (y|X = +
√
E)

= fZ(y −
√
E|X = +

√
E)

= fZ(y −
√
E)

(9)

where the 1st equality comes from the fact that the event B = 1 is equivalent to the event
X = +

√
E due to our encoding rule PAM; the 2nd is due to the fact that the event Y = y

is equivalent to the event Z = y − X = y −
√
E; and the last is because of the independence

between Z and X. Here fZ(·) = 1√
2πσ2

e−
(·)2

2σ2 . So, the ML rule for the Gaussian channel is:

decide B̂ = 1 if

fZ(y −
√
E) ≥ fZ(y +

√
E) (10)

and 0 otherwise.

In the equal case fZ(y −
√
E) = fZ(y +

√
E), we may want to instead flip a fair coin and to

make a random decision. For simplicity, here we take the decision B̂ = 1, which still respects
the ML principle.

Using the Gaussian pdf, we can further simplify the above condition (10). It is equivalent to:

(y −
√
E)2 ≤ (y +

√
E)2. (11)

Massaging the above a bit, we obtain the further simplified yet equivalent condition:

y ≥ 0. (12)

In summary, the ML decision rule takes the received voltage Y = y and estimates B̂ as follows:

y ≥ 0 =⇒ B̂ = 1 was sent;

Otherwise =⇒ B̂ = 0 was sent.

Fig. 5 illustrates the ML decision rule. The decision rule picks the transmitted voltage level that
is closer to the received voltage (closer in the usual sense of Euclidean distance). Hence, the ML
rule is exactly the NN rule.

Look ahead

We have derived the optimal MAP receiver when sending one bit via PAM, and found that under
the equal chance assumption of B (3), the optimal receiver is equivalent to the ML and NN rule.
One natural question that arises is: How about the performance of the optimal receiver? One
popular performance measure in the communication context is the error probability :

Pe := P(B̂MAP 6= B) (13)
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Figure 5: ML rule = NN rule.

In typical communication systems, Pe should be very small for ensuring reliable communication.
A good order of such Pe is around 10−6 ∼ 10−10. However, one can verify that under the above
transmission scheme, Pe is not sufficiently small, i.e., a bit far from the desired range. Don’t
worry. We will check this next lecture. Then, a follow-up question is: Is there any way to make
Pe arbitrarily close to 0 so that we always hit the desired range? It turns out there is another
still-simple transmission scheme that does so. Next time, we will investigate the scheme and
will demonstrate that Pe can indeed be made arbitrarily small under the scheme.
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Lecture 20: Communication: Repetition coding

Recap

Last time we have investigated a simple transmission scheme for sending one bit, and figured out
the role of the MAP and ML principles in the design of the optimal receiver under the additive
Gaussian noise channel depicted in Fig. 1. Specifically the encoding rule, named PAM, was to
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PAM OPT=MAP

Figure 1: A single-bit transmission via PAM over the additive Gaussian noise channel.

map B = 1 into X = +
√
E; B = 0 to X = −

√
E. In this setup, we demonstrated that the

optimal receiver was MAP, and under the reasonable assumption P(B = 0) = P(B = 1) = 1
2 , it

reduces to the ML rule, and further simplified to the intuitive NN rule.

At the end of the last lecture, we raised a question. How about for error probability performance
of the optimal receiver?

Pe := P(B̂MAP 6= B). (1)

I then claimed that Pe is not sufficiently small, not within a desired range of 10−6 ∼ 10−10. But
the good news is that there is another yet still-simple way to make Pe arbitrarily close to 0 so
that we meet the desired requirement of error probability.

Today’s lecture

Today we will explore the way that enables reliable communication. This lecture consists of
four parts. First off, we will introduce another communication resource that one can readily
think of. That is, time. We will then investigate the statistical behaviors of noise signals spread
over multiple time slots. Next we will derive the optimal receiver w.r.t. a simple multi-shot
transmission scheme that will be discussed soon. Finally, we will analyze the error probabil-
ity performance of the multi-shot communication scheme equipped with the optimal receiver,
thereby demonstrating that Pe can easily be made arbitrarily close to 0.

Time is another communication resource

Recall the previous transmission scheme introduced last time. Here one key observation is that
we employ only one time slot, although there can be much more time slots available for com-
munication. In other words, we never exploited another very natural communication resource:
time. Hence, one natural alternative is to employ multiple time slots. Actually in Lecture 14,
we did the same thing yet in the context of the inference problem for disease testing. Multiple
experiments are available in testing, so an easy way to boost performance is to employ multiple
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tests.

Sending one bit over n time slots

We employ a multi-shot transmission scheme. Suppose we send still one bit B but now through
n time slots. Assume that the energy budget per time slot is E. A natural question that one can
ask is then: What is the best multi-shot communication scheme that yields the minimum error
probability given the constraint? In fact, it is a very difficult question to answer. It concerns the
central topic of a communication-relevant field named “Information Theory”. You know what?
Claude Shannon whom I mentioned in Lecture 18 is the Farther of Information Theory. Instead
of diving into details for the best communication scheme built upon information theory, here we
will take one naive trial based on a very simple idea that people often employ for our daily-life
conversation: repeating what we said.

So a transmission scheme based on the repetition idea could be: sending a voltage level ±
√
E

at time 1 and send the same voltage again at the other time slots. See Fig. 2. A fancy term for
CN20_2

PAM decoder

Figure 2: Repetition coding: Sending the same voltage signal repeatedly over n time slots.

this kind of a scheme is repetition coding. For this coding scheme, the received signals read: for
i ∈ {1, 2, . . . , n},

Yi = Xi + Zi =

{
−
√
E + Zi, if B = 0;

+
√
E + Zi, if B = 1.

(2)

A probabilistic model for {Zi}ni=1

Our previous discussion in Lecture 18 lets us argue that the statistics of the additive noise at
any time slot is Gaussian. In practice, the statistics does not change over time significantly. So
one reasonable assumption is that the mean and the variance are unchanged over time. Also
the noises have little correlation across different time slots. So another reasonable assumption
is that Zi’s are mutually independent. Simply put, the noises are assumed to be i.i.d. Actually
there is a terminology which indicates such a noise model. It is said to be white. So we will
refer to this noise as the Additive White Gaussian Noise or simply AWGN. You may wonder
why we name it “white”. It turns out the AWGN contains the frequency components that span
the entire spectrum. So it has the same property that the white light has: containing every
frequency component. That’s why people call it white.

Optimal decision rule

2



Given (Y1, . . . , Yn) = (y1, . . . , yn), the optimal receiver is again MAP (by definition):

B̂MAP = arg max
b̂∈{0,1}

P(B = b̂|Y1 = y1, . . . , Yn = yn). (3)

As we showed a couple of times earlier, under the assumption P(B = 0) = P(B = 1) = 1
2 , the

MAP reduces the ML decision rule:

B̂MAP = B̂ML = arg max
b̂∈{0,1}

fY1,...,Yn(y1, . . . , yn|B = b̂). (4)

Now consider the likelihood function of interest:

fY1,...,Yn

(
y1, . . . , yn|B = b̂

)
(a)
= fZ1,...,Zn

(
y1 −X1, . . . , yn −Xn|B = b̂

)
(b)
= fZ1,...,Zn

(
y1 − (2b̂− 1)

√
E, . . . , yn − (2b̂− 1)

√
E|B = b̂

)
(c)
= fZ1,...,Zn

(
y1 − (2b̂− 1)

√
E, . . . , yn − (2b̂− 1)

√
E
)

(d)
=

n∏
i=1

fZi

(
yi − (2b̂− 1)

√
E
)

(e)
=

n∏
i=1

1√
2πσ

exp

(
− 1

2σ2

(
yi − (2b̂− 1)

√
E
)2)

=

(
1√
2πσ

)n
exp

(
− 1

2σ2

n∑
i=1

(
y2i + (2b̂− 1)2E − 2(2b̂− 1)

√
Eyi

))
(f)
=

(
1√
2πσ

)n
exp

(
− 1

2σ2

n∑
i=1

(y2i + E)

)
× exp

(
1

σ2
(2b̂− 1)

√
E

n∑
i=1

yi

)

where (a) follows from the fact that the event Yi = yi is equivalent to the event Zi = yi −Xi;
(b) is because the simplest expression of our encoding rule reads Xi = (2B−1)

√
E; (c) is due to

the independence between {Zi}ni=1 and B; (d) is due to the independence of the additive noises
at different time slots; (e) comes from the pdf of the Gaussian noise; and (f) comes from the
fact that (2b̂− 1)2 = 1 always because b̂ ∈ {0, 1}.
Here one key observation is that the first part in the last equality (marked in red) is irrelevant of
b̂. Hence, by taking a logarithmic function (an increasing function) w.r.t. the remaining relevant
part, we get:

B̂ML = arg max
b̂∈{0,1}

fY1,...,Yn(y1, . . . , yn|B = b̂)

= arg max
b̂∈{0,1}

exp

(
(2b̂− 1)

√
E

σ2

n∑
i=1

yi

)

= arg max
b̂∈{0,1}

(2b̂− 1)

n∑
i=1

yi.

(5)

Notice that the sum
∑n

i=1 yi plays a significant role in the decision:∑n
i=1 yi ≥ 0 =⇒ B̂ML = 1;∑n
i=1 yi < 0 =⇒ B̂ML = 0.
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Again we declare B̂ML = 1 when the equality occurs.

What sense can we make of this rule? We are collecting all the received signals and taking
some sort of a “joint opinion”. If the sum is positive, we decide that the bit must correspond
to a positive signal (and vice-versa). One can interpret this as a kind of majority voting, more
precisely, a soft version of majority voting. Why? Here what I mean by majority voting is that:
we first make a hard decision for each received signal (yi ≥ 0 −→ B̂i = 1; otherwise, B̂i = 0);
and then declares the one that receives the most votes (

∑n
i=1 B̂i ≥

n
2 −→ B̂voting = 1). But the

ML rule relies upon aggregation of yi’s and then makes a decision. So only one decision is made
w.r.t sort of a soft version of all the opinions. This rule coincides with our natural guess: the
NN decision rule yet w.r.t. the sum

∑n
i=1 Yi.

Error probability

Now let us analyze the error probability:

Pe = P(B̂ML 6= B). (6)

Two random quantities appear in the interested error event: B and B̂. How to deal with this?
Yes, we should rely upon the total probability law. Using this, we obtain:

P(B̂ML 6= B) = P(B = 0, B̂ML 6= B) + P(B = 1, B̂ML 6= B)

= P(B = 0)P(B̂ML = 1|B = 0) + P(B = 1)P(B̂ML = 0|B = 1)
(7)

where the 2nd equality comes from the definition of conditional probability. As mentioned
earlier, we assume that the a priori probabilities are equal (to 0.5 each). Let us focus on one of
the error events by assuming that the information bit was actually 0. Then with the NN rule,
we get:

P(B̂ML = 1|B = 0)
(a)
= P

(
n∑
i=1

Yi ≥ 0|B = 0

)

= P

(
−n
√
E +

n∑
i=1

Zi ≥ 0|B = 0

)
(b)
= P

(
n∑
i=1

Zi ≥ n
√
E

)

= P

(∑n
i=1 Zi√
nσ

≥
√
nE

σ

)
(c)
=

∫ ∞
√
nE
σ

1√
2π
e−

z2

2 dz.

(8)

where (a) is due to the NN rule1; (b) is because of the independence between {Zi}ni=1 and B;

and (c) follows from the fact that
∑n
i=1 Zi√
nσ

∼ N (0, 1) (Why? Think about it). The quantity in

the last equation in the above (8) indicates the area of a right tail part of the normal Gaussian
pdf. Actually it often appears in the performance analysis of many communication schemes.
Hence, there is a terminology indicating the term. It is called the Q-function and denoted by

Q (z) :=

∫ ∞
z

1√
2π
e−

t2

2 dt. (9)

1For simplicity of analysis, we assume that for the event Y = 0, B̂ is decided to be 1. Since it is the probability-
zero event, the error probability analysis remains the same.
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Using this, we then get:

P(B̂ML = 1|B = 0) = Q

(√
nE

σ

)
. (10)

Here the Q-function is always tabulated in all probability textbooks and wikipedia. This inte-
gration can also be computed numerically in Python.

Consider P(B̂ML = 0|B = 1). Actually the error does not depend on which information bit
is transmitted. The complete symmetry of the mapping from the bit values to the voltage
levels and the NN decision rule would suggest that the two error probabilities are identical. For
completeness, we go through the calculation for P(B̂ML = 0|B = 1) and verify that it is indeed
the same:

P(B̂ML = 0|B = 1) = P

(
n∑
i=1

Yi < 0|B = 1

)

= P

(
n
√
E +

n∑
i=1

Zi < 0|B = 1

)

= P

(∑n
i=1 Zi√
nσ

< −
√
nE

σ

)

= Q

(√
nE

σ

)
(11)

where the last equality is due to the symmetry of the Gaussian pdf. Applying this (together
with (10)) into (7), we obtain:

Pe = Q

(√
nE

σ

)
. (12)

Error probability vs. n

We are now ready to discuss the error probability as a function of n. Prior to this, let me
emphasize one important measure that often appears in communication. That is, the ratio
between the energy budget E and the noise variance σ2:

SNR :=
E

σ2
. (13)

The ratio has a famous name: SNR. It stands for the Signal-to-Noise energy Ratio. It acts as
an intuitive measure that reflects the goodness of an interested channel: the larger, the better.
A typical value of SNR in many of the practically-relevant channels: 0 ∼ 20 dB. It is common
to use the dB scale for SNR: SNR dB = 10 log10 SNR. So the typical range is translated into
SNR = 1 ∼ 100.

To get a concrete feel as to how Pe behaves as a function of n, we plot a logarithmic-scaled curve
of Pe as a function of n, for a typical value of SNR = 10 dB. See Fig. 3. We see that Pe decays
exponentially in n, thus hitting the desired range of Pe = 10−6 ∼ 10−10 with only a few time
slots.

Look ahead

During the past three lectures, we demonstrated the role of probabilistic modeling, MAP and
ML principles for communication. Next time, we will move onto the 2nd application: Machine
learning.
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Figure 3: Pe vs n: log10 Pe as a function of n.
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Lecture 21: Machine learning: Probabilistic modeling

Recap

During the past three lectures, we have explored the role of probability in communication.
We first focused on an uncertain entity that arises in communication: noise. Translating the
physical properties of the noise into a mathematical framework and then applying the central
limit theorem, we then showed that the noise can be modeled as a Gaussian random variable.
Next we demonstrated the role of the MAP and ML principles in the design of the optimal
receiver w.r.t. the additive Gaussian noise channel. Finally we analyzed the performance of the
optimal receiver via a probabilistic measure: probability of error.

Today’s lecture

Today we will embark on the 2nd application: Machine learning. This lecture consists of four
parts. We will first review the definition of machine learning that we briefly looked through in
Lecture 1. We will then discuss how machine learning is related to probability, identifying a
probabilistic aspect in machine learning. Next we will formulate an optimization problem that
plays a crucial role in the design of a machine learning model. Lastly we will investigate one
function that arises in the optimization formulation, and will emphasize that the choice of the
function is closely related to the ML principle.

Review: Machine learning

Let us start by reviewing the definition of machine learning. Machine learning is a methodology
for training a machine so that it can perform like human beings. Formally speaking, machine
learning is the study of algorithms (a set of instructions that computer can execute) with which
one can train a computer system so that the trained machine can perform a specific task of
interest. Pictorially, it means the following; see Fig. 1.
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machine

data

Figure 1: Machine learning: A methodology for training a machine based on data so that it can
perform like human beings.

Here the entity that we are interested in building up is a computer system, which is definitely
a machine. Since it is a system (i.e., a function), it has an input and an output. The input,
usually denoted by x, indicates information which is employed to perform a task of interest.
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The output, usually denoted by y, indicates a task result. For instance, if a task of interest is
cat-vs-dog image classification, x could be image-pixel values and y is a binary value indicating
whether the fed image is a cat (say y = 1) or a dog (y = 0). One crucial aspect of machine
learning is that we use data in the process of training a machine. The data often refers to
input-output paired samples, denoted by:

{(x(i), y(i))}mi=1, (1)

where (x(i), y(i)) indicates the ith input-output sample and m denotes the number of samples.
Remember people often use a different terminology, an example, to indicate a sample.

A remark on the naming

One can easily see the rationale of the naming via changing a viewpoint. From a machine’s
perspective, a machine learns the task from data. Hence, it is called machine learning. This
naming was coined in 1959 by Arthur Lee Samuel. See Fig. 2.
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Arthur Samuel ’59 checkers 

Figure 2: Arthur Lee Samuel is an American pioneer in the field of artificial intelligence. One
of his prominent achievements in early days is to develop computer checkers which later formed
the basis of AlphaGo.

Arthur Samuel is actually one of the pioneers in Artificial Intelligence (AI) which includes
machine learning as a sub-field. The AI field is the study of creating intelligence by machines,
unlike the natural intelligence displayed by intelligent beings like humans and animals.

One of his achievements in early days is to develop a human-like computer player for a board
game, called checkers; see the right figure in Fig. 2. He proposed many algorithms and ideas while
developing computer checkers. It turns out those algorithms could form the basis of AlphaGo, a
computer program for the board game Go which defeated one of the 9-dan professional players,
Lee Sedol, with 4 wins out of 5 games in 2016.

A probabilistic aspect in machine learning

The relationship between machine learning and probability is via data {(x(i), y(i))}mi=1. This is
because people often view the data as one particular realization of a random process:

{(X(i), Y (i))}mi=1. (2)

One natural assumption that we often made in reality is that the random process is i.i.d. across
distinct examples, each being distributed according to a joint distribution PX,Y (x, y):

{(X(i), Y (i))}mi=1 i.i.d. ∼ PX,Y (x, y). (3)

2



Training via optimization

Another probabilistic aspect in machine learning is related to a training methodology. In order
to understand what this means, let us first discuss a common way to train a machine, i.e.,
estimate a function of machine, say f(·). The common way to estimate f(·) is through solving
an optimization problem. You may then wonder how an optimization problem is related to
training a machine?

Objective function

To figure this out, let us consider what could be an objective function in the machine learning
task. What we want in the design of a machine learning model is that the ground-truth label
y(i) is close to the prediction f(x(i)) as much as possible for all examples:

y(i) ≈ f(x(i)), ∀i ∈ {1, . . . ,m}.

A natural question that arises is then: How to quantify closeness (reflected in the “≈” notation)
between the two quantities: y(i) and f(x(i))? One very common way that has been used in the
field is to employ a function, called a loss function, usually denoted by:

`(y(i), f(x(i))). (4)

One obvious property that the loss function `(·, ·) should have is that it should be small when
the two arguments are close, while being zero when the two are identical. Using such loss
function (4), one can then formulate an optimization problem as:

min
f(·)

m∑
i=1

`(y(i), f(x(i))). (5)

How to introduce optimization variable?

Next, what is the best way that minimizes the objective function? To figure this out, we
first need to identify a quantity, so called the optimization variable, which affects the objective
function. Unfortunately, there is no variable. Instead we have a different quantity that we can
optimize over: the function f(·), marked in red in (5). The question is then: How to introduce
optimization variable? A common way employed in the field is to represent the function f(·) with
parameters (or called weights), denoted by w, and then consider such weights as an optimization
variable. Taking this approach, one can then translate the problem (5) into:

min
w

m∑
i=1

`(y(i), fw(x(i))) (6)

where fw(x(i)) denotes the function f(x(i)) parameterized by w.

The above optimization problem depends on how we define the two functions: (i) fw(x(i)) w.r.t.
w; (ii) the loss function `(·, ·). In machine learning, lots of works have been done for the choice
of such functions.

A choice for fw(·)
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Around at the same time when the machine learning field was founded, one architecture was
suggested for the function fw(·) in the context of simple binary classifiers in which y takes one
among the two options only, e.g., y ∈ {0, 1}. The architecture is called:

Perceptron,

and was invented in 1957 by one of the pioneers in the AI field, named Frank Rosenblatt. See
Fig. 3. Interestingly, Frank Rosenblatt was a psychologist. He was interested in how brains of

CN21_2

Frank Rosenblatt ‘57

Figure 3: Frank Rosenblatt (1928–1971) is an American psychologist notable as the inventor of
perceptron. One sad story is that he died in 1971 on his 43rd birthday, in a boating accident.

intelligent beings work and his study on brains led him to come up with the perceptron, and
therefore gave significant insights into neural networks that many of you guys heard of.

How brains work

Here are details on how the brain structure inspired the perceptron architecture. Inside a brain,
there are many electrically excitable cells, called neurons; see Fig. 4. Here a red-circled one
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neuron
(voltage)

voltage

activation

Figure 4: Neurons are electrically excitable cells and are connected through synapses.

indicates a neuron. So the figure shows three neurons in total. There are three major properties
about neurons that led to the architecture.

The first is that a neuron is an electrical quantity, so it has a voltage. The second property is
that neurons are connected with each other through mediums, called synapses. So the main role
of synapses is to deliver electrical voltage signals across neurons. Depending on the connectivity
strength level of a synapse, a voltage signal from one neuron to another can increase or decrease.
The last is that a neuron takes a particular action, called activation. Depending on its voltage
level, it generates an all-or-nothing pulse signal. For instance, if its voltage level is above a
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certain threshold, then it generates an impulse signal with a certain magnitude, say 1; otherwise,
it produces nothing.

Perceptron

The above three properties led Frank Rosenblatt to propose the perceptron architecture, as
illustrated in Fig. 5. CN21_4

neuron

synapse

activation

Figure 5: The architecture of perceptron.

Let x be an n-dimensional real-valued signal: x := [x1, x2, . . . , xn]T . Suppose each component
xi is distributed to each neuron, and let xi indicate a voltage signal level of the ith neuron.
The voltage signal xi is then delivered through a synapse to another neuron (placed on the
right in the figure, indicated by a big circle). Remember that the voltage level can increase
or decrease depending on the connectivity strength of a synapse. To capture this, a weight,
say wi, is multiplied to xi so wixi is a delivered voltage signal at the terminal neuron. Based
on an empirical observation that the voltage level at the terminal neuron increases with more
connected neurons, Rosenblatt introduced an adder which simply aggregates all the voltage
signals coming from many neurons, so he modeled the voltage signal at the terminal neuron as:

w1x1 + w2x2 + · · ·+ wnxn = wTx. (7)

Lastly in an effort to mimic the activation, he modeled the output signal as

fw(x) =

{
1 if wTx > th;
0 otherwise,

(8)

where “th” indicates a certain threshold level. It can also be simply denoted as

fw(x) = 1{wTx > th}. (9)

Activation functions

Taking the percentron as a function class, one can formulate the optimization problem (6) as:

min
w

m∑
i=1

`(y(i),1{wTx(i) > th}). (10)

This is an initial optimization problem that people came up with. However, people figured out
there is an issue in solving this optimization. The issue comes from the fact that the objective
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function contains an indicator function, so it is not differentiable. As we saw a couple of times
earlier, a common way to solve an optimization problem includes “derivative computation”.
Hence, the above optimization (10) including the non-differentiable function is not desirable.
What can we do then? One typical way that people have taken in the field is to approximate the
activation function. There are many ways for approximation. From below, we will investigate
one of them.

Approximate the original step-function activation!

One popular way is to use the following function that makes a smooth transition from 0 to 1:

fw(x) =
1

1 + e−wT x
. (11)

Notice that fw(x) ≈ 0 when wTx is very small; it then grows exponentially with an increase in
wTx; later grows logarithmically; and finally saturates as 1 when wTx is very large. See Fig. 6.
Actually the function (11) is a very popular one used in statistics, called the logistic1 function.
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Figure 6: Logistic function: σ(z) = 1
1+e−z .

There is another name for the function, which is the sigmoid2 function.

There are two good features about the logistic function. First it is differentiable. The second is
that it can be interpreted as the probability for the output in the binary classifier, e.g., P(Y = 1)
where Y denotes a random variable for the ground-truth label in the binary classifier. So it is
interpretable.

Look ahead

Under the choice of the logistic activation, what is a good choice for a loss function? It turns
out that the ML principle plays an important role in the design of an optimal loss function in
some sense. Next time we will investigate in what sense it is optimal. We will then figure out
how the principle comes up in the design of the optimal loss function.

1The word logistic comes from a Greek word which means a slow growth, like a logarithmic growth.
2Sigmoid means resembling the lower-case Greek letter sigma, S-shaped.
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Lecture 22: Machine learning: ML principle

Recap

Last time we formulated an optimization problem for the design of a machine learning model
based on the perceptron architecture:

min
w

m∑
i=1

`(y(i), ŷ(i)) (1)

where {(x(i), y(i))}mi=1 indicate input-output paired examples; `(·, ·) denotes a loss function; and
ŷ(i) := fw(x(i)) is the prediction parameterized by the weights w. As an activation function, we
introduced a logistic function that is widely used in the field:

fw(x) =
1

1 + e−wT x
. (2)

At the end of the last lecture, I claimed that the ML principle plays a crucial role in the design
of the optimal loss function.

Today’s lecture

Today we will discuss details on the claim. Specifically what we are going to do are three-folded.
We will first investigate what it means by the optimal loss function. We will next figure out
how the ML principle comes up in the design of the optimal loss function. Lastly we will do one
more thing. That is, studying how to solve the formulated optimization. It turns out there is
no closed-form solution to the optimization, but instead there is a prominent algorithm which
enables us to obtain a numerical solution with the help of a computer. The algorithm is called
gradient descent. So in the last part, we will figure out gradient descent.

Optimality in a sense of maximizing likelihood

A binary classifier with the logistic function (2) is called logistic regression. Actually this naming
is a bit confusing, as “regression” means prediction, not classification. The use of such naming
is because the classifier yields a continuous value for prediction, instead of a discrete value, say
between 0 and 1. See Fig. 1 for illustration.

Notice that the output ŷ lies in between 0 and 1:

0 ≤ ŷ ≤ 1.

Hence, one can interpret the output as a probabilistic quantity. One natural assumption that
we can make inspired by the interpretation is:

Assumption : ŷ = P(Y = 1|X = x) (3)

where X and Y denote random variables for input and output, respectively. This makes an
intuitive sense. A large value of ŷ (close to 1) leads us to naturally decide the ground-truth as
1, while a small value of ŷ (close to 0) leads to the ground-truth 0.
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logistic 

regression

Figure 1: Logistic regression

The meaning of the optimal solution to logistic regression can be defined under the above
assumption. In order to figure out what this means, first consider the likelihood of the ground-
truth classifier:

P
(
Y (1) = y(1), . . . , Y (m) = y(m)|X(1) = x(1), . . . , X(m) = x(m)

)
. (4)

Notice that the classifier output ŷ is a function of weights w, as the classifier is parameterized
by w. Hence, assuming (3), the likelihood (4) is also a function of w.

We are now ready to define the optimality of w. The optimal weight, say w∗, is defined as the
one that maximizes likelihood (4):

w∗ := arg max
w

P
(
Y (1) = y(1), . . . , Y (m) = y(m)|X(1) = x(1), . . . , X(m) = x(m)

)
. (5)

Of course, there are other ways to define the optimality. Here, we employ the ML principle,
the most popular choice. This is exactly where the definition of the optimal loss function, say
`∗(·, ·), kicks in. We say that `∗(·, ·) is defined as the one that satisfies:

arg min
w

m∑
i=1

`∗(y(i), ŷ(i)) = arg max
w

P
(
Y (1) = y(1), . . . , Y (m) = y(m)|X(1) = x(1), . . . , X(m) = x(m)

)
.

(6)

It turns out the condition (6) would give us the optimal loss function `∗(·, ·) that yields a very
well-known machine learning classifier: logistic regression, in which the loss function reads:

`∗(y, ŷ) = `logistic(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ). (7)

From this, we see that the ML principle plays a key role in the design of the well-known classifier,
logistic regression, which is the optimal classifier under the perception architecture. In the next
section, we will prove (7).

Derivation of the optimal loss function `∗(·, ·)
Usually samples are obtained from different contexts. Hence, it is reasonable to assume that
such samples are independent with each other:

{(X(i), Y (i))}mi=1 are independent over i. (8)
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Under this assumption, we can then rewrite the likelihood (4) as:

P
(
Y (1) = y(1), . . . , Y (m) = y(m)|X(1) = x(1), . . . , X(m) = x(m)

)
(a)
=

P
(
X(1) = x(1), Y (1) = y(1), . . . , X(m) = x(m), Y (m) = y(m)

)
P
(
X(1) = x(1), . . . , X(m) = x(m)

)
(b)
=

∏m
i=1 PX,Y

(
x(i), y(i)

)∏m
i=1 PX(x(i))

(c)
=

m∏
i=1

PY |X

(
y(i)|x(i)

)
(9)

where (a) and (c) are due to the definition of conditional probability; and (b) comes from the
independence assumption (8). Some of you guys may wonder why {Xi}mi=1 are also independent.
We can readily prove this from (8). Please check if you are not convinced. Here PX,Y (x(i), y(i))
denotes the probability distribution of the input-output pair of the system:

PX,Y (x(i), y(i)) := P(X = x(i), Y = y(i)). (10)

Similarly

PX(x(i)) := P(X = x(i)). (11)

Recall the probability-interpretation-related assumption (3) made with regard to ŷ:

ŷ = P(Y = 1|X = x).

This implies that:

y = 1 : PY |X(y|x) = ŷ;

y = 0 : PY |X(y|x) = 1− ŷ.

Hence, a succinct representation for PY |X(y|x) reads:

PY |X(y|x) = ŷy(1− ŷ)1−y.

Using the notations of (x(i), y(i)) and ŷ(i), we then get:

PY |X

(
y(i)|x(i)

)
= (ŷ(i))y

(i)
(1− ŷ(i))1−y(i) .

Plugging this into (9), we get:

P
(
Y (1) = y(1), . . . , Y (m) = y(m)|X(1) = x(1), . . . , X(m) = x(m)

)
=

m∏
i=1

(ŷ(i))y
(i)

(1− ŷ(i))1−y(i) .

(12)

Applying this into (5), we obtain:

w∗ = arg max
w

m∏
i=1

(ŷ(i))y
(i)

(1− ŷ(i))1−y(i)

(a)
= arg max

w

m∑
i=1

y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))

(b)
= arg min

w

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i))

(13)
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where (a) comes from the fact that log(·) is a non-decreasing function and
∏m

i=1(ŷ
(i))y

(i)
(1 −

ŷ(i))1−y
(i)

is positive; and (b) is due to changing the sign of the objective function.

In fact, the term inside the summation in the last equality in (13) respects the formula of an
important notion that arises in the field of information theory: cross entropy. In particular, in
the context of a loss function, it is named cross entropy loss:

`CE(y, ŷ) := −y log ŷ − (1− y) log(1− ŷ). (14)

Hence, the optimal loss function that maximizes likelihood is cross entropy loss:

`∗(·, ·) = `CE(·, ·).

Remarks on cross entropy loss (14)

Let me say a few words about the rationale behind the naming of cross entropy loss (14).
Actually this comes from the definition of cross entropy. The cross entropy is defined w.r.t. two
random variables. For simplicity, let us consider two binary random variables, say X ∼ Bern(p)
and Y ∼ Bern(q). For such two random variables, cross entropy is defined as:

H(p, q) := −p log q − (1− p) log(1− q). (15)

Notice that the formula of (15) is exactly the same as the term inside summation in (13), except
for having different notations. Hence, it is called cross entropy loss. Some curious students may
still wonder why the formula (15) is called “cross entropy”. In PS7, you will have a chance to
know about the rationale.

How to solve (13)?

From (13) and (2), we can write the optimization problem as:

min
w

m∑
i=1

−y(i) log
1

1 + e−wT x(i)
− (1− y(i)) log

e−w
T x(i)

1 + e−wT x(i)
. (16)

Let J(w) be the normalized version of the objective function:

J(w) :=
1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)). (17)

It turns out the above optimization belongs to convex optimization which I briefly mentioned
about in Lecture 16. Let me say a few words about convex optimization which can give insights
into how to solve the problem. Simply put, convex optimization means a class of optimization
problems which can be efficiently solved on a computer. More formally, it is a class of problems
wherein the objective is a convex function in the minimization problem. Roughly speaking, here
the convex function is defined as a bowl-shaped function as illustrated in Fig. 2. This figure
represents a single-dimensional case of w for illustrative purpose. For a multi-dimensional case
w := [w1, . . . , wn], it means the bowl-shape w.r.t. every wi where i ∈ {1, . . . , n}. See Appendix
#1 for the formal definition; and Appendix #2 for the proof of convexity of J(w). Don’t worry.
Appendices #1 and #2 are not included in the final exam.

One crucial fact about the convex function (the bowl-shaped function) is that the minimum
point occurs at the unique stationary point, as long as the minimum is finite. We will not prove
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this, but it makes an intuitive sense from the bowl-shaped curve in Fig. 2. Using this fact, we
can then say that w∗ is the stationary point:

∇J(w∗) = 0. (18)

So the only thing that matters is to figure out such w∗. But there is an issue in deriving w∗.
The issue is that analytically finding such point is not doable because it turns out there is no
closed-form solution (check!). However, there is a good news. The good news is that there
are several algorithms which allow us to find such point efficiently without the knowledge of
the closed-form solution. One prominent algorithm that has been widely used in the field is:
gradient descent.

Gradient descent

Here is how it works. It is an iterative algorithm. Suppose that at the t-th iteration, we have an
estimate for w∗, say w(t). Usually w(0) is chosen at random. We then compute the gradient of
the function evaluated at the estimate: ∇J(w(t)). Next we update the estimate along a direction
being opposite to the direction of the gradient:

w(t+1) ←− w(t) − α∇J(w(t)) (19)

where α > 0 indicates the stepsize (or called the learning rate). If you think about it, this update
rule makes sense. Suppose w(t) is placed right relative to the optimal point w∗, as illustrated in
Fig. 2.

CN22_2

slope:

t-th estimate

Figure 2: Gradient descent.

Then, we should move w(t) to the left so that it is closer to w∗. The update rule actually does
this, as we subtract by α∇J(w(t)). Notice that ∇J(w(t)) points to the right direction given that
w(t) is placed right relative to w∗. We repeat this procedure until it converges. It turns out: as
t→∞, it actually converges:

w(t) −→ w∗, (20)

as long as the learning rate is chosen properly, like the one delaying exponentially w.r.t. t, e.g.,
e−t. We will not touch upon the proof of this convergence. Actually the proof is not that simple
– even there is a big field in statistics which intends to prove the convergence of a variety of
algorithms (if it is the case).

Look ahead
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We have so far investigated the role of probabilistic modeling and the MAP/ML principles for
two applications: communication and machine learning. For a couple of upcoming lectures, we
will do the same thing for the last application: speech recognition. You will figure out that
speech recognition is a beautiful application which concerns almost all the important concepts
and principle covered so far.
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Appendix #1: Convex functions

An informal yet intuitive definition of a convex function is the following. We say that a function
is convex if it is bowl-shaped, as illustrated in Fig. 3.

CN22_3

Figure 3: A geometric intuition behind a convex function.

What is the formal definition? The following observation can help us to easily come up with the
definition. Take two points, say x and y, as in Fig. 3. Consider a point that lies in between the
two points, say λx + (1 − λ)y for λ ∈ [0, 1]. Then, the bowl-shaped function suggests that the
function evaluated at an λ-weighted linear combination of x and y is less than or equal to the
same λ-weighted linear combination of the two functions evaluated at x and y:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (21)

This motivates the following definition. We say that a function f is convex if (21) holds for all
λ ∈ [0, 1] and for all x and y.

Appendix #2: Proof of convexity

Using the definition of convex optimization, one can prove that J(w) is convex in optimization
variable w. First we can readily show that convexity preserves under addition (why? think
about the definition of convex functions). So it suffices to prove the following two:

(i)− log
1

1 + e−wT x
is convex in w;

(ii)− log
e−w

T x

1 + e−wT x
is convex in w.

Since the second function in the above can be represented as the sum of a linear function and
the first function:

− log
e−w

T x

1 + e−wT x
= wTx− log

1

1 + e−wT x
,

it suffices to prove the convexity of the first function. Why?

Notice that the first function can be rewritten as:

− log
1

1 + e−wT x
= log(1 + e−w

T x). (22)

In fact, proving the convexity of (22) is a bit involved if one relies directly on the definition of
convex functions. It turns out there is another way to prove. That is based on the computation
of the second derivative of a function, called the Hessian. How to compute the Hessian? What
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is the dimension of the Hessian? For a function f : Rd → R, the gradient ∇f(x) ∈ Rd and the
Hessian ∇2f(x) ∈ Rd×d. If you are not familiar, check from the vector calculus course or from
Wikipedia.

A well-known fact says that if the Hessian of a function is positive semi-definite (PSD)1, then the
function is convex. We will not prove this here. Don’t worry about the proof, but do remember
this fact. The statement itself is very instrumental. Here we will use this fact to prove the
convexity of the function (22).

Taking a derivative of the RHS formula in (22) w.r.t. w, we get:

∇w log(1 + e−w
T x) =

−xe−wT x

1 + e−wT x
.

This is due to a chain rule of derivatives and the fact that d
dz log z = 1

z , d
dz e

z = ez and d
dww

Tx = x.
Taking another derivative of the above, we obtain a Hessian as follows:

∇2
w log(1 + e−w

T x) = ∇w

(
−xe−wT x

1 + e−wT x

)
(a)
=
xxT e−w

T x(1 + e−w
T x)− xxT e−wT xe−w

T x

(1 + e−wT x)2

=
xxT e−w

T x

(1 + e−wT x)2

� 0

(23)

where (a) is due to the derivative rule of a quotient of two functions: d
dz

f(z)
g(z) = f ′(z)g(z)−f(z)g′(z)

g2(z)
.

Here you may wonder why d
dw (−xe−wT x) = xxT e−w

T x. Why not xx, xTxT or xTx in front of

e−w
T x? One rule-of-thumb that I strongly recommend is to simply try all the candidates and

choose the one which does not have a syntax error (matrix dimension mismatch). For instance,
xx (or xTxT ) is just an invalid operation. xTx is not a right one because the Hessian must be an
d-by-d matrix. The only candidate left without any syntax error is xxT ! We see that xxT has
the single eigenvalue of ‖x‖2 (Why?). Since the eigenvalue ‖x‖2 is non-negative, the Hessian is
PSD, and therefore we prove the convexity.

1We say that a symmetric matrix, say Q = QT ∈ Rd×d, is positive semi-definite if vTQv ≥ 0, ∀v ∈ Rd, i.e.,
all the eigenvalues of Q are non-negative. It is simply denoted by Q � 0.
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Lecture 23: Speech recognition: Probabilistic modeling

Recap

During the past two lectures, we learned about a connection between machine learning and
probability of this course’s interest. The connection was made through the key fuel employed
in a machine learning model: data {(x(i), y(i))}mi=1. Since the data can be different depending
on how we collect in a variety of contexts, it can be interpreted as a particular realization of a
random process {(X(i), Y (i))}mi=1, and this is where the connection to probability is made. We
also demonstrated the role of the ML principle in the design of a perceptron-based optimization
for machine learning:

min
w

m∑
i=1

`(y(i), ŷ(i)) (1)

where `(·, ·) denotes a loss function and ŷ(i) := fw(x(i)) indicates the prediction parameterized
by the weights w. For activation, we considered the logistic function that implements a smooth
transition of the step function:

fw(x) =
1

1 + e−wT x
. (2)

We then showed that the optimal loss function in a sense of maximizing the likelihood function
is cross entropy loss:

`∗CE(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ),

which leads to a very well-known classifier: logistic regression. For the rest of this course, we
will do the same thing yet for the last application: speech recognition.

Today’s lecture

Today we will focus on the relationship between speech recognition and probability. Specifically
what we are going to do are four-folded. First off, we will review the definition of speech
recognition, and investigate its corresponding system. We will then figure out details on the
input and the output of the system. Next, we will study the detailed structure of the system,
and will develop a probabilistic model for the system. Based on the probabilistic model, we will
finally show that speech recognition is an inference problem.

Review: Speech recognition

Let us recall what speech recognition is. A person speaks into a microphone, which samples the
analog sound waveform. The goal of speech recognition is to figure out what speech (spoken
words) means. In other words, it is to transform the analog waveform (comprising spoken words)
into a written command, which can then be represented in the form of a text. So what we wish
to decode in speech recognition is a text.

Speech recognition system
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speech
recognition

text

Figure 1: Speech recognition: Transforming voice signals into a written text.

Later we will show that speech recognition is an inference problem. So as an effort to introduce
the interested entity X in front of the picture in Fig. 1, we consider a speech recognition system,
as illustrated in Fig. 2. Notice that the input to the system is X that we wish to infer. Now

CN23_2

speech
recognition

system

Figure 2: Speech recognition system.

what are detailed structures of the input X and the output Y in the system? To figure these out,
let us first think about components that constitute a text. Obviously the components depend
on a spoken language. Here we will consider the English language.

Structure of an English text

CN23_3

Figure 3: Structure of an English text.

A text is composed of a sequence of words, so one can view each word as a natural unit which
we can decompose the text into. Actually we can further decompose the words into smaller
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units. For instance, consider a word “speech”. One natural smaller unit that one can think of
is an English alphabet (such as “s”)? But there is an issue in adopting such a unit. The issue
comes from the fact that an actual input to the speech recognition block is something related
to actual sound, but the mapping between sound and alphabet is not one-to-one. For example,
the sound /i/ is mapped to the letter “e” when we say “nike”, but the same sound may refer to
a different letter “i” when we say “bit”. Here the slash indicates a conventional notation used
for representing phonemes (“eumso” in Korean).

On the other hand, from a phonetic point of view, a word is decomposed into phonemes. For
example, the word “speech” consists of four phonemes: /s/, /p/, /i/ and /ch/. The phoneme
can well serve as the smallest phonetic unit in a language. There are two types of phonemes:
(1) consonants; (2) vowels. There are 44 phonemes (24 consonants and 20 vowels) in English.
See Fig. 4.

CN23_4

24 consonants 20 vowels

“schwa” 

(close to /u/) 
teacher, picture

Figure 4: 44 phonemes in English: (1) 24 consonants; (2) 20 vowels.

In light of this, the speech recognition problem can be viewed as the problem of figuring out the
sequence of phonemes that forms a text. See Fig. 5.

CN23_6

speech
recognition

system

i-th phoneme

Figure 5: Speech recognition system: Each component of the input Xi indicates the ith phoneme
that takes one of 44 phonemes (24 consonants and 20 vowels).

The sequence {Xi}ni=1 of phonemes is the one that we wish to decode, so the phonemes can be
considered as random variables. Here we let Xi ∈ X be the ith phoneme of {Xi}ni=1 where X is
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the set of phonemes whose alphabet size is |X | = 44.

Inside the system

Now let us figure out what the output Yi is in the speech recognition system? The output {Yi}ni=1

is the one that will be put into the speech recognition block, so it should reflect something related
to actual sound. To figure out what it is, we first need to relate {Xi}ni=1 to the actual sound
signal that will be picked up at the microphone in the system. See Fig. 6. A user who desires

CN23_5

10 ms

system

feature 

extraction

Figure 6: Inside the speech recognition system.

to say what the text {Xi}ni=1 means speaks corresponding spoken words into the microphone,
generating the analog waveform, say Y (t). Actually, instead of the analog continuous-time
signals Y (t), we want discrete-time quantities that can be represented as a sequence {Yi}ni=1. It
turns out there is a way to translate Y (t) into discrete-time signals.

The translation is based on the following observation. Each phoneme spans roughly 10 ms, as in
Fig. 6. Of course, it can vary depending on the speaking pace of an individual. The 10 ms is sort
of an average taken across many phonemes from different people. We chop the analog waveform
into 10 ms intervals. We then take the signal in each 10 ms interval and wish to extract some
key components (discrete-time quantities) from it. Here for simplicity of discussion, we assume
no pause between phonemes. In the presence of pauses, one can readily detect them and then
chop the corresponding signals. It turns out that the relevant information contained in speech is
most apparent in the frequency domain. So one natural approach that we can take is to employ
a well-known transformation technique that highlights frequency components. That is, Fourier
transform:

Y (f) :=

∫ +∞

−∞
Y (t)e−j2πftdt. (3)

However, we have some issues here. Two issues. One is that the input to Fourier transform is a
infinite-time-horizon signal while we wish to extract a certain component that corresponds only
to the signal w.r.t. each 10 ms time interval. One way to address this is to extract only a part
of Y (f) by taking a time-windowed Fourier transform:

Yi(f) :=

∫ 10 ms·i

10 ms·(i−1)
Y (t)e−j2πftdt. (4)

The second issue is that Yi(f) is still a continuous quantity in light of f . So one walk-around is
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to extract corresponding Fourier coefficients out of it, by taking Yi(f) at particular f ’s:

Yi :=


Yi(f1)
Yi(f2)

...
Yi(fk)

 (5)

where fj ’s are certain frequencies that yield significant spectral components, and k is the number
of such frequencies. As shown above, typically there are multiple Fourier coefficients for the signal
in each 10 ms interval. But let us simplify the story by assuming there is only one significant
spectral component (i.e., k = 1). Here we call that component a feature. We let Yi be the ith
feature with respect to the ith phoneme. See Fig. 6 for the entire procedure inside the system.

Relation between {Xi}ni=1 and {Yi}ni=1

Fig. 7 illustrates the whole picture with Xi (the ith phoneme) and Yi (the ith feature). Now
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Figure 7: Speech recognition system: Xi indicates the ith phoneme and Yi denotes the corre-
sponding feature (spectral information).

how do {Xi}ni=1 and {Yi}ni=1 relate with each other? There is a lot of randomness involved in
the system. Two major sources of the randomness are: (1) different voice characteristics (e.g.,
accent) and (2) noise (e.g., thermal noise due to random movements of electrons in the electrical
circuit). This randomness induces uncertainty in {Yi}ni=1, making the input and the output
related probabilistically. Hence, we can view speech recognition as an inference problem.

Look ahead

Since speech recognition is an inference problem, the optimal inference is again MAP. So next
time, we will investigate the optimal MAP estimator for speech recognition.
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Lecture 24: Speech recognition: MAP principle

Recap

Last time we showed that speech recognition is an inference problem wherein the goal is to
infer a sequence {Xi}ni=1 of phonemes (that allows us to recognize what a speaker says) from a
sequence {Yi}ni=1 of features (that have bearing on actual spoken words). See Fig. 1 for details.

CN24_1

speech
recognitionsystem

phoneme feature

Figure 1: A block diagram of the speech recognition system and recovery block

We also found that there is a lot of randomness in the system due to different voice characteristics
of a certain speaker and the system noise (e.g, thermal noise). The randomness is the one
that makes the output of the system (observation) probabilistically related to the input (an
interested entity for inference), demonstrating that speech recognition problem is indeed an
inference problem.

Today’s lecture

Today we will investigate the optimal algorithm based on MAP. It consists of three parts. First
we will derive the optimal MAP estimator. As we know, in order to obtain an explicit MAP
solution, we need to succinctly represent the “a priori probability” and the “likelihood”. It turns
out there is a nice statistical structure on {(Xi, Yi)}ni=1 that enables an efficient representation
of the two quantities. So in the second part, we will explore the nice structure. Lastly we will
exploit the structure to simplify the MAP estimator.

Optimal algorithm for speech recognition

Since speech recognition is an inference problem, the optimal inference is the one that maximizes
conditional correct-decision probability:

P(X1 = X̂1, . . . , Xn = X̂n|Y1 = y1, . . . , Yn = yn). (1)

As we figured out several times, it coincides with the MAP rule which finds the one that maxi-
mizes the a posteriori probability:

x̂MAP = arg max
x̂1,...,x̂n∈X

P(X1 = x̂1, . . . , Xn = x̂n|Y1 = y1, . . . , Yn = yn)

= arg max
x̂1,...,x̂n∈X

PX(x̂1, . . . , x̂n)f(y1, . . . , yn|x̂1, . . . , x̂n)

f(y1, . . . , yn)

= arg max
x̂1,...,x̂n∈X

PX(x̂1, . . . , x̂n)f(y1, . . . , yn|x̂1, . . . , x̂n)

(2)

when the 2nd equality follows from the definition of conditional probability and the fact that
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yi’s are continuous values. Here X denotes a set of all the phonemes that each Xi can take on,
usually called the alphabet.

Two quantities that we need to know about

To compute the MAP solution (2), we need to figure out two quantities: (1) A priori proba-
bility: PX(x̂1, . . . , x̂n); (2) conditional pdf (likelihood): f(y1, . . . , yn|x̂1, . . . , x̂n), which captures
the statistical relationship between the input and the output. Just a side note: In light of a
communication system, the speech recognition system can be interpreted as a channel.

A naive approach to obtain PX(x̂1, . . . , x̂n) is investigating the quantity for each sequence. How-
ever, this simple way comes with a challenge in complexity. The reason is that the number of
possible patterns of the sequence {Xi}ni=1 grows exponentially with n:

|X |n = 44n. (3)

Remember that there are 44 phonemes in English: 24 consonants and 20 vowels. The total
number of probability values required to fully specify PX(x̂1, . . . , x̂n) is huge especially for a
large n, rendering it challenging to obtain the a priori knowledge. Also there are many different
values for the likelihood f(y1, . . . , yn|x̂1, . . . , x̂n). Even worse, (y1, . . . , yn) are continuous values.

But it turns out there is a very nice statistical structure on {(Xi, Yi)}ni=1 that enables an efficient
representation of the a priori probability and the likelihood. Exploiting the statistical structure,
we are able to model {(Xi, Yi)}ni=1 for which PX(x̂1, . . . , x̂n) and f(y1, . . . , yn|x̂1, . . . , x̂n) can be
specified with a much smaller number of parameters.

A random process {Xi}ni=1

One naive way of modeling the sequence of phonemes is assuming that these random variables
are independent. We saw an independent process before many times. One example was the
additive white Gaussian noise that we discussed in the communication application. It is an i.i.d.
random process. However, the independence assumption is not relevant in speech recognition.
Some phonemes are more likely to follow other phonemes. For instance, the phoneme /th/ is
more likely to be followed by /e/ rather than /s/. So assuming the random variables to be
independent seems like a pretty bad idea.

A generalized Markov model

How are {Xi}ni=1 related then? It turns out a random process that we learned about in Lecture
12 can well capture the dependency across phonemes. That is, the generalized Markov model.
Remember its definition. We say that {Xi}ni=1 is a generalized Markov process with ` memories
if

P(xi+1|xi, . . . , xi−`+1, xi−`, . . . , x1) = P(xi+1|xi, . . . , xi−`+1).

We also checked that another properly defined random process Si := (Xi, . . . , Xi−`+1) is a single-
memory Markov process. So it suffices to focus on the case ` = 1 with a proper rearrangement.
Just for illustrative purpose, we will assume that the sequence of phonemes is a single-memory
Markov process.

Joint distribution PX(x1, . . . , xn)

Using the graphical model that we learned in Lecture 12, we can represent the single-memory
Markov process as:

X1 −X2 −X3 − · · · −Xn−1 −Xn. (4)
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Recall it is called a Markov chain as it looks like a chain. Using this statistical structure, one
can now write down the joint distribution as:

PX(x1, . . . , xn)

(a)
= P(x1)P(x2|x1)P(x3|x2, x1) · · ·P(xn|xn−1, . . . , x1)
(b)
= P(x1)P(x2|x1)P(x3|x2) · · ·P(xn|xn−1)

= P(x1)
n∏

i=2

P(xi|xi−1)

(5)

where (a) is due to the definition of conditional probability; and (b) comes from the Markov
property. Hence, it suffices to know about only P(x1) and P(xi|xi−1) to compute PX(x1, . . . , xn).

How to figure out P(x1) and P(xi|xi−1)?
We only need to specify 44 values for P(x1) and 442 values for P(xi|xi−1). The sum 44 + 442

is much smaller than the huge number 44n required to specify the joint distribution when the
statistical structure is not exploited. In reality, one can estimate individual pmf P(x1) and the
transition probability P(xi|xi−1) from any large text by computing the following sample means:

P(/s/) = P(X1 = /s/) ≈ # of occurences of “s”

# of phonemes in the interested text
; (6)

P(/t/|/s/) = P(Xi = /t/|Xi−1 = /s/) ≈ # of “t” that follows “s”

# of occurrences of “s”
. (7)

It turns out the law of large numbers (LLN) that we learned about w.r.t. the i.i.d. random
process can be extended to the Markov process as well. We will not prove it, as the proof distracts
the current storyline (also the proof is not that simple). If you want to know more, you may
want to take a course on random processes. By using the extended LLN, the estimates in the
above become concentrated around the ground-truth distributions as the number of phonemes
in the text grows.

Likelihood function f(y1, . . . , yn|x1, . . . , xn)
Now let us figure out how to obtain the knowledge on the likelihood. We find that a key obser-
vation on the system enables us to identify the statistical structure of {Yi}ni=1, thus providing a
concrete way of computing f(y1, . . . , yn|x1, . . . , xn). Recall the inside of the system; see Fig. 2.
Here the key observation is that Yi can be viewed as a noisy version of Xi and the noise has
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Figure 2: Inside of the speech recognition system.

nothing to do with any other random variables involved in the system. The mathematical repre-
sentation of the observation is that given Xi, Yi is mutually independent of all the other random

3



variables: e.g.,

Y1⊥(X2, . . . , Xn, Y2, . . . , Yn)|X1

where the symbol ⊥ means “mutual independence”. This property leads to the graphical model
for {Yi}ni=1 as in Fig. 3.

CN24_3

Figure 3: A Hidden Markov Model (HMM) for the output {Yi}ni=1 of the speech recognition
system.

Notice that if we remove the node Xi, the node Yi will be disconnected from the rest of the
graph. This reflects the fact that Yi depends on other random variables only through Xi. One
interesting question about the model: Is the observation sequence {Yi}ni=1 a Markov model?
No! Why? But the underlying sequence {Xi}ni=1 that we want to figure out is a Markov model.
That’s why it is called the Hidden Markov Model, HMM for short.

Using this statistical property, one can write down the conditional pdf as:

f(y1, . . . , yn|x1, . . . , xn)

= f(y1|x1, . . . , xn)f(y2, . . . , yn|x1, . . . , xn, y1)
(a)
= f(y1|x1)f(y2, . . . , yn|x1, . . . , xn, y1)

...

(b)
= f(y1|x1)f(y2|x2) · · · f(yn|xn)

=

n∏
i=1

f(yi|xi)

(8)

where (a) and (b) are because given xi, yi is independent of everything else for any i.

Note that it suffices to know only f(yi|xi) to compute f(y1, . . . , yn|x1, . . . , xn). Now a question
is: How can we obtain the knowledge of the individual likelihood function f(yi|xi). If the ith
feature yi is a discrete value, then we need to specify only the number |X | × |Y| of possible
values for f(yi|xi). But the value of the feature is in general a continuous value although it can
be quantized so that it can be represented by a discrete random variable. So we need to figure
out the functional relationship between yi and xi to specify the likelihood function.

How to figure out f(yi|xi)?
Remember that the likelihood function depends on randomness that occurs in the system. The
randomness comes from the following two: (i) different voice characteristics; and (ii) a noise
introduced in an electrical circuit employed in the system. If the system has no noise and a
speaker is given, we can think of Yi simply as a deterministic function of Xi. For example,
given Xi = /a/, Yi is a deterministic function of /a/, say µa. See Fig. 4. However, due to
the noise in the system, the feature Yi would be randomly distributed around the true feature
µa corresponding to the phoneme /a/. Remember what we learned about the noise in the
communication application. The major source of the noise is the random movement of electrons
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Figure 4: Relationship between Xi and Yi when a speaker is given in the noiseless case.

due to heat. So it is the thermal noise. We know that the thermal noise can be modeled as an
additive white Gaussian noise (AWGN). Hence, given Xi = /a/, we can model Yi as:

Yi = µa + Zi (9)

where Zi’s are i.i.d. ∼ N (0, σ2). Similarly given Xi = /b/, Yi can be modeled as the true feature
concerning /b/, say µb, plus an additive Gaussian noise. Here for simplicity, we will assume that
we know the variance of the additive noise σ2. One way to estimate the variance is via MLE for
Gaussian distribution that we learned in Lecture 16. That is, to infer the variance from multiple
measurements Yi’s fed by null signals. More concretely, suppose Xi = 0 for i = 1, . . . , n. Then,
under the statistical modeling on Yi as above, we get:

Yi = Zi, i = 1, . . . , n. (10)

Then the sample mean of Y 2
i ’s is the MLE for σ2:

σ2ML =
Y 2
1 + · · ·+ Y 2

n

n
. (11)

Even if we know the noise variance, the likelihood function f(yi|xi) is not specified yet. This is
because the true features such as µa and µb are user-specific parameters. Hence, these need to
be estimated to fully specify the likelihood function. There is one very popular approach that
enables the estimation. We will next study the approach.

Machine learning for estimating (µa, µb)

Assume for a moment that we knew the sequence of phonemes. This sounds like an absurd
assumption given that the sequence of phonemes is exactly what we would like to infer. However,
we could ask the speaker to say some predetermined phonemes for us at the beginning. In fact,
some speech recognition software does this. Then we could use this sequence to estimate µa and
µb based on the known phonemes. Note in this method that we are learning the parameters
by asking the speaker to provide input-output example pairs at the beginning. What does this
remind you of? Yes, it is machine learning.

Here is how machine learning works in detail. Suppose we ask the user to say “aaaaaaaa” for
eight time slots. This then gives us:

Yi = µa + Zi, i = 1, . . . , 8. (12)

Since the user is given, µa is fixed, and therefore Yi ∼ N (µa, σ
2). Here the goal is to estimate µa

given eight i.i.d. samples (Y1, . . . , Y8). Again what does this remind you of? Yes, the optimal
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way to estimate µa is the MLE:

µ̂ML
a =

Y1 + · · ·+ Y8
8

. (13)

Simplified optimal algorithm

Applying (5) and (8) into the objective function in (2), we get:

PX(x1, . . . , xn)f(y1, . . . , yn|x1, . . . , xn) = P(x1)

n∏
i=2

P(xi|xi−1)
n∏

i=1

f(yi|xi).

Plugging this into (2), we obtain:

x̂MAP = arg max
x̂1,...,x̂n∈X

P(x1)
n∏

i=2

P(xi|xi−1)
n∏

i=1

f(yi|xi). (14)

Look ahead

It turns out there is an efficient way to compute the simplified MAP solution (14). Next time,
we will explore the way.
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Lecture 25: Speech recognition: Viterbi algorithm I

Recap

During the past two lectures, we showed that speech recognition is an inference problem and
then derived the optimal MAP estimator. We also simplified the MAP estimator by exploring
the nice statistical structure on {(Xi, Yi)}ni=1. Here Xi indicates the ith phoneme and Yi denotes
the ith feature (spectral information). See Fig. 1. The MAP estimator reads:
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speech
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Figure 1: A block diagram of the speech recognition system and recovery block

x̂MAP = arg max
x1,...,xn∈X

PX(x1, . . . , xn)f(y1, . . . , yn|x1, . . . , xn). (1)

Assuming a single-memory Markov model for {Xi}ni=1, we simplified the a priori probability as:

PX(x1, . . . , xn) = P(x1)
n∏

i=2

P(xi|xi−1).

Exploiting the HMM structure of {Yi}ni=1, we could figure out that the likelihood is the product
of every individual:

f(y1, . . . , yn|x1, . . . , xn) =
n∏

i=1

f(yi|xi).

Plugging the above two into (1), we then obtained the simplified MAP estimator:

x̂MAP = arg max
x1,...,xn∈X

P(x1)

n∏
i=2

P(xi|xi−1)
n∏

i=1

f(yi|xi). (2)

One naive way to derive x̂MAP is to search for all the possible sequence patterns that {xi}ni=1 can
take on. However, this way, called the exhaustive search, comes with a challenge. The challenge
is that the total number of possible sequence patterns is huge, |X |n = 44n. The complexity
grows exponentially with n.

Today’s lecture

For the remaining two lectures including today’s one, we will study another very popular method
that addresses the computational challenge. The method is called the Viterbi algorithm. Today
we will investigate several concepts that form the basis of algorithm. Next time, we will figure out
how the algorithm works in detail. This lecture consists of three parts. Actually the “Viterbi” is
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the last name of the inventor of the algorithm. First off, I will explain who the inventor is, and
will emphasize the key feature of the algorithm w.r.t. complexity prior to diving into details. It
turns out the Viterbi algorithm is a very generic algorithm with a wide variety of applications,
yet being subject to a particular form of optimization. So in the second part, we will translate
the original optimization (2) into another respecting the particular form. Lastly we will study
three important concepts which serve to explain how the algorithm works.

The key feature of Viterbi algorithm

The inventor of the algorithm is Andrew Viterbi. See Fig. 2. He is one of the giants in the
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Andrew Viterbi ‘67

Figure 2: Andrew Viterbi is a giant in the communication and information theory fields.

fields of communication and information theory, also known as a co-founder of Qualcomm Inc
that you may hear of. Search for wikipedia. You will soon figure out he is indeed a giant figure.
Actually he came up with the algorithm in the process of addressing a different yet interesting
problem that arises in communication. Later, many people figured out the algorithm can be
applicable to a widening array of problems beyond communication, including speech recognition
of our current interest.

The key feature of the algorithm that I want to emphasize is that the algorithm complexity
grows linearly with n, being much smaller than 44n that we faced with the exhaustive search.
As you may figure out later, the algorithm has nothing to do with probability of this course’s
focus. As emphasized in the key feature, however, the algorithm is so powerful with extremely
lower complexity. This is the sole reason that I want to introduce this algorithm to you guys.
Please be familiar with the Viterbi algorithm in your entire career. The algorithm will constantly
benefit you, as long as you are working on something relevant to optimization.

Translation into the canonical form

Now let’s start by translating the original optimization (2) into another with the canonical
structure that the algorithm relies upon. To this end, we first massage the optimization (2):

x̂MAP = arg max
x1,...,xn∈X

P(x1)
n∏

i=2

P(xi|xi−1)
n∏

i=1

f(yi|xi).

2



Setting x0 = 0 (nothing), we can simplify the optimization as:

x̂MAP = arg max
x1,...,xn∈X

n∏
i=1

P(xi|xi−1)f(yi|xi)

= arg max
x1,...,xn∈X

n∑
i=1

log {P(xi|xi−1)f(yi|xi)}

= arg min
x1,...,xn∈X

n∑
i=1

log

{
1

P(xi|xi−1)f(yi|xi)

}
︸ ︷︷ ︸

=:ci(si)

where the 2nd equality comes from the fact that taking an increasing function log(·) does not
alter the maximizer; and the last equality is due to changing the sign of the objective function.
Notice that the ith component in the summation in the last line is a function of (xi−1, xi, yi).
So one can denote the ith component by ci(si) where

si :=

[
xi−1
xi

]
. (3)

Here we call si the state. Later you will figure out the rationale behind the naming. The reason
we leave the subscript i in c is that the ith component is also a function of yi. Notice that
decoding (x1, x2, . . . , xn) is equivalent to decoding (s1, s2, . . . , sn). Also remember that yi’s are
given and xi’s are optimization variables. So the original optimization (2) is equivalent to:

ŝMAP = arg min
s1,...,sn

n∑
i=1

ci(si) (4)

where

ci(si) = log

{
1

P(xi|xi−1)f(yi|xi)

}
. (5)

The above optimization (4) is the canonical optimization that the Viterbi algorithm is built
upon. We are now ready to study the three concepts that form the basis of the algorithm.

Concept #1: Cost

The first concept is concerned about the interested quantity ci(si) in the canonical optimiza-
tion (4). Here the quantity ci(si) can be viewed as something negative, because the smaller
quantity, the better the situation is. Hence, we call it “cost”. Now you can see why I use the
notation c to denote the quantity.

Concept #2: State si

The second concept is the state si that we defined in (3). The state has certain properties. For
ease of explanation of the properties, let us assume that xi takes one among only two possible
phonemes, say /a/ and /b/. For notational simplicity, let us drop the slash symbol: xi ∈ {a, b}.
In this case, we can readily see that si can take one of the following six candidates:[

0
b

]
,

[
0
a

]
,

[
a
a

]
︸ ︷︷ ︸

s1

,

[
b
a

]
︸ ︷︷ ︸

s2

,

[
b
b

]
︸ ︷︷ ︸

s3

,

[
a
b

]
︸ ︷︷ ︸

s4

. (6)
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Observe that the first two occur only at the beginning (i = 1), assuming that x0 = 0. So the
two states are negligible relative to the others for a large value of n. For simplification, let us
not worry about the two states. To this end, we intentionally set x0 = a. In this case, we have
only four possible states. The number “four” is obviously finite. There is a terminology which
indicates an entity w.r.t. such state that can take one among only the finite number of possible
candidates. That is, a Finite State Machine, FSM for short.

The FSM has an interesting property which can be illustrated in picture. To see this, first
observe that each state si can move from one to another, depending on the value of xi+1. So
one can now think of the following state translations as illustrated in Fig. 3. Here a or b labeledCN25_3

s4 s1

s3 s2

Figure 3: A finite state machine with four states. A transition occurs depending on the value
of xi+1.

above a transition arrow indicates the value of xi+1, given the current state si. For instance,
suppose that xi+1 = b given the current state s1. Then, we move along the red transition arrow
to arrive at the state s4 of [a; b]. The picture like Fig. 3 is called the state transition diagram.

While the state transition diagram well represents how each state moves around to another, it
does not capture the time evolution. This is exactly where another concept w.r.t. the FSM
arises. That is, the trellis diagram. Below we will describe how the trellis diagram looks like
and then will explain how it helps solve the interested optimization (4) that concerns the given
information {yi}ni=1.

Concept #3: Trellis diagram

The trellis diagram exhibits both state transitions and time evolution. To clearly understand
how it works, let me walk you through details with the help of Figs. 4 and 5.

Consider the state at time 1:

s1 =

[
x0
x1

]
=

[
a
x1

]
=


[
a
a

]
= s1, if x1 = a;[

a
b

]
= s4, if x1 = b,

where the second equality is due to our assumption x0 = a. Notice that s1 takes one of the two
possible states s1 and s4, reflected in the two dots at time 1 in Fig. 4. In time 0, we have two
options for s0 depending on the value of x−1: s1 and s2. To remove the ambiguity in time 0, let
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If ”a” occurs, stay at s1.

If ”b” occurs, move to s4.

state
time ??

Figure 4: A trellis diagram at i = 1 .

us further assume x−1 = a. This way, we can fix the initial state as s1. So we ensure that we
start always from s1. As mentioned earlier, if x1 = a, then s1 = s1; otherwise s1 = s4.

To be more familiar with how it works, let us consider one more time slot as illustrated in Fig. 5.
Suppose s1 = s1. If x2 = a, then it stays at the same state s1 (reflected in the blue transition
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Figure 5: A trellis diagram at i = 2 .

arrow); otherwise, it moves to s4 (reflected in the red arrow). On the other hand, given s1 = s4,
if x2 = a, then it moves to s2; otherwise, it goes to s3.

Cost calculation

Remember in the canonical optimization (4) that we are interested in the cost ci(si). So one
natural question that arises is: How can we calculate the cost in (4) from the trellis diagram?
To figure this out, consider a concrete example for n = 4; see Fig. 6. This is the example
in which (x1, x2, x3, x4) = (a, b, a, a), so the trellis path takes the blue-red-blue-blue transition
arrows, yielding the state change as: s1–s1–s4–s2–s1. To ease cost calculation, here we leave an
associated cost at the corresponding state node. For instance, we put c1([a; a]) (marked in green
in Fig. 6) nearby the black dot s1 in time 1. Similarly we leave c2([a; b]), c3([b; a]), c4([a; a]) for
the corresponding black dots. By aggregating all the costs associated with the black dots, we
can readily compute the cost for one such sequence. Considering all possible sequence patterns,
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Figure 6: A trellis diagram for the sequence (x1, x2, x3, x4) = (a, b, a, a) .

we can compute the optimal path as:

s∗MAP = arg min
s1,s2,s3,s4

{c1(s1) + c2(s2) + c3(s3) + c4(s4)} .

As mentioned earlier, a naive exhaustive search requires the number 24 of cost calculations – so
the complexity is very expensive especially for a large n.

Look ahead

Next time, we will study the Viterbi algorithm that well exploits the structure of the trellis
diagram to find s∗ efficiently.
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Lecture 25: Speech recognition: Viterbi algorithm I

Recap

During the past two lectures, we showed that speech recognition is an inference problem and
then derived the optimal MAP estimator. We also simplified the MAP estimator by exploring
the nice statistical structure on {(Xi, Yi)}ni=1. Here Xi indicates the ith phoneme and Yi denotes
the ith feature (spectral information). See Fig. 1. The MAP estimator reads:
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Figure 1: A block diagram of the speech recognition system and recovery block

x̂MAP = arg max
x1,...,xn∈X

PX(x1, . . . , xn)f(y1, . . . , yn|x1, . . . , xn). (1)

Assuming a single-memory Markov model for {Xi}ni=1, we simplified the a priori probability as:

PX(x1, . . . , xn) = P(x1)
n∏

i=2

P(xi|xi−1).

Exploiting the HMM structure of {Yi}ni=1, we could figure out that the likelihood is the product
of every individual:

f(y1, . . . , yn|x1, . . . , xn) =
n∏

i=1

f(yi|xi).

Plugging the above two into (1), we then obtained the simplified MAP estimator:

x̂MAP = arg max
x1,...,xn∈X

P(x1)

n∏
i=2

P(xi|xi−1)
n∏

i=1

f(yi|xi). (2)

One naive way to derive x̂MAP is to search for all the possible sequence patterns that {xi}ni=1 can
take on. However, this way, called the exhaustive search, comes with a challenge. The challenge
is that the total number of possible sequence patterns is huge, |X |n = 44n. The complexity
grows exponentially with n.

Today’s lecture

For the remaining two lectures including today’s one, we will study another very popular method
that addresses the computational challenge. The method is called the Viterbi algorithm. Today
we will investigate several concepts that form the basis of algorithm. Next time, we will figure out
how the algorithm works in detail. This lecture consists of three parts. Actually the “Viterbi” is
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the last name of the inventor of the algorithm. First off, I will explain who the inventor is, and
will emphasize the key feature of the algorithm w.r.t. complexity prior to diving into details. It
turns out the Viterbi algorithm is a very generic algorithm with a wide variety of applications,
yet being subject to a particular form of optimization. So in the second part, we will translate
the original optimization (2) into another respecting the particular form. Lastly we will study
three important concepts which serve to explain how the algorithm works.

The key feature of Viterbi algorithm

The inventor of the algorithm is Andrew Viterbi. See Fig. 2. He is one of the giants in the
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Figure 2: Andrew Viterbi is a giant in the communication and information theory fields.

fields of communication and information theory, also known as a co-founder of Qualcomm Inc
that you may hear of. Search for wikipedia. You will soon figure out he is indeed a giant figure.
Actually he came up with the algorithm in the process of addressing a different yet interesting
problem that arises in communication. Later, many people figured out the algorithm can be
applicable to a widening array of problems beyond communication, including speech recognition
of our current interest.

The key feature of the algorithm that I want to emphasize is that the algorithm complexity
grows linearly with n, being much smaller than 44n that we faced with the exhaustive search.
As you may figure out later, the algorithm has nothing to do with probability of this course’s
focus. As emphasized in the key feature, however, the algorithm is so powerful with extremely
lower complexity. This is the sole reason that I want to introduce this algorithm to you guys.
Please be familiar with the Viterbi algorithm in your entire career. The algorithm will constantly
benefit you, as long as you are working on something relevant to optimization.

Translation into the canonical form

Now let’s start by translating the original optimization (2) into another with the canonical
structure that the algorithm relies upon. To this end, we first massage the optimization (2):

x̂MAP = arg max
x1,...,xn∈X

P(x1)
n∏

i=2

P(xi|xi−1)
n∏

i=1

f(yi|xi).
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Setting x0 = 0 (nothing), we can simplify the optimization as:

x̂MAP = arg max
x1,...,xn∈X

n∏
i=1

P(xi|xi−1)f(yi|xi)

= arg max
x1,...,xn∈X

n∑
i=1

log {P(xi|xi−1)f(yi|xi)}

= arg min
x1,...,xn∈X

n∑
i=1

log

{
1

P(xi|xi−1)f(yi|xi)

}
︸ ︷︷ ︸

=:ci(si)

where the 2nd equality comes from the fact that taking an increasing function log(·) does not
alter the maximizer; and the last equality is due to changing the sign of the objective function.
Notice that the ith component in the summation in the last line is a function of (xi−1, xi, yi).
So one can denote the ith component by ci(si) where

si :=

[
xi−1
xi

]
. (3)

Here we call si the state. Later you will figure out the rationale behind the naming. The reason
we leave the subscript i in c is that the ith component is also a function of yi. Notice that
decoding (x1, x2, . . . , xn) is equivalent to decoding (s1, s2, . . . , sn). Also remember that yi’s are
given and xi’s are optimization variables. So the original optimization (2) is equivalent to:

ŝMAP = arg min
s1,...,sn

n∑
i=1

ci(si) (4)

where

ci(si) = log

{
1

P(xi|xi−1)f(yi|xi)

}
. (5)

The above optimization (4) is the canonical optimization that the Viterbi algorithm is built
upon. We are now ready to study the three concepts that form the basis of the algorithm.

Concept #1: Cost

The first concept is concerned about the interested quantity ci(si) in the canonical optimiza-
tion (4). Here the quantity ci(si) can be viewed as something negative, because the smaller
quantity, the better the situation is. Hence, we call it “cost”. Now you can see why I use the
notation c to denote the quantity.

Concept #2: State si

The second concept is the state si that we defined in (3). The state has certain properties. For
ease of explanation of the properties, let us assume that xi takes one among only two possible
phonemes, say /a/ and /b/. For notational simplicity, let us drop the slash symbol: xi ∈ {a, b}.
In this case, we can readily see that si can take one of the following six candidates:[

0
b

]
,

[
0
a

]
,

[
a
a

]
︸ ︷︷ ︸

s1

,

[
b
a

]
︸ ︷︷ ︸

s2

,

[
b
b

]
︸ ︷︷ ︸

s3

,

[
a
b

]
︸ ︷︷ ︸

s4

. (6)
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Observe that the first two occur only at the beginning (i = 1), assuming that x0 = 0. So the
two states are negligible relative to the others for a large value of n. For simplification, let us
not worry about the two states. To this end, we intentionally set x0 = a. In this case, we have
only four possible states. The number “four” is obviously finite. There is a terminology which
indicates an entity w.r.t. such state that can take one among only the finite number of possible
candidates. That is, a Finite State Machine, FSM for short.

The FSM has an interesting property which can be illustrated in picture. To see this, first
observe that each state si can move from one to another, depending on the value of xi+1. So
one can now think of the following state translations as illustrated in Fig. 3. Here a or b labeledCN25_3

s4 s1

s3 s2

Figure 3: A finite state machine with four states. A transition occurs depending on the value
of xi+1.

above a transition arrow indicates the value of xi+1, given the current state si. For instance,
suppose that xi+1 = b given the current state s1. Then, we move along the red transition arrow
to arrive at the state s4 of [a; b]. The picture like Fig. 3 is called the state transition diagram.

While the state transition diagram well represents how each state moves around to another, it
does not capture the time evolution. This is exactly where another concept w.r.t. the FSM
arises. That is, the trellis diagram. Below we will describe how the trellis diagram looks like
and then will explain how it helps solve the interested optimization (4) that concerns the given
information {yi}ni=1.

Concept #3: Trellis diagram

The trellis diagram exhibits both state transitions and time evolution. To clearly understand
how it works, let me walk you through details with the help of Figs. 4 and 5.

Consider the state at time 1:

s1 =

[
x0
x1

]
=

[
a
x1

]
=


[
a
a

]
= s1, if x1 = a;[

a
b

]
= s4, if x1 = b,

where the second equality is due to our assumption x0 = a. Notice that s1 takes one of the two
possible states s1 and s4, reflected in the two dots at time 1 in Fig. 4. In time 0, we have two
options for s0 depending on the value of x−1: s1 and s2. To remove the ambiguity in time 0, let
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CN25_4

s1

s2

s3

s4

If ”a” occurs, stay at s1.

If ”b” occurs, move to s4.

state
time ??

Figure 4: A trellis diagram at i = 1 .

us further assume x−1 = a. This way, we can fix the initial state as s1. So we ensure that we
start always from s1. As mentioned earlier, if x1 = a, then s1 = s1; otherwise s1 = s4.

To be more familiar with how it works, let us consider one more time slot as illustrated in Fig. 5.
Suppose s1 = s1. If x2 = a, then it stays at the same state s1 (reflected in the blue transition

CN25_5

s1

s2

s3

s4

state
time

Figure 5: A trellis diagram at i = 2 .

arrow); otherwise, it moves to s4 (reflected in the red arrow). On the other hand, given s1 = s4,
if x2 = a, then it moves to s2; otherwise, it goes to s3.

Cost calculation

Remember in the canonical optimization (4) that we are interested in the cost ci(si). So one
natural question that arises is: How can we calculate the cost in (4) from the trellis diagram?
To figure this out, consider a concrete example for n = 4; see Fig. 6. This is the example
in which (x1, x2, x3, x4) = (a, b, a, a), so the trellis path takes the blue-red-blue-blue transition
arrows, yielding the state change as: s1–s1–s4–s2–s1. To ease cost calculation, here we leave an
associated cost at the corresponding state node. For instance, we put c1([a; a]) (marked in green
in Fig. 6) nearby the black dot s1 in time 1. Similarly we leave c2([a; b]), c3([b; a]), c4([a; a]) for
the corresponding black dots. By aggregating all the costs associated with the black dots, we
can readily compute the cost for one such sequence. Considering all possible sequence patterns,
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s1

s2

s3

s4

state
time

Figure 6: A trellis diagram for the sequence (x1, x2, x3, x4) = (a, b, a, a) .

we can compute the optimal path as:

s∗MAP = arg min
s1,s2,s3,s4

{c1(s1) + c2(s2) + c3(s3) + c4(s4)} .

As mentioned earlier, a naive exhaustive search requires the number 24 of cost calculations – so
the complexity is very expensive especially for a large n.

Look ahead

Next time, we will study the Viterbi algorithm that well exploits the structure of the trellis
diagram to find s∗ efficiently.
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Lecture 26: Speech recognition: Viterbi algorithm II

Recap

Last time, we have studied three concepts which I claimed serve to explain the mechanism of
the Viterbi algorithm intended for computing the optimal MAP estimator:

ŝMAP = arg min
s1,...,sn

n∑
i=1

ci(si) (1)

where

ci(si) := log

{
1

P(xi|xi−1)f(yi|xi)

}
and si :=

[
xi−1

xi

]
. (2)

The first concept is the cost ci(si) that represents an interested quantity in the canonical opti-
mization (1). The second is the state si concerning a finite state machine having the following
states: [

a
a

]
︸ ︷︷ ︸

s1

,

[
b
a

]
︸ ︷︷ ︸

s2

,

[
b
b

]
︸ ︷︷ ︸

s3

,

[
a
b

]
︸ ︷︷ ︸

s4

.

The third is the trellis diagram that visualizes how each state changes in time. Fig. 1 illustrates
an example of the trellis diagram for the sequence (x1, x2, x3, x4) = (a, b, a, a), assuming that
x0 = x−1 = a.

CN26_1

s1

s2

s3

s4

state
time

Figure 1: A trellis diagram for the sequence (x1, x2, x3, x4) = (a, b, a, a) .

Today’s lecture

Today we will study how the Viterbi algorithm works in detail. Specifically what we are going
to do are three-folded. I will first emphasize one key observation which gives a significant insight
into the algorithm. We will then study how the algorithm works. Lastly we will show that the
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computational complexity grows indeed linearly with n, as I claimed earlier. Since today is the
last day for this course, I will also leave a few closing remarks in the end.

Key observation

The Viterbi algorithm is inspired by the following key observation. To see this clearly, let us
consider two possible sequence patterns presented in Fig. 2:

(i) (x1, x2, x3, x4) = (b, a, b, a) (marked in purple);

(ii) (x1, x2, x3, x4) = (b, a, b, b) (marked in blue).

CN26_2

state
time

b a b a 

b a b b 

s1

s2

s3

s4

overlap

Figure 2: Key observation.

Here the key observation is that the two trellis paths are significantly overlapped ; hence, the two
corresponding costs are identical except for the cost w.r.t. the last state vector. This motivated
Viterbi to come up with the following natural idea.

Idea of the Viterbi algorithm

The idea is to successively store only an aggregated cost up to time t and then use this to compute
a follow-up aggregated cost w.r.t. the next time slot. In order to understand what this means
in detail, let us consider a simple example. See Figs. 3 and 4.

For illustrative purpose, let us consider a simple setting (n = 4) in which cost computations are

2



CN26_3

state
time

s1

s2

s3

s4

Figure 3: Cost computation and store strategy.

already done via (2) for all the possible states and time slots:

c1

([
a
a

])
c1

([
b
a

])
c1

([
b
b

])
c1

([
a
b

])


=


0.01
∗
∗

4.41

 ,



c2

([
a
a

])
c2

([
b
a

])
c2

([
b
b

])
c2

([
a
b

])


=


0.04
3.24
14.44
3.24

 ,



c3

([
a
a

])
c3

([
b
a

])
c3

([
b
b

])
c3

([
a
b

])


=


2.25
0.25
6.25
0.25

 ,



c4

([
a
a

])
c4

([
b
a

])
c4

([
b
b

])
c4

([
a
b

])


=


17.64
4.84
0.04
4.84



where ∗ means that cost computations are omitted since they are not needed in the beginning.

The cost c1([a; a]) = 0.01 is placed along the blue transition arrow, as illustrated in Fig. 3. We
then store the cost at the state s1 node at time 1 (a black dot). Here we indicate the store by
marking a purple-colored number nearby the black dot. We do the same thing w.r.t. the cost
yet now when x1 = b. We place the cost c1([a; b]) = 4.41 along the associated red transition
arrow and then store 4.41 nearby the black dot w.r.t. the state s4.

Next we consider the cost c2([a; a]) = 0.04. So the aggregated cost up to time 2 w.r.t. the state
s1 would be 0.01+0.04, as illustrated in Fig. 3. Similarly the aggregated costs for the other
states (s2, s3, s4) would be 4.41+3.24, 4.41+ 14.44, 0.01+3.24, respectively.

Now one can see the core idea of the Viterbi algorithm from time 3. See Fig. 4. Consider the state
s1 at time 3. This state occurs when x3 = a and comes from two possible prior states: s1 and s2.
We consider the cost c3([a; a]) = 2.25. So the aggregated cost assuming that it comes from the
prior s1 state (storing 0.05 for the aggregated cost up to time 2) would be: 0.05+2.25 = 2.3. On
the other hand, the aggregated cost w.r.t. the prior s2 state would be: 7.65 + 2.25 = 9.9. Now
how to deal with the two cost values? Remember at the end of the day that we are interested in
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state
time

s1

s2

s3

s4

Figure 4: Ided of the Viterbi algorithm

finding the path that yields the minimum aggregated cost. So the path w.r.t. the larger cost 9.9
would be eliminated in the competition. So we don’t need to worry about any upcoming paths
w.r.t. the larger cost. This naturally motivates us to store only the minimum between the two
cost values at the state s1 in time 3, while ignoring the other loser path. So we store 2.3 at the
node, as illustrated in Fig. 5. We do the same thing for the other states. For the state s2, the

CN26_5

state
time

s1

s2

s3

s4

Figure 5: Choose s∗ that minimizes the aggregated cost.

lower path turns out to be the winner, so we store the corresponding aggregated cost 3.5 at the
state s2 node, while deleting the upper loser path. Similarly for the states s3 and s4. We repeat
this procedure until the last time slot. See all the associated computations in Fig. 5.

Now how to find the path that yields the minimum aggregated cost from the picture? It is very
simple. Take a look at the four aggregated costs at the last time slot: 19.94, 5.14, 0.34, 7.14.
We then pick up the minimum cost 0.34. Now how to find the corresponding sequence pattern?
Since we leave only the survivor paths in the picture while deleting loser paths, we can readily
find the path via backtracking. The survivor paths form the thick purple trajectory in Fig. 5,
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which corresponds to the sequence (x1, x2, x3, x4) = (a, a, b, b).

Complexity

Remember I argued that the complexity of the Viterbi algorithm grows linearly with n. To
see this clearly, let us consider the essential operation that occurs in each node. Focus on the
operation w.r.t. the state s1 node at time 3, as illustrated in Fig. 6. Given the computations

CN26_6

state
time

s1

s2

Figure 6: Complexity per state.

of the a prior probability and the likelihood function (which can be stored in a table), the cost
computation requires: 1 log operation; 1 multiplication; 1 addition; and 1 comparison. The
comparison operation is needed for taking the minimum between the two. This operation is
repeated for the other states spanning the entire time slots, reflected in all the dots in the
picture. Since the total number of black dots is 4n, the complexity of the Viterbi algorithm
grows linearly with n.

Closing

Finally I would like to leave a remark which may be helpful for your future careers. One
key message that I would like to deliver from this course is that fundamental concepts and
principles (probability concepts and MAP/ML principles) play important roles. So in view of
this, I strongly recommend you to make every efforts for being strong at fundamentals! The
fundamentals that I would like to put a special emphasis on are w.r.t. modern AI technologies
that you may be very interested in. As you may image, being an expert in the AI field requires
many backgrounds. One major background that I believe crucial is mathematics, in particular
four fundamental branches in mathematics.

The first is optimization. Remember that the goal of machine learning can be achieved through
optimization. The second is a field which provides instrumental tools with which one can
translate the objective function and/or constraints into simple and tractable formulas. The
field is: linear algebra. As you may be familiar with, many seemingly-complicated mathematical
formulas can be expressed as simple terms that involve matrix multiplications and additions. The
third is a field that plays a role in dealing with uncertainty that appears in random quantities.
The field is: probability. The last is a field that serves to shed optimal architectural insights into
machine learning models of interest. That is: information theory. Remember the role of cross
entropy (an information-theoretic notion) in the design of the optimal loss function.

These are the very fundamentals which I believe are crucial for advancing the 4th industrial
revolution empowered by AI technologies. So my advice is: Be strong at these fundamentals.
Here are some relevant courses offered at KAIST:

1. EE424: Introduction to Optimization;

2. MA109: Introduction to Linear Algebra;
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3. EE210: Introduction to Probability & Random Processes;

4. EE326: Introduction to Information Theory & Coding.

One caveat here is that such fundamentals are highly likely to be built only when you are
at school. Of course it is a bit exaggerated, but it seems indeed the case according to the
experiences of my own and many others. You may be able to understand what this means after
you graduate; not enough time would be given for you to deeply understand some principles and
also your stamina would not be as good as that of now.
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