
Lecture Notes:
Introduction to Convex Optimization

Changho Suh1

June 4, 2019

1Changho Suh is an Associate Professor in the School of Electrical Engineering
at Korea Advanced Institute of Science and Technology, South Korea (Email:
chsuh@kaist.ac.kr).



EE523 Convex Optimization February 26, 2019
KAIST, Spring 2019

Lecture 1: Logistics and Overview

About instructor

Welcome to EE523: Convex Optimization! My name is Changho Suh, an instructor of the
course. A brief introduction of myself. A long time ago, I was one of the students in KAIST
like you. I spent six years at KAIST to obtain the Bachelor and Master degrees all from
Electrical Engineering in 2000 and 2002, respectively. And then I left academia, joining Samsung
electronics. At Samsung, I worked on the design of wireless communication systems like 4G-
LTE systems. Spending four and a half years, I then left industry, joining UC-Berkeley where I
obtained the PhD degree in 2011. I then joined MIT as a postdoc, spending around one year.
And then I came back to KAIST. My research interests include information theory and machine
learning which have something to do with the optimization theory, which I am going to cover
in part from this course.

Today’s lecture

In today’s lecture, we will cover two very basic stuffs. The first is logistics of this course: details
as to how the course is organized and will proceed. The second thing to cover is a brief overview
to this course. In the second part, I am going to tell you a story of how convex optimization
was developed, as well as what we will cover from this course.

My contact information, office hours and TAs’ information

See syllabus uploaded on the course website. One special note: if you cannot make it neither for
my office hours nor for TAs’ ones, please send me an email to make an appointment in different
time slots.

Prerequisite

The key prerequisite for this course is to have a good background in linear algebra. In terms
of a course, this means that you should have taken the following course: MAS109, which is an
introductory-level course on linear algebra. This is the one that is offered in the Department
of Mathematical Sciences. Some of you might take a different yet equivalent course from other
departments. This is also okay. Taking a somewhat advanced-level course (e.g., MAS212: Linear
Algebra) is optional although it is recommended. If you feel a bit uncomfortable although you
took the relevant course(s), you may want to review a material (part of a linear algebra course
note at Stanford) that I uploaded on the course website.

Another prerequisite for the course is a familiarity with the concept on probability. In terms of a
course, this means that you are expected to be somewhat comfortable with the contents dealt in
EE210, which is an undergraduate-level course on probability. Taking an advanced course like
EE528 (Random Processes) is optional. This is not a strong prerequisite. In fact, the convex
optimization concept itself has nothing to do with probability. But some problems (especially the
ones that arise in recent trending fields like machine learning and artificial intelligence, and I will
also touch upon a bit in this course) deal with some quantities which are random and therefore
are described with probability distributions. This is the only reason that understanding the
concept on probability is needed for this course. Hence, reviewing another material (an easy-

1



level probability course note at MIT) that I uploaded on the course website may suffice.

There must be a reason as to why linear algebra is crucial for this course. The reason is
related to the definition of optimization, which subsumes convex optimization (which we will
study throughout this course) as a special case. A somewhat casual definition of optimization
is to make the best choice among many candidates (or alternatives). A more math-oriented
definition of optimization (which we should rely on as scientists and/or engineers) is to choose
an optimization variable (or decision variable) so as to minimize or maximize a certain quantity
of interest possibly given some constraint(s). Here the optimization variable and the certain
quantity are the ones that relate the optimization to linear algebra. In many situations, the
optimization variable are multiple real values which can be succinctly represented as a vector.
Also the certain quantity (which is a function of the optimization variable) can be represented
as a function that involves matrix-vector multiplication and/or matrix-matrix multiplication,
which are basic operations that arise in linear algebra. In fact, many operations and techniques
in linear algebra help formulating an optimization problem in a very succinct manner, and
therefore help theorizing the optimization field. This is the very reason that this course requires
a good understanding and manipulation techniques on linear algebra. Some of you may not be
well trained with expressing an interested quantity with vector/matrix forms. Please don’t be
offended. You will have lots of chances to be trained via some examples that will be covered
in lectures and homeworks as the course progresses. Whenever some advanced techniques are
needed, then I will provide detailed explanations and/or materials which serve you to understand
the required techniques.

If you think that you lack these prerequisites, then come and consult with me so that I can help
you as much as possible.

Course website

We have a course website on the KLMS system. You can simply login with your portal ID. If
you want to only sit in this course (or cannot register the course for some reason), please let
me or one of TAs know your email address. Upon request, we are willing to distribute course
materials to the email address that you sent us.

Text

The organization of the course will follow mostly but in part by: Prof. Laurent El Ghaoui’s
livebook (LB for short), titled “Optimization Models and Applications”. To access, you need to
register at http://livebooklabs.com/keeppies/c5a5868ce26b8125. A good news is that the regis-
tration comes for free.

I am going to provide you with lecture slides (LS for short) which I will use during lectures, as
well as course notes (CN for short) like the one that you are now reading. Most times, these
materials will be posted at night on a day before class, but sometimes course notes may be
uploaded after lectures. These materials are almost self-contained, and cover the entire contents
that will show up in homeworks and exams. So if you want to make a minimal effort to this
course (for some personal reason), then these materials may suffice to pass the course with a
reasonable grade.

For those who have enough energy, passion and time, I recommend you to consult with other
references: (1) Calafiore & El Ghaoui, “Optimization Models”, Cambridge University Press,
Oct. 2014; (2) Boyd & Vandenberghe, “Convex Optimization”, Cambridge University Press,
2004 (available online at http://stanford.edu/∼boyd/cvxbook/bv cvxbook.pdf). Sometimes, I will
make some homework problems from these references. If so, I will let you know and upload a

2



soft copy of the relevant part of the books.

Problem sets

There will be weekly or bi-weekly problem sets. So there would be seven to eight problem sets
in total. Solutions will be usually available at the end of the due date. This means that in
principle, we do not accept any late submission. We encourage you to cooperate with each other
in solving the problem sets. However, you should write down your own solutions by yourselves.
You are welcome to flag confusing topics in the problem sets; this will not lower your grade.
Some problems may require programming like CVX that runs in MATLAB. We will also provide
a tutorial for programming when a first related-homework is issued.

Exams

As usual, there will be two exams: midterm and final. Please see syllabus for the schedule that
our institution assigns by default - that is Thursday 9am-noon on an exam week for this course.
Please let us know if someone cannot make it for the schedule. If your reason is reasonable, then
we can change the schedule or can give a chance for you to take an exam in a different time slot
that we will organize individually.

Two things to notice. First, for both exams, you are allowed to use one cheating sheet, A4-sized
and double-sided. So it is a kind of semi-closed-book exam. Second, for your convenience, we
will provide an instruction note for each exam, which contains detailed guidelines as to how to
prepare for the exam. Such information includes: (1) how many problems are in the exam; (2)
what types of problems are dealt with in what contexts; (3) the best way to prepare for such
problems.

Course grade

Here is a rule for the course grade that you are mostly interested in perhaps. The grade will be
decided based on four factors: problem sets (22%); midterm (32%); final (40%); and interaction
(6%). Here the interaction means any type of interaction. So it includes attendance, in-class
participation, questions, discussion, and any type of interaction with me.

Overview

Now let’s move onto the second part. Here is information for reading materials: Course Note
(CN for short) 1 and Chapter 1 in LB. In this part, I will tell you how the theory of convex
optimization was developed in which contexts. I will then provide you with specific topics that
we will learn about through the course.

Optimization

To talk about a story of how the theory of convex optimization was developed, we need to first
know about the history of optimization which includes convex optimization as a special case.
What is optimization? As mentioned earlier, a casual informal definition of optimization is to
make the best choice out of possible candidates. It comes up often in our daily life. For example,
we may want to figure out a scheduling strategy for airplanes so that the total waiting time is
minimized under some constraints, e.g., a certain airplane with emergency should take off no
later than a specific time. Or family members may want to choose a restaurant to visit for
dinner, so as to maximize the happiness of the members (if it can be quantified) given a distance
constraint, e.g., a chosen restaurant should be within a few kilometers.

3



A more mathematical definition of optimization that we are interested in as scientists is to choose
an optimization variable that minimizes (or maximizes) a certain quantity of interest possibly
given some constraints. Of course this course aims at learning a theory concerning such a formal
definition. Specifically we are interested in learning a mathematical theory of optimization which
has been extensively developed and explored for a few past centuries. In fact, the birth of the
theory traced back to an astronomy problem in the 1800s. So let us talk about the problem to
see how the theory was developed.

An astronomy problem in the early 1800s

In the early 1800s, astronomers discovered a new planetoid (or called dwarf planet), which was
later named Ceres. Giuseppe Piazzi is the first astronomer who discovered the planetoid. He
wished to figure out an orbit of Ceres, so as an effort, he made 19 observations (of its locations)
over 42 days. However, something happened in locating the trajectory. The object was lost due
to the glare of the Sun. So many astronomers wanted to predict the hidden trajectory using the
partial 19 observations.

One interesting trial was made by a German young mathematician, named Carl Friedrich Gauss
(1777 ∼ 1855)1. He made a specific yet smart approach to figure out the trajectory successfully.
In the process, he could develop a mathematical problem that later formed the basis of the
optimization field.

Gauss’s approach

Here is what Gauss did - see also Fig. 1. First of all, he gathered all the observations (each
pointing out a location of Ceres measured at a certain time) scattered around the Sun. Let
bi indicate a coordinate of the location of the ith observation where i ∈ {1, 2, . . . ,m}. Here
m denotes the total number of observations that could be up to 19 in the astronomy problem
context - remember that Piazzi made 19 observations.

Next he fixed two arbitrary observation points. He then drew an orbit that crosses the two fixed
points. Actually it was well studied in the astronomy field that an orbit can be fully represented
with six parameters. So the orbits that cross the two fixed points can be represented with four
parameters. Depending on the choice of such free parameters, there are many ways to draw
such orbits. Let’s denote by x a vector that stacks up the four parameters. Here what Gauss
did is that he could represent a point on the orbit which is the closest to each bi, in terms of the
vector x. It turned he could approximate the point as Aix where Ai indicates a certain matrix
which relates bi to the nearest point on the orbit. He then believed that for the ground-truth
orbit (which we wish to figure out), the distance to bi, reflected in ‖Aix−bi‖, should be within a
location-measurement error2. This motivated him to solve the following optimization problem:

min
x

m∑
i=1

‖Aix− bi‖2. (1)

1Yes, he is the guy who invented the Gaussian distribution (which is the one of the very famous and useful
distributions in probability) and Gaussian elimination (an efficient method which allows us to do a matrix inversion
or to solve linear equations).

2Here ‖x‖ denotes the Euclidean norm (or called the `2 norm), defined as ‖x‖ :=
√

x2
1 + · · ·+ x2

d where d is
the dimension of x.

4



Sun

Figure 1: Gauss’s approach to figure out the orbit of Ceres

Gauss then observed that
∑m

i=1 ‖Aix− bi‖2 can be simplified as:

m∑
i=1

‖Aix− bi‖2 =

∥∥∥∥∥∥∥
 A1x− b1

...
Amx− bm


∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
 A1

...
Am

x−

 b1
...
bm


∥∥∥∥∥∥∥
2

.

(2)

Letting A := [A1; · · · ;Am] and b := [b1; · · · ; bm]3, he then re-wrote the optimization problem as:

min
x
‖Ax− b‖2. (3)

Least-squares problem

The problem (3) is actually the famous problem that is now known as the least-squares problem.
Notice that the word “least” comes from “min” and “squares” is due to the square exponent
placed above the Euclidean norm. You may wonder why Gauss used the square as an exponent
in the objective function. Why not other exponents like 1, 3 or 4? Actually this was due to the
mathematical beauty that Gauss was obsessed with. Notice that using other exponents like 1
or 3 or 4, one cannot do the beautiful simplification like (2). If you cannot see why, then check
in homework.

It turns out that the least-squares problem could open up the optimization field (since the time,
people have tried to theorize the field with passion) and also has played a significant role in the
field. There are two reasons as to why the problem played such a big role. The first is that (3)
has the beautiful closed-form solution:

x∗ = (ATA)−1AT b (4)

where (·)T indicates a transpose of a matrix and (·)−1 denotes a matrix inversion. We will later
show why the solution is of the form (4) - please be patient until we get to the point. The second
reason is that there are efficient algorithms and software that enable us to compute the solution

3Here the notation [·; ·] means the column-wise concatenation.

5



involving a matrix inverse. Even in the 1800s, there was an efficient matrix-inversion algorithm,
based on the Gaussian elimination due to again Gauss.

Since the development of the least-squares problem, people tried to translate any problem of
their interest to a least-squares problem. So a variety of translation techniques (that we will
also study in this course) have been developed. However, people encountered many situations
in which such translation does not work. This challenge was sort of expected. As you can easily
image, the least-squares problem is just a single tiny class of the entire optimization problems
that can be formulated in the world.

A breakthrough by Kantorovich

Unfortunately there was no significant progress on the optimization theory for more than a cen-
tury. But another history was made in 1939 by a Soviet economist, named Leonid Kantorovich.
He made a breakthrough in the course of solving a military-related problem during World War
II (sort of forced to do so by the Soviet Union government). The problem that he was trying to
solve was to plan expenditures and returns of soldiers to minimize the entire cost of the Soviet
Union Army as well as to maximize the losses imposed on the enemy.

In the process, he could formulate an optimization problem now known as the very famous linear
program (LP)4. Simply put, the LP is an optimization problem in which the objective function
and the functions that appear in constraints are all linear. We will study its formal definition
later on. Unlike the least-squares problem, the LP has no closed form solution. But the good
news is that Kantorovich could develop a very efficient algorithm that achieves the optimal
solution x∗. Actually having a closed form solution is not that important as long as we know
how to get to the optimal solution. This achievement won him the Nobel Prize in Economics in
1975.

The development of LP made people become excited again, trying to translate an interested
problem into a least-squares problem or LP. While many LP-translation techniques (that we
will also study in this course) have been developed, people encountered still many situations in
which the translation is not doable.

A class of tractable optimization problems

Inspired by the development of LP, people tried to come up with a class of tractable optimization
problems which can be solved reliably & efficiently - LP is one such example. In a decade, another
tractable problem, called quadratic program (QP), was developed. It is a sort of a generalized
version, as it includes as special cases the least-squares problem and LP - see Fig. 2. In the 1990s,
another problem, called second-order cone program (SOCP), was developed which subsume as
special cases all of the prior problems. Around the same time, a larger class of problem, called
semi-definite program, was developed. More and more tractable problems have been developed
so far. It turns out that all of the tractable problems share the common property (concerning
the word “convex”), and this property established the class of tractable problems, named convex
optimization.

Course outline

This course consists of three parts. In Part I, we will study the basic concepts and several
mathematical definitions required to understand what convex optimization is as well as how to
translate an interested problem into a convex problem. We will then explore five instances of

4The “program” (or “programming”) is sort of a jargon frequently used in the field, which refers to an opti-
mization problem. So the formal name of LP is a linear optimization problem.

6



Least-squares Linear Program

(LP)

Quadratic Program (QP)

Second-Order Cone Program

(SOCP)

Semi-Definite Program

(SDP)

……

Convex Optimization

19391800s

1956

1994

1994

Figure 2: A class of tractable optimization problems: Convex optimization.

convex optimization problems: LP, least-squares, QP, SOCP and SDP. Specifically we will focus
on techniques which serve recognizing (and translating to) such problems. We will also study
some prominent algorithms for solving such problems. In Part II, we will study one of the key
theories in the optimization field, called duality. There are two types of dualities: (1) strong
duality; (2) weak duality. It turns out that the strong duality is quite useful for gaining some
algorithmic insights for convex problems. The weal duality helps dealing with difficult non-
convex problems, by providing an approximated solution. In the last third part, we will explore
applications that arise in machine learning and finance: (i) supervised learning, one of the most
popular machine learning techniques using labelled data; (ii) Generative Adversarial Networks
(GANs), one of the breakthrough models for unsupervised learning; (iii) portfolio optimization.

7



EE523 Convex Optimization March 5, 2019
KAIST, Spring 2019

Lecture 2: Definition of Convex Optimization

Recap

Last time, I told you a story of how the optimization theory was developed. There were two
breakthroughs in the history of optimization. The first was made by the famous Gauss. In
the process of solving an astronomy problem of figuring out the orbit of Ceres (which many
astronomers were trying to address in the 1800s), he could develop an optimization problem,
which is now known as the least-squares problem. The beauty of the least-squares problem is
two-folded: (i) it has a closed form solution; (ii) there is an algorithm which enables computing
the matrix inverse efficiently which is required to compute the solution. It turned out the beauty
of the problem opened up the optimization field and has played a significant role in the field.

Least-squares Linear Program

(LP)

Quadratic Program (QP)

Second-Order Cone Program

(SOCP)

Semi-Definite Program

(SDP)

……

Convex Optimization

19391800s

1956

1994

1994

Figure 1: A class of tractable optimization problems: Convex optimization.

The second breakthrough was made by Leonid Kantorovich. In the process of solving a military-
related resource-allocation problem, he could formulate a problem which is now known as linear
program (LP). The good thing of LP is that there developed an efficient algorithm which allows
us to compute the optimal solution reliably and efficiently although the closed form solution
is unknown. In other words, Kantorovich came up with the concept of tractable optimization
problems which can be solved via an algorithm without the knowledge of the optimal solution
form. This motivated many followers to mimick his approach, thereby coming up with a class
of tractable optimization problems: convex optimization; see Fig. 1.

Today’s lecture

The goal of today’s lecture is to understand what the convex optimization is. To this end, we
will cover four stuffs sequentially. First we will study a standard mathematical formulation of
optimization problems. It turns out the definition of convex optimization problems of our main
interest requires the knowledge of convex functions. But the definition of convex functions relies
on the concept of convex sets. So in the second part, we will study what the convex set is and
also investigate some important examples in an effort to be familiar with the concept. Next
we will study the definition of convex functions together with a couple of examples and crucial

1



properties. Using all theses, we will finally investigate a standard mathematical formulation of
convex optimization problems.

Optimization problem in standard form

Let us start by recalling the definition of optimization: Choosing an optimization variable that
minimizes (or maximizes) a certain quantity of interest possibly given constraints. Here we
denote the optimization variable by x := [x1, x2, . . . , xd]T ∈ Rd where d indicates the dimension
of the variable. Denote the objective function (the certain quantity) by f(x) ∈ R. There are
two types of constraints: (i) inequality constraints; (ii) equality constraints. The inequality
constraints are represented by the form like fi(x) ≤ ci where i = 1, . . . ,m. Here m indicates
the number of the constraints. Without loss of generality (WLOG), the constant ci can be
merged with fi(x) and hence the form can be simplified as: fi(x) ≤ 0. Similarly the equality
constraints can be represented by: hi(x) = 0 where i = 1, . . . , p and p is the number of the
equality constraints.

Using these notations, one can write the standard form of optimization problems as:

min
x
f(x)

subject to fi(x) ≤ 0, i = 1, 2, . . . ,m,

hi(x) = 0, i = 1, 2, . . . , p.

(1)

Without loss of generality, it suffices to consider the minimization problem, since the maximiza-
tion problem can readily come by flipping the sign of f(x): min f(x) is equivalent to max−f(x).
Here we have two conventions that allow us to simplify the above form (1). One is that we use
the colon “:” to indicate the “subject to”. The second is that the x placed below min is omitted
since the role of x is clear enough. Hence, the simpler form reads:

min f(x) : fi(x) ≤ 0, i = 1, 2, . . . ,m,

hi(x) = 0, i = 1, 2, . . . , p.
(2)

Two more things to note. One is the optimal value, denoted by p∗ := min f(x). The other is
the optimal solution, denoted by x∗ := arg min f(x). Here “arg min” stands for “argues the one
that minimizes”.

Convex set

Now what is convex optimization that we wish to figure out in this lecture? As mentioned in the
beginning of this lecture, to define this, we need to know about the concept of convex functions.
But to define convex functions, we need to know about convex sets. So we will first study what
the convex set is.

A set S is said to be convex if

x, y ∈ S =⇒ λx+ (1− λ)y ∈ S, ∀λ ∈ [0, 1]. (3)

Examples: Point, line, plane, line segment, . . .

To get a concrete feel about what the convex set means, let us investigate several examples. The
first simplest example is the set containing a single point. This is obviously a convex set, as any
linear combination that lies in between x and y, reflected in λx + (1 − λ)y, is just the single
point.

2



The second simplest example is perhaps the set that contains a line that lives in a 2-dimensional
ambient space. This is also convex because any linear combination of two points lying on a line
should also lie on the line. Here let us investigate how to represent such convex set. Actually this
representation will help us to understand the concept of convex optimization later on. Notice
that the line in a 2-dimensional space can be represented as: x2 = a1x1 + b1 where a1 and b1
indicates the slope and y-intersect. Hence, one can represent the set as:

S = {x : x2 = a1x1 + b1}. (4)

Using vector notations, one can define a := [−a1, 1]T and b1 := b, which in turn simplifies the
representation (4) as:

S = {x : aTx− b = 0}. (5)

The third example is the naive extension of the second example: a plane living in a 3-dimensional
space. This is also obviously a convex set, as any combination of two points lying on a plane
also lies on the plane. The representation of the convex set is exactly the same as (5), except
that now the dimension of x and a are 3.

The fourth example is the one in which the dimension of an object of interest differs from d by
2. One such example is the set that contains a line living in a 3-dimensional space. This is also
a convex set, as the object of interest is a line. But the representation of such convex set is
different from (5). A line is actually the intersection of two planes in a 3-dimensional space. So
the representation of the set should read:

S = {x : aT1 x− b1 = 0, aT2 x− b2 = 0}. (6)

Defining A := [a1, a2]
T and b := [b1, b2]

T , this can be simplified as:

S = {x : Ax− b = 0}. (7)

Looking carefully at these examples, one can see that the representation of a line, a plane or a
hyperplane (a subspace whose dimension is one less than that of its ambient space) lying in a
larger-dimensional ambient space reads the form like (7). Depending on the dimension of the
matrix A ∈ Rp×d, S may refer to the set containing a line, a plane or a higher-dimensional
plane. For instance, when d − p = 1, S refers to a line. When d − p = 2, S indicates a plane.
Actually the set represented bv the form (7) is called an affine set. An affine function is a linear
function that allows for having a bias constant term; the formal definition will be given later on.
Since the set in (7) includes the affine function Ax− b, it is called an affine set.

Another example that I would like to mention is the set that contains a line segment ; see the
left top in Fig. 2. Again this is obviously a convex set. On the other hand, a broken line, a line
that is broken in a middle, is not convex, since some linear combination of two points in the
broken line may fall into to somewhere in the broken place; see the right top in Fig. 2.

More examples: Polygon, polyhedron, polytope, . . .

You may wonder if there are any other examples beyond point/line/plane. Of course, there are
many. One object that you may be interested in is: a polygon living in a 2-dimensional space. In
particular, the closed polygon in which points inside (and boundary at) the polygon are included
in the set (see the left bottom in Fig. 2 for illustration) is a convex set. On the other hand, the
boundary-only polygon (see the right bottom in Fig. 2) is not a convex set.

3



line segment broken line

closed polygon boundary-only polygon

Figure 2: Examples of convex sets (left two) and non-convex sets (right two).

As you may imagine, representation of the closed-polygon convex set is different from the form (7)
of affine sets. The closed-polygon can actually be represented as the intersection of half-planes,
each being represented by aTi x− bi ≤ 0. Hence, the representation of such set reads:

S = {x : Ax− b ≤ 0}. (8)

where the inequality indicates a component-wise inequality.

Similarly, a polyhedron living in a 3-dimensional ambient space (or a polytope living in a d-
dimension space and hence difficult to visualize) is a convex set and can also be represented as
the form like (8).

Convex function

We are now ready to define the convex function. A function f(x) is said to be convex if the
following two conditions are satisfied:

(i) the domain of the function f , denoted by domf (the set in which the input x of the function
lies in), is a convex set; and

(ii) for x, y ∈ domf and λ ∈ [0, 1]:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (9)

Here you can see why we needed to know about the concept of the convex set. The concept
appears while mentioning the first condition that domf should satisfy. Actually this “convex
set” condition is required; otherwise, we have a problem when it comes to stating the second
key condition in (9), because the function in the left hand side cannot be defined. Notice that
the input argument in the function is λx+ (1− λ)y and this should be in domf (meaning that
domf should be convex) - otherwise, f(λx+ (1− λ)y) cannot be defined.

If you think about some picture that reflects the second key condition (9), then you can readily
get a feel about why the convex function should be defined in such a manner. Actually the
meaning of “convex” is “bowl-shaped”. So we can think about a bowl-shaped curve like the
one illustrated in Fig. 3. Now let’s consider two points, say x and y, and a λ-weighted linear
combination, λx+(1−λ)y. The function evaluated at λx+(1−λ)y is on the bowl-shaped curve
while the same-weighted linear combination λf(x)+(1−λ)f(y) of the two functions evaluated at
x and y is above f(λx+(1−λ)y). Hence, the key condition (9) comes naturally as a consequence
of the bowl-shaped feature of the curve.

4



Figure 3: Geometric intuition behind convex functions.

There are tons of examples of convex functions and also many of these are the ones that you
should be familiar with if you wish to be an expert on this field. Or at least you may want to
know some of them in which problems of your interest can be linked to. But exploring many of
such examples may be too much now - it is just the beginning of the course, so that way you will
be exhausted shortly. Thus we will here investigate only a couple of examples. One example of
a convex function is:

f(x) =
1

x
x > 0. (10)

Here the function is like bowl-shaped, so it respects the second condition (9). Also domf =
{x : x > 0} is a convex set, satisfying the first condition. Hence, the function is convex.

Now what about a slightly different function:

f(x) =
1

x
? (11)

Here the distinction is that domf is not explicitly defined. In this case, we should think about
an implicit constraint that x should satisfy. The implicit constraint is: x 6= 0, thus yielding:

domf = (−∞, 0) ∪ (0,∞).

Since domf is not convex, the function is not convex either.

Actually there is a way to handle this issue to make the bowl-shaped function convex. The way
is to make domf span the entire region (making it convex) while setting the function to some
arbitrary quantities for newly added regions. For instance, we can define the function as:

f(x) =

{
1
x , x > 0;
+∞, x ≤ 0.

(12)

Notice that now dom = (−∞,∞) is a convex set while f(x) is still being bowl-shaped. Hence,
the function is convex.

There is another function which is defined very similarly to the convex function. That is, a
concave function. We say that f(x) is concave if −f(x) is convex. The geometric intuition says
that the function of a bell shape is concave. Also a function is said to be affine (linear plus bias)
if it is convex and concave.

Convex function and convex set

5



Previously we investigated examples of convex sets where only affine functions are introduced.
Actually there are many convex sets which concern convex functions. Here we list a couple of
such examples.

One such example is:

S = {x : f(x) ≤ 0} (13)

where f(x) is a convex function. Here is the proof that S is a convex set. Suppose x, y ∈ S. Then,
f(x) ≤ 0 and f(y) ≤ 0. This together with the convexity of f , reflected in the condition (9),
gives:

f(λx+ (1− λ)y) ≤ 0,

which in turn implies that λx+ (1− λ)y ∈ S. This completes the proof.

Another example is the intersection of such convex sets:

S = S1 ∩ S2
S1 = {x : f1(x) ≤ 0}, S2 = {x : f2(x) ≤ 0}.

(14)

Try the proof in Problem Set (PS) 1. Actually the intersection of arbitrary convex sets is also
convex - check in PS1 as well.

Convex optimization problem in standard form

We are now ready to define the convex optimization problem. It is an optimization problem
which satisfies the following three: (i) The objective function is convex; (ii) The set induced by
inequality constraints is convex; and (iii) The set induced by equality constraints is convex. So
the standard form of the convex optimization problem is (2) in which (i) f(x) is convex; (ii)
fi(x) is convex; and (iii) hi(x) is affine. Notice that the set induced by affine equality constraints
S = {x : Ax− b = 0} is a convex set as we studied earlier.

Look ahead

Of course there must be a reason why the convex optimization problem is defined in such a
manner. This is because the way of definition makes the problem tractable. Next time, we will
provide an intuition as to why convex optimization is tractable. We will then start investigating
one instance of convex optimization: Linear Program (LP).

6



EE523 Convex Optimization March 7, 2019
KAIST, Spring 2019

Lecture 3: Tractability of Convex Optimization and
Introduction to Linear Program

Recap

Last time, we studied the concept of convex sets and convex functions to come up with a standard
form of convex optimization problems. In words, convex optimization is a problem in which the
objective function is convex and the set induced by inequality and equality constraints (that we
often call the feasible set) is convex. In terms of mathematical notations, it is formulated as:

min f(x) : fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p
(1)

where f(x) and fi(x)’s are convex and hi(x)’s are affine functions. And then I told you that
there is a reason that many people have been interested in such convex optimization defined as
above. The reason is that the way of defining the problem makes the problem tractable. Here
what it means by tractable is that the optimal solution can be achieved via an algorithm (with
the help of a computer) even if the closed form solution is unknown.

Today’s lecture

The main goal of today’s lecture is to provide a rationale behind the claim regarding tractability.
To this end, I will provide you with an explanation as to why convex optimization is tractable.

Specifically we will deal with two cases: (i) unconstrained minimization; (ii) constrained mini-
mization. For the unconstrained case, we will first derive a simple optimality condition and then
demonstrate that the condition naturally leads to efficient algorithms. For the constrained case,
we will also characterize an optimality condition which turns out to shed lights into efficient
algorithms. While investigating the two cases, we will assume that: (i) the objective function
f(x) is differentiable at every point x in domf ; (ii) the domain is open.

Another goal of this lecture is to give an overview to the contents regarding one instance of
convex optimization problems: Linear Program (LP). This is what we will cover through a
couple of upcoming lectures.

Unconstrained minimization

Let us start by investigating the unconstrained convex optimization problem:

min f(x).

Recall the meaning of convex. It means “bowl-shaped”. So one can think of a graph illustrated
in Fig. 1. Here you can easily see that at the optimal point x∗, the slope of the objective function
is 0, and also vice versa (meaning that the point in which the slope of the function is 0 is the
optimal solution). This naturally leads us to conjecture that ∇f(x∗) = 0 is a sufficient and
necessary condition for x∗ to be optimal:

∇f(x∗) = 0←→ f(x) ≥ f(x∗) ∀x ∈ domf. (2)

It turns out this conjecture is indeed the case. Here is the proof.

1



Proof of the direct part −→ in (2): To gain some insights, let us see a convex function f(x) in
Fig. 1. Pick up a point (x∗, f(x∗)). Now consider a line that crosses the point (x∗, f(x∗)) with a
slope ∇f(x∗) so that it is tangent to f(x). Then, the line should read: ∇f(x∗)T (x−x∗)+f(x∗).
Here the picture suggests that the convex function f(x) is above (or touching) the line:

f(x) ≥ ∇f(x∗)T (x− x∗) + f(x∗) ∀x ∈ domf. (3)

It turns out this is indeed the case, meaning that the condition (3) (together with domf being
convex) holds if and only if f(x) is convex. Actually this is one of the crucial properties of convex
functions, called the “1st order condition of convex functions”. The proof of this is omitted here,
but you will have a chance to prove this in PS1. Now this together with the hypothesis gives:
f(x) ≥ f(x∗), ∀x ∈ domf .

Figure 1: 1st order condition of convex functions: f(x) ≥ ∇f(x∗)T (x−x∗)+f(x∗), ∀x ∈ domf .

Proof of the converse part ←− in (2): The converse proof relie on the following fact (which we
will prove once we are done with this converse proof):

f(x) ≥ f(x∗) ∀x ∈ domf −→ ∇f(x∗)T (x− x∗) ≥ 0 ∀x ∈ domf. (4)

Now suppose ∇f(x∗) 6= 0. Here the key thing to note is that there is no constraint on x, except
that x ∈ domf . So one can choose x such that x − x∗ points to an arbitrary direction. This
implies that we can easily choose x such that

∇f(x∗)T (x− x∗) < 0. (5)

This contradicts with ∇f(x∗) = 0, thus completing the proof.

Let us now prove (4) which I deferred proving earlier.

Proof of (4): The proof idea is by contradiction. Suppose that there exists x (i.e., ∃x) ∈ domf
such that:

∇f(x∗)T (x− x∗) < 0. (6)

Now consider a point: z(λ) := λx + (1 − λ)x∗ where λ ∈ [0, 1]. Notice that z(λ) ∈ domf , as
the function f is convex and therefore its domain is a convex set. Here what we want to show
is that for a very small λ ≈ 0, f(z(λ)) < f(x∗). This is because f(z(λ)) < f(x∗) contracts with
the fact that x∗ is an optimal solution, thus leading to contradiction. To show this, we consider
the following quantity:

d

dλ
f(z(λ))

(a)
= ∇f(z(λ))T

d

dλ
z(λ)

(b)
= ∇f(z(λ))T (x− x∗)

2



where (a) follows from a chain rule (that you learned from vector calculus); and (b) is due to
the definition of z(λ) := λx+ (1− λ)x∗. Now evaluating both sides at λ = 0, we get:

d

dλ
f(z(λ))

∣∣∣∣
λ=0

= ∇f(x∗)T (x− x∗) < 0 (7)

where the last inequality comes from our assumption (6). Here the derivative of f(z(λ)) being
negative at λ = 0 implies that f(z(λ)) decreases with λ and therefore:

f(z(λ)) < f(x∗). (8)

This contradicts with the hypothesis f(x) ≥ f(x∗) ∀x ∈ domf . This completes the proof.

Gradient decent algorithm

So what we can conclude with respect to (w.r.t.) unconstrained minimization is that:

∇f(x∗) = 0 is a sufficient and necessary condition for x∗ to be optimal.

This suggests that it suffices to find a point such that (s.t.) its gradient is 0. But there are some
issues in deriving such point. Two issues. One is that computing ∇f(x) may not be that simple.
The second is that analytically finding such point may not be doable even if one can explicitly
derive the gradient. However, there is a good news. The good news is that there developed
several algorithms which allow us to find such point efficiently without the knowledge of the
closed form solution. One prominent algorithm that has been widely used in a variety of fields
is: the gradient decent algorithm.

Here is how the algorithm works. The gradient decent algorithm is an iterative algorithm.
Suppose that at the t-th iteration, we have an estimate of x∗, say x(t). We then compute the
gradient of the function evaluated at the estimate: ∇f(x(t)). Next we update the estimate along
a direction being opposite to the direction of the gradient:

x(t+1) ←− x(t) − α(t)∇f(x(t)) (9)

where α(t) > 0 indicates a step size which usually decays with t, e.g., α(t) = 1
2t . If you think

about it, this update rule makes sense. Suppose x(t) is placed right relative to the optimal point
x∗, as illustrated in Fig. 2.

slope:

t-th estimate

Figure 2: Gradient decent algorithm.

Then, we should move x(t) to the left so that it is closer to x∗. The update rule actually does
this, as we subtract by α(t)∇f(x(t)). Notice that ∇f(x(t)) points to the right direction given

3



that x(t) is placed right relative to x∗. We repeat this procedure until it converges. It turns out:
as t→∞, it actually converges:

x(t) −→ x∗, (10)

as long as the step size is chosen properly, like the one delaying exponentially. We will not touch
upon the proof of this convergence. We have a good excuse - it is out of the scope of this course.
Actually the proof is not that simple - even there is a big field in statistics which intends to
prove the convergence of a variety of algorithms (if it is the case).

Constrained minimization: Case I

Now let us consider the constrained minimization:

min f(x) : fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p.
(11)

Before getting into detail, let us first introduce one terminology. We say that the set in which
x satisfies all the constraints is feasible. For convex optimization of our interest, the feasible
set, say S, is convex because we put conditions to the functions such that the set induced by
inequality and equality constraints is convex.

It turns out that for constrained minimization where x∗ is the optimal solution, there is a
simple sufficient/necessary condition for x∗ to be optimal; and the condition gives insights into
developing efficient algorithms that achieve the solution. In other words, the optimality condition
plays a significant role in making convex optimization tractable.CN03_3

ambient 

space feasible set 

(convex)

slope=

Figure 3: Case I: There exists x∗ ∈ S (feasible set) such that ∇f(x∗) = 0.

Now what is the optimality condition? We will consider two cases to investigate the condition.
The first is a case in which ∃x∗ ∈ S such that f(x∗) = 0. See Fig. 3. Recall in the unconstrained
case that (see (2)):

∇f(x∗) = 0←→ f(x) ≥ f(x∗) ∀x ∈ domf. (12)

Since the above holds for x ∈ domf , it should also hold for a more restricted set S:

∇f(x∗) = 0←→ f(x) ≥ f(x∗) ∀x ∈ S. (13)

4



So in this case, the optimality condition is identical to that in the unconstrained case. Hence,
one can use the already-mentioned efficient algorithms (like the gradient decent algorithm) for
achieving the optimal solution.

Constrained minimization: Case II

The second is a case in which @x∗ ∈ S (feasible set) such that ∇f(x∗) = 0. In this case,
obviously:

∇f(x) 6= 0 ∀x ∈ S. (14)

CN03_4

ambient 

space feasible set 

(convex)

slope

Figure 4: Case II: There does not exist x∗ ∈ S (feasible set) such that ∇f(x∗) = 0.

Recall the 1st-order condition of convex functions (3):

f(x) ≥ ∇f(x∗)T (x− x∗) + f(x∗) ∀x ∈ domf.

From this, one can see that:

∇f(x∗)T (x− x∗) ∀x ∈ domf ≥ 0 −→ f(x) ≥ f(x∗) ∀x ∈ domf, (15)

meaning that ∇f(x∗)T (x− x∗) is a sufficient condition for x∗ to be optimal. It turns out that
the converse of (15) also holds, i.e., ∇f(x∗)T (x − x∗) is also necessary. To see this, remember
what we proved earlier (see (4)):

f(x) ≥ f(x∗) ∀x ∈ domf −→ ∇f(x∗)T (x− x∗) ≥ 0 ∀x ∈ domf. (16)

Here one key point to note is that domf is a convex set (why?). Since the feasible set S is
convex, the proof of (16) is exactly the same as in the constrained case concerning S. Remember
in the proof of (4) that we only used the fact that domf is convex. Hence, the converse of (15)
holds, thus yielding:

∇f(x∗)T (x− x∗) ≥ 0 is a sufficient/necessary condition for x∗ to be optimal. (17)

Efficient algorithms

Actually the optimality condition stated in (17) forms the basis of strong duality that we will
learn in Part II in a few weeks. As I mentioned in Lecture 1, the strong duality gives insights

5



into developing efficient algorithms that achieve the optimal solution. This will be discussed in
depth later in Part II. Hence, we have efficient algorithms both for unconstrained and constrained
convex optimization, suggesting that convex optimization is tractable.

Overview of Linear Program (LP)

From now on, we will start investigating several instances of convex optimization problems. One
instance that we will take first is: Linear Program (LP).

min f(x) : fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p.
(18)

Here we say that (18) is an LP if all functions f(x), fi(x)’s, hi(x)’s are affine.

Since Kantorovich’s breakthrough, people realized that many interesting/important problems
can be formulated as LPs such as: (i) resource allocation problems (like the military-related
problem that Kantorovich considered); (ii) transportation problems (important problems in
economics); (iii) the linear classification problem (one of the most classical and popular prob-
lems in machine learning); (iv) the network flow problem (a fundamental problem in computer
networks); and so on and so forth.

Moreover, some very difficult problems in which the optimization variable is boolean (binary
values) can be approximated as an LP via a relaxation technique. Very interestingly, in some
cases, the LP relaxation provides the exact solution, i.e., coming without loss of optimality.

Look ahead

So through a couple of upcoming lectures, we will deal with the above examples together with
algorithms and software implementation. Specifically we are going to cover four stuffs: (i) Will
study a few examples that can be formulated as LPs; (ii) Will study the LP relaxation technique
useful for some very difficult problems; (iii) Will investigate efficient algorithms; (iv) Will study
how to implement such algorithms using software like CVX running in MATLAB.

6



EE523 Convex Optimization March 12, 2019
KAIST, Spring 2019

Lecture 4: Examples of LP

Recap

Last time, we tried to understand why convex optimization problems, stated below, are tractable,
i.e., can be solved efficiently on a computer even if the closed form solution is unknown:

min f(x) : fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p
(1)

where f(x) and fi(x)’s are convex and hi(x)’s are affine functions. To this end, specifically we
considered two cases: (i) unconstrained case; (ii) constrained case. For unconstrained minimiza-
tion, we first derived the optimality condition for x∗ to be optimal: ∇f(x∗) = 0 (assuming that
f is differentiable at every point ∈ domf , which is open) and then investigated one efficient
algorithm, the gradient decent algorithm, which allows us to achieve such x∗ in an efficient and
iterative manner. For constrained minimization, we also derived the optimality condition which
turns out to be: for optimal x∗,

∇f(x∗)(x− x∗) ≥ 0 ∀x ∈ S, (2)

where S denotes the feasible set. And then I told you that this condition forms the basis of
strong duality, which turns out to give insights into developing efficient algorithms. This is how
we understood as to why convex optimization problems are tractable.

We then moved onto one simple instance of convex optimization problems: Linear Program
(LP), which has a standard form as:

minwTx : Ax− b ≤ 0,

Cx− e = 0
(3)

where w, A, b, C and e are of compatible size and the inequality is component-wise one. At the
end of the last lecture, we then claimed that many interesting and important problems can be
translated into LPs.

Today’s lecture

The goal of today’s lecture is to try to prove the claim. To this end, we will study three prominent
examples which can be translated into LPs. The first is a resource allocation problem which is
also called an optimal planning problem. Actually this has been the most important problem in
economics and operation research in the 20th century. Specifically we will investigate a historical
problem (explored by the inventor of LP, Leonid Kantorovich), which later gave inspirations
to the development of LP. The second is a transportation problem which has been playing a
crucial role in a variety of fields for centuries. Specifically we will study a problem explored
by the Farther of Transportation Theory, Gaspard Monge, a French mathematician in the 18th
century. If time permits, we will lastly study the most classical problem in machine learning:
the linear classification problem. While investigating these examples, we will learn a couple of
translation techniques for LP: (i) how to express conditions (given in a problem) in terms of
vector and matrix notations; (ii) how to set up a proper optimization variable that yields a LP

1



formulation; (ii) how to make a convex function into an affine function (of interest) by inducing
some additional constraints.

Kantorovich’s plywood cutting problem

One of the problems that Kantorovich considered is the plywood cutting problem. Actually
Kantorovich encountered the problem in 1937 while interacting with plywood engineers. Just
for simplicity, here we consider a much simpler version of the original problem.

The problem is about allocating the time for the use of different machines for peeling different
kinds of woods. Suppose there are two kinds of woods to peel, say wood 1 and wood 2. Also
there are two different peeling machines: machine 1 and machine 2. Each machine has a different
capability for peeling. Machine 1 can peel 10 units/time for either type of wood. On the other
hand, machine 2 can peel 20 units/time for wood 1 while peeling 40 units/time for wood 2. See
Fig. 1.

wood 1

machine 1

machine 2

wood 2 

10 units/time 10

20 40

Figure 1: Machine capabilities for peeling woods.

Here the goal is to maximize the total wood production. But there is a constraint. The constraint
is that the production is desired to meet the equal proportion i.e., the amount of wood 1 peeled
is desired to be the same as that of wood 2. If there is a remnant part which exceeds the equal
proportion, then it is simply discarded. So the objective is to maximize the minimum of wood
1 and 2 products:

max min {wood 1 product,wood 2 product} . (4)

Now what is an optimization variable? In other words, what is a quantity that we can control
over to affect the objective function? That is, the time that we use for peeling each wood with
a certain machine. Specifically let x1 be machine 1’s time for peeling wood 1. Normalizing the
time, we can assume that 0 ≤ x1 ≤ 1. Assuming that machines are always operating, machine
1’s time for wood 2 would be 1 − x1. Similarly define 0 ≤ x2 ≤ 1 as machine 2’s time for
peeling wood 1. Using these notations together with machine capabilities illustrated in Fig. 1,
we get: wood 1 product = 10x1 + 20x2 (units/time); wood 2 product = 10(1− x1) + 40(1− x2)
(units/time). Now applying this to (4) and flipping the sign of the objective function, we obtain
a minimization problem (so as to respect the standard form) as follows:

min max {−10x1 − 20x2, 10(x1 − 1) + 40(x2 − 1)} :

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.
(5)

Translation to an LP

Notice in (5) that the objective function max{·, ·} (marked in red) is convex (why? check in
PS1), but it is not affine, which we wish to obtain for an LP formulation. This is exactly where
one important translation technique kicks in. One technique that allows us to convert such a
convex function into an affine function is the following: introducing another variable, say x3,
and letting:

x3 := max {−10x1 − 20x2, 10(x1 − 1) + 40(x2 − 1)} . (6)

2



This new variable then induces additional constraints:

x3 ≥ −10x1 − 20x2, x3 ≥ 10(x1 − 1) + 40(x2 − 1). (7)

Using these additional constraints together with the new variable x3, we can then re-write (5)
as:

minx3 :

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,

− 10x1 − 20x2 − x3 ≤ 0,

10x1 + 40x2 − x3 − 50 ≤ 0.

(8)

Note that the objective function and all of the functions that appear in inequality constraints
are affine. Hence, the problem is an LP. Using vector/matrix notations, we can also represent
this in the following standard form:

minwTx : Ax− b ≤ 0 (9)

where:

w =

 0
0
1

 , A =



−1 0 0
1 0 0
0 −1 0
0 1 0
−10 −20 −1
10 40 −1

 , b =



0
1
0
1
0
50

 . (10)

Observe that the first rows of A and b come from −x1 ≤ 0, and the second rows are due to
x1 − 1 ≤ 0, and so on and so forth.

Monge’s transportation problem

The second problem that we will study is another historical problem: Monge’s problem, explored
by Gaspard Monge, a French mathematician who lived in the 18th century. In 1781, he pub-
lished a memoir, titled: Mémoire sur la théorie des déblais et des remblais. In the memoir, he
introduced a transportation problem which later laid the foundation of transportation theory.
In particular, the field of transportation theory was revolutionized in the 20th century by the
recognition that the Monge’s transportation problem can be translated into an LP. Actually this
recognition was made by again the famous Kantorovich. So here we will see how Kantorovich
recognized it as an LP.

Monge’s problem is about transporting soils (mined in several grounds places) into construction
sites, each of which demands a certain amount of soils for construction purpose. For instance,
let us consider an example illustrated in Fig. 2. Suppose there are three grounds places (marked
in black squares) and four construction sites (marked in hallowed circles). For each ground,
a certain amount of soils can be mined. Let si be the amount of soiled mined in ground i,
i = 1, 2, 3. For simplicity, we assume that si’s are normalized such that s1 + s2 + s3 = 1. Let dj
indicate the amount of soils demanded at construction j, j = 1, 2, 3, 4. Assume that the total
demand is the same as the total supply. Then, we have: d1 + d2 + d3 + d4 = s1 + s2 + s3 = 1.

Now the goal of the problem is to find an optimal coupling such that the transportation cost is
minimized. To figure out how to achieve this, we first need to understand how the transportation
cost is determined. Here we assume that the cost is proportional to two factors: (i) distance
between a ground and a construction site to which soils are sent from the ground; (ii) the amount

3



CN04_2

amount of soil sent

location:

: amount of soil

:amount of soils demanded

Figure 2: Monge’s transportation problem.

of the soils sent. To quantify the distance, we need to define coordinates of locations of grounds
and constructions. Let xi and yj denote location coordinates of ground i and construction j,
respectively, where i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}. Then, the distance between ground i and
construction j can be written as:

dist(ground i, construction j) = ‖xi − yj‖ (11)

where ‖ · ‖ denotes the Euclidean distance.

Now how to represent the amount of soils delivered from ground i to construction j? For ease
of illustration, let us consider a particular coupling illustrated in Fig. 2. This coupling suggests
that all the soils from ground 1 are transmitted only to construction 1. So the amount of
soils must be s1. Let’s denote that by PX,Y (x1, y1) = s1. Later you will see why I use this
complicated-looking notation PX,Y (·, ·). Please be patient until we get to the point. For ground
2, the soils are split into two construction sites: construction 2 and 3. Let’s assume the equal
split. Then, we can represent the splitting by PX,Y (x2, y2) = 0.5s2 and PX,Y (x2, y3) = 0.5s2.
Similarly for ground 3, the soils are split into construction 3 and 4, but with an asymmetric
split, say 8:2. So we have PX,Y (x3, y3) = 0.8s3 and PX,Y (x3, y4) = 0.2s3. Notice that the soil
allocation, determined by the values of PX,Y (xi, yj)’s, is the one that we can control over. So
this is an optimization variable. It is a 12-dimensional vector in the example.

Next let’s think about constraints posed in the problem. The constraints are two-folded: (i) all
the soils mined in each ground should be transmitted to construction sites; (ii) the demands of
all the constructions should be satisfied. In terms of mathematical notations, this means that:

4∑
j=1

PX,Y (xi, yj) = si i = 1, 2, 3, (12)

3∑
i=1

PX,Y (xi, yj) = dj j = 1, 2, 3, 4. (13)

4



We can then write down the optimization problem as: Given (si, dj)’s,

min

3∑
i=1

4∑
j=1

PX,Y (xi, yj)︸ ︷︷ ︸
amount of soils

· ‖xi − yj‖︸ ︷︷ ︸
distance

:

4∑
j=1

PX,Y (xi, yj) = si i = 1, 2, 3,

3∑
i=1

PX,Y (xi, yj) = dj j = 1, 2, 3, 4.

(14)

Notice that the objective function and all the functions that appear in the constraints are affine
w.r.t. the optimization variable PX,Y (xi, yj). Hence, it is an LP.

Wasserstein distance

If you think about the formula of (14), we can see that this can be succinctly represented with
probability distributions. Remember that si’s and dj ’s are normalized: s1 + s2 + s3 = 1 and
d1 + d2 + d3 + d4 = 1. So one can view this as a valid probability distribution. For example,
defining PX(xi) := si, we see that PX(xi) is a probability distribution. Similarly, PY (yj) := dj
is another valid probability distribution.

Keeping these in our mind, let us take a look at the constraints in the above optimization prob-
lem (14). What do the constraints remind you of? They remind you of the total probability law !
Hence, one can view PX,Y (xi, yj) as another valid probability distribution. This probabilistic
viewpoint then allows us to simplify the optimization problem (14) as: Given (PX ,PY ),

W (PX ,PY ) := min
PX,Y

E [‖X − Y ‖] , (15)

where the minimization is over all joint distributions PX,Y which respect marginals:∑
yj

PX,Y (xi, yj) = PX(xi) ∀xi,∑
xi

PX,Y (xi, yj) = PY (yj) ∀yj .
(16)

Here W (PX ,PY ) is a function of PX and PY . So it can be interpreted as sort of distance between
the two distributions. This succinct expression (15) was recognized by Kantorovich and other
person, named Rubinstein. So it is called the Kantorovich-Rubinstein distance. Actually the
distance measure was generalized later by incorporating an arbitrary pth-order exponent in
‖X − Y ‖ (i.e., ‖X − Y ‖p). The general measure concerning ‖X − Y ‖p is called the pth-order
Wasserstein distance. So W (PX ,PY ) is called the 1st-order Wasserstein distance.

It turns out the Wasserstein distance appears in many of the optimal transportation problems
as a key measure, thus revolutionizing the field of transportation theory. Very interestingly, the
Wasserstein distance played a crucial role in designing a famous machine learning model, called
Generative Adversarial Networks (GANs), thus leading to the development of Wasserstein GAN
that has been proved powerful in many applications. We will investigate details on this in Part
III of this course.

Look ahead

Due to the interest of time, we stop here. We will continue to study the last example from the
next lecture on. We will also do what we were planning to do for LP: Studying an LP relaxation
technique which turns out to be very useful for some very difficult problems.

5



EE523 Convex Optimization March 14, 2019
KAIST, Spring 2019

Lecture 5: Examples and LP Relaxation

Recap

Last time, we explored two historical examples, which can be be translated into LPs and played
a big role in the fields like economics, operation research and transportation:

1. Kantorovich’s plywood cutting problem;

2. Monge’s transportation problem.

In the process, we also learned about a couple of techniques which allow us to translate problems
into LPs, and also gained some insights as to how to recognize LPs. However, due to the interest
of time, we could not complete the contents that we were planning to cover in the lecture.

Today’s lecture

Today we will first complete the remaining action item: studying the last example,

3. Linear classification problem,

which is arguably the most classical problem that arises in machine learning. Next we will deal
with another claim that I made in Lecture 3: Some very difficult problems can be solved via
an LP relaxation technique. Specifically we will study a couple of examples in which the LP
relaxation can provide the exact solutions in some cases.

Linear classification problem

The last example that we planned to touch upon is a very popular problem that arises in a
wide variety of fields such as machine learning, artificial intelligence, finance, and real estates.
In particular, it is the most classical and canonical problem in machine learning.

For illustration purpose, let us explain what the problem is for a very simple task setting:
classifying legitimate emails against spam emails. Suppose there are two datasets. One dataset
contains data points (also called samples or examples in the machine learning field) concerning
spam emails. The other includes those concerning legitimate emails. Assume that each data
point is represented by two features1: (i) frequency of keyword 1 (say, dollar signs $$); (ii)
frequency of keyword 2 (say, winner). Then, each data point, say xi, can be denoted by xi :=
(xi1, xi2) where xi1 and xi2 indicate the two features: frequencies of keyword 1 and 2 contained
in the ith email, respectively. See Fig. ?? for data points in two datasets, blue (legitimate) and
red (spam) datasets. Here we are also given a label which indicates whether data point xi is
about a legitimate email (yi = 1) or a spam email (yi = −1). Assume that we have m such
paired samples.

Now given these data points together with labels {(xi, yi)}mi=1, the goal of the linear classification
problem is to find a line that separates two datasets. A line can be represented as a linear
equation in the two-dimensional space: aTx− b = 0. Note that aTx− b ≥ 0 is a half-space that

1In machine learning, the feature is a frequently used terminology which refers to a key component that well
describes characteristics of data.

1



freq. of keyword 1

freq. of keyword 2

Figure 1: Two datasets: one for spam emails; the other for legitimate emails.

covers the region above the line (where the blue data points reside) while aTx− b ≤ 0 indicates
a half-space spanning the bottom region (where the red data points reside). Hence, in order for
a line to separate the two datasets, it must hold that:

yi(a
Txi − b) ≥ 0 i = 1, . . . ,m. (1)

Here one thing to note is that a and b are the optimization variable, not (xi, yi)’s. You may be
confused about (and possibly annoyed by) the notations because we have used x notation for
the optimization variable. But here we use the x notation to indicate data points, which is a
sort of convention in machine learning.

Notice in (??) that (a, b) = (0, 0) always satisfies the constraint. However, it is obviously
not of interest. Also one may want a strict separability, meaning that a strict inequality may
be preferred in (??). These motivate us to consider the following slightly different constraint
instead:

yi(a
Txi − b) ≥ 1 i = 1, . . . ,m. (2)

Whenever, a strict inequality in (??), one can make the inequality (??) hold by properly scaling
(a, b).

As long as the above constraints are satisfied for all data points (xi, yi)’s, then we are done,
meaning that there is nothing to minimize or maximize. Hence, we can write the optimization
problem as: Given {(xi, yi)}mi=1,

min
a,b

0 :

yi(a
Txi − b) ≥ 1 i = 1, . . . ,m.

(3)

Here we minimize a constant, say 0, since there is nothing to minimize. Observe that all the
functions that appear are affine. Hence, it is an LP.

Non-separable case

Here you may wonder: What if datasets are not linearly separable, as illustrated in Fig. ???
Notice in Fig. ?? that some red points reside near a cluster of blue points, and also some blue
points are mingled with a majority of red points. Obviously there is no line that separates the

2



two datasets. Actually this non-separable case occurs in various tasks especially in computer
vision. For instance, in the cat-dog classification problem, the boundary that separates cat
dataset and dog dataset is usually highly non-linear.

One naive2 yet natural way to handle this non-separable case is to introduce the concept of
margin. For some outlier data points (xi, yi), we introduce margins, say vi ≥ 0, such that

yi(a
Txi − b) + vi ≥ 1 i = 1, . . . ,m. (4)

Whenever yi(a
Txi−b) is strictly less than 1 (which is undesirable), we include a positive margin

vi so that the sum of them is greater than or equal to 1. Obviously the smaller the margin, the
better the situation.

We can then set out our new goal as: minimizing the aggregated margins while respecting the
above constraint (??). Hence, one can formulate the optimization problem as:

min
a,b,vi

m∑
i=1

vi :

yi(a
Txi − b) + vi ≥ 1 i = 1, . . . ,m,

vi ≥ 0.

(5)

Again this is still an LP.

freq. of keyword 1

freq. of keyword 2

Figure 2: Non-separable case.

A class of difficult yet solvable problems (via LP relaxation)

Now what is next? Recall a claim that we made earlier: Some very difficult problems can be
solved via an LP relaxation technique. So let us study the technique in the context of such

2A more powerful yet sophisticated way is to employ deep neural networks (see below for definition) that you
may hear of very often. During the past decode, there has been a breakthrough in the history of machine learning.
It has been shown that deep neural networks can well represent any arbitrary (possibly highly non-linear) functions
with sort of reasonable computational complexity in view of current technologies. So one can use such network
to implement a non-linear classifier to do much better. We will get to this point again in Part III of this course.
Neural networks are systems with one or multiple layers in which each layer consists of an affine operation and
an arbitrary (possibly non-linear) operation (called the activation function in the literature). Input and output
in each layer are high-dimensional vectors and each component in the vectors is represented as a circle and called
a neuron. The naming was originated from the fact that the structure looks like that of brain networks. Deep
neural networks refer to the one with more than one layer.

3



difficult problem class. One such prominent class is: a class of boolean problems, which can be
formally stated as below.

p∗ := minwTx :

Ax− b ≤ 0, Cx− e = 0,

xi ∈ {0, 1}, i = 1, . . . , d.

(6)

Here we see the last additional constraint, saying that the optimization variable is constrained
to be boolean. We often use the following shorthand notation: x ∈ {0, 1}d. Actually there are
many problems which can be formulated as above in the real world. To get some feeling, let us
explore two very popular examples.

Example 1: Bipartite matching problem

The first problem is one of the fundamental problems in combinatorial optimization: the bipartite
matching problem.

Let us start by explaining some terminologies required to understand what the problem is. Here
one terminology that you may wonder about is bipartite. A very casual and non-precise definition
is: a graph with two parties. In mathematics, what does it mean? To understand this, we need
to first know about the concept of graphs. A graph, denoted by G, is a collection of two sets:
(i) a vertex (or node) set, denoted by V; (ii) an edge set, denoted by E . The vertex set includes
many nodes indicating some objects of interest. The edge set includes many edges indicating
some connections between two nodes. A bipartite graph is a special type of graph in which there
are two disjoint sets such that: (i) there is no edge among nodes within each disjoint set; (ii)
edges appear only across the disjoint sets. See Fig. ?? for an example. Here the vertex and edge
sets are:

V = {person 1, . . . ,person N, task 1, . . . , task N};
E = {(person 1, task 2), (person 2, task N), . . . , (person N, task 1)}.

(7)

And the two disjoint sets are:

V1 = {person 1, . . . ,person N};
V2 = {task 1, . . . , task N}.

(8)

We are now ready to define what the bipartite matching problem is. The problem is about
matching N people to N tasks in an one-to-one fashion. Consider one particular matching
illustrated in Fig. ??. In this case, we have matchings for (person 1, task 2), (person 2, task N)
and (person N, task 1). Here xij indicates whether or not person i is assigned with task j. So
it is a binary value.

Now the goal of the problem is to find a matching such that the total cost is minimized. Here
the cost is decided by some quantity assigned on an edge (called the weight in the literature).
The weight is denoted by wij in which (i, j) ∈ E . For instance, the cost for assigning person 1
to task 2 is w12. Using this, we can then set the objective as:

min
xij

N∑
i=1

N∑
j=1

wijxij . (9)

But there is a constraint here. The constraint is that the matching should be one-to-one mapping,
i.e., each person must be assigned to one task and vice versa. This constraint can be expressed

4



Task 1
1

2

N

Task 2

Task N

: indicates whether person 1 is

assigned with task 2

Figure 3: Bipartite matching problem.

as:

N∑
j=1

xij = 1 (each person must be assigned to one task);

N∑
i=1

xij = 1 (each task must be assigned to one person).

(10)

Using this together with the above objective (??), we can then formulate the following opti-
mization problem: Given wij ’s,

min
xij

N∑
i=1

N∑
j=1

wijxij :

N∑
j=1

xij = 1,
N∑
i=1

xij = 1, xij ∈ {0, 1}.

(11)

Note that it belongs to the class (??), so it is an boolean problem.

Example 2: Shortest path problem

Another problem that I would like to mention is also a fundamental problem in combinatorial
optimization: the shortest path problem. The problem is about finding a path from a source to
a destination in a graph.

1

5

2 3

4 6

source

destination

Figure 4: Shortest path problem.

5



For ease of illustration, let us consider an example in Fig. ??. Here we have a graph G = (V, E)
where:

V = {1, 2, 3, 4, 5, 6};
E = {(1, 2), (2, 1), (1, 5), (5, 1), (2, 3), (3, 2), (2, 5), (5, 2), (3, 4), (4, 3), (4, 5), (5, 4), (4, 6), (6, 4)}.

Here we consider a bi-directed graph (in which the edges are bi-directional), although the picture
seems to suggest an undirected one. Let node 1 and node 6 be source and destination, respec-
tively. A path is defined as a sequence of edges that connects the source to the destination. See
an example path in Fig. ??, marked in a green line: (1, 5) → (5, 4) → (4, 6). Let xij indicate
whether the edge (i, j) is participated in the path. So in this example, x15 = x54 = x46 = 1
while all others are 0, i.e., x51 = 0, x12 = 0, . . . , x34 = 0, x64 = 0. Notice that the path has a
direction. So x51 = x45 = x64 = 0, since those are reverse to the direction of the path flow.

Now the goal of the problem is to find a path such that the total cost is minimized. It is
assumed that the cost is decided again by the weight wij that comes with an edge (i, j). Hence,
the objective can be stated as:

min
xij

∑
(i,j)∈E

wijxij . (12)

Here the constraint is that xij ’s should be set to ensure a valid path, i.e., connecting the source
to the destination. Now then the question is: how to check whether or not a path is valid?
Actually the validation is a bit tricky. But if you think about the nature of the flow of a valid
path, then you can come up with an easy way to check.

Consider the flow at the source node 1 in the example. One key observation is that the flow is
just outgoing, i.e., there is no ingoing flow. So we have:

outgoing flow− ingoing flow = 1

⇐⇒
∑

(1,j)∈E

x1j −
∑

(j,1)∈E

xj1 = 1 (13)

where
∑

(1,j)∈E x1j indicates the entire flow that comes out of source 1 and
∑

(j,1)∈E xj1 denotes
the aggregated flow that goes into source 1. On the other hand, at the destination, the situation
is reversed:

outgoing flow− ingoing flow = −1

⇐⇒
∑

(6,j)∈E

x6j −
∑

(j,6)∈E

xj6 = −1. (14)

For other node, say u (neither source nor destination), the flow is just passing, meaning that the
flow coming in must go out. So we have:

outgoing flow− ingoing flow = 0

⇐⇒
∑

(u,j)∈E

xuj −
∑

(j,u)∈E

xju = 0. (15)

6



Using all these, we can then formulate the optimization problem as:

min
xij

∑
(i,j)∈E

wijxij :

∑
(1,j)∈E

x1j −
∑

(j,1)∈E

xj1 = 1

∑
(6,j)∈E

x6j −
∑

(j,6)∈E

xj6 = −1

∑
(u,j)∈E

xuj −
∑

(j,u)∈E

xju = 0

xij ∈ {0, 1} ∀(i, j) ∈ E .

(16)

So we can now see that this is a boolean problem (??).

LP relaxation

Actually the boolean problem (??) is known to be notoriously difficult in general. In most cases,
we need to search over all possible binary choices of x to figure out the optimal solution. So the
complexity scales like 2d (exponential to the dimension).

To deal with such difficult problems, people thought about a way to move forward. One nat-
ural way is to just ignore the binary value constraint (the very cause of making the problem
intractable). This natural way is indeed the LP relaxation. Simply ignoring the binary value
constraint in (??), we get:

p∗LP := minwTx :

Ax− b ≤ 0, Cx− e = 0,

0 ≤ xi ≤ 1, i = 1, . . . , d

(17)

where xi is now relaxed to be any real value ∈ [0, 1].

Since it is a more relaxed problem, we can do better, so in general,

p∗ ≥ p∗LP. (18)

But very interestingly, it turns out that for some situations under the class of the bipartite
matching problem and the shortest path problem, the optimal solution for the relaxed problem
is binary: x∗ij,LP ∈ {0, 1}, thus implying that p∗ = p∗LP. We will not prove this here. Instead you
will check this numerically in PS. If you are interested in further details, you may want to take
a graph theory course offered in math and/or computer science departments.

Look ahead

So far we have studied the three historical examples which can be translated into LPs, as well
as some boolean problems which can be solved via LP relaxation. Next time, we will cover the
remaining part of what we were planning to do for LP: (i) Investigating efficient algorithms; (ii)
Studying how to implement algorithms using software like CVX running in MATLAB.

7



EE523 Convex Optimization March 19, 2019
KAIST, Spring 2019

Lecture 6: Algorithms and CVX Implementation

Recap

So far we have studied three important examples which can be translated into LPs: (1) Kan-
torovich’s plywood cutting problem; (2) Monge’s transportation problem; (3) the linear classifi-
cation problem. We also investigated one class of very difficult problems which can be however
solved via an LP relaxation technique: Boolean problems. As examples, we explored the follow-
ing two: (4) the bipartite matching problem; (5) the shortest path problem.

Today’s lecture

Today we are going to cover the remaining stuffs that we were planning to do: (i) Investigating
efficient algorithms for LP; (ii) Studying how to solve LPs using software like CVX.

Algorithms for LP

There are three major algorithms for LP. The first is obviously the one that the Father of LP,
Kantorovich, developed.

The second is a very famous and faster algorithm, called the simplex algorithm. The algorithm
was developed in 1947 by an American mathematician, named George Dantzig. Actually some
scientists and mathematicians in the West, especially at Berkeley (where Dantzig obtained
PhD) and Stanford (where he was the Professor), claimed that the inventor of LP is Dantzig,
not Kantorovich. The claim was based on the fact that the simplex algorithm is the first one
that solves any LP in a finite number of steps (which was not revealed by Kantorovich) as well
as the fact that the naming of LP was first used in print by Dantzig. However, many people
including many Russians (of course) did not accept the claim, and perhaps more importantly,
the Nobel Prize committee was silent on this.1

The last algorithm is a very generic algorithm, called the interior point method, which can be
applied to general convex optimization problems beyond LP. The algorithm is based on the
strong duality. Since the strong duality will be covered later in Part II, we will study the
algorithm around at the time. In this lecture, we will focus on the simplex algorithm which is
known to be the fastest LP solver even until now. Actually there is another reason why I would
like to deal with the simplex algorithm in depth here. The reason is that the algorithm is very
natural and so beautiful. You will check this soon.

Standard form for simplex algorithm

Remember the standard form of LP:

minwTx : Ax− b ≤ 0, Cx− e = 0. (1)

Actually the simplex algorithm relies on a different yet simpler equivalent form, called the

1Kantorovich’s contribution for which the Nobel Prize was awarded was actually on the optimal allocation of
scarce resources, which is not the invention of LP although highly related. If the committee had wanted to award
a prize for LP, then Dantzig should have been included.

1



standard form of the simplex algorithm:

max wTx : Ax ≤ b,
x ≥ 0.

(2)

Later you will see why this form (2) helps to run the simplex algorithm. Please be patient until
we get to that point. One can readily see that (2) belongs to the class of (1). The other direction
turns out to be true, i.e., any form like (1) can be converted into the form like (2).

How to convert into the standard form?

To show the conversion from (1) to (2), we need to demonstrate four things. The first is to
convert min to max. This can be done very easily by flipping the sign of the objective function.
The second is to convert the equality constraint into inequality one(s). This is also immediate
because:

Cx− e = 0 ⇐⇒ Cx ≤ e, Cx ≥ e.

The last is to ensure that all the optimization variables are non-negative, i.e., x ≥ 0. This can be
done in the following manner. Suppose there is no sign constraint on a variable, say x1. Then,
by introducing two new non-negative variables, say x2, x3 ≥ 0, we can cover the case with:

x1 = x2 − x3, x2, x3 ≥ 0.

Here one important note is that using the equality x1 = x2−x3, we should replace all x1’s (that
appear in other constraints if any) with x2 − x3, so that there is no x1 in the final form.

Simplex algorithm: Convert into the slack form

We are now ready to describe how the algorithm works. Actually the precise description of the
algorithm is very complicated although the idea is very simple and insightful. So we will focus
only on grasping the key idea through the following example:

max 5x1 + 4x2 :

3x1 + 5x2 ≤ 78

4x1 + x2 ≤ 36

x1, x2 ≥ 0.

(3)

The algorithm starts with converting into another form, called the slack form. In the slack
form, two types of new variables are introduced. One is the target variable, usually denoted by
z, which indicates the objective function itself:

z = 5x1 + 4x2.

The others are the slack variables, usually denoted by si’s, which indicate the ones that make the
inequality constraints equality ones. For instance, 3x1 + 5x2 ≤ 78 can be equivalently written
as:

3x1 + 5x2 + s1 = 78, s1 ≥ 0.

2



With the target and slack variables, we can then re-write (3) as:

max z : (4)

z − 5x1 − 4x2 = 0 (5)

3x1 + 5x2 + s1 = 78 (6)

4x1 + x2 + s2 = 36 (7)

x1, x2, s1, s2 ≥ 0. (8)

In the slack form for the simplex algorithm, one thing that we need to ensure is that the right
hand sides in the translated equality constraints should be non-negative, as in the above example.

But then you may wonder what if the right hand side in one of the inequality constraints in (3)
is negative? For example, suppose we have the following inequality instead:

−2x1 − 4x2 ≤ −34.

In this case, the way to introduce a slack variable is slightly different. We first flip the sign of
both sides to obtain:

2x1 + 4x2 ≥ 34.

We then subtract a non-negative slack variable, say s1, so that we obtain the following equality:

2x1 + 4x2 − s1 = 34.

This way, we can ensure that all the right-hand-sides are non-negative.

Overall procedure

The simplex algorithm is sort of an iterative algorithm. So we have many iterations. Each
iteration consists of the following operations:

1. Start with an initial feasible solution.

2. Perturb the solution along a direction that can maximize the target variable z.

A special note: If needed, we need to do some additional processes which can ease the above
operations. You may not understand what this note means as of now. Don’t worry. We will
clarify what it means later on.

Once we obtain a newly perturbed solution, then we set it as another initial point in the next
iteration, and again do perturbation along now a new z-maximizing direction in view of the new
initial point. We repeat this procedure until any perturbation does not increase z further.

Iteration 1

First of all, how to set up an initial solution? The initial solution comes naturally from the two
equality constraints that involve the two slack variables: (6) and (7). Notice that s1 appears
only in (6), similarly s2 appears only in (7); on the other hand, (x1, x2) appear both in the two
equations. So one natural feasible point is the one in which we set the both-appearing variables
to zero, i.e., x1 = x2 = 0. This way, one can readily see that the following is a feasible solution:

(x1, x2, s1, s2) = (0, 0, 78, 36). (9)

Notice in this case that z = 0 due to (5).

3



A natural question that arises next is then: Can we do better? To figure this out, we consider
the equality constraint (5) that includes z of interest:

z = 5x1 + 4x2. (10)

We see that increasing x1 and/or x2 (from the initial point x1 = x2 = 0) yields an increase in
z. So one may wonder which direction to take to maximize z? There are three possible options
that one can think of: (i) increasing x1 only while maintaining x2 = 0, i.e., (x1, x2) = (δ, 0)
where δ ≥ 0; (ii) the other way around, i.e., (x1, x2) = (0, δ); (iii) increasing both x1 and x2, i.e.,
(x1, x2) = (δ1, δ2) where δi ≥ 0. The simplex algorithm takes only the first two options. You
may wonder why the last option is ignored - this will explored in depth in PS.

The first option looks the z-maximizing direction because the slope 5 placed in front of x1 is
larger than the slope 4 in front of x2 in (10). However, it is not that clear if taking that direction
is indeed the best way to go. The reason is that the maximum values of δ that we can push
through can be different across distinct directions. So we need to investigate the two options
carefully.

First consider (x1, x2) = (δ, 0). The constraints of (6) and (7) then give: s1 = 78− 3δ ≥ 0 and
s2 = 36 − 4δ ≥ 0, which in turn yields: δ = min{26, 9} = 9. So x1 can be maximally set to 9
where z = 45. On the other hand, (x1, x2) = (0, δ) gives: s1 = 78− 5δ ≥ 0 and s2 = 36− δ ≥ 0.
Hence, δ = min{785 , 36} = 78

5 , which yields z = 62.4. So from this, we see that the second option
is better, although the slope 4 is smaller than the other slope 5. This naturally motivates us to
choose the following feasible point:

(x1, x2, s1, s2) =

(
0,

78

5
, 0,

102

5

)
, (11)

where s1 and s2 are set according to the constraints of (6) and (7). The geometric picture for
this is illustrated in Fig. 1. We move from (x1, x2) = (0, 0) to (x1, x2) = (0, 785 ).

Figure 1: Geometric picture of simplex algorithm

Iteration 2

We first take the solution (11) as an initial feasible solution. Now the question is: Can we do
better than this? To check this, let us ponder (11) again:

(x1, x2, s1, s2) =

(
0,

78

5
, 0,

102

5

)
. (12)

4



Remember in the initial feasible point (9) that (x1, x2) = (0, 0). On the other hand, in the
second feasible point (12), (x1, s1) = (0, 0). So in this case, one may now consider two possible
options: (i) (x1, s1) = (δ, 0); (ii) (x1, s1) = (0, δ). To check which direction is better, we first
need to ponder (5) to see how x1 and s1 affect z: z − 5x1 − 4x2 = 0. But there is a problem
here. The problem is that it is difficult to see how s1 affect z, since s1 does not appear in the
equation.

Here a very famous technique, called the Gaussian elimination, helps us to see the effect of s1
upon z. Massaging (5) and (6) properly, we can cancel x2 out to obtain:

5× [z − 5x1 − 4x2 = 0]

+ 4× [3x1 + 5x2 + s1 = 78]

→ 5z − 13x1 + 4s1 = 312. (13)

This immediately rules out the second option: (x1, s1) = (0, δ), since increasing s1 yields a
decrease in z. So taking the first option (x1, s1) = (δ, 0) is the right way to go. Now the question
is: How maximally can we set δ? To check this, let us ponder the constraints (6) and (7) again:

3x1 + 5x2 + s1 = 78; (14)

4x1 + x2 + s2 = 36. (15)

Here (14) looks okay because we can immediate see how x2 is changed depending on (x1, s1)
and this helps us to easily identify the limit of δ. On the other hand, the form like (15) is
not desirable because in the form it is difficult to see how s2 is changed depending on (x1, s1).
Hence, it is not that simple to identify the limit of δ. Actually the following form is preferred
instead: ?x1+?s1+?s2 =?. Again the Gaussian elimination helps us to obtain such form:

5× [4x1 + x2 + s2 = 36]

− [3x1 + 5x2 + s1 = 78]

→ 17x1 − s1 + 5s2 = 102. (16)

Now with (16) and (13), we can re-write the optimization problem as:

max z : (17)

5z − 13x1 + 4s1 = 312 (18)

3x1 + 5x2 + s1 = 78 (19)

17x1 − s1 + 5s2 = 102 (20)

x1, x2, s1, s2 ≥ 0. (21)

Remember that our second feasible point was:

(x1, x2, s1, s2) =

(
0,

78

5
, 0,

102

5

)
, (22)

As mentioned earlier, we can immediately rule out the second option (x1, s1) = (0, δ). So taking
the first option (x1, s1) = (δ, 0), we get: 5x2 = 78− 3δ ≥ 0 and 5s2 = 102− 17δ ≥ 0, which then
yields: δ = min{26, 10217 } = 102

17 . Hence, we obtain: z = 78. Since z = 78 is strictly larger than
z = 62.4 (obtained under (22)), this motivates us to choose the following feasible point:

(x1, x2, s1, s2) =

(
102

17
,
204

17
, 0, 0

)
, (23)

5



where (x2, s2) are set according to (19) and (20). The geometric picture for this is illustrated in
Fig. 1. We move from (x1, x2) = (0, 785 ) to (x1, x2) = (10217 ,

204
17 ).

Iteration 3

Again one can ask the same question: Can we do better? To check this, again ponder (23). We
now have the following two options for perturbation: (i) (s1, s2) = (δ, 0); (ii) (s1, s2) = (0, δ),
since (s1, s2) = (0, 0) in the solution. To check which direction is better, again consider (18) to
see how (s1, s2) affect z: 5z−13x1 + 4s1 = 312. Here it is difficult to see how s2 affects z. Again
use the Gaussian elimination to obtain the following where one can see the effect immediately:

17× [5z − 13x1 + 4s1 = 312]

− 13× [17x1 − s1 + 5s2 = 102]

→ 75z + 55s1 + 65s2 = 6630. (24)

We see from (24) that increasing (s1, s2) yields a decrease in z, meaning that any perturbation
does not increase z further. Hence, we stop here, obtaining:

(x∗1, x
∗
2) =

(
102

17
,
204

17

)
=⇒ z∗ = 78. (25)

This is how the simplex algorithm works - we stop when increasing such zero-variables does not
increase z. It turns out this way of iteration enables us to achieve the optimal solution in a
finite number steps. In many practical applications, it has been shown that the finite number
of steps required is much less than the total number of vertices in the polytope formed by the
constraints, meaning that the simplex algorithm arrives at the optimal point very fast.

Software implementation for LP

Now let me say a few words about software implementation before ending the part for LP.
There are two popular softwares depending on platforms: (1) CVX (running in MATLAB); (2)
CVXPY (running in Python). In fact, MATLAB is much more user-friendly and hence much
easier to use although it requires a license. The good news is that the MATLAB license comes
for free for any member in KAIST who can access to kftp within campus. So in this course, we
will use CVX throughout. To download MATLAB, visit https://kftp.kaist.ac.kr/.

How to install CVX in MATLAB?

Installation of CVX is very simple. Download one of installation files uploaded on a course
website (depending on your OS): (i) Windows 64-bit: “cvx-64w.zip”; (ii) Windows 32-bit: “cvx-
32w.zip”; (iii) Mac 64-bit: “cvx-maci64.zip”; (iv) Linux 64-bit: “cvx-a64.zip”. Next unpack the
file to an empty direction, and then run cvx setup from the MATLAB command line.

How to use CVX?

To give you a rough idea as to how to use CVX, let us give you a simple script of CVX
implementation for Kantorovich’s problem that we investigated in Lecture 4. Remember the
standard form of Kantorovich’s problem:

minwTx : Ax− b ≤ 0 (26)

6



Figure 2: CVX implementation for Kantorovich’s problem

where

w =

 0
0
1

 , A =



−1 0 0
1 0 0
0 −1 0
0 1 0
−10 −20 −1
10 40 −1

 , b =



0
1
0
1
0
50

 . (27)

See Fig. 2 for CVX implementation. If we have an equality constraint like Cx− e = 0, we can
then add a command like: C*x==e. Here the caveat is that we use equality symbols twice == to
indicate an equality.

For other problems like Monge’s problem and linear classification, you will have chances to do
CVX implementation in PS. If you want to learn more about CVX syntax, consult the following
website: http://web.cvxr.com/cvx/doc/.

Look ahead

So far we have studied the LP. Next time, we will move onto the second instance of convex
optimization problems: the Least-Squares problem.

7



EE523 Convex Optimization March 21, 2019
KAIST, Spring 2019

Lecture 7: Least-squares Problem

Recap

So far we have studied several stuffs: (1) the concept of convex optimization problems; (2) a cat-
egorization of such problems as summarized in Fig. 1; (3) why the convex optimization problems
are tractable; (4) a bunch of important examples which can be translated into LPs and which
can be solved via LP relaxation; (5) the simplex algorithm for LPs; (6) CVX implementation
for LPs.

Least-squares Linear Program

(LP)

Quadratic Program (QP)

Second-Order Cone Program

(SOCP)

Semi-Definite Program

(SDP)

……

Convex Optimization

19391800s

1956

1994

1994

Least-squares
1800s

Embark on:

Figure 1: Hierarchy of convex optimization problems

Today’s lecture

Today we are going to move onto the second instance of convex optimization problems: the Least-
squares problem. Specifically in this lecture, we are going to cover three stuffs: (1) Will review
what the least-squares problem is; (2) Will provide a geometric insight which can help us to
understand what the least-squares solution means and therefore why the problem is important;
(3) Will study one very important application in machine learning: the classification problem.

Review: Least-squares problem

Let us start by reviewing the least-squares problem that we studied in Lecture 1. The problem
is formulated as:

min ‖Ax− b‖2. (1)

As mentioned earlier, one of the most important things that we can benefit from this problem
is that it has the closed-form solution:

x∗ = (ATA)−1AT b. (2)

Actually in Lecture 1, we could obtain this solution by simply looking for a solution that makes
its gradient w.r.t. x as 0:

∇‖Ax∗ − b‖2 = 0. (3)

1



But I never explained why (3) enables us to obtain the solution though. Now remember what
we learned about unconstrained convex minimization in Lecture 3: If f(x) is convex and differ-
entiable at every point in domf , then ∇f(x∗) = 0 is the optimality condition (i.e., the sufficient
and necessary condition for x∗ to be optimal). Applying this to the least-squares problem, we
then see that (3) is indeed the optimality condition. This is because the objective function
‖Ax− b‖2 is convex in x (why? check this in PS3).

Dimensions of (x,A, b)

What about dimensions of (x,A, b)? Let d be the dimension of the optimization variable x.
Then, x ∈ Rd. Let A := [a1 · · · ad] ∈ Rm×d. Then, b ∈ Rm. We now have two cases depending
on the values of m and d.

One is: m < d (A is a wide matrix 1). Suppose all the row vectors in A are linearly independent,
i.e., rank(A) = m, which is a typical case in practice. In this case, we have a larger number d
of unknowns than the number m of linear equations in Ax− b = 0. This implies that there are
infinitely many solutions that satisfy Ax − b = 0. So in this case, the optimal value p∗ = 0,
which is definitely not an interesting scenario.

The second case is: m ≥ d (A is a tall matrix ). Suppose that b does not lie in the range space
of A, range(A) (the space spanned by all the column vectors of A), which is a typical case in
practice. In this case, obviously there is no solution that satisfies Ax − b = 0. But what we
can say is that it has a solution that minimizes ‖Ax − b‖2 though, and this forms the basic
idea behind the least-squares problem (that Gauss brought up in the 1800s). So what we are
interested in is the second case: m ≥ d.

Geometric insight

Now let me give you a geometric insight behind the least-squares problem. From this, you will
see what the least-squares solution means, as well as why the problem is important accordingly.

distance

distance

Figure 2: Geometric insight of least-squares solutions

Let us first consider the simplest setting in which d = 1. In this case, A is simply a column
vector and x is a scalar. Suppose we have two vectors a1 and b, as illustrated in Fig. 2(a), in
which b is not aligned with a1 due to our assumption made earlier: b /∈ range(A). Notice that
‖a1x− b‖2 is minimized when the vector a1x− b (marked in the blue thick line) is perpendicular
to the direction of a1. So from this, one can interpret the least-squares solution as the distance-
minimizing solution. The distance-minimizing solution is obviously what we want. So it is sort

1In fact, a majority of people use the terminology like a fat matrix instead. But Prof. Stephen Boyd at
Stanford strongly recommended me to use a different terminology: a wide matrix. His rationale was that the
wide matrix has sort of positive nuance, while the fat matrix looks negative. I respect his attitude for advocating
positive aspects, so I use the “wide matrix” terminology.

2



of a good solution which well matches with our natural demand.

We can have the same interpretation for a slightly more general case, say d = 2. In this case,
A = [a1 a2] ∈ Rm×2. The vector Ax now lies in the plane, which is the range space of A:
Ax ∈ range(A); see Fig. 2(b). Similarly ‖Ax− b‖2 is minimized when the vector Ax− b (marked
in the blue thick line) is perpendicular to the plane, as illustrated in Fig. 2(b). So again one can
interpret Ax∗ as the distance-minimizing solution.

An application: Classification problem

As mentioned earlier, the least-squares problem is a very popular and powerful problem which
has played a significant role in the optimization field since the birth of the problem in the 1800s.
It has been employed for addressing many important problems that arise in a wide variety of
applications.

In this lecture, I would like to put a particular emphasis on one important application that
arises in machine learning as well as that we have already investigated earlier: the classification
problem.

Remember the classification example that we studied in Lecture 5: legitimate-vs-spam emails
classification, in which we are givenm data points {(xi, yi)}mi=1. Here xi indicates a feature vector.
In the example, we considered a two-dimensional case where xi := (xi1, xi2) and (xi1, xi2) denote
the frequencies of keywords 1 and 2 that appear in the ith email, respectively. Here yi is a label,
indicating an identity of the ith email: yi = +1 (legitimate email), yi = −1 (spam email).

For the above setting, we considered linear classifiers. Specifically, for the separable case, we
formulated an LP which intends to find a line that separates two datasets (legitimate vs. spam).
For the non-separable case (which is a typical case in practice), we formulated a slightly different
LP which finds a line that minimizes the aggregated margin.

In this lecture, we will consider a different classifier which is based on the least-squares problem
and therefore called: the least-squares classifier. The idea of the least-squares classifier is to find
a linear projection that minimizes the aggregated squared error.

Least-squares classifier

Least-squares 

classifier

label

linear projection

Figure 3: Block diagram of the least-squares classifier.

To see what the idea means, let us consider a block diagram for the classifier, illustrated in
Fig. 3. The least-squares classifier is parameterized by a weight vector, say w ∈ Rd. Given
input xi, it computes a linear projection onto the space spanned by the weight vector w; hence,
it outputs xTi w. You may wonder about a sightly more general setting where we allow for
having a bias term, like xT1 w + b. It turns out one can deal with this case easily with a slight
modification to the classifier. This will be explored in details in PS. The way to design w is as
follows. Using the corresponding label yi, we first compute its squared error: ‖xTi w−yi‖2. Next
compute the aggregated squared error with all of the m data points given. Finally we formulate

3



an optimization problem which minimizes the aggregation:

min
w∈Rd

m∑
i=1

‖xTi w − yi‖2. (4)

Notice that the objective function is very similar to the one that we saw in Lecture 1. Yes, that
is the objective function that Gauss came up with while addressing the astronomy problem. So
we can use the same simplification trick that Gauss did, thus obtaining:

m∑
i=1

‖xTi w − yi‖2 =

∥∥∥∥∥∥∥
 xT1 w − y1

...
xTmw − ym


∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
 xT1

...
xTm

w −
 y1

...
ym


∥∥∥∥∥∥∥
2

.

(5)

Letting A := [xT1 ; · · · ;xTm] and b := [y1; · · · ; ym], we can then re-write the optimization problem
as:

min
w
‖Aw − b‖2, (6)

which is the least-squares problem. So we obtain w∗ as:

w∗ = (ATA)−1AT b. (7)

Testing classifiers on new unseen data

Here one natural question that arises is: Can the least-squares classifier (7) perform better than
the linear classifier that we developed earlier using LP? To answer this question, first of all, we
need to know what is a proper performance measure that one can use. One very popular and
conventional approach in machine learning is to employ so called the test error. The test error
is computed by testing a classifier on new unseen data called the test data.

To see what it means, consider the following setup. Given the classifier w∗ designed as per (7),
we input unseen test data, say xtest. The output is then xTtestw

∗. Next we declare a legitimate
email if xTtestw

∗ ≥ 0; otherwise, declare a spam email, meaning that we take the sign of the
output to obtain: ŷtest = sign(xTtestw). Comparing this to the ground-truth test data label ytest,
we check if the classifier gives a correct answer (0) or not (1). Considering many such test data
points, say mtest test data points, we compute the test error as the average of such measures:

TestError =
1

mtest

mtest∑
i=1

1{ŷtest,i 6= ytest,i} (8)

where 1{·} denotes an indicator function which outputs 1 when the event {·} is true; 0 otherwise.

On a side note, we say that the seen data employed for training a classifier is called the training
data. In this case, the training data are:

A :=

 xT1
...
xTm

 , b :=

 y1
...
ym

 .
4



Example: Evaluation on test dataset (mtest = 1139 + 127)

Here is an example that demonstrates the test error performance of a trained classifier tested on
a test dataset. Suppose that the test dataset has two datasets: (1) legitimate dataset containing
1139 test data points; (2) spam dataset containing 127 test data points. Applying the trained
classifier, we have 1120 correct and 19 wrong answers for 1139 legitimate emails. For 127 spam
emails, we have 95 correct and 32 wrong answers. See Fig. 4.

(legitimate)

(spam)

191120

9532

true positive misdetection

false positive

(false alarm)

Figure 4: Test error performance of a trained classifier tested on a test dataset.

Then, the test error is computed as:

TestError =
19 + 32

1139 + 127
≈ 4%. (9)

Actually this error can be categorized into two types depending on what the ground truth is,
and a different emphasis should be put on the two types of errors depending on applications. To
explain what it means, let us first introduce some terminologies required to understand the two
types of errors. The first is the true positive case which indicates the event {ŷ = +1|y = +1}.
The second is the misdetection case indicating {ŷ = −1|y = +1}. The third is the false positive
(or false alarm) case, which refers to {ŷ = +1|y = −1}.
Now the first type of error is concerned about the misdetection case and therefore called the
misdetection error : Pr{ŷ = −1|y = +1}. The second type of error then refers to the false
positive case, so it is called the false positive error : Pr{ŷ = +1|y = −1}. In the above example
in Fig. 4, the two types of error can be computed as:

MisdetectionError =
19

19 + 1120
≈ 1.7%;

FalsePositiveError =
32

32 + 95
≈ 25%.

Notice that the two errors are highly imbalanced; one is much smaller than the other. Actually
if you think about it, it is sort of a desired situation. In reality, it is crucial to protect missing
legitimate emails. In other words, we should be able to well declare legitimate emails if they are
the cases, meaning that we should reduce the misdetection error as much as possible. In this
case, it is around 1.7%, which is more or less okay.

On the other hand, we are sort of okay with declaring spam emails when they are actually
legitimate emails, meaning that a moderate value of the false positive error is acceptable in
reality. In this case, it is around 25%, which is more or less okay.

Linear classifier vs. least-squares classifier

5



Since we know about the test error which is a proper performance measure, we are now ready to
compare performances of the two classifiers: the linear classifier and the least-squares classifier.

To this end, we first gather training dataset: {(xi, yi)}mi=1. We then use this to design the
margin-based linear classifier (using LP) as well as the least-squares classifier (using (7)).
Next we test the classifiers on test dataset {(xtest,i, ytest,i)}mtest

i=1 to compute TestErrorlinear and
TestErrorLeastSquares. This is how we compare performances. Now you may wonder which is
better in terms of the test error measure. Don’t worry. You will have a chance to check this in
PS.

Regularization technique

Actually there is an issue in applying the least-squares classifier without any modification.
In reality, a data point, say x, contains some noise. Data points are usually obtained from
measurements made by humans or sensors. But humans and sensors are not perfect in reality,
so x definitely contains some error. This error incurs an issue: Large values of w∗ (designed as
per (7)) can boost up such noise.

To avoid this, we somehow want to make those values small. One way to implement this is to
minimize ‖w∗‖2. But obviously at the same time, we want to make ‖Aw− y‖2 small; otherwise,
w∗ would be always 0 - this is obviously what we do not want to get. This motivates people to
come up with a natural idea, which is to regulate the two objective at the same time:

min
w∈Rd

‖Aw − y‖2 + λ‖w‖2 (10)

where λ ≥ 0. Notice that for one extreme case of λ = 0, we obtain the conventional least-
squared solution while for the other extreme case of λ =∞, we get w∗ = 0 in which we declare
spam emails randomly with a priori probability that a randomly selected email is spam. This
technique is called the regularization and λ is called the regularization factor.

error

training error

test error

Figure 5: Training and test errors as a function of regularization factor λ.

Now you may wonder how performances vary in terms of the regularization factor λ. First
consider the training error which is defined as:

TrainError =
1

m

m∑
i=1

1 {ŷi 6= yi} (11)

where ŷi = sign(xTi w
∗). Obviously the training error is minimized at λ = 0 because in the case

we focus only on the error factor induced by the training dataset. And it monotonically increases

6



with an increase in λ, since the higher λ, the more we regulate, penalizing more on the training
error. So we will get something like a blue curve plotted in Fig. 5.

On the other hand, the situation is different about the test error, defined as:

TestError =
1

mtest

mtest∑
i=1

1 {ŷtest,i 6= ytest,i} . (12)

When λ = 0, the test error would be small but larger than the training error because the λ = 0
case focuses only on the training error. Increasing λ, we would have a regularization effect, so
we expect the smaller test error. But if λ is too big, then the classifier would be close to w∗ = 0
in which the test error would be obviously very large. So one can expect there is a sweet spot
on λ that minimizes the test error. Hence, we may obtain something like a red curve plotted in
Fig. 5. Actually this is indeed the case. Again you will have a chance to check this in PS.

How to solve the regularized problem?

Going back to the regularized least-squares problem (10), now how can we solve the problem?
If you think about it, this is nothing but another least-squares problem. Why? Again applying
the same Gauss’s simplification trick, we obtain:

‖Aw − b‖2 + λ‖w‖2 =

∥∥∥∥[ A√
λI

]
w −

[
b
0

]∥∥∥∥2 = ‖A′w − b′‖2

where A′ := [A;λI] and b′ := [b; 0]. Hence, we get:

min
w∈Rd

‖A′w − b′‖2. (13)

So the solution would be:

w∗ = (A′TA′)−1A′T b′. (14)

Look ahead

Next time, we will study another application in which the least-squares problem has played a
crucial role in a different field, the medical field: Computed Tomography (CT).

7



EE523 Convex Optimization March 26, 2019
KAIST, Spring 2019

Lecture 8: Computed Tomography (CT)

Recap

Last time, we have embarked on the second instance of convex optimization problems, Least
Squares:

min ‖Ax− b‖2 (1)

where x ∈ Rd, A ∈ Rm×d, b ∈ Rm and m ≥ d. We then studied one very important machine-
learning application that we had investigated in Lecture 5: the classification problem. Specifically
we developed another linear classifier which can be designed via a least-squares problem. We
also discussed a popular performance measure, called the test error, which is instrumental to
make a fair comparison between distinct classifiers.

Today’s lecture

Today we are going to study another application that arises in quite a different domain: the
medical field. The application that we will investigate is: Computed Tomography, CT for short,
that you may hear of. It turns out very interestingly, there is a mathematical principle behind
the idea of CT and the principle is based on the least-squares problem.

X-rays

To see how the least-squares problem is related to CT, we need to understand the principle of
CT. But to this end, we first need to understand the principle of X-rays which forms the basis
of CT. So let us first study what X-rays is.

X-rays is a form of electromagnetic radiation. It was discovered in 1895 by a German physicist,
named Wilhelm Röntgen. Actually the discovery opened up a new medical field, called the
radiology. The radiology field is now a very well-known and well-established field, but there was
no such field before the discovery of X-rays. In addition, the X-rays played a significant role in
other areas beyond the medical field, like Physics and Chemistry. So the discovery won Röntgen
the first Nobel Prize in Physics in 1901. Take a look at the very short 5-year gap between the
discovery year 1895 and the award year 1901. It is a very rare case because it usually takes
much longer time (around more than 10∼20 years) to receive a Nobel Prize since the discovery
(or invention).

Principle of X-rays

The principle of X-ray was discovered through Röntgen’s key observation made while he was
working in his laboratory. While Röntgen was dealing with experimental tubes, he observed
a type of unidentified radiation emanating from the tubes. Actually the naming “X-rays” was
originated from the nature of the unidentified radiation, as “X” typically refers to the unknown.
And he made an interesting observation about the mysterious radiation: When passing through
an object, it absorbs photons and its energy (typically quantified as the intensity) is proportional
to the number of photons absorbed: more photons (denser), the stronger intensity.

In fact, he did lots of experiments which support the observation, and he tested even on his wife’s

1



hand, obtaining a scary picture that shows the bone structure of the hand1. It was a sort of
the first historical medical X-ray image. The discovery together with such medical images made
many people excited about the X-rays. In particular, people used the X-rays for the purpose of
investigating the inside structure of interested objects (like human bodies) without drilling it,
and this could open up a new medical field: radiology.

Limitations of X-rays

However, the X-rays has some limitations in figuring out a detailed structure of interested
objects. Usually an object of interest is 3-dimensional. But the X-rays can yield only a projected
2-dimensional image, so this gives a challenge in identifying a complicated 3D object structure.
For example, it is hard to spot tumors behind bones. Another clear example is illustrated in
Fig. 1. Here a 2D image projected on the wall looks like a human’s hand, but the actual 3D
object is a rabbit. This implies that much of the key structure-related information can be lost
while being projected. This clearly shows the limitations of X-rays.

Figure 1: An example in which the projected 2D image does not well represent a 3D structure.

Invention of Computed Tomography (CT)

Many people tried to solve such information-missing problem. A history was made in 1967
among such efforts. At the time, a smart way to address such problem was developed, named
the Computed Tomography (CT). The technique together with a computer-aided machine that
implements the technique were invented by two people: one is a British electrical engineer, named
Godfrey Hounsfield; the other is a South African-American physicist, named Allan Cormack.
Actually this invention was not done in a cooperative manner - rather it was done independently.
While Hounsfield’s invention was slightly earlier, the credit was also fully given to Cormack, so
they could be co-awarded the Nobel Prize in Physiology or Medicine in 1979 for the development
of CT.

Idea of CT

Here is an idea of CT. In fact, the idea is very well reflected in the name. “Tomos” is a Greek
word which means “projected section (or slice)”; “graphy” means “describe”. So in words, it
means “describing an object using slices.” Details on the idea are the following:

1At that time, Röntgen had no idea of how detrimental X-rays is to human bodies. Perhaps, believe it or not,
this is the reason why his wife passed away 6 years later since the discovery?

2



1. Project X-ray beams to an object from many different angles;

2. Calculate the intensities of the projected images (slices);

3. Use them to reconstruct (describe) the object.

A simple example

To explain what it means in detail, let us consider the following example in which an object
of interest is comprised of four equal-sized grids - see Fig. 2. For illustrative purpose, here we
consider a 2D object, although many of interested objects are 3D. Once you grasp the idea soon,
you will understand that the idea can readily be extended to a 3D object case. The object has
two black grids on left upper and right bottom parts, while having two white grids on right
upper and left bottom parts. Suppose that X-rays absorbs no photon when passing through a
black grid, i.e., the density is 0. Here we define the unit of the density as the number of photons
per unit length. On the other hand, assume that X-rays absorbs something (say, the density is
1) when passing through a white grid.

1+0.1

1-0.05

1+0.02 1-0.1

noise

0-0.03

Figure 2: A simple grid example.

Now suppose we project a horizontal X-ray beam to the upper part of the object so that it
passes through the two upper grids. Then, it would absorb nothing in the black grid zone while
absorbing something in the white grid zone. Since the unit of the density that we define here is
w.r.t. the unit length, the intensity of the X-ray beam would be proportional to the width of
the white grid zone. For simplicity, assume that the width is 1 unit length. Then, the intensity
would be 1. But there is always an error in measurement, say that the measurement noise here
is 0.1 (marked in red in Fig. 2). We also project another horizontal X-ray beam to the bottom
part of the object. We then measure the corresponding intensity, say 1 − 0.05. Projecting two
vertical beams, we get two measurements, say: 1 + 0.02 and 1− 0.1.

Now shooting a top-to-bottom diagonal beam to the object, we would absorb nothing since it
passes only through the black grids, so the measurement would be close to 0, say 0− 0.03. On
the other hand, the other bottom-to-top diagonal beam would pass only through the white grids.
Since the length of the passing zone is 2

√
2, the intensity measurement would be close to 2

√
2,

say 2
√

2 + 0.2.

Actually what we want to figure out are the densities of the four grids, so let us denote those
by unknown variables, say d1 (top left), d2 (top right), d3 (bottom left), d4 (bottom right).
Using these notations, we can then express the above six measurements as the following linear
equations:

3



d1 + d2 = 1.1

d3 + d4 = 0.95

d1 + d3 = 1.02

d2 + d4 = 0.9
√

2d1 +
√

2d4 = −0.03
√

2d2 +
√

2d3 = 2.2.

(2)

Least-squares problem formulation

Notice in (2) that we have six equations while having four unknowns. So there is no solution in
general. Actually this is indeed the no-solution case. But we can invoke Gauss’s idea to address
this case. Yes, we can formulate it as a least-squares problem. Defining:

A :=



1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1√
2 0 0

√
2

0
√

2
√

2 0

 , b :=



1.1
0.95
1.02
0.9
−0.03

2.2

 ,

we can formulate it as:

min ‖Ad− b‖2. (3)

Then, the solution would be d∗ = (ATA)−1AT b. For the above example, we obtain:

(d∗1, d
∗
2, d
∗
3, d
∗
4) = (0.1132, 0.8416, 0.8266,−0.0218),

which looks making sense, as it is close to the ground truth (0, 1, 1, 0).

A more realistic example

In fact, the example in Fig. 2 is too simple. In reality, an object is of an arbitrary shape and
also the density of the object continuously changes over regions. To understand how to apply
the idea into a more realistic object, let us consider another example in Fig. 3.

Here what we want to figure out is the density, say d(x, y), which indicates the density at a
coordinate (x, y). Suppose that we project to the object a X-ray beam (with a bottom-to-top
diagonal direction), as illustrated in Fig. 3. Let t be the length of the beam trajectory from the
starting point (x0, y0) at t = 0. Let θ be the angle of the beam in reference to the x-axis. Then,
the coordinate p(t) that the beam indicates when the beam length is t would be:

p(t) = (x0, y0) + t(cos θ, sin θ). (4)

Remember that the intensity is: (density) × (length that the beam traverses). Here the density
changes over the regions that the beam swipes. So it can be represented as d(p(t)). And the
length of the beam w.r.t. the very small region where the density is almost constant can be
represented by dt. So the intensity measurement would be:

b =

∫
d(p(t))dt+ v (5)

4



density:

X-ray beam

noise

intensity:

Figure 3: A more realistic example.

where v indicates a measurement noise.

Discretization

Here a question arises: How to estimate the density d(p(t)) of interest only from such mea-
surement (5)? More specifically, one can ask: How is it related to the least-squares problem
which does not deal with such integral-involved term? The idea is applying the discretization
illustrated in Fig. 4. We make many minuscule grids in the space so that the density for each
tiny grid can be assumed to be constant. Let di be the density of the ith grid. Denoting by
ai the length of the beam traversed at the ith grid, we can approximate the intensity absorbed
through the ith grid as aidi. Letting Sbeam the set of the indices of the grids that the beam
travels, we can then approximate the aggregated intensity measured as:

b ≈
∑

i∈Sbeam

aidi + v. (6)

Figure 4: Discretization.

5



Now shooting many X-ray beams from many different angles, we obtain the following measure-
ments:

b1 ≈
∑

i∈Sbeam1

aidi + v1

b2 ≈
∑

i∈Sbeam2

aidi + v2

...

bm ≈
∑

i∈Sbeam−m

aidi + vm.

(7)

Least-squares problem formulation

Notice in (7) that we have m equations and the number of unknowns is the same as the number
of grids that the object spans. With a sufficiently large number m of measurements (this is
subject to our design), we can make m always larger than the number of unknowns. And for
this setting, we can again apply Gauss’s idea to formulate a least-squares problem as follows:

min ‖Ad− b‖2 (8)

where

A :=


{ai}i∈Sbeam1

{ai}i∈Sbeam2

...
{ai}i∈Sbeam−m

 , b :=


b1
b2
...
bm

 .

History of CT scanners

This is the idea that Hounsfield thought of. While he mimicked Gauss’s idea, I believe that
the way to mimick is highly non-trivial. Applying this idea, Hounsfield could also develop a
prototype CT scanner in 1971; see the far left picture in Fig. 5.

Prototype CT scanner A historical EMI-scanner CT scanner nowadays

Figure 5: History of CT scanners.

Remember that he was an electrical engineer - he was good enough to build an electrical
computer-aided machine. The prototype supported m = 160 measurements (X-ray beams).
The scanning time for each beam was a little over 5 mins. So the total scanning time was
around 13 hours. Also the computation time for reconstructing an object with measurements

6



(solving the least-squares problem) was around 2.5 hours on a computer that he had. So it could
not be commercialized as it took lots of time.

Fortunately, at that time, Hounsfield was working at a big and supportive company: EMI
(Electric & Music Industries). While EMI was a music-record company, it was rich enough to
invest some money to a field which has nothing to do with the music industries. Actually EMI
was even going further. There was a rumour that with tons of money from the sales of The
Beatles records in the 1960s, EMI helped fund the development of CT scanners. Anyhow the
fact is that in the same year 1971, Hounsfield could develop the first commercial CT scanner
with generous support from EMI, named the EMI-scanner - see the middle picture in Fig. 5.
The performance of the scanner was remarkable relative to the prototype scanner: The scanning
and reconstruction times were around 4 mins and 7 mins, respectively. So it could actually be
commercialized.

CT scanners nowadays are beyond remarkable. For example, Siemens CT scanner (2017 model)
in Fig. 5 takes only ∼ 0.33 seconds for the whole process.

Look ahead

So far, we have studied two instances of convex optimization problems: LP and Least-Squares.
Next time, we will study another instance which subsumes LP and Least-Squares as special
cases: Quadratic Program.

Least-squares Linear Program

(LP)

Second-Order Cone Program

(SOCP)

Semi-Definite Program

(SDP)

……

Convex Optimization

19391800s

1956

1994

1994

Quadratic Program (QP)

Figure 6: Hierarchy of convex optimization problems.

7



EE523 Convex Optimization March 28, 2019
KAIST, Spring 2019

Lecture 9: Quadratic Program

Recap

For the past five lectures, we have studied two instances of convex optimization problems: LP and
Least-Squares. For LP, we investigated a bunch of important examples which can be formulated
as LPs or can be solved via LP relaxation. For least-squares, we explored two applications to
demonstrate the power of the least-squares problem.

Today’s lecture

Today we are going to study the follow-up instance that includes the LP and least-squares as
special cases: Quadratic Program (QP). Specifically we are going to cover three stuffs. First
we will study what QP is and verify that it indeed subsumes the LP and least-squares. Next,
we will investigate a special case of QP in which there is a closed-form solution: Constrained
least-squares. Finally, we will briefly discuss how to deal with general QP.

What is Quadratic Program?

The standard form of Quadratic Program (QP) is as follows:

minwTx + xTQx :

Ax− b ≤ 0

Cx− e = 0

(1)

where Q = QT ∈ Rd×d � 0 is a positive semi-definite (PSD) matrix1 and (w,A, b, C, e) are of
compatible size. Using the 2nd-order condition of convexity (check Problem 2 in PS2), one can
readily show that QP is indeed a convex optimization problem:

∇2(wTx + xTQx) = ∇(w + 2Qx)

= 2QT � 0.

Obviously QP includes LP as a special case in which Q = 0. To check whether it subsumes
Least-Squares, consider:

min ‖Ax− b‖2 = minxT (ATA)x− 2bTAx + bT b. (2)

Notice that ATA is a PSD (why?) and bT b does not alter the optimal solution. Hence, the
least-squares problem indeed belongs to QP.

Equality-constrained least-squares

As mentioned in the beginning, there is a special (yet important) case in which the closed-form
solution exists. It turns out that the special case is the one in which the objective function

1We say that a symmetric matrix, say Q = QT ∈ Rd×d, is positive semi-definite if vTQv ≥ 0, ∀v ∈ Rd, i.e.,
all the eigenvalues of Q are non-negative. It is simply denoted by Q � 0.

1



follows the one in the ordinary least-squares problem and we have only the equality constraint,
which we call equality-constrained least squares:

min ‖Ax− b‖2 :

Cx− e = 0
(3)

where A ∈ Rm×d and C ∈ Rp×d.

Obviously we are interested in the case of m ≥ d (why? check Lecture 7). Depending on the
values of p and d, we can now think of two cases: (i) p > d; (ii) p ≤ d. The first is not an
interesting case because in the case x∗ is simply determined solely by the equality constraint
(so it has nothing to do with minimizing the squared error) or there is no solution. Hence,
the second case p ≤ d is of interest. Regarding the wide (or square) matrix C, without loss of
generality, we assume that

rank(C) = p. (4)

Otherwise, one can eliminate dependent rows of C so that it has always full-rank. We also
assume that

rank

([
A
C

])
= d, (5)

meaning that all the columns of [A;C] are linearly independent. Actually it is often the case in
reality.

Closed-form solution

Under such case in which m ≥ d, p ≤ d, (4) and (5) hold: the closed-form solution for (3) reads:

x∗ = d-Components

{[
2ATA CT

C 0

]−1 [
2AT b
e

]}
(6)

where d-Components(·) indicates an operator that takes the first d components of (·). Notice
that the inside of the operator is a (d + p)-dimensional vector. The proof of (6) consists of two
parts:

1. Show that ∃z ∈ Rp: [
2ATA CT

C 0

] [
x∗

z

]
=

[
2AT b
e

]
. (7)

2. Show that [
2ATA CT

C 0

]
is invertible. (8)

Proof of (7)

Actually the optimality condition that we learned in Lecture 3 for constrained convex optimiza-
tion plays a crucial role to prove:

∇f(x∗)T (x− x∗) ≥ 0, ∀x : Cx = e. (9)

2



Since x∗ is obviously a feasible point, we have Cx∗ = e. Now suppose we represent:

x = x∗ + v. (10)

Then, the vector v must satisfy Cv = 0, as Cx = Cx∗ = e. So the optimality condition is
equivalent to:

∇f(x∗)T v ≥ 0, ∀v : Cv = 0. (11)

Here one important thing to note is that this optimality condition is equivalent to the following
condition:

∇f(x∗)T v = 0, ∀v : Cv = 0, (12)

meaning that whenever ∇f(x∗)T v ≥ 0, the equality must hold. Why? Check this in PS.

Here the condition (12) is equivalent to saying that: vT∇f(x∗) = 0, ∀v : vTCT = 0. This
implies that: ∇f(x∗) ∈ range(CT ). If you are not quite convinced about this, check this in PS.
Hence, we can say that:

∃z ∈ Rp : ∇f(x∗) + CT z = 0. (13)

Since ∇f(x∗) = 2(ATA)x∗ − 2AT b in the constrained least-squares problem of interest, we get:

∃z : 2(ATA)x∗ − 2AT b + CT z = 0. (14)

This together with Cx∗ − e = 0 prove (7).

Proof of (8)

The proof idea is by contradiction. Suppose:[
2ATA CT

C 0

]
is not invertible. (15)

Here not being invertible means that any column in the matrix in (15) can be expressed as a
linear combination of the other columns of the matrix. This implies that:

∃[x̄; z̄] 6= 0 :

[
2ATA CT

C 0

] [
x̄
z̄

]
= 0. (16)

From this, we have:

2ATAx̄ + CT z̄ = 0. (17)

Now multiplying x̄T to both sides from the left, we get:

2x̄TATAx̄ + x̄TCT z̄ = 0. (18)

Since Cx̄ = 0 due to (16), x̄TCT = 0. Applying this to (18), we get: ‖Ax̄‖2 = 0, which then
yields: Ax̄ = 0. This together with Cx̄ = 0 gives:[

A
C

]
x̄ = 0. (19)

3



Now recall one of our assumptions made earlier (5). This implies that all the columns of [A;C]
are linearly independent. So (19) must imply that:

x̄ = 0. (20)

Applying this to (17), we get:

CT z̄ = 0. (21)

Again recall the other assumption made earlier (4). This implies that all the rows of C (i.e., all
the columns of CT ) are linearly independent. Hence,

z̄ = 0. (22)

This together with (20) shows contradiction with (16), thus completing the proof (8).

Remark #1: KKT equations

Actually the key equations (7) that lead to the closed-form solution (6) are very famous ones
which were investigated by three prominent mathematicians, whose last names are: Karush,
Kuhn and Tucker2. So they are called the KKT equations.

KKT equations: 2(ATA)x∗ − 2AT b + CT z = 0;

Cx∗ − e = 0.

And the key matrix that appears in the left hand side of (8) is called the KKT matrix :

KKT matrix :

[
2ATA CT

C 0

]
.

In fact, the KKT equations are part of the KKT conditions, which were derived as necessary
conditions for optimality of general optimization problems3. The KKT conditions are very
important conditions that form the basis of strong duality that we will study in Part II. So we
will discuss more on this later.

Remark #2: Direct verification

Actually once we remember the KKT equations (7), then the proof of the optimality of x∗ is
very easy. In other words, one can easily verify that:

(7) =⇒ ‖Ax− b‖2 ≥ ‖Ax∗ − b‖2, ∀x : Cx− e = 0.

So to prepare midterm and final exams, you may want to remember the KKT equations to ease
related proofs.

Below we provide the direct verification:

‖Ax− b‖2 = ‖(Ax−Ax∗) + (Ax∗ − b)‖2

= ‖Ax−Ax∗‖2 + ‖Ax∗ − b‖2 − 2(Ax−Ax∗)T (Ax∗ − b)

(a)
= ‖Ax−Ax∗‖2 + ‖Ax∗ − b‖2

≥ ‖Ax∗ − b‖2

2Kuhn is famous as a friend of John Nash, who received the Nobel Prize in economics for the game theory and
is a model for the main character in the movie Beautiful Mind that you might watch. Tucker is famous as a PhD
advisor of John Nash.

3The KKT conditions were publicized in a conference paper by Kuhn and Tucker in 1951. But later it was
revealed that the same conditions were already derived in the master thesis by Karush in 1939.

4



The only thing that remains to complete the proof is to show (a); see below for the proof:

2(Ax−Ax∗)T (Ax∗ − b) = 2(x− x∗)TAT (Ax∗ − b)

(b)
= −(x− x∗)TCT z

= −(Cx− Cx∗)T z

= −(e− e)T z = 0

where (b) comes from the fact that 2ATAx∗− 2AT b = −CT z, which is the first among the KKT
equations (7).

General QP

Recall the general QP which has the following standard form:

minwTx + xTQx :

Ax− b ≤ 0

Cx− e = 0

(23)

where Q = QT � 0 is a PSD matrix. Now how to solve the general QP? Unfortunately, there
is no closed-form solution in general. So what we can do is to rely solely on the optimality
condition that we learned: for optimal x∗,

∇f(x∗)(x− x∗) ≥ 0, ∀x ∈ S (24)

where S denotes a feasible set.

As mentioned in Lecture 3, the optimality condition provides algorithmic insights via strong
duality. So we will study how to solve the problem later when dealing with the strong duality
in Part II.

Look ahead

So far, we have studied three instances of convex optimization problems: LP, Least-Squares
and QP. For the upcoming two lectures, we will study two more instances that subsume all of
the prior problems as special cases: Second-Order Cone Program (SOCP) and Semi-Definite
Program (SDP).

5



CN09_2

Least-squares Linear Program

(LP)

Quadratic Program (QP)

Second-Order Cone Program

(SOCP)

Semi-Definite Program

(SDP)

……

Convex Optimization

19391800s

1956

1994

1994

Figure 1: Hierarchy of convex optimization problems

6



EE523 Convex Optimization April 2, 2019
KAIST, Spring 2019

Lecture 10: Second-Order Cone Program

Recap

So far we have studied three instances of convex optimization problems: LP, Least-Squares and
QP. Last time we studied QP, investigating a special case of QP in which there is a closed-form
solution: the equality-constrained least-squares. In particular I emphasized the KKT equations
and KKT matrix that appear in the closed-form solution. I also mentioned that the KKT
equations are part of the KKT conditions that we will study in depth in Part II.

Today’s lecture

Today we are going to study the follow-up instance that includes the LP, Least-Squares and QP
as special cases: Second-Order Cone Program (SOCP). Specifically we are going to cover three
stuffs. First we will study what SOCP is and also verify that it indeed belongs to a convex
optimization problem. Next, we will demonstrate that it subsumes LP and QP. Finally, we will
discuss some applications in which SOCP can play a role and therefore one can see the power
of the problem.

What is Second-Order Cone Program (SOCP)?

The standard form of Second-Order Cone Program (SOCP) is as follows:

min wTx :

‖Aix− bi‖ ≤ cTi x+ ei, i = 1, . . . ,m,

Fx = g

(1)

where Ai ∈ Rmi×d and F ∈ Rp×d. Here the complicated-looking inequality constraint is the
one that you have never seen thus far. Let us first verify that the problem belongs to a convex
problem. To this end, we need to show that the following function is convex (why?):

‖Aix− bi‖ − cTi x− ei.

Notice that the latter term −cTi x − ei in the above is affine and also the inside term of the
Euclidean norm is affine. Since convexity preserves under addition and affine transformation, it
suffices to show that ‖x‖ is convex. In the one-dimensional case, the function ‖x‖ is “V”-shaped.
So it looks like a convex function. It turns out this is indeed the case. Please prove it rigorously
in PS.

We we call SOCP?

As you may guess, the naming comes from the never-seen inequality constraint:

‖Aix− bi‖ ≤ cTi x+ ei. (2)

To see the rationale behind the naming, let us consider a very simple setting which gives a hint:
Ai = I, bi = 0, ci = 0, ei = t. In this case, the constraint is simplified as: ‖x‖ ≤ t. Now consider
a set of (x, t) which satisfies the constraint (2).

C := {(x, t) : ‖x‖ ≤ t}. (3)

1



Take a look at the shape of the set, illustrated in Fig. 1. It looks like an ice-cream cone. Also the
norm that appears in the set is the Euclidean norm, which is the `2 norm. Hence, it is called the
second-order cone (SOC). Another names are quadratic cone, ice-cream cone or Lorentz cone.

CN10_1

Figure 1: Picture of the second-order cone: {(x, t) : ‖x‖ ≤ t}.

Since the constraint (3) is a special case of the original constraint (2), you may still wonder why
the problem (1) is called SOCP. Here a key observation is that the set of affine transformation
of x is also a SOC:

(Aix− bi, cTi x+ ei) ∈ C.

And the convexity preserves under affine transformation. Hence, one can also view the original
constraint (2) as a SOC upto affine transformation (which does not alter the convexity property).
So we can interpret the problem (1) as a SOC-constraint-based Program, which can be simply
called SOCP.

Subsumes QP: QP → SOCP

Now let us show that the problem (1) includes LP and QP as special cases. One can immediately
see the inclusion of LP by setting:

Ai = 0 ∀i = 1, . . . ,m,

in the original problem.

The proof of the inclusion of QP is slightly involved. To this end, we will show that QP can be
cast into the form of SOCP. So let us start with the standard form of QP:

minwTx+ xTQx :

Ax− b ≤ 0

Cx− e = 0

(4)

where Q ∈ Rd×d � 0, A ∈ Rm×d and C ∈ Rp×d. Here what is annoying is the quadratic term
xTQx that appears in the objective function. In an effort to translate the term into an affine
term, let us first manipulate the matrix Q via eigenvalue value decomposition (EVD)1. Since Q
is symmetric, one can always apply EVD to get:

Q = UΛUT

1If you are not familiar with EVD, then please take a look at the appendix of the linear algebra book uploaded
on the course website: “Append SVD others.pdf”.

2



where U ∈ Rd×d is a unitary matrix (i.e., UTU = I) and Λ is a diagonal matrix: Λ =
diag(λ1, . . . , λd) where λi indicates the ith eigenvalue of Q. Now we define y := Q1/2x where

Q1/2 := UΛ1/2UT

where Λ1/2 := diag(
√
λ1, . . . ,

√
λd). This yields: yT y = xTQx. Applying this to (4), we then

get:

min
x, y

wTx+ yT y :

Ax− b ≤ 0

Cx− e = 0

y = Q1/2x.

(5)

While the newly introduced constraint y = Q1/2x is okay as it is affine, the quadratic term yT y
in the objective is still problematic. To translate this into an affine term, we introduce a new
variable, say t, such that

t ≥ yT y. (6)

Here the key observation is that minimizing t is equivalent to minimizing yT y, i.e., minimizing
t, one can minimize yT y and vice versa. Hence, we can replace yT y in the objective with t while
adding the constraint (6), thus obtaining:

min
x, y, t

wTx+ t :

Ax− b ≤ 0

Cx− e = 0

y = Q1/2x

yT y ≤ t.

(7)

Is yTy ≤ t a SOC constraint?

Now the question is: Is the newly introduced constraint yT y ≤ t is a SOC? At first glance, it
looks not the case, as it can be represented as: ‖y‖ ≤

√
t. Notice that

√
t is not affine in t. But

it turns out it is the case with some modification. To see this, let us first manipulate it into:
4‖y‖2 ≤ 4t. This is then equivalent to:

4‖y‖2 + (t− 1)2 ≤ (t+ 1)2.

Observe in the above that we have square exponents in every term. So one can represent it as:∥∥∥∥[ 2y
t− 1

]∥∥∥∥2 ≤ (t+ 1)2

Now dropping the square exponents in both sides and then using the definition (3) of SOC, we
see that the set of ([2y; t− 1], t+ 1) (affine transformation of the variables) is a SOC:([

2y
t− 1

]
, t+ 1

)
∈ C.

3



Hence, we obtain the following SOCP (from QP):

min
x, y, t

wTx+ t :

Ax− b ≤ 0

Cx− e = 0

y = Q1/2x (affine)∥∥∥∥[ 2y
t− 1

]∥∥∥∥ ≤ t+ 1 (SOC).

(8)

Applications

Now why do we care about SOCP? The obvious reason is that it has many applications as LP
and Least-Squares. In particular, it plays an important role in two specific settings.

The first setting is the one which represents very practical scenarios in which there is uncertainty
in data and/or parameters. For example, in the legitimate-vs-spam email classification problem,
data points can be viewed as sort of random quantities. It turns out that taking this probabilistic
aspect into account, one can modify the original LP (that we formulated in Lecture 5) into a
SOCP. In fact, such a modified LP is categorized into a broader class of LPs, called Robust LP,
which covers all the probabilistic variations of LPs.

Another example is the least-squares problem with uncertain matrix A. For instance, in the
CT application that we investigated in Lecture 8, the matrix A contains the length information
of a beam trajectory for a small grid. Since the length is a measured quantity, it may contain
some measurement noise, thus yielding some uncertainty. It turns out that taking this aspect,
one can modify the original Least-Squares into a SOCP.

The second setting is the case in which optimization problems are formulated with Euclidean
norms. Examples include: (i) distance-minimizing location planning in which one wants to
locate a warehouse so as to serve many service locations while minimizing the transportation
cost, which is usually proportional to the Euclidean distance; (ii) image denoising in which
one wishes to remove the noise effect on the edges of an image while incorporating a sort of
regularization term which involves an Euclidean norm; (iii) penalized Least-Squares in which
one wants to minimize a noise effect while adding an Euclidean-norm-associated term (in the
object function) which penalizes the noise effect.

Here we cannot cover all of the above applications due to the interest of time. Instead we are
going to cover one of the most important applications in this lecture: Robust LP. Some of the
other applications will be dealt with in PS.

Example of Robust LP: Chance Program (CP)

The application that I would like to put an emphasis on is a prominent example of Robust LP,
called the Chance Program (CP). Just for illustrative purpose, let us consider a very simple LP
in which there is only one inequality:

minwTx : aTx ≤ b. (9)

In the legitimate-vs-spam email classification problem, here a, marked in red, indicates a data
point. As mentioned earlier, such data point can be viewed as a random quantity. So in this
case, a can be modeled as a random vector.

In an effort to deal with uncertainty that is induced by such random vector, one may want to

4



instead consider a probabilistic constraint which can be formulated as:

Pr
(
aTx ≤ b

)
≥ 1− ε (10)

for some small ε > 0. Now then the question is: How to compute Pr(aTx ≤ b)?

Gaussian approximation for Pr(aTx ≤ b)

Actually the exact computation is almost impossible in reality as we have no idea of the proba-
bility distribution that the vector a is subject to. One way to go is to instead approximate the
computation assuming that the vector a follows a well-known distribution in which the proba-
bility calculation is tractable. One such well-known distribution is the Gaussian distribution. In
fact, the Gaussian distribution is not only computationally tractable, but it also well represents
many practical settings which include the legitimate-vs-spam email classification problem.

So here we will use the Gaussian distribution to approximate the probability computation.
Specifically assume that a follows the Gaussian distribution with:

a ∼ N (ā,K) (11)

where ā indicates the mean E[a] and K denotes the covariance matrix of a, defined as K :=
E[(a − ā)(a − ā)T ]. Here the symbol “∼” means “is distributed according to”, and N denotes
the Gaussian distribution.

Now consider a linear combination of a, aTx, which is of our interest. Under the Gaussian
assumption (11), aTx is also Gaussian:

aTx ∼ N (āTx, xTKx).

Why? Check in PS. Using this, we can then compute:

Pr
(
aTx ≤ b

)
= Pr

(
aTx− āTx√

xTKx
≤ b− āTx√

xTKx

)
= Φ

(
b− āTx√
xTKx

) (12)

where Φ(·) indicates the cumulative distribution function (CDF) of the normal Gaussian dis-
tribution (with zero mean and variable 1): Φ(x) := Pr(t ≤ x) where t ∼ N (0, 1); also see
Fig. 2.

Applying (12) into (10), we get:

Φ

(
b− āTx√
xTKx

)
≥ 1− ε.

Since Φ(·) is a non-decreasing one-to-one function (again see Fig. 2), we can invert the function
to get:

b− āTx√
xTKx

≥ Φ−1(1− ε),

which in turns yields:

Φ−1(1− ε)
√
xTKx ≤ b− āTx. (13)

CP → SOCP

5



CN10_2

Figure 2: Cumulative density function (CDF) Φ(x) of the normal Gaussian distribution N (0, 1).

Applying (13) to (9), we obtain:

minwTx : Φ−1(1− ε)
√
xTKx ≤ b− āTx. (14)

Now the question is: Is the constraint in the above a SOC? To figure this out, let us simplify
the constraint by letting y := K1/2x. We then get:

‖y‖ ≤ b− āTx
Φ−1(1− ε)

.

Notice that the set of affine transformation of the optimization variables is a SOC:(
y,

b− āTx
Φ−1(1− ε)

)
∈ C.

Hence, we get the following SOCP (from CP):

min
x,y

wTx :

y = K1/2x (affine)

‖y‖ ≤ b− āTx
Φ−1(1− ε)

(SOC).

(15)

How to solve SOCP?

Like QP, there is no closed-form solution for SOCP in general. So as mentioned earlier, we
should rely on strong duality to gain some insights into algorithms. Hence, we will study in
depth in Part II.

Look ahead

So far, we have studied four instances of convex optimization problems: LP, Least-Squares, QP
and SOCP. Next time, we will study the final (from this course’s point of view) instance that
subsumes all of the prior problems as special cases: Semi-Definite Program (SDP).

6



CN10_3

Least-squares Linear Program

(LP)

Quadratic Program (QP)

Second-Order Cone Program

(SOCP)

Semi-Definite Program

(SDP)

……

Convex Optimization

19391800s

1956

1994

1994

Figure 3: Hierarchy of convex optimization problems

7



EE523 Convex Optimization April 4, 2019
KAIST, Spring 2019

Lecture 11: Semi-Definite Program

Recap

So far we have studied four instances of convex optimization problems: LP, Least-Squares, QP
and SOCP. Last time we studied SOCP and figured out that the problem can play a role in very
practical contexts in which there is uncertainty in data and/or parameters.

Today’s lecture

Today we are going to study another instance that includes all of the prior problems as special
cases, which is Semi-Definite Program (SDP). First we will study what SDP is and show that
the feasible set in the problem is convex, thus proving that the problem indeed belongs to a
convex optimization problem. Next, we will demonstrate that it subsumes LP, QP and SOCP.
Finally, we will discuss some applications and will put a particular emphasis on a technique called
SDP relaxation, which is proven to be very powerful for approximating non-convex optimization
problems.

What is Semi-Definite Program (SDP)?

The standard form of Semi-Definite Program (SDP) is as follows:

min wTx :

G+ x1F1 + · · ·+ xdFd � 0

Cx = e

(1)

where G,Fi’s ∈ Rk×k are symmetric matrices and C ∈ Rp×d. Here the inequality involves a
bunch of matrices which are related with x in a linear manner. Hence, it is called the Linear
Matrix Inequality (LMI).

Why is the problem convex? To figure this out, we need to demonstrate that the following set
induced by the inequality constraint is convex:

S := {x : G+ x1F1 + · · ·+ xdFd � 0}.

Suppose that x, y ∈ S. Fix λ ∈ [0, 1]. Now let us check if a linear combination λx+ (1− λ)y is
in the set S. To this end, consider:

G+ (λx1 + (1− λ)y1)F1 + · · ·+ (λxd + (1− λ)yd)Fd

= λ [G+ x1F1 + · · ·+ xdFd]︸ ︷︷ ︸
(a)

� 0

+(1− λ) [G+ y1F1 + · · ·+ ydFd]︸ ︷︷ ︸
(b)

�0

(c)

� 0

where (a) and (b) come from the hypothesis that x, y ∈ S; and (c) follows from the fact that
a convex combination of two PSD matrices is also PSD (why?). This implies that the linear

1



combination is also in the set: λx+ (1−λ)y ∈ S. Hence, this proves the convexity of S, thereby
showing the convexity of the problem (??).

Subsumes LP and QP

It is straightforward to prove the inclusion of LP. Setting G and Fi’s as diagonal matrices in
the problem (??), one can reduce the problem to an LP. As for QP, it turns out that showing
inclusion is almost equally difficult to showing the inclusion of SOCP. Hence, we will focus
instead on proving the inclusion of SOCP.

Subsumes SOCP

In this section, we will demonstrate that SOCP can be cast into the form of SDP. So let us start
with the standard form of SOCP:

min wTx :

‖Aix− bi‖ ≤ cTi x+ ei, i = 1, . . . ,m,

Fx = g

(2)

where Ai ∈ Rmi×d and F ∈ Rp×d.

Manipulating the SOC constraint in (??), we get (cTi x+ei)
2 ≥ ‖Aix−bi‖2, which in turns gives:

(cTi x+ ei)− (Aix− bi)T {(cTi x+ ei)I}−1(Aix− bi) ≥ 0. (3)

Here a key observation is that the left-hand-side in (??) is the very famous Schur Complement
of the matrix (cTi x + ei)I. So one can use the prominent Schur Complement Lemma (formally
stated below) to write down the SOC constraint as an LMI that we wish to represent as:

Fi(x) :=

[
(cTi x+ ei)I Aix− bi
(Aix− bi)T cTi x+ ei

]
� 0. (4)

Note that Fi(x) is symmetric and affine in x. Also one can show that all the matrices associated
with xi’s are symmetric (why? check in PS). Hence, it is an LMI.

Schur Complement Lemma: Suppose A � 0. Then,

X =

[
A B
BT C

]
� 0 ⇐⇒ S := C −BTA−1B � 0. (5)

Proof: Check in PS. �

Notice in the standard form (??) of SDP that we have a single LMI, while here we have m
such LMIs as per (??). But such multiple LMIs can be represented as a single LMI using the
following trick:

F1(x), . . . , Fm(x) � 0 ⇐⇒ F (x) :=


F1(x) 0 · · · 0

0 F2(x) · · ·
...

...
...

. . . 0
0 · · · 0 Fm(x)

 � 0. (6)

You may wonder why (??) holds - check in PS. Using this, one can rewrite the problem (??) as:

min wTx :

F (x) � 0

Fx = g.

(7)

2



Hence, we show that SOCP can be translated into SDP, thus proving the inclusion of SOCP.

Applications

Why do we care about SDP? Obviously it is because it has many applications. Particularly SDP
plays a crucial role in approximating difficult non-convex optimization problems via a famous
technique, called SDP relaxation. This will be explored further in the next section.

SDP is also useful for a variety of contexts in which the maximum eigenvalue of a matrix or
the nuclear norm1 are interested entities that we wish to minimize. One of the recent popular
applications where such problems arise: matrix completion in which one wishes to identify
missing entries of a matrix only from partially revealed entries (which are possibly noisy). Details
will be dealt with in PS or exams.

Example of SDP relaxation: MAXCUT problem

In this section, we study one very well-known problem in which the SDP relaxation technique
plays a role. The problem that we will investigate is: the MAXCUT problem.

The goal of the problem is to find a set that maximizes a cut. To understand what it means,
we need to know about the concepts of a set and a cut. The context in which the problem is
defined is a graph G which consists of a vertex set V and an edge set G. Specifically, the problem
is concerned about a undirected graph in which each edge does not have a direction, meaning
that one edge in E , say (1, 2), is the same as its counterpart (2, 1). For the example in Fig. ??,
the edge set reads:

E = {(1, 2), (1, 4), (1, 5), (2, 3), (2, 4), (3, 6), (4, 5)}.
CN11_1

1

5

23

4

6

Figure 1: MAXCUT problem: Finding a set that maximizes a cut. In this example, the set
S = {1, 3, 5} and the cut w.r.t. the set S is w54 + w14 + w36 + w12 + w32.

Here what it means by a set S is a subset of the vertex set V. For example, in Fig. ??, the set
can be S = {1, 3, 5} ⊂ V. The cut is defined as the aggregation of all the weights of the edges
that come across the set S and its complement Sc. In the example of Fig. ??, the crossing edges
are: {(5, 4), (1, 4), (3, 6), (1, 2), (3, 2)}. Hence the cut w.r.t. the set S is:

Cut(S) = w54 + w14 + w36 + w12 + w32, (8)

1The nuclear norm, denoted by ‖A‖∗, is defined as: ‖A‖∗ :=
∑

i σi(A) where σi(A) indicates the ith singular
value of A.

3



where wij denotes a weight associated with an edge (i, j) ∈ E .

Optimization problem

To formulate an optimization problem that allows us to attain the above goal, we first need to
come up with a proper optimization variable. Obviously the optimization variable should be
a function of the choice of a set S. Hence, we consider the following variable xi such that it
indicates whether node i is in the set S:

xi =

{
+1, x ∈ S;
−1, otherwise.

(9)

Here a key observation is that when xi 6= xj , the edge (i, j) comes across the two sets S and
Sc, and hence, this should contribute to Cut(S) by the amount of wij . On the other hand,
when xi = xj , there should be no contribution to the cut. This motivates us to formulate an
optimization problem as:

max
xi

∑
i,j

1

2
wij(1− xixj) :

x2i = 1, i = 1, . . . , d.

(10)

Notice in the objective function that we get wij when xi 6= xj ; 0 otherwise. The constraint
x2i = 1 respects the fact that xi can be only either +1 or −1.

A translation technique: Lifting

Observe in the objective function in (??) that we have a quadratic term like xixj . Also we have
a quadratic equality-constraint. So these do not match with the standard form of any convex
instance that we have studied thus far.

In an effort to translate such undesirable terms into favourable terms (e.g., affine terms), we
introduce a well-known technique, called lifting. Here the lifting means raising a space that the
optimization variable lives in. In the considered example, the optimization variables xi’s can be
represented as a vector, like: x := [x1, . . . , xd]T . So the lifting in this context is to convert the
vector x into a higher dimensional entity, say a matrix. For instance, one may introduce a new
matrix, say X, such that its (i, j)-entry [X]ij is defined as:

Xij := xixj . (11)

A more succinct way to represent this is: X = xxT . Notice that the matrix X is then a rank-1
matrix and its eigenvalue is equal to xTx (Why? Think about the definition of the eigenvalue).
So the change of variable induces the following constraints:

Xii = 1, X � 0, rank(X) = 1. (12)

Now with a new matrix variable X, the problem (??) can be rewritten as:

p∗ := max
X

∑
i,j

1

2
wij(1−Xij) :

Xii = 1, i = 1, . . . , d (affine)

X � 0 (LMI)

rank(X) = 1 (rank constraint) .

(13)

4



Notice that X ≥ 0 is indeed an LMI. For example, for the d = 2 case,

X =

[
X11 X12

X12 X22

]
= X11

[
1 0
0 0

]
+X12

[
0 1
1 0

]
+X22

[
0 0
0 1

]
is affine in Xij ’s and the associated matrices are all symmetric.

SDP relaxation

Notice in (??) that the objective function is affine in Xij , the first equality constraint is affine,
and the second inequality constraint is an LMI. However, it contains an undesirable constraint:
rank(X) = 1 (rank constraint). So it is not an SDP.

This is where a technique, called SDP relaxation, kicks in. The idea of the technique is simply
to ignore such rank constraint. By ignoring the constraint, the search space in the optimization
problem is broadened and hence it is indeed relaxation. Applying the technique, we get:

p∗SDP := max
X

∑
i,j

1

2
wij(1−Xij) :

Xii = 1, i = 1, . . . , d (affine)

X � 0 (LMI).

(14)

Obviously p∗SDP ≥ p∗, since it is relaxation for the maximization problem.

Interestingly, it turns out that in many cases, the gap between p∗SDP and p∗ is not so large. In
some cases, the gap can be large. But it was shown by Nesterov (a Russian mathematician who
has been playing an important role in the convex optimization field) in 1996 that the gap cannot
be arbitrarily large. The worst-case bound was shown to be:

p∗SDP − p∗

p∗SDP

≤ π

2
− 1 ≈ 0.571.

The proofs of these are out of the scope of the course. But instead you will have a chance to
check some of them numerically in PS.

How to convert X∗
SDP into x∗?

You may wonder how to convert X∗
SDP (obtained from (??)) to x∗, as X∗

SDP may not be of the
following desired form: X∗

SDP = xxT . In such an undesirable yet frequently-occuring case, one
way to go is to apply a very well-known technique in statistics, called the Principle Component
Analysis (PCA). The way it works is as follows. We first do eigenvalue decomposition to get:

X∗
SDP = Udiag(λ1, λ2, . . . , λd)UT (15)

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. Here the number of non-zero eigenvalues determines the rank
of the matrix. The idea is to take only the first (principle) largest eigenvalue λ1 while ignoring
others to approximate it as:

X̃∗
SDP := Udiag(λ1, 0, . . . , 0)UT . (16)

This way, we can ensure rank(X̃∗
SDP) = 1, enabling us to obtain x∗.

How to solve general SDP?

5



Like QP and SOCP, there is no closed-form solution for SDP in general. So as mentioned earlier,
we should rely on strong duality to gain insights into algorithms. Hence, we will study in depth
in Part II.

Look ahead CN11_2

Least-squares Linear Program

(LP)

Quadratic Program (QP)

Second-Order Cone Program

(SOCP)

Semi-Definite Program

(SDP)

Convex Optimization

19391800s

1956

1994

1994

Very little applications in this class

Figure 2: Hierarchy of convex optimization problems

So far, we have studied five instances of convex optimization problems: LP, Least-Squares, QP,
SOCP and SDP. In fact, we have more instances which are convex but not belonging to the prior
problems. However, there is very little application that such a class plays a role in. Hence, we
stop here. Instead we will focus on studying algorithms for general QP, SOCP and SDP, which
we have deferred as they are based on strong duality. So from next time, we will embark on
Part II to start investigating strong duality.

6



EE523 Convex Optimization April 9, 2019
KAIST, Spring 2019

Lecture 12: Strong Duality

Recap

We have thus far studied several classes of convex optimization problems: LP, Least-Squares,
QP, SOCP and SDP. Actually we have one more well-known instance which is convex but not
belonging to the prior classes. That is, cone program. In fact, understanding cone program
requires lots of mathematical concepts, definitions and techniques, although there are very few
applications of cone program. Too much overhead while gaining a little. Hence, we will not
go further. Instead we will focus on studying what we have missed so far while investigating
the previous convex instances. That is, algorithms for general QP, SOCP and SDP. The reason
that we have deferred algorithm studies is that algorithms for the general settings are based on
strong duality that we plan to cover in Part II. So from now on, we will move onto Part II to
start investigating strong duality.

CN11_1

Least-squares Linear Program

(LP)

Quadratic Program (QP)

Second-Order Cone Program

(SOCP)

Semi-Definite Program

(SDP)

Convex Optimization

19391800s

1956

1994

1994

Very few applications in this class

Figure 1: Hierarchy of convex optimization problems.

Today’s lecture

Today we are going to cover three stuffs. Actually the strong duality is based on the concepts of
primal and dual problems. So we will first study what the primal and dual problems are. Next,
we will study what it means by strong duality. Finally, we will explore why the strong duality
gives insights into the design of algorithms.

Primal & dual problems

Let us start by recalling the standard form of convex optimization:

min f(x) : fi(x) ≤ 0, i = 1, . . . ,m,

Ax− b = 0,
(1)

where f(x) and fi(x)’s are convex functions, A ∈ Rp×d and p ≤ d. Without loss of generality,
assume that rank(A) = p; otherwise, one can remove dependent rows in A to make it have full

1



rank. The primal problem is defined as a problem that we start with, and hence the above is
the primal problem.

There is another problem which is intimately related to the primal problem, called the dual
problem. But to explain what it means, we need to first know about a function, called the
Lagrange function. The Lagrange function is denoted by L(x, λ, ν). It takes three arguments.
The second argument λ is a real-valued vector of size m, which coincides with the number
of inequality constraints: λ := [λ1, . . . , λm]T . The last argument ν (pronounced as “nu”) is
also a real-valued vector yet of different size p, which is the number of equality constraints:
ν := [ν1, . . . , νp]

T . The Lagrange function is defined as:

L(x, λ, ν) := f(x) +

m∑
i=1

λifi(x) + νT (Ax− b). (2)

Notice in the second summation term that fi(x) (that appears in the ith inequality constraint)
is multiplied by with λi. Similarly the ith equality-constraint function is multiplied by with νi
to form the last term νT (Ax− b). Hence, λi’s and νi’s are called Lagrange multipliers.

Are we now ready to define the dual problem? No. To explain what the dual problem is, we
need to know about one more function, called the Lagrange dual function, or simply the dual
function. Let us just use the simple version: the dual function. It is denoted by g(λ, ν) and
defined as below.

g(λ, ν) := min
x∈domf

L(x, λ, ν)

= min
x∈domf

f(x) +

m∑
i=1

λifi(x) + νT (Ax− b).
(3)

Two things to note. The first and very important one is that the minimization here is over the
entire space that x lies in w.r.t. f(x): domf . Notice that the search space is not limited to the
feasible set induced by inequality and equality constraints in the primal problem. The second
thing to note is that L(x, λ, ν) is not necessarily convex in x. When λi ≥ 0 ∀i, L(x, λ, ν) is
simply a summation of convex and affine functions. So in this case, the function is convex and
therefore, the minimum value is attained. However, λi’s could be negative, as there is no sign
constraint on λ in defining L(x, λ, ν). This may render L(x, λ, ν) concave (or affine) in x where
g(λ, ν) = −∞.

We are now ready to define the dual problem of our primary interest. Observe in (3) that g(λ, ν)
is a pointwise minimum of affine functions (in (λ, ν)) over all x’s in domf . Hence, it is concave in
(λ, ν) (Why? Think about what we proved in PS1: the maximum of convex functions is convex.
More generally, one can prove that the maximum of affine functions is convex. Someone may
still wonder about the above case (3) in which the minimum is over continuous values not over
only a few candidates. Even in this case, one can readily prove the claim still holds. The proof is
not that difficult - think about it). Hence, the maximum is always attained. The dual problem
is an optimization problem that finds such maximum. So it is formulated as:

(Dual problem): max
λ,ν

g(λ, ν) : λ ≥ 0. (4)

Here one thing to notice is that there is a constraint on λ (λ ≥ 0) while there is none for ν. This
together with the definition (3) of the dual function gives the following equivalent expression:

max
λ,ν

min
x∈domf

f(x) +

m∑
i=1

λifi(x) + νT (Ax− b) : λ ≥ 0. (5)

2



What strong duality means?

Here is a summary of the primal and dual problems:

(Primal): p∗ := min f(x) : fi(x) ≤ 0, i = 1, . . . ,m, Ax− b = 0;

(Dual): d∗ := max
λ,ν

min
x∈domf

f(x) +
m∑
i=1

λifi(x) + νT (Ax− b) : λ ≥ 0.

Here we denote by p∗ (or d∗) the optimal value for the primal (or dual) problem.

Using these, we can now state what strong duality is. What it means is that the optimal values
of the two problems are equal:

(Strong duality): p∗ = d∗. (6)

It has been shown that in general, the optimal values are different, i.e., the strong duality does not
hold. But interestingly it turns out that the strong duality (6) does hold for convex optimization
of our interest, under a very mild condition1. We call this the strong duality theorem.

Now you may wonder why the strong duality theorem matter for developing algorithms. Of
course, there is a reason. The reason is that when strong duality holds, one can derive necessary
and sufficient conditions (in order for strong duality to hold), which provide algorithmic insights.
So for the rest of this lecture, we will derive such conditions and will explain why the conditions
shed lights as to how to design algorithms. In the next-next lecture, we will prove the strong
duality theorem - please be patient until we get to the point.

Necessary conditions for strong duality to hold

Let us first focus on deriving necessary conditions. Suppose that strong duality holds p∗ = d∗,
and x∗ and (λ∗, ν∗) are the optimal solutions of the primal and dual problems, respectively.

Since f(x∗) = p∗ = d∗ = g(λ∗, ν∗) under the hypothesis, we get:

f(x∗) = g(λ∗, ν∗)

(a)
= min

x∈domf
f(x) +

m∑
i=1

λ∗i fi(x) + ν∗T (Ax− b)

(b)

≤ f(x∗) +

m∑
i=1

λ∗i fi(x
∗) + ν∗T (Ax∗ − b)

(c)

≤ f(x∗)

(7)

where (a) is due to the definitions of the dual function (3) and the Lagrange function (2); (b)
comes from the fact that x∗ is a particular choice in view of the minimization problem in step
(a); and (c) follows from the fact that λ∗i ≥ 0, fi(x

∗) ≤ 0, and Ax∗ − b = 0 (since (x∗, λ∗) must
be feasible points).

In the above, the left hand side and the right hand side are the same as f(x∗), suggesting that
the two inequalities in steps (b) and (c) are tight. From the tightness of the inequality (b), we see

1The mild condition says that there exists x such that strict inequality holds fi(x) < 0 ∀i subject to Ax = b.
Actually the condition holds for almost all the problem instances that arise in reality. So one can say that strong
duality usually holds for convex optimization. We will later discuss on this in detail.

3



that x∗ indeed minimizes L(x, λ∗, ν∗) over x. Since it is unconstrained, the optimality condition
is that its gradient at x∗ is zero:

∇xL(x∗, λ∗, ν∗) = 0. (8)

On the other hand, the tightness of the second inequality (c) implies:

λ∗i fi(x
∗) = 0. (9)

There is a name for this condition. It is called the complementary slackness condition. Why?
The term λ∗fi(x

∗) captures sort of slack (gap) between d∗ := g(λ∗, ν∗) and p∗ := f(x∗); see the
1st, 3rd and 4th line in (7). The condition (9) implies:

fi(x
∗) < 0 =⇒ λ∗i = 0;

λ∗i > 0 =⇒ fi(x
∗) = 0,

which says that whenever one of the inequality constraints is strict, the other inequality must
be tight, i.e., both are sort of complementary in view of ensuing the equality.

The conditions (8) and (9) together with the constraints in the primal and dual problems then
constitute the following necessary conditions for strong duality to hold:

∇xL(x∗, λ∗, ν∗) = 0; (10)

λ∗i fi(x
∗) = 0; (11)

fi(x
∗) ≤ 0; (12)

Ax∗ − b = 0; (13)

λ∗ ≥ 0. (14)

where (12) and (13) come from the primal problem and (14) is from the dual problem.

In fact, these conditions (10)∼(14) coincide with the ones that I mentioned in Lecture 9 while de-
riving the closed-form solution for the equality-constrained least-squares problem. These are the
KKT conditions! Remember that the KKT conditions are not limited to convex optimization,
but are intended for general convex & non-convex optimization problems. These are necessary
conditions for a solution to be optimal for general optimization problems.

KKT conditions are also sufficient for strong duality to hold

Interestingly the KKT conditions are also sufficient for strong duality to hold under (x∗, λ∗, ν∗):

KKT conditions =⇒ p∗ = f(x∗) = g(λ∗, ν∗) = d∗. (15)

Let us first show that f(x∗) = g(λ∗, ν∗). To this end, recall the definition of the Lagrange
function (2) to obtain:

L(x∗, λ∗, ν∗) := f(x∗) +
m∑
i=1

λ∗i fi(x
∗) + ν∗T (Ax∗ − b)

= f(x∗)

(16)

where the second equality follows from (11) and (13). On the other hand, from the definition of

4



the dual function (3), we get:

g(λ∗, ν∗) := min
x∈domf

L(x, λ∗, ν∗)

= min
x∈domf

f(x) +
m∑
i=1

λ∗i fi(x) + ν∗T (Ax− b)

(a)
= f(x∗) +

m∑
i=1

λ∗i fi(x
∗) + ν∗T (Ax∗ − b)

= L(x∗, λ∗, ν∗)

(17)

where (a) comes from the fact that the condition (10) in the unconstrained minimization suggests
that x∗ minimizes L(x, λ∗, ν∗). This together with (16) gives:

f(x∗) = g(λ∗, ν∗). (18)

Since p∗ is the optimal value in the primal minimization problem, p∗ ≤ f(x∗). Also d∗ ≥ g(λ∗, ν∗)
as it is the optimal value in the dual maximization problem. These together with (18) yield:

p∗ ≤ d∗. (19)

Now we will below prove that

p∗ ≥ d∗ (20)

to complete the proof of sufficiency of the KKT conditions for ensuring strong duality. To
prove (20), consider a primal optimal point, say x̃, that achieves p∗. Also consider a dual
optimal point, say (λ̃, ν̃), that achieve d∗. Then,

p∗ = f(x̃)

(a)

≥ f(x̃) +

m∑
i=1

λ̃ifi(x̃) + ν̃T (Ax̃− b)

≥ min
x∈domf

f(x) +

m∑
i=1

λ̃ifi(x) + ν̃T (Ax− b)

(b)
= g(λ̃, ν̃)

= d∗

(21)

where (a) follows from the fact that λ̃i ≥ 0, fi(x̃) ≤ 0 and Ax̃ − b = 0 (since (x̃, λ̃, ν̃) must be
feasible points); and (b) is due to the definition (3) of the dual function.

Actually the relationship between p∗ and d∗ stated in (20) is called the weak duality. It turns
out the weak duality holds for any optimization problem (including non-convex optimization),
and this will be explored further in a later lecture.

Look ahead

Now what can we do with the KKT conditions for developing algorithms? Next time, we will
study details on this, and will demonstrate that the conditions indeed play a crucial role in
designing algorithms.

5



EE523 Convex Optimization April 11, 2019
KAIST, Spring 2019

Lecture 13: Algorithms

Recap

Last time, we embarked on Part II and started investigating strong duality which I claimed
several times that it provides a detailed guideline as to how to design algorithms. The strong
duality relies on the concept of primal and dual problems:

(Primal): p∗ := min f(x) : fi(x) ≤ 0, i = 1, . . . ,m, Ax− b = 0;

(Dual): d∗ := max
λ,ν

min
x∈domf

f(x) +

m∑
i=1

λifi(x) + νT (Ax− b) : λ ≥ 0.

Using these, we studied what strong duality means:

(Strong duality): p∗ = d∗. (1)

We then stated (yet without proof) that strong duality (1) holds for convex optimization of
our interest, under a mild condition. Next we derived necessary and sufficient conditions (KKT
conditions) in order for strong duality to hold under a feasible point of (x∗, λ∗, ν∗):

∇xL(x∗, λ∗, ν∗) = 0; (2)

λ∗i fi(x
∗) = 0; (3)

fi(x
∗) ≤ 0; (4)

Ax∗ − b = 0; (5)

λ∗ ≥ 0. (6)

Lastly we claimed that these KKT conditions give algorithmic insights.

Today’s lecture

Today we are going to study details as to why that is the case. Specifically we will support the
claim while investigating the following three problem settings. The first is a somewhat special
yet prominent problem setting where we already saw the KKT conditions (in Lecture 9): the
equality-constrained least-squares problem. In this case, we will demonstrate that the KKT
conditions indeed recover the KKT equations which led to a concrete closed-form solution. The
second is a broader setting which however has still only the equality constraints. In this setting,
we will show that the KKT conditions can be solved via the gradient decent algorithm that we
studied in Lecture 3. The last is a general setting which also contains inequality constraints.
We will introduce one very powerful algorithm, called the interior point method, which can
approximately implement the KKT conditions and therefore can approach the optimum with a
reasonably small performance gap to the optimality.

Equality-constrained Least-Squares

Recall the equality-constrained least-squares problem:

min ‖Ax− b‖2 : Cx− e = 0.

1



Let us verify that the KKT conditions (2)∼(6) recover the KKT equations. We first simplify
the KKT conditions, tailoring for this equality-constrained setting:

∇xL(x∗, ν∗) = 0; (7)

Cx∗ − e = 0. (8)

Taking a derivative of the Lagrange function

L(x, ν) = ‖Ax− b‖2 + νT (Cx− e)

w.r.t. x and setting it to 0, we see that (7) reads:

∇xL(x∗, ν∗) = 2ATAx∗ − 2AT b+ CT ν∗ = 0. (9)

This together with the equality constraint yields the KKT equations:

2ATAx∗ − 2AT b+ CT ν∗ = 0; (10)

Cx∗ − e = 0. (11)

Compared to the setting in Lecture 9 where we first investigated the KKT equations, the only
distinction here is that we used a different notation ν∗ instead of z.

Equality-constrained convex optimization

Now what about for general convex optimization problems? It turns out that solving the KKT
conditions, one can develop some algorithms. In particular, for equality-constrained optimization
problems, one can come up with a simple algorithm.

So let us first consider such equality-constrained setting:

min f(x) : Ax− b = 0. (12)

Under this setting, the KKT conditions (2)∼(6) read:

∇xL(x∗, ν∗) = 0; (13)

Ax∗ − b = 0. (14)

Recalling L(x, ν) = f(x) + νT (Ax− b), we see that

Ax∗ − b = 0⇐⇒ ∇νL(x∗, ν∗) = 0. (15)

Since strong duality holds p∗ = d∗ in the convex optimization setting (due to the strong duality
theorem), it suffices to develop an algorithm that achieves the optimal value in the dual problem.
So we focus on:

d∗ := max
ν

g(ν)

= max
ν

min
x∈domf

L(x, ν).

Here one can make the following observations: (i) L(x, ν) is convex in x; (ii) minx∈domf L(x, ν)
is concave in ν; (iii) minx∈domf L(x, ν) is unconstrained (w.r.t. x); (iv) maxv minx∈domf L(x, ν)
is unconstrained (w.r.t. ν). Remember in Lecture 3 that the optimal condition for unconstrained
minimization (or maximization) is that the gradient evaluated at the optimal point must be 0.
More specifically, the optimality condition for the inner minimization problem is: given a ν,

∇xL(x∗(ν), ν) = 0 (16)

2



where x∗(ν) := arg minx∈domf L(x, ν). The optimality condition for the outer maximization
problem is:

∇νL(x∗(ν∗), ν∗) = 0 (17)

where L(x∗(ν), ν) = minx∈domf L(x, ν). Letting x∗ := x∗(ν∗), the two conditions (16), (17)
yield:

∇xL(x∗, ν∗) = 0;

∇νL(x∗, ν∗) = 0.

Since these coincide with the KKT conditions ((13), (14), and (15)), it suffices to find a point
(x∗, ν∗) such that the gradients are zeros.

Gradient decent algorithm

In Lecture 3, we studied one popular algorithm which allows us to find a point whose gradient is 0.
That was: the gradient decent algorithm. So we can use the same algorithm. The only distinction
here is that we have two points (x, ν) to optimize over and so we have two corresponding gradients
to compute. Below is how a modified algorithm works.

CN11_2

Figure 1: Gradient decent algorithm for equality-constrained optimization.

Let (x(t), ν(t)) be the estimates at the tth iteration; see Fig. 1. First we compute a gradient
w.r.t. x at the point: ∇xL(x(t), ν(t)). Since L(x, ν) is convex in x (see Fig. 1 as well), we should
move the point to the opposite direction (in reference to the gradient) so as to approach the
optimal solution. So we update x(t) as:

x(t+1) ← x(t) − α(t)∇xL(x(t), ν(t))

where α(t) > 0 indicates a step size, which is usually set as a decaying function like α(t) = 1
2t .

3



Next, we compute a gradient w.r.t. ν: ∇νL(x(t), ν(t)). Since minx L(x, ν)(=: L(x∗(ν), ν)) is
concave in ν (see the bottom part of the curve in Fig. 1 where the minimum of L(x, ν) is
attained over x), we should move the point to the same direction (in reference to the gradient)
so as to approach the optimal solution. So we update ν(t) as:

ν(t+1) ← ν(t) + β(t)∇νL(x(t), ν(t))

where β(t) > 0 indicates another step size, which is not necessarily the same as α(t).

We repeat the above procedures until (x(t), ν(t)) converges. It turns out: as t → ∞, it actually
converges:

(x(t), ν(t)) −→ (x∗, ν∗), (18)

as long as the step sizes (α(t), β(t)) are properly chosen (like decaying functions). As in Lecture
3, we will not touch upon the convergence proof, as it is out of the scope of this course.

Interior point method

Now what about for general convex optimization settings which also involve inequality con-
straints? It turns out this is a bit challenging case. It is not that simple to solve the KKT
conditions (2)∼(6) directly. Instead there are algorithms which can approximate the KKT con-
ditions. One such very popular algorithm is the interior point method.

The idea of the interior point method is to take the following two steps:

1. Approximate the primal problem into an equality-constrained optimization.

2. Apply equality-constrained-tailored algorithms (like the gradient decent algoritm explained
earlier) to the approximated optimization.

Since the method is based on an approximation trick, one may wonder how the performance of
such approach is far from optimality. It turns out that with a proper approximation trick (that
we will explain soon), we can achieve the optimal solution with a small gap to the optimality.
To see this, let us first investigate what the approximation trick is.

Approximation trick

Recall the standard form of general convex optimization problem including inequality con-
straints:

min f(x) : fi(x) ≤ 0, i = 1, . . . ,m,

Ax− b = 0,
(19)

where f(x) and fi(x)’s are convex functions, A ∈ Rp×d and p ≤ d.

Now how to handle the inequality constraints? Here what we wish to do is to somehow merge
them with the objective function f(x) so that we have only equality constraints. To this end,
we can set up a specific goal as:

fi(x) ≤ 0 −→ Make no change to f(x);

fi(x) > 0 −→ Make the optimization problem infeasible.

As an effort to implement such goal, we consider a function, called the barrier function, which
is defined as:

I−(z) =

{
0, z ≤ 0;
∞, z > 0.

(20)

4



Now inputting fi(x) to the barrier function as an argument, we get:

I−(fi(x)) =

{
0, fi(x) ≤ 0;
∞, fi(x) > 0.

This then motivates the following natural idea: Adding I−(fi(x)) to the objective function f(x).
This leads to the following reformulated problem:

min f(x) +
m∑
i=1

I−(fi(x)) : Ax− b = 0. (21)

Notice that when fi(x) ≤ 0, the objective function is unchanged; on the other hand, whenever
fi(x) > 0 for some i, f(x) takes infinity, making the problem infeasible.

A surrogate of the barrier function

In the reformulated problem (21), however, there is one critical issue. The issue comes from
the fact that I−(·) is not differentiable. Notice that the first KKT condition (2) includes the
gradient term. So it requires differentiability of the barrier functions as they appear in the
Lagrange function. However, since I− is not differentiable, we cannot implement the KKT
conditions.

To resolve such critical issue, we consider a surrogate of the barrier function, which is differ-
entiable and well approximates the barrier function. One very-well known surrogate is the
logarithmic barrier function defined as:

LB(z) := −µ log(−z), µ > 0. (22)

Note that the function is indeed differentiable, and also it well approximates the barrier function
for a small µ. See Fig. 2. Moreover, it is convex in z, and hence, we can maintain the objective
function as convex.

CN13_2

Figure 2: Logarithmic barrier function.

Approximated convex optimization

5



Replacing the barrier function with the logarithmic barrier function in (21), we can then ap-
proximate (21) as:

min f(x)− µ
m∑
i=1

log(−fi(x)) : Ax− b = 0. (23)

There is one caveat here. The caveat is that the search space of x should be:

{x : f1(x) < 0, . . . , fm(x) < 0, Ax− b = 0}. (24)

This is because the equality fi(x) = 0 for some i makes the logarithmic barrier function blow up.
So we assume that the set in (24) is not empty. Actually this suggested the naming of “interior
point method” as the method searches over interior points.

Since the approximated optimization (23) contains only the equality constraint, we can apply
exactly the same approach that we took for the earlier equality-constrained setting. In other
words, we first compute the Lagrange function:

L(x, ν) = f(x)− µ
m∑
i=1

log(−fi(x)) + νT (Ax− b). (25)

We then try to find (x∗, ν∗) such that the following KKT conditions are satisfied:

∇xL(x∗, ν∗) = 0;

∇νL(x∗, ν∗) = 0.
(26)

Again one can use the gradient decent algorithm to solve this.

Performance gap to the optimality

Once we employ the interior point method that is based on the approximated optimization (23),
one natural question that one can ask is: How far is the performance of such approximation
approach from optimality?

To figure this out, we first consider (x∗, ν∗) such that the KKT conditions (26) hold. At this
point, we get f(x∗) and obviously f(x∗) ≥ p∗ as x∗ (that satisfies (26) intended for the approx-
imated optimization) is not necessarily the optimal solution of the original non-approximated
optimization. So the performance gap can be quantified as f(x∗) − p∗. The gap depends ob-
viously on µ, which is a control parameter which adjusts the closeness to the barrier function.
Let us figure how it varies over µ.

Starting with strong duality, we get:

p∗ = d∗

= max
λ≥0,ν

g(λ, ν)

(a)

≥ g(λ∗, ν∗)

(b)
= min f(x) +

m∑
i=1

λ∗i fi(x) + ν∗T (Ax− b)

(27)

where (a) follows from the fact that ν∗ is a feasible point that satisfies (26) (not necessarily the
one that maximizes g(λ, ν)), and λ∗ is another particular feasible point which will be detailed
soon; and (b) is due to the definition of the dual function.

6



Now remember that (x∗, ν∗) is a point that satisfies (26), and hence:

∇xL(x∗, ν∗) = ∇f(x∗) +
m∑
i=1

−µ
fi(x∗)

∇fi(x∗) +AT ν∗ = 0. (28)

From this, we see that the particular point λ∗i can be interpreted as:

λ∗i =
−µ
fi(x∗)

. (29)

With this interpretation, the condition (28) implies that x∗ is a minimizer of the optimization
in step (b) in (27). Hence, applying this to (27), we get:

p∗ ≥ min f(x) +

m∑
i=1

λ∗i fi(x) + ν∗T (Ax− b)

= f(x∗) +

m∑
i=1

−µ
fi(x∗)

fi(x
∗) + ν∗T (Ax∗ − b)

(c)
= f(x∗)−mµ

(30)

where (c) comes from Ax∗ − b = 0 (since x∗ must be a feasible point).

Hence, we obtain an upper bound of the gap as:

f(x∗)− p∗ ≤ mµ.

Observe that the gap is at most mµ, so we can almost achieve the optimality for small µ.

A special note on the choice of µ: One may want to set µ arbitrarily small to ensure almost
optimal performance. In practice, however, this is not suggested. The reason is that the KKT
conditions (26) are implemented via an algorithm (like the gradient decent) whose convergence
speed is significantly affected by µ. The smaller µ, the slower the speed. Hence, in practice, the
choice should be carefully made taking such tradeoff relationship into consideration.

Look ahead

So far we have studied what strong duality is, and derived the KKT conditions, which are
necessary and sufficient conditions for strong duality to hold in convex optimization in which we
claimed that the strong duality indeed holds. We also demonstrated that the KKT conditions
provide detailed guidelines as to how to design algorithms. Next time, we will prove the strong
duality theorem which we only stated without proof.

7



EE523 Convex Optimization April 23, 2019
KAIST, Spring 2019

Lecture 14: Proof of Strong Duality Theorem

Recap

During the past lectures, we have investigated strong duality. First of all, in order to understand
what it means, we studied the concept of primal and dual problems:

(Primal): p∗ := min f(x) : fi(x) ≤ 0, i = 1, . . . ,m, Ax− b = 0;

(Dual): d∗ := max
λ,ν

g(λ, ν) : λ ≥ 0.

Using these, we stated the strong duality:

(Strong duality): p∗ = d∗. (1)

We then argued that strong duality (1) holds for convex optimization of our interest, under a
mild condition. The mild condition was:

∃x : f1(x) < 0, . . . , fm(x) < 0, Ax− b = 0. (2)

Next we derived necessary and sufficient conditions (KKT conditions) in order for strong duality
to hold. Last time, we found that the KKT conditions indeed give algorithmic insights.

Today’s lecture

Today we are going to prove the strong duality theorem which we deferred proving earlier.
Actually the proof is not that easy. Not only the proof takes many non-trivial steps together with
a bunch of ideas, but it also requires some important theorem which we did not learn about. So
we will prove it step-by-step so that you guys can easily grasp how the proof goes on. Specifically
we will investigate from simple to general cases: (i) unconstrained case; (ii) equality-constrained
case; (iii) inequality-constrained case; (iv) general case (including both equality-&-inequality
constraints). Throughout the proof, we will assume that p∗ is finite. Otherwise, p∗ = −∞,
which is definitely not an interested scenario.

Unconstrained optimization

This is a very trivial case. In this case, the primal and dual problems are:

p∗ := min f(x);

d∗ := max g.

Since d∗ is simply g, we get:

d∗ = g :
(a)
= min

x∈domf
L(x)

= min
x∈domf

f(x) = p∗,

where (a) is due to the definition of the dual function.

Equality-constrained optimization

1



Consider the primal and dual problems:

p∗ := min f(x) : Ax− b = 0;

d∗ := max
ν

g(ν),

where A ∈ Rp×d and p ≤ d. Without loss of generality, assume that rank(A) = min(p, d) = p.
Why? Otherwise, one can remove dependent rows of A to make it full-ranked. We will prove
the strong duality by showing the following two:

p∗ ≥ d∗; (3)

p∗ ≤ d∗. (4)

In fact, (3) is what we proved earlier in Lecture 12 for a more general context. In the sequel, we
will review the proof, as you may not remember details (or just for warming up).

Review of the proof of (3): p∗ ≥ d∗

Suppose that a feasible point in the primal problem, say x∗, achieves p∗; similarly, another
feasible point in the dual problem, say ν∗, achieves d∗. Using the fact that (x∗, ν∗) are the
minimizer and maximizer of the primal and dual problems respectively, we get:

p∗ = f(x∗)

(a)
= f(x∗) + ν∗T (Ax∗ − b)
≥ min

x∈domf
f(x) + ν∗T (Ax− b)

(b)
= g(ν∗)

= d∗

where (a) follows from Ax∗ − b = 0 for a feasible point x∗; and (b) comes from the definition of
the dual function.

Proof of (4): p∗ ≤ d∗

In fact, the proof of this is not that straightforward. It relies on some trick which is based on a
smartly-manipulated set (that you will see soon), as well as a well-known theorem, concerning
the role of a hyperplane1 when there are two disjoint convex sets. As of now, you may have no
idea of what I am talking about. Don’t worry. This will be clearer soon - please be patient.

Let us start by defining such smartly-manipulated set:

S := {(v, t) ∈ Rp+1 : ∃x such that f(x) ≤ t, Ax− b = v}. (5)

There are three properties for the set S, which play a crucial role in proving (4). The first is
that the set S contains the optimal point p∗ of the primal problem when v = 0, i.e., (0, p∗) ∈ S.
Also this point is on the boundary of the set. Why? Suppose that (0, p∗) is not on the boundary,
i.e., it is strictly inside S. Then, there exists some arbitrarily small ε > 0 such that another
point (0, p∗ − ε) is in S, which contradicts with the fact that p∗ is the optimal value.

The second property is that the set S is convex. The proof of this is straightforward. Suppose
(v1, t1), (v2, t2) ∈ S. Then, this together with the definition (5) of the set S yields: there exist

1For those who do not remember the definition of the hyperplane, here I repeat the definition. A hyperplane
is a linear subspace whose dimension is one less than that of its ambient space.

2



some points, say x1 and x2, such that

f(x1) ≤ t1, Ax1 − b = v1;

f(x2) ≤ t2, Ax2 − b = v2.

Applying an λ-weighted linear combination to the above, we get: for λ ∈ [0, 1],

λv1 + (1− λ)v2 = A(λx1 + (1− λ)x2)− b;
λt1 + (1− λ)t2 ≥ λf(x1) + (1− λ)f(x2)

(a)

≥ f(λx1 + (1− λ)x2)

where (a) follows from the convexity of f(x). This implies that there exists x = λx1+(1−λ)x2 ∈
domf such that:

f(x) ≤ λt1 + (1− λ)t2;

Ax− b = λv1 + (1− λ)v2,

which in turns yields that λ(v1, t1) + (1− λ)(v2, t2) ∈ S, thus proving the convexity of S.

The last property that I would like to emphasize is that:

(v, t) ∈ S =⇒ (v, t′) ∈ S, ∀t′ ≥ t. (6)

This is obvious, since f(x) ≤ t implies that f(x) ≤ t′ for t′ ≥ t. For instance, any point (0, t′) ∈ S
for t′ ≥ p∗, as illustrated with a blue line in Fig. 1.

CN14_1

Figure 1: The set S := {(v, t) ∈ Rp+1 : ∃x such that f(x) ≤ t, Ax − b = v} contains the point
(0, p∗) as well as any point (0, t′) where t′ ≥ p∗.

Using the second and third properties mentioned above, one can imagine how the set looks like.
Since it is convex and also any point above the boundary is in the set, the boundary of the set
would be bowl-shaped, as illustrated in Fig. 2.

We are now ready to introduce a well-known theorem regarding a hyperplane, so called the
separating hyperplane theorem. The theorem says: If there are two disjoint convex sets, then
there exists a hyperplane which separates the two convex sets. Intuitively this makes sense.
Why? Think about two disjoint circles in a 2-dimensional space, which are obviously convex.
Then, there must be a line somewhere in between the two circles, which separates the two.
Actually the proof of this trivially-looking theorem is non-trivial. So we will investigate this in
PS. But don’t worry - you will be given some hints while proving.

Now you may then wonder why such theorem kicks in. The reason is that the theorem allows us
to come up with a hyperplane which passes through the boundary point (0, p∗) while separating

3



CN14_2

bowl-shaped

Figure 2: The boundary (marked in the blue curve) of the convex set S := {(v, t) ∈ Rp+1 :
∃x such that f(x) ≤ t, Ax− b = v} is of a bowl shape.

the set S from another disjoint convex set, and this will help us to prove (4) in the end. Why
does the theorem ensure the existence of such hyperplane? To see this, consider another set, say
S ′, defined as:

S ′ := {(0, s) ∈ Rp+1 : s < p∗}. (7)

Obviously this is convex (as it is just a line) and disjoint with S. Now using the separating
hyperplane theorem, we can then say that there exists a hyperplane which separates S from S ′
while passing through the boundary point (0, p∗). Let [ν;µ] ∈ Rp+1 be the supporting vector of
the hyperplane. Then, the hyperplane is represented as:[

ν
µ

]T ([
v
t

]
−
[

0
p∗

])
= 0. (8)

Why? The separating hyperplane theorem says that whenever (v, t) ∈ S, it always lies in the
right-hand-side space in reference to the hyperplane, i.e.,

(v, t) ∈ S =⇒
[
ν
µ

]T ([
v
t

]
−
[

0
p∗

])
≥ 0. (9)

Also see Fig. 3 to help your understanding.
CN14_3

Figure 3: There exists a hyperplane that passes through (0, p∗) in the set S while separating S
from another disjoint convex set.

Using (9), we then see:

µp∗ ≤ νT v + µt ∀(v, t) ∈ S. (10)

4



One important thing to notice here is that µ ≥ 0. To prove this, suppose µ < 0. Then, one can
make t→∞. Observe that such (v, t) = (v,∞) is still in S due to the third property (6) of S.
But this yields a contradiction with (10) as:

µp∗ ≤ νT v + µt = −∞.

Notice that for finite p∗ (which we assumed), µp∗ is also finite, which can never go below −∞.
Another thing to notice is that:

µ 6= 0. (11)

We will prove this in the subsequent section. This together with µ ≥ 0 gives: µ > 0. So we can
divide both sides in (10) by µ > 0 to obtain:

p∗ ≤
(
ν

µ

)T
v + t ∀(v, t) ∈ S. (12)

Recall the definition of the interested set: S := {(v, t) ∈ Rp+1 : ∃x such that f(x) ≤ t, Ax− b =
v}. So for some (v, t), one can think of a point, say x∗(v, t), such that:

x∗(v, t) = arg min
x:f(x)≤t,Ax−b=v

t+

(
ν

µ

)T
v

(a)
= arg min

x:f(x)≤t,Ax−b=v
f(x) +

(
ν

µ

)T
(Ax− b)

(13)

where (a) follows from the equality constraint Ax− b = v and the inequality constraint f(x) ≤ t
(note that minimizing t is equivalent to minimizing f(x)). Notice in the above that (i) f(x) ≤ t
becomes unconstrained by taking t→∞; and (ii) v is of our choice while respecting v = Ax− b.
Hence, there exist v∗ and x∗(v∗,∞) such that f(x) + ( νµ)T (Ax− b) is minimized. Putting such
x∗(v∗,∞) to (12), we get:

p∗ ≤ f(x∗(v∗,∞)) +

(
ν

µ

)T
(Ax∗(v∗,∞)− b)

= min
x
f(x) +

(
ν

µ

)T
(Ax− b)

(a)
= g

(
ν

µ

)
(b)

≤ d∗,

where (a) is due to the definition of the dual function and (b) comes from the definition of d∗.
This completes the proof of (4).

Proof of (11): µ 6= 0

The proof idea is by contradiction. Suppose µ = 0. Then, (10) implies:

νT v ≥ 0 ∀(v, t) ∈ S.

Since such v is in the set S, i.e., v = Ax− b, we get:

νT (Ax− b) ≥ 0 for some x such that Ax− b = v. (14)

5



Two things to note. The first is that ν 6= 0. This is obvious, as otherwise (ν, µ) = 0, and this
implies that there does not exist a hyperplane that passes through (0, p∗) in S while separating
S from another disjoint convex set, which violates the separating hyperplane theorem. The
second is that Ax − b = v can take an arbitrary direction as v is of our choice and A has full
rank due to rank(A) = p. So we can choose x such that Ax− b points to an arbitrary direction.
This implies that there exists some point, say x′, such that the direction of Ax′− b is somewhat
opposite to ν so that:

νT (Ax′ − b) < 0.

This contradicts with (14), thus completing the proof of (11).

Inequality-constrained optimization

For illustrative purpose, consider a simple case in which there is only one inequality constraint:

p∗ := min f(x) : f1(x) ≤ 0;

d∗ := max
λ≥0

g(λ).

It turns out that one can readily extend the proof tailored for this special case (to be presented
soon) to a general case. So let us focus on this simple setting.

Again like the equality-constrained case, one can easily show that p∗ ≥ d∗. The proof is almost
same. Please check this by yourself. So it suffices to prove that

p∗ ≤ d∗. (15)

Proof of (15): p∗ ≤ d∗

Like the equality-constrained case, let us start by defining a set, which is defined similarly to (5):

S = {(u, t) ∈ R2 : ∃x such that f1(x) ≤ u, f(x) ≤ t}. (16)

One distinction is that we now have u which sets an upper bound on f1(x). Similar to (5), the

CN14_4

Figure 4: The set S = {(u, t) ∈ R2 : ∃x such that f1(x) ≤ u, f(x) ≤ t} contains the point (0, p∗)
as well as any point (0, t′) where t′ ≥ p∗. Also for u > 0, the minimum t in the set S is smaller
than or equal to p∗; when u < 0, the minimum t is larger than or equal to p∗.

set S defined in (16) has the three properties: (i) It contains the boundary point (0, p∗); (ii) S
is convex; (iii) any point (u′, t′) where u′ ≥ u and t′ ≥ t is also in S whenever (u, t) ∈ S. The
first and third are obvious. The second property is also obvious if we think about a picture, as

6



illustrated in Fig. 4. Consider a case in which u > 0. In this case, the minimum t ∈ S would be
smaller than or equal to p∗, since this is a more relaxed scenario relative to u = 0 (Why?). On
the other hand, when u < 0, the minimum t ∈ S would be larger than or equal to p∗, as it is
a more constrained scenario. With this argument, one can image a shape of the set S like the
one in Fig. 5 (an cian colored region). So one can conjecture that it is convex. It turns out it is
indeed the case. Check this rigorously in PS.

CN14_5

Figure 5: There exists a hyperplane (a line in this example) that passes through (0, p∗) in the
set S = {(u, t) ∈ R2 : ∃x such that f1(x) ≤ u, f(x) ≤ t}.

Now again using the separating hyperplane theorem, there exists [λ;µ] ∈ R2 6= 0 such that

(u, t) ∈ S =⇒
[
λ
µ

]T ([
u
t

]
−
[

0
p∗

])
≥ 0. (17)

Looking at the hyperplane in Fig. 5, we see that the supporting vector w.r.t. the hyperplane
has a positive direction. Hence, one may conjecture that

λ ≥ 0, µ ≥ 0. (18)

It turns out this is indeed the case. Check this in PS.

From (17), we get:

µp∗ ≤ λu+ µt ∀(u, t) ∈ S. (19)

Like the equality-constrained case, it turns out:

µ 6= 0 (20)

where the proof is given in the next section. This together with (18) gives µ > 0. Now dividing
both sides in (19) by µ > 0, we obtain:

p∗ ≤ λ

µ
u+ t ∀(u, t) ∈ S. (21)

Recall the definition of the interested set: S := {(u, t) ∈ R2 : ∃x such that f1(x) ≤ u, f(x) ≤ t}.
So for some (u, t), one can think of a point, say x∗(u, t) such that:

x∗(u, t) = arg min
x:f1(x)≤u,f(x)≤t

t+
λ

µ
u

(a)
= arg min

x:f1(x)≤u,f(x)≤t
f(x) +

λ

µ
f1(x)

(22)

7



where (a) follows from the inequality constraints: f1(x) ≤ u and f(x) ≤ t. Notice in the above
that f1(x) ≤ u and f(x) ≤ t become unconstrained as (u, t) → (∞,∞). Hence, x∗(∞,∞) is a
minimizer of f(x) + λ

µf1(x). Putting the minimizer x∗(∞,∞) to (21), we get:

p∗ ≤ f(x∗(∞,∞)) +
λ

µ
f1(x

∗(∞,∞))

= min
x
f(x) +

λ

µ
f1(x)

= g

(
λ

µ

)
≤ d∗.

This completes the proof.

Proof of (20): µ 6= 0

Again the proof idea is by contradiction. Suppose µ = 0. Then, (19) implies that:

λu ≥ 0 ∀(u, t) ∈ S.

Applying the same argument as in (22) to the above, we get:

min
x
λf1(x) ≥ 0. (23)

One thing to notice is that λ (which was claimed to be non-negative in (18)) is actually strictly
positive: λ > 0. Why? Otherwise, (λ, µ) = 0 and this contradicts with the separating hyperplane
theorem. Next, consider f1(x). Actually we have never used the mild condition (2) thus far.
This is where the mild condition kicks in. Due to the condition, there exists a point, say x̄, such
that f1(x̄) < 0. This together with λ > 0 yields:

λf1(x̄) < 0,

which contradicts with (23). This completes the proof.

General optimization

Lastly consider a general convex optimization problem which has both equality-&-inequality
constraints:

p∗ := min f(x) : fi(x) ≤ 0 i = 1, . . . ,m,

Ax− b = 0;

d∗ := max
λ≥0,ν

g(λ, ν),

where A ∈ Rp×d, p ≤ d and rank(A) = p. Here a good news is that using the techniques that we
learned so far, one can prove p∗ = d∗ in this general case as well. The only thing that we need
to worry about is that there must be lots of dirty notations, so the procedure would look very
much complicated. But the key procedure follows simply a combination of the ideas that we
studied while investigating the above simpler cases. So we would not repeat those here. Instead
you will have a chance to prove it in PS.

Look ahead

8



In Part I, we studied a variety of convex optimization problems: all the problems in Fig. 6. But
in Part I, we did not learn how to design generic algorithms that can be applied to arbitrary
scenarios. To this end, during the past lectures, we learned about strong duality and studied a
generic algorithm building upon such strong duality: the interior point method. And today we
proved the strong duality theorem that we deferred proving earlier. So we are essentially done
with the convex optimization story. CN14_6

Least-squares Linear Program

(LP)

Quadratic Program (QP) 1956

Second-Order Cone Program

(SOCP)

Convex Optimization

19391800s

1994

1994

Semi-definite Program 

(SDP)

Figure 6: Convex optimization problems that we studied in Part I.

Now what is next? The end of the course? Of course not. We are just in the right middle of the
course. So we may want to ask some interesting questions that can spark future studies. One very
natural follow-up question is: What about for non-convex optimization? Can the techniques
that we have learned w.r.t. convex optimization problems help address the general case? Very
fortunately, it is indeed the case. It turns out those techniques can help approximating optimal
solutions in general problems. Actually in order to understand what it means, we need to study
another important theory, so called weak duality. So next time, we will study weak duality.

9



EE523 Convex Optimization April 25, 2019
KAIST, Spring 2019

Lecture 15: Weak Duality

Recap

In Part I, we investigated many instances of convex optimization problems, ranging from LP, to
Least-Squares, QP, SOCP and all the way up to SDP. See Fig. 1. But in Part I, the algorithm
part was not complete. We studied only two algorithms: the simplex algorithm and gradient
decent algorithm, which can be applied only to specific problem settings: some classes of QP. In
other words, we did not learn how to design generic algorithms intended for arbitrary settings
under the convex problem class. To this end, during the past lectures, we learned about strong
duality and studied a generic algorithm based on the strong duality. That was, the interior point
method. Last time, we proved the strong duality theorem which forms the basis of the interior
point method. With all of these, we could finally end the convex optimization story!CN14_6

Least-squares Linear Program

(LP)

Quadratic Program (QP) 1956

Second-Order Cone Program

(SOCP)

Convex Optimization

19391800s

1994

1994

Semi-definite Program 

(SDP)

Figure 1: Convex optimization problems that we studied in Part I.

Now what is next? One of the natural questions that one can think of is: What if optimization
problems of interest are non-convex? Can the techniques that we have studied so far while
investigating the convex optimization problems help saying something about non-convex opti-
mization problems? It turns out the answer is yes! Interestingly it has been shown that the
techniques can help approximating optimal solutions of such non-convex optimization. In fact,
in order to understand what it means, we need to study another important theory. That is,
weak duality.

Today’s lecture

So today we are going to study weak duality. Specifically we will cover the following three stuffs:
(i) Will study what weak duality means and prove it; (ii) Will explore why it helps approximating
non-convex optimization problems; (iii) Will investigate how far the approximated solution is
from optimality.

Primal & dual problems

Let us start by recalling the standard form of general optimization problems that we investigated

1



in Lecture 2:

min f(x) : fi(x) ≤ 0, i = 1, . . . ,m;

hi(x) = 0, i = 1, . . . , p,
(1)

where (f(x), fi(x), hi(x)) are arbitrary functions, not necessarily convex or affine functions.
Since we start with the above problem, let us say that the problem is primal.

In view of the primal problem, the Lagrange function is defined as:

L(x, λ, ν) := f(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x) (2)

where λi’s and νi’s are Lagrange multipliers. And the dual function is defined as:

g(λ, ν) := min
x∈domf

L(x, λ, ν). (3)

Using this dual function, we can then formulate the dual problem as:

(Dual problem): max
λ,ν

g(λ, ν) : λ ≥ 0. (4)

What does weak duality mean?

Here is a summary of the primal and dual problems:

(Primal): p∗ := min f(x) : fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p;

(Dual): d∗ := max
λ,ν

g(λ, ν) : λ ≥ 0.

Using these, we can now state what weak duality is. What it means is that the optimal values
of the two problems are of the following relationship:

(Weak duality): p∗ ≥ d∗. (5)

Here the most critical point that I would like to emphasize is that the weak duality (5) hold
for any optimization problems which include non-convex optimization, i.e., no matter what the
function types of (f(x), fi(x), hi(x)) are. We call this the weak duality theorem.

Proof of the weak duality theorem (5): p∗ ≥ d∗

As you may notice, we already saw the weak duality (5) before. Actually we saw twice; one
in Lecture 12, and the other in Lecture 14. But we proved it only for a specific context: the
convex optimization problem context. It turns out the proof is not tailored for such convexity
condition, i.e., it can carry over to non-convex optimization problems as well. Let us verify that
it is indeed the case below.

Suppose that a feasible point in the primal problem, say x∗, achieves p∗; similarly, another
feasible point in the dual problem, say (λ∗, ν∗), achieves d∗. Using the fact that x∗ and (λ∗, ν∗)

2



are the minimizer and maximizer of the primal and dual problems respectively, we get:

p∗ = f(x∗)

(a)

≥ f(x∗) +
m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

ν∗i hi(x
∗)

≥ min
x∈domf

f(x) +
m∑
i=1

λ∗i fi(x) +

p∑
i=1

ν∗i hi(x)

(b)
= g(λ∗, ν∗)

= d∗

(6)

where (a) follows from the fact that fi(x
∗) ≤ 0, λ∗i ≥ 0 and hi(x

∗) = 0 for a feasible point
(x∗, λ∗, ν∗); and (b) comes from the definition of the dual function.

Why weak duality matters?

Now you may wonder why the weak duality theorem is important. The reason is that the dual
problem is always convex no matter what the optimization type is. Take a careful look at the
procedures in (6) again; we never used anything about function types of (f(x), fi(x), hi(x)). The
convexity of the problem then allows us to simply focus on the dual problem (which is convex and
hence tractable). By solving the tractable dual problem, we can then obtain an approximated
solution of the original non-convex primal problem. Assuming that we can solve the dual problem
exactly, we achieve d∗, thus ensuring that the performance gap to the optimality (which is p∗)
is at most p∗ − d∗.
For the rest of this lecture, we will prove that the dual problem is indeed convex. We will then
discuss how good the approximated solution is for interested non-convex optimization problems.

Proof: Dual problem is convex

Let us prove that the dual problem is always convex no matter what the function types of
(f(x), fi(x), hi(x)) are. Let us start by considering the dual function:

g(λ, ν) = min
x∈domf

f(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x).

Two key observations. The first is that for any types of the functions (f(x), fi(x), hi(x)),

f(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

is affine in (λ, ν). The second observation is that taking the minimum of any affine functions,
we obtain a concave function (Why? Remember what we proved in PS and even in midterm).
Hence,

g(λ, ν) is always concave in (λ, ν),

no matter what the function types of (f(x), fi(x), hi(x)) are. Therefore, the dual problem which
maximizes such concave function is convex optimization.

How to solve dual problem?

3



As mentioned earlier, the weak duality and the fact that the dual problem is convex motivate us
to focus on solving the dual problem to obtain an approximate solution. So let us first discuss
how to solve such dual problem:

(Dual) d∗ := max
λ,ν

g(λ, ν) : λ ≥ 0.

Notice that the dual problem has an inequality constraint. So one cannot rely simply on the
gradient decent algorithm. We should instead employ another more sophisticated algorithm.
One such algorithm that we studied in Lecture 13 is: the interior point method. Remember that
it takes the following two procedures:

1. Approximate the problem into an unconstrained problem via a logarithmic barrier function,
defined as:

LB(z) := −µ log(−z), for some µ > 0.
CN13_2

Figure 2: Logarithmic barrier function.

Specifically, the approximated unconstrained problem is:

max
λ,ν

g(λ, ν) + µ
m∑
i=1

log λi. (7)

2. Use the gradient decent algorithm to find a point, say (λ̃, ν̃), such that it has zero gradients
of the function in (7) at the point:

∇λ

(
g(λ, ν) + µ

m∑
i=1

log λi

)∣∣∣∣∣
λ=λ̃,ν=ν̃

= 0;

∇ν

(
g(λ, ν) + µ

m∑
i=1

log λi

)∣∣∣∣∣
λ=λ̃,ν=ν̃

= 0.

(8)

Performance of the interior point method

4



Remember that the performance of the interior point method depends on the control parameter
µ that appears in the logarithmic barrier function. To see how it depends, consider a zero-
gradient point (λ̃, ν̃). Then, the dual function evaluated at the point should be larger than or
equal to d∗, as the dual problem is about maximization. Hence, we get:

d∗ ≥ g(λ̃, ν̃),

Also remember what we analysed w.r.t. the gap in Lecture 13. We showed that the gap is
upper-bounded by mµ:

d∗ − g(λ̃, ν̃) ≤ mµ.

So for a sufficient small µ, we can say that:

g(λ̃, ν̃) ≈ d∗

Performance gap to optimality p∗

So under a choice of sufficiently small µ, the gap to the optimal value p∗ in the primal problem
would be:

Gap ≈ p∗ − d∗.

We have a terminology which indicates such gap. Since the gap is w.r.t. the dual problem, it is
called the duality gap.

Let us introduce another naming which refers to such approximation technique based on the
weak duality. We call such technique: Lagrange relaxation. Whenever we study a relaxation
technique, we need to worry about how good such technique is. So one can ask: How far is the
bound due to the Lagrange relaxation from the optimal value p∗?

How good is Lagrange relaxation?

Here we intend to address the question by comparing to other relaxation techniques that we
investigated earlier. The first relaxation technique is the one that we studied in Lecture 5 in the
context of LP. That was LP relaxation. The second is the one that we studied in Lecture 11 for
a different problem context. That was SDP relaxation. So we are interested particularly in how
good the Lagrange relaxation is relative to LP and SDP relaxation techniques.

Lagrange relaxation vs. LP relaxation

First let us compare to LP relaxation. Actually such relaxation arose in a very difficult problem
class, called the Boolean problems. A more general problem including the Boolean problems as a
special case is the integer program wherein optimization variables are constrained to be integers.
So let us make a comparison under the integer program. It turns out that for such problems:

Lagrange relaxation is at least as good as LP relaxation.

This means that the bound due to Lagrange relaxation is closer (or equally close) to the optimal
value p∗ relative to the bound due to LP relaxation, showing the power of Lagrange relaxation.
But an interesting result is that for the specialized Boolean problems:

Lagrange relaxation has the same performance as that of LP relaxation.

5



Lagrange relaxation vs. SDP relaxation

Now what if we compare to SDP relaxation? It turns out that in general,

Lagrange relaxation is at least as good as SDP relaxation.

But another very interesting result comes in for a variety of important and classical problem
instances including the MAXCUT problem that we studied in Lecture 11. It turns out that for
such problem instances:

Lagrange relaxation has the same performance as that of SDP relaxation.

Look ahead

During upcoming lectures, we will try to support the above claims. Specifically, for the Boolean
problems, we will first study how to implement Lagrange relaxation. We will then compare the
performance of such method to LP relaxation. Next, for the MAXCUT problem, we will do the
same thing, but now making a comparison w.r.t. SDP relaxation.

6



EE523 Convex Optimization April 30, 2019
KAIST, Spring 2019

Lecture 16: Lagrange Relaxation for Boolean problems

Recap

Last time we moved onto non-convex optimization problems. At the beginning of the last
lecture, I told you that the techniques that we have learned so far w.r.t. convex optimization
problems play a crucial role in solving non-convex optimization problems. To understand what
it means, we needed to study another important theory regarding duality. That is, the weak
duality theorem, which says:

p∗ ≥ d∗ holds for any optimization problem. (1)

Here p∗ and d∗ indicate the optimal values of the primal and dual problems, respectively. One
important thing that we proved here is that the dual problem is always convex no matter what
types of the functions that appear in the optimization problem are. This motivates us to focus on
solving the tractable dual problem, and actually one can solve it using the interior point method.
Assuming that we use a sufficiently small control parameter µ that appears in the logarithmic
barrier function employed for the interior point method, we can achieve d∗ approximately, which
in turn ensures the performance gap to the optimality to be roughly p∗−d∗. This gap is called the
duality gap, and the approximation technique that leads to the gap is called Lagrange relaxation.
At the end of the last lecture, I mentioned about the performance of such relaxation technique
especially in comparison to other relaxation techniques that we learned in Part I, which are LP
relaxation and SDP relaxation. Specifically I claimed that in general the Lagrange relaxation is
at least as good as the other techniques, meaning that it is better than or equal to others.

Today’s lecture

Today we are going to support the claim w.r.t. LP relaxation. To this end, we will cover the
following three stuffs. First of all, we will review the problem context in which LP relaxation
plays a powerful role. That is, the Boolean problems, which are highly non-convex and known
to be quite difficult in general. Next we will study how to employ Lagrange relaxation to solve
such difficult Boolean problems. Finally we will compare the performance of such approach to
LP relaxation.

Review of Boolean problems

Remember that we discussed the Boolean problems in the context of LP. So the problems are
basically on top of LP, but one special constraint is added. That is, the optimization variable x
takes discrete values, like binary values. So the problem has the following standard form:

p∗ := minwTx :

Ax− b ≤ 0, Cx− e = 0,

xi ∈ {0, 1}, i = 1, . . . , d.

(2)

Here the last additional constraint means that the optimization variable is constrained to be
boolean.

Equivalent form

1



Before studying how to apply Lagrange relaxation, let us first convert the above standard form
into another with which one can play around easily. Notice that the boolean constraint in the
above is not of the inequality or equality constraint form that we are familiar with. So we may
want to convert it into such familiar constraint. Let us start by simplifying the optimization
problem. For notational simplicity, we replace the equality constraint, Cx − e = 0, with two
equivalent inequality constraints: Cx− e ≤ 0 and Cx− e ≥ 0. This way, it suffices to focus on
the inequality constraint form. Also the boolean constraint can be equivalently expressed as the
following equality constraint :

xi(xi − 1) = 0 i = 1, . . . , d.

Taking this expression as well as notational simplification, we can then write (2) as:

p∗ := minwTx :

Ax− b ≤ 0,

xi(xi − 1) = 0, i = 1, . . . , d.

(3)

Lagrange function

Now let us think about how to apply Lagrange relaxation. To this end, first consider the
Lagrange function which is defined as:

L(x, λ, ν) = wTx+ λT (Ax− b) +

d∑
i=1

νixi(xi − 1)

= (w +ATλ− ν)Tx− λT b+
d∑
i=1

νix
2
i

= (w +ATλ− ν)Tx− λT b+ xTdiag(ν1, . . . , νd)x

= (w +ATλ− ν)Tx− λT b+ xTDνx

(4)

where the last equality follows from the definition of Dν := diag(ν1, . . . , νd).

Dual function

Next consider the dual function:

g(λ, ν) = min
x
xTDνx+ (w +ATλ− ν)Tx− λT b. (5)

Here g(λ, ν) seems about a QP, as it contains a quadratic term xTDνx and Dν is symmetric.
But it is not clear whether the associated optimization problem is indeed a QP. Why? Dν is
not necessarily positive semi-definite (PSD).

Actually Dν is what we can optimize over in view of the dual problem which takes ν (together
with λ) as an optimization variable. So one can think of an easy case where the problem is
indeed a QP and the solution can be derived easily. One such easy case is:

Case I: Dν � 0. (6)

In this case, Dν is positive definite, so the optimization problem in (5) is an unconstrained QP.
So one can solve it by finding x∗ such that

∇xL(x∗, λ, ν) = 2Dνx
∗ + w +ATλ− ν = 0. (7)

2



Hence, the minimizer and the optimal value are:

x∗ = −1

2
D−1ν (w +ATλ− ν);

g(λ, ν) = L(x∗, λ, ν) = −1

4
(w +ATλ− ν)TD−1ν (w +ATλ− ν)− λT b.

(8)

But the easy case (6) is actually not quite satisfactory in view of the dual problem that we
will formulate soon. The reason is that (6) would serve as an inequality constraint in the
dual problem, but the constraint is of a strict inequality form, which is not compatible with
the standard form of convex optimization problems. Hence, we wish to consider the following
slightly more relaxed case:

Case II: Dν � 0. (9)

In this case, Dν is PSD, so the optimization problem in (5) is still a QP. But there is a caveat
here. The caveat is that Dν is not necessarily invertible. So there may be no solution x∗ such
that (7) holds. Here we can think of two subcases depending on whether the solution exists.

The first is the no-solution case:

Case II-1: w +ATλ− ν /∈ range(Dν). (10)

In this case, there is no stationary point of x∗ that satisfies (7). Hence, L(x, λ, ν) is unbounded
below, i.e., g(λ, ν) = −∞. This is definitely not an interested case. The dual problem (that we
will formulate soon) is about maximization, so g(λ, ν) = −∞ is definitely not the one that we
want to achieve. The other is the case in which there is indeed a solution:

Case II-2: w +ATλ− ν ∈ range(Dν). (11)

This is definitely of our interest. Under this case, the minimizer and the optimal value can be
exactly of the same form of (8), as long as we admit the generalized definition of D−1ν :

[D−1ν ]ii :=

{
ν−1i if νi 6= 0;
0 if νi = 0.

(12)

On the other hand, one may want to consider the following last case:

Case III: Dν � 0. (13)

This means that there exists νi < 0 for some i. This is obviously not an interested case. Notice
in (4) that by setting xi = ∞ for such i, we get L(x, λ, ν) = −∞, which in turn leads to
g(λ, ν) = −∞. Again this is not what we want to achieve.

Dual problem

Now focusing on the second case (9) in which g(λ, ν) is finite and we have (non-strict) inequality
constraints, we obtain the dual problem as:

max
λ≥0,ν≥0

g(λ, ν) = max
λ≥0,ν≥0

−1

4
(w +ATλ− ν)TD−1ν (w +ATλ− ν)− λT b :

w +ATλ− ν ∈ range(Dν),

(14)

where the constraint ν ≥ 0 comes from Dν � 0 (9) and g(λ, ν) is due to (8). As mentioned
earlier, the definition of D−1ν is subject to (12).

3



Notice in the above that the first term in the objective function (marked in red) is not compatible
with the standard form of any convex optimization problem that we studied earlier. So let us
convert it into a form that we are familiar with. To this end, we first introduce a new optimization
variable, say t, such that

t ≤ −1

4
(w +ATλ− ν)TD−1ν (w +ATλ− ν).

What it means here is that by maximizing t, one should make the RHS larger, and also by
maximizing the RHS, one can set a lower bound on t larger. So this implies that maximizing t
is equivalent to maximizing the RHS. Hence, with this new variable t, one can write (14) as:

max
λ≥0,ν≥0

g(λ, ν) = max
λ≥0,ν≥0,t

t− λT b :

w +ATλ− ν ∈ range(Dν);

t ≤ −1

4
(w +ATλ− ν)TD−1ν (w +ATλ− ν).

(15)

The newly-introduced inequality constraint here can be alternatively written as:

−t− (w +ATλ− ν)T (4Dν)−1(w +ATλ− ν) ≥ 0. (16)

This is actually the one that we are familiar with. This reminds you of the Schur Complement
Lemma! See below for the statement.

Schur Complement Lemma: Suppose A � 0. Then,

X =

[
A B
BT C

]
� 0 ⇐⇒ S := C −BTA−1B � 0. � (17)

In view of (16) and (17), we see that (A,B,C) correspond to 4Dν , w + ATλ − ν and −t,
respectively. But the above lemma is not perfectly instrumental to the setting of our interest, as
it requires the invertibility of A while Dν may not be invertible. Actually there is a generalized
version of Schur Complement Lemma which deals with the case A � 0, formally stated below:

Generalized Schur Complement Lemma: Suppose A � 0. Then,

X =

[
A B
BT C

]
� 0 ⇐⇒ S := C −BTA†B � 0; Bv ∈ range(A) ∀v, (18)

where A† := UΣ−1UT when A = UΣUT . Here Σ−1 is subject to the definition of (12). �

As per the above generalized lemma, as long as we define D−1ν as the one in (12), then the two
constraints in (15) are equivalent to:[

4Dν w +ATλ− ν
(w +ATλ− ν)T −t

]
� 0. (19)

We will not delve into details on the proof of this generalized lemma - that is too much distraction.
But don’t worry. You will have a chance to check it in PS.

Taking this conversion, we can then write (15) as:

d∗ := max
λ,ν,t

t− λT b :[
4Dν w +ATλ− ν

(w +ATλ− ν)T −t

]
� 0,

λ ≥ 0, ν ≥ 0.

(20)

4



Notice that all the inequalities are the ones that we are familiar with. These are all LMIs! So
this problem belongs to an SDP. Hence, one can rely on CVX to solve the problem.

LP relaxation & its dual

We are now ready to compare the performance of Lagrange relaxation (which we formulated
as (20)) to that of LP relaxation. To this end, we first recall the problem that we obtained due
to LP relaxation (in Lecture 5):

p∗LP := minwTx :

Ax− b ≤ 0,

0 ≤ x ≤ 1,

(21)

where xi is now relaxed to be any real value ∈ [0, 1].

Looking at (20) and (21), making a comparison seems not that simple. One is about maximiza-
tion, while the other is about minimization. To ease comparison, we can invoke one important
theorem that we learned during past lectures. That is, the strong duality theorem. The op-
timization problem (21) is an LP (a convex optimization problem). Also it satisfies the mild
condition, as obviously there exists x such that strict inequality holds. Hence, the dual problem
has exactly the same solution as p∗LP, so alternatively one can consider the dual problem if it
helps making a comparison. It turns out that the dual problem is of the following form and it
indeed eases the comparison.

d∗LP := max
λ,ν,t

t− λT b :

w +ATλ+ ν ≥ 0,

−t− νT 1 ≥ 0,

λ ≥ 0, ν ≥ 0.

(22)

We will prove (22) once we make a comparison. Please be patient.

Lagrange relaxation vs. LP relaxation

Looking at (20) and (22), we see that the two problems are very much similar. Actually such
similarity can help us to show that

d∗LP = d∗. (23)

In general non-convex optimization problems where optimization variables are constrained to
be integers, it is known that

d∗LP ≤ d∗ ≤ p∗. (24)

where the second inequality is due to the weak duality theorem (1). Note that the bound due
to Lagrange relaxation is closer (or equally close) to the optimality p∗ relative to the bound due
to LP relaxation, meaning that Lagrange relaxation is better than or equal to LP relaxation. In
this particular Boolean problem settings, however, the equality holds interestingly. We will not
prove it here. But you will have a chance to prove it in PS.

Proof of (22)

First consider the Lagrange function:

L(x, λ, ν, µ) = wTx+ λT (Ax− b) + νT (x− 1)− µTx
= (w +ATλ+ ν − µ)Tx− λT b− νT 1.

5



Here we use a Lagrange multiplier ν for the inequality constraint of x− 1 ≤ 0, and use µ for the
other inequality constraint of −x ≤ 0. The dual function is then:

g(λ, ν, µ) = min
x

(w +ATλ+ ν − µ)Tx− λT b− νT 1.

The key observation that one can make here is that if w+ATλ+ν−µ 6= 0, then one can always
choose some x such that (w+ATλ+ ν −µ)Tx < 0. Why? There is no constraint in choosing x.
So by scaling up such x infinitely, we can obtain g(λ, ν) = −∞. So we get:

g(λ, ν, µ) =

{
−λT b− νT 1, if w +ATλ+ ν − µ = 0;
−∞, otherwise.

Notice that the condition w +ATλ+ ν − µ = 0 together with µ ≥ 0 (the constraint that would
appear in the dual problem) yields w+ATλ+ν ≥ 0. Hence, the dual problem can be formulated
as:

max
λ,ν
−λT b− νT 1 :

w +ATλ+ ν ≥ 0,

λ ≥ 0, ν ≥ 0.

(25)

Now introducing a new variable t such that

t ≤ −νT 1,

we can write (25) as:

max
λ,ν,t

t− λT b :

w +ATλ+ ν ≥ 0,

−t− νT 1 ≥ 0,

λ ≥ 0, ν ≥ 0.

(26)

Look ahead

In this lecture, we compared Lagrange relaxation with LP relaxation in the context of Boolean
problems. Next time, we will do similar studies for the purpose of comparing to SDP relaxation.
Specifically, we will study how to implement Lagrange relaxation in the context of the MAXCUT
problem. We will then make a comparison to SDP relaxation.

6



EE523 Convex Optimization May 2, 2019
KAIST, Spring 2019

Lecture 17: Lagrange Relaxation for the MAXCUT Problem

Recap

Last time we demonstrated the power of Lagrange relaxation in the context of Boolean problems,
by proving that it yields the same performance as that offered by LP relaxation which is known
to be powerful for the Boolean problems. Specifically we implemented Lagrange relaxation by
formulating the dual problem of a Boolean problem as a tractable SDP. We also formulated a
dual problem of the LP relaxation, which provides the same performance as the primal problem
due to strong duality. We then compared them to show that both yield the same performance.

Today’s lecture

Today we will do the same thing, but now by making a comparison to SDP relaxation for a
different problem context. Specifically we will cover the following three stuffs. First of all, we
will review the problem context in which SDP relaxation played a role. That is, the MAXCUT
problem, which is highly non-convex and known to be notoriously difficult to solve. Next we
will study how to employ Lagrange relaxation to solve such difficult problem. Finally we will
compare the performance of such approach to SDP relaxation.

Review of the MAXCUT problem

Let us start by reviewing the goal of the MAXCUT problem. The goal of the problem is to find
a set that maximizes a cut. See Fig. 1 to refresh your memory.

CN11_1

1

5

23

4

6

Figure 1: MAXCUT problem: Finding a set that maximizes a cut. In this example, the set
S = {1, 3, 5} and the cut w.r.t. the set S is w54 + w14 + w36 + w12 + w32. Here wij denotes a
weight associated with an edge (i, j) ∈ E .

To formulate an optimization problem, we introduced an optimization variable xi which indicates
whether node i is in a candidate set S:

xi =

{
+1, x ∈ S;
−1, otherwise.

(1)

We then made a key observation: When xi 6= xj , the edge (i, j) comes across the two sets S
and Sc, and hence, this should contribute to a cut by the amount of wij ; On the other hand,

1



when xi = xj , there should be no contribution to the cut. This naturally yielded the following
optimization problem:

max
xi

∑
(i,j)∈E

1

2
wij(1− xixj) :

x2i = 1, i = 1, . . . , d,

(2)

where d denotes the number of nodes in the graph and the constraint x2i = 1 respects the fact
that xi can be only either +1 or −1.

A simplified form

For simplification, let us multiply the objective function by 2. Since we are familiar with a
minimization problem, let us also change a sign in the objective to convert the problem into the
following minimization problem:

(Primal): p∗ := min
xi

∑
(i,j)∈E

wij(xixj − 1) :

x2i = 1, i = 1, . . . , d.

(3)

Let us say that this is the primal problem that we start with.

Lagrange function

Now how to implement Lagrange relaxation for the primal problem (3)? To this end, first
consider the Lagrange function:

L(x, ν) =
∑

(i,j)∈E

wij(xixj − 1) +
d∑
i=1

νi(1− x2i )

= −
∑

(i,j)∈E

wij + νT 1 +
∑

(i,j)∈E

wijxixj −
d∑
i=1

νix
2
i

(4)

where ν ∈ Rd denotes a Lagrange multiplier that is associated with the equality constraints.

Notice that the Lagrange function (4) contains some complicated-looking terms, which are sum-
mation terms. One way to succinctly represent such dirty terms is to rely on matrix and vector
notations. To apply this way, consider a matrix, say W , which is defined as:

W :=
1

2


w11 w12 · · · w1d

w21 w22 · · · w2d
...

...
. . .

...
wd1 wd2 · · · wdd

 ∈ Rd×d. (5)

Note that the matrix W is symmetric, i.e., W = W T , as we consider an undirected graph for
the MAXCUT problem. We can also set wij = 0 when (i, j) /∈ E . So the diagonal entries must
be zero: wij = 0.

2



With this W notation, we can then represent the summation terms in (4) as:

∑
(i,j)∈E

wij
(a)
=

1

2

d∑
i=1

d∑
j=1

wij

= [1, 1, . . . , 1]

1

2


w11 w12 · · · w1d

w21 w22 · · · w2d
...

...
. . .

...
wd1 wd2 · · · wdd





1
1
...
1


= 1TW1;∑

(i,j)∈E

wijxixj
(b)
=

d∑
i=1

xi

d∑
j=1

wij
2
xj

= [x1, x2, . . . , xd]

1

2


w11 w12 · · · w1d

w21 w22 · · · w2d
...

...
. . .

...
wd1 wd2 · · · wdd




x1
x2
...
xd


where (a) and (b) are due to the fact that we set wij = 0 when (i, j) /∈ E and that

∑d
i=1

∑d
j=1wij

counts double.

Applying the above into (4), we then get:

L(x, ν) = −1TW1 + νT 1 + xTWx− xTDνx (6)

where Dν := diag(ν1, ν2, . . . , νd).

Dual function

Next consider the dual function:

g(ν) = min
x
xT (W −Dν)x− 1TW1 + νT 1. (7)

Here g(ν) looks like a QP, as it contains a quadratic term xT (W−Dν)x and W−Dν is symmetric.
But as we encountered in the last lecture (Lecture 16), it is not clear whether the associated
optimization problem is indeed a QP. The reason is that W − Dν is not necessarily positive
semi-definite (PSD). So let us consider two cases depending on whether W −Dν is PSD or not.

The first case is:

Case I: W −Dν � 0 (PSD). (8)

In this case, the optimization problem in (7) is an unconstrained QP. So one can solve it by
finding x∗ such that

∇xL(x∗, ν) = 2(W −Dν)x∗ = 0. (9)

Hence, the optimal value simply reads:

g(ν) = L(x∗, ν) = −1TW1 + νT 1. (10)

On the other hand, the second case is:

Case II: W −Dν � 0 (not PSD). (11)

3



This non-PSD condition implies that there exists u ∈ Rd such that

uT (W −Dν)u < 0.

Here by scaling up such u infinitely, we get L(x, ν) = −∞, which in turn leads to g(ν) = −∞.
Obviously this is not what we want to achieve, so we can ignore the second case.

Dual problem

Now focusing on the first case (8) in which g(ν) is finite and we have the PSD constraint of
W −Dν � 0, we can then obtain the dual problem as:

d∗ := max
ν

g(ν)

= max
ν
−1TW1 + νT 1 :

W −Dν � 0,

(12)

where g(ν) is due to (10). Notice that this problem is the one that we are familiar with. That
is, an SDP! Hence, one can simply rely on CVX to solve the problem.

Recall: SDP relaxation

To make a comparison to SDP relaxation, let us review what the optimization problem due to
SDP relaxation was. To this end, first recall the primal problem (3) that we started with.

p∗ := min
x

∑
(i,j)∈E

wijxixj − 1TW1 :

x2i = 1, i = 1, . . . , d.

(13)

Here we represent the problem using matrix-vector notations, as an effort to ease comparison
with the Lagrange-relaxed problem (12), represented with such notations.

In Lecture 11, we employed a technique, called the lifting, to enable SDP relaxation. The idea
of lifting is to raise a vector space that the optimization variable lives in, into a matrix space.
To apply this idea, we introduced a new matrix X such that its (i, j)-entry [X]ij is defined as:

Xij := xixj . (14)

A more succinct way to represent this was: X = xxT . This then yielded the following constraints:

Xii = 1, X � 0, rank(X) = 1. (15)

Dropping the last rank constraint was essentially the key idea of SDP relaxation. So the SDP-
relaxed problem was:

p∗SDP := min
X

∑
i,j

wijXij − 1TW1 :

Xii = 1, i = 1, . . . , d,

X � 0.

(16)

Lagrange function of the SDP-relaxed optimization problem (16)

Looking at (12) and (16), a comparison seems not that straightforward. The problem (12) is
about maximization, while the problem (16) is about minimization. So as we did in the last

4



lecture, to ease comparison, let us apply the strong duality theorem to obtain the dual problem
of (16), which would be definitely about maximization.

To this end, first consider the Lagrange function w.r.t. (16). But there is a problem in formulating
the Lagrange function. The problem comes from the inequality constraint form in (16). Why?
The inequality is now w.r.t. a symmetric matrix, not a scalar or a vector. Actually we never
formulated a Lagrange function w.r.t. an optimization problem which involves such matrix-
associated inequality. So we do not know what is a proper Lagrange multiplier for such problem.

The Lagrange multiplier, usually denoted by λi, is the one that is multiplied to a component
that appears in the LHS in the ith inequality constraint. But in the interested problem (16),
the component is the symmetric matrix (−X) which contains the number d2 of entries −Xij ’s.
So a natural way to think about a Lagrange multiplier in this matrix-associated context is that
the Lagrange multiplier is also a symmetric matrix that contains the same number d2 of entries.
It turns out this way of defining a Lagrange multiplier enables the Lagrange function to play
exactly the same role as that in the scalar-or-vector-associated problem context. Here what it
means by the role includes ensuring duality-related theorems like the strong duality and weak
duality theorems. You may wonder why. Don’t worry. You will have a chance to check this in
PS.

Let Z be such symmetric matrix that plays a role as a Lagrange multiplier. Then, the inequality-
related term that appears in the Lagrange function w.r.t. (16) should read:

d∑
i=1

d∑
j=1

Zij(−Xij) = −
d∑
i=1

d∑
j=1

ZijXij . (17)

Here −Xij represents just a single component of −X that appears in the LHS in the inequality
constraint in (16). Actually there is a succinct way to represent the above summation term (17).
The way is to exploit a very popular operation used in linear algebra: trace(·). The trace(·) takes
a square matrix as an input argument, so it is defined as: for a square matrix A ∈ Rn×n,

trace(A) :=

n∑
i=1

Aii (18)

where Aii indicates the (i, i) diagonal entry of A. Using the trace notation, we can then
rewrite (17) as:

−
d∑
i=1

d∑
j=1

ZijXij
(a)
= −

d∑
i=1

d∑
j=1

ZijXji

(b)
= −

d∑
i=1

[ZX]ii

(c)
= −trace(ZX)

(19)

where (a) follows from Xij = Xji (X is symmetric); (b) comes from the definition of matrix
multiplication and the fact that [ZX]ii indicates the (i, i) entry of ZX; and (c) is due to the
definition of trace(·).

5



With such Z (Lagrange multiplier) as well as (19), we can then define the Lagrange function as:

L(X,Z, ν) = −1TW1 +
∑

(i,j)∈E

wijXij − trace(ZX) +

d∑
i=1

νi(1−Xii)

(a)
= −1TW1 + νT 1 + trace(WX)− trace(ZX)−

d∑
i=1

νiXii

(b)
= −1TW1 + νT 1 + trace(WX)− trace(ZX)− trace(DνX)

(c)
= −1TW1 + νT 1 + trace((W −Dν − Z)X).

where (a) is due to
∑

(i,j)∈E wijXij = trace(WX) (Why?); (b) follows from
∑d

i=1 νiXii =
trace(DνX); and (c) comes from the linearity of trace(·) (Why?).

Dual problem of the SDP-relaxed optimization problem (16)

The dual function is then:

g(Z, ν) = min
X

trace((W −Dν − Z)X)− 1TW1 + νT 1.

The key observation that one can make here is that if W − Dν − Z 6= 0, then one can always
choose some X such that L(X,Z, ν) = −∞. So it is not an interested case. Here is why. Such
case implies that:

∃wij − [Dν ]ij − Zij 6= 0 for some (i, j).

We can then set:

Can set Xij = −sign(wij − [Dν ]ij − Zij)×∞

for such (i, j) while setting others as 0. This setting then leads to: g(Z, ν) = −∞. This is
definitely not an interested case.

Considering the above, we can then get:

g(Z, ν) =

{
−1TW1 + νT 1, if W −Dν − Z = 0;
−∞, otherwise.

The condition W − Dν − Z = 0 is equivalent to W − Dν = Z. Here the inequality-related
Lagrange multiplier Z should respect a constraint in the dual problem. In the scalar or vector
inequality constraint case, such constraint was simply λ ≥ 0. It turns out the proper constraint
on a symmetric matrix Z is: Z � 0, as you may expect. Again here what it means by “proper
constraint” is the one which ensures the same role as λ ≥ 0, like duality-related theorems. Please
be patient until you would figure this out in a crystal clear manner in PS.

The condition W −Dν = Z together with Z � 0 (the constraint that would appear in the dual
problem) yields W −Dν � 0. Hence, the dual problem is formulated as:

d∗SDP := max
ν
− 1TW1 + νT 1 :

W −Dν � 0.
(20)

Lagrange relaxation vs. LP relaxation

6



Looking at (12) and (20), we see that the two problems are identical. Hence, we can conclude
that Lagrange relaxation yields exactly the same performance as that by SDP relaxation, i.e.,
d∗ = d∗SDP.

Summary of Part I and Part II

We have thus far studied lots of stuffs for both convex and non-convex optimization problems.
In Part I, we have investigated many instances of convex optimization problems together with
some algorithms (like the simplex algorithm and gradient decent algorithm) that can be applied
to certain settings. One critical thing that we missed is about the development of generic
algorithms which can be applied to arbitrary settings under the class.

To fill up the missing part, in Part II, we studied an important concept about duality: strong
duality. We studied what it means and then figured out that it provides algorithm insights for
convex optimization. Actually it leads to a famous algorithm, called the interior point method.
With strong duality, we could complete the convex optimization story.

We then moved onto non-convex optimization problems. What we could figure out is that
another important theory regarding duality helps approximating optimal solutions of non-convex
optimization. That is, the weak duality theorem. We also figured out that the approximation
technique based on such weak duality (called Lagrange relaxation) yields the best approximation
performances at least for the settings in which LP and SDP relaxation are known to be powerful.

All of the above form the contents of Part I and Part II.

Outline of Part III

Now what is next? A natural follow-up question is: What can do we further with the techniques
that we have learned so far? It turns out we can do something crucial in a wide variety of
research fields. One such field that is quite trending these days is: Machine Learning.

So in Part III, we are going to study how the optimization techniques that we learned can play
a role in such trending field. Specifically we are going to investigate two very important learning
frameworks that arise in the field: (i) supervised learning in which training data contain label
information (like the identity of emails among spam vs. legitimate emails); (ii) unsupervised
learning in which such label information is not available. In supervised learning, we will explore
one very particular yet powerful technique, called deep learning. In this context, you will see
some role of convex optimization. In unsupervised learning, we will explore one very popular
network architecture: Generative Adversarial Networks (GANs). In this context, you will see a
powerful role of duality theorems that we learned in Part II.

7



EE523 Convex Optimization May 7, 2019
KAIST, Spring 2019

Lecture 18: Supervised Learning and Optimization

Recap

Last time we ended Part II. In Part II, we focused on the study of the two important theorems
regarding duality: (i) strong duality theorem; (ii) weak duality theorem. The strong duality
theorem provided algorithmic insights, thus leading to the interior point method, which can
be applied to generic settings that we have investigated in Part I. The weak duality theorem
helped us to approximate optimal solutions for non-convex optimization problems, which are
intractable in general.

At the end of the last lecture, we then claimed that what we have learned so far are quite in-
strumental to addressing important issues that arise in a recent trending research field: Machine
Learning. So the goal of Part III is to support this claim.

Today’s lecture

Today we will start investigating the field of machine learning and roles of optimization in the
field. Specifically we will cover the following three stuffs. First of all, we will study what machine
learning means and what the mission of the field is. We will then investigate one very popular
and classical way to achieve the mission:

Supervised Learning.

Lastly we will explore how optimization techniques are related to supervised learning. It turns
out there are two very popular optimization frameworks that implement supervised learning.
So we will also investigate them accordingly.

Machine learning

Let us start by investigating what machine learning means. Machine learning is about an
algorithm which is defined to be a set of instructions that a computer system can execute.
Formally speaking, machine learning is the study of algorithms with which one can train a
computer system so that it can perform a specific task of interest. Pictorially, it means the
following; see Fig. 1.

Here the entity that we are interested in building up is a computer system, which is definitely
a machine. Since it is a system (i.e., a function), it has input and output. The input, usually
denoted by x, indicates information which is employed to perform a task of interest. The output,
usually denoted by y, indicates a task result. For instance, if a task of interest is legitimate-
emails filtering against spam emails that we studied in Part I, then x could be features (e.g.,
frequencies of some keywords that appear in an email), and y is an email entity, e.g., y = +1
indicates a legitimate email while y = −1 denotes a spam email. Or if an interested task is
cat-vs-dog classification, then x could be image-pixel values and y is a binary value indicating
whether the fed image is a cat (say y = 1) or a dog (y = 0).

Machine learning is about designing algorithms, wherein the main role is to train (teach) the
computer system (machine) so that it can perform such task well. In the process of designing

1



CN18_1

computer system

(machine)

algorithm

training

(together w/ data)

Figure 1: Machine learning is the study of algorithms which provide a set of explicit instructions
to a computer system (machine) so that it can perform a specific task of interest. Let x be an
input which indicates information employed to perform a task. Let y be an output to denote a
task result.

algorithms, we use something, called data.

Why called “Machine Learning”?

Here you may want to ask about the naming of machine learning. One can easily see the rationale
if one can change a viewpoint. From a machine’s perspective, one can say that a machine learns
the task from data. Hence, it is called machine learning, ML for short.

This naming was originated in 1959 of course from the Father of the field: Arthur Lee Samuel.
See Fig. 2. CN18_5

Arthur Samuel ’59

Father of machine learning
checkers 

Figure 2: Arthur Lee Samuel is an American pioneer in the field of artificial intelligence, known
mostly as the Father of machine learning. He found the field in the process of developing
computer checkers which later formed the basis of AlphaGo.

He is actually one of the pioneers in the broader field of Artificial Intelligence (AI) which includes
machine learning as a sub-field. The AI field is the study of creating intelligence by machines,
unlike the natural intelligence displayed by intelligent beings like humans and animals. Since
the ML field is about building up a human-like machine, it is definitely a sub-field of AI.

In fact, Arthur Samuel found the ML field in the process of developing a human-like computer
player for a board game, called checkers; see the right figure in Fig. 1. He proposed many
algorithms and ideas while developing computer checkers. It turns out very interestingly, those
algorithms could form the basis of AlphaGo, a computer program for the board game Go which
defeated one of the 9-dan professional players, Lee Sedol, for the first time, with 4 wins out of

2



5 games in 2016.

Mission of machine learning

As mentioned earlier, ML is a sub-field of AI. So its end-mission is obviously achieving artificial
intelligence. So in view of the block diagram in Fig. 1, one can say that the goal of ML is to
design an algorithm (a trainer from a machine’s perspective) so that the trained machine behaves
like intelligence beings.

Supervised learning

There are some methodologies which help us to achieve the goal of ML. One specific yet very
popular method is the one called:

Supervised Learning.

What supervised learning means is learning a function f(·) (indicating a functional of the ma-
chine) with the help of a supervisor. See Fig. 3.

CN18_2

machine

Figure 3: Supervised Learning: Design a computer system (machine) f(·) with the help of a
supervisor which offers input-output pair samples, called a training dataset {(x(i), y(i))}mi=1.

What the supervisor means in this context is the one who provides input-output samples. Ob-
viously the input-output samples form data employed for training the machine, usually denoted
by:

{(x(i), y(i))}mi=1, (1)

where (x(i), y(i)) indicates the ith input-output sample (or called a training sample or an exam-
ple) and m denotes the number of samples. Using this notation (1), one can say that supervised
learning is to:

Estimate f(·) using the training samples {(x(i), y(i))}mi=1. (2)

Optimization

A common way to estimate f(·) is through optimization. Actually this is exactly how the
optimization techniques that we learned so far are related to supervised learning.

In view of the goal (2) of supervised learning, what we want is:

y(i) ≈ f(x(i)), ∀i ∈ {1, . . . ,m}.

3



A natural question that arises is then: How to quantify closeness between the two quantities:
y(i) and f(x(i))? One very common way that has been used in the field is to employ a function,
called a loss function, usually denoted by:

`(y(i), f(x(i))). (3)

One obvious property that the loss function `(·, ·) should have is that it should be small when
the two arguments are close, while being zero when the two are identical. One very popular
loss function that you saw earlier is: the squared-error function, introduced by the Father of
optimization, Gauss: ‖y(i) − f(x(i))‖2.
Using such loss function (3), one can then formulate an optimization problem as follows:

min
f(·)

m∑
i=1

`(y(i), f(x(i))). (4)

Actually this is not of the conventional optimization problem structure that you are familiar
with. In (4), there is no optimization variable. Instead we have a different quantity that we can
optimize over: the function f(·).
We never saw this type of optimization, called function optimization. How to deal with such
function optimization? There is one very prominent approach in the field. The approach is
to represent the function f(·) with parameters (or called weights), denoted by w, and then
consider the weights as an optimization variable. Taking this approach, one can then translate
the problem (4) into:

min
w

m∑
i=1

`(y(i), fw(x(i))) (5)

where fw(x(i)) denotes the function f(x(i)), parameterized by w.

Now the question of interest is: How is the optimization problem (5) related to convex optimiza-
tion problems that we have thus far learned about? To see this, we need to check whether or
not the objective function `(y(i), fw(x(i))) is convex in the optimization variable w. Obviously
the convexity depends on how we define the two functions: (i) fw(x(i)) w.r.t. w; (ii) the loss
function `(·, ·).

Introduction of Neural Networks

How to define the two functions? Around at the same time when the ML field was founded, one
architecture was suggested for the first function f(·)(x) in the context of simple binary classifiers
in which y takes one among the two options only. The architecture is called:

Perceptron,

and was invented in 1957 by one of the pioneers in the AI field, named Frank Rosenblatt. Inter-
estingly, Frank Rosenblatt was a psychologist. So he was interested in how brains of intelligent
beings work and his study on brains led him to come up with the perceptron which is inspired
by the brain structure and therefore gave significant insights into neural networks that many of
you guys heard of.

How brains work

Here are details on how the brain structure inspired the architecture of the perceptron. Inside
a brain, there are many electrically excitable cells, called neurons; see Fig. 4.

4



CN18_3

neuron

voltage

activation

Figure 4: Neurons are electrically excitable cells and are connected through synapses.

Here a red-circled one indicates a neuron. So the figure shows three neurons in total. There are
three major properties about neurons that led to the architecture of perceptron.

The first is that a neuron is an electrical quantity, so it has a voltage. The second property is
that neurons are connected with each other through mediums, called synapses. So the main role
of synapses is to deliver electrical voltage signals across neurons. Depending on the connectivity
strength level of a synapse, a voltage signal from one neuron to another can increase or decrease.
The last is that a neuron takes a particular action, called activation. Depending on its voltage
level, it generates an all-or-nothing pulse signal. For instance, if its voltage level is above a
certain threshold, then it generates an impulse signal with a certain magnitude, say 1; otherwise,
it produces nothing.

Perceptron

The above three properties about neurons led Frank Rosenblatt to propose the architecture of
perceptron, as illustrated in Fig. 5. CN18_4

neuron

synapse

activation

Figure 5: An architecture of perceptron.

Let x be an n-dimensional real-valued signal: x := [x1, x2, . . . , xn]T . Suppose each component
xi is distributed to each neuron, and let xi indicates a voltage level of the ith neuron. The
voltage signal xi is then delivered through a synapse to another neuron (placed on the right in
the figure, indicated by a big circle). Remember that the voltage level can increase or decrease
depending on the connectivity strength of a synapse. To capture this, a weight, say wi, is

5



multiplied to xi so wixi is a delivered voltage signal at the terminal neuron. Based on another
observation that people made on neurons that the voltage level at the terminal neuron increases
with more connected neurons, Rosenblatt introduced an adder which simply aggregates all the
voltage signals coming from many neurons, so he modeled the voltage signal at the terminal
neuron as:

w1x1 + w2x2 + · · ·+ wnxn = wTx. (6)

Lastly in an effort to mimic the activation, he modeled the output signal as

fw(x) =

{
1 if wTx > th,
0 o.w.

(7)

where “th” indicates a certain threshold level. It can also be simply denoted as

fw(x) = 1{wTx > th}. (8)

Activation functions

Taking the percentron architecture in Fig. 5, one can then formulate the optimization problem (5)
as:

min
w

m∑
i=1

`(y(i),1{wTx(i) > th}). (9)

This is an initial optimization problem that people developed, inspired by perceptron. However,
people immediately figured out there is an issue in solving this optimization. The issue comes
from the fact that the objective function contains an indicator function, so it is not differentiable.
Why not being differentiable problematic then? Remember the algorithms that we learned in the
past: gradient decent algorithm and the interior point method. All of them involve derivatives
operations. So the non-differentiability of the objective function does not allow to employ such
algorithms.

What can we do then? One typical way that people have taken in the field is to approximate the
activation function. There are many ways for approximation. From below, we will investigate
two approaches.

Least-Squares classifier

The first approach is a very naive one, which is simply taking the input as an output. This is
called linear approximation:

fw(x) = wTx. (10)

A good thing about this approximation is that the linear function is differentiable and also
convex. For this function, people thought of also a very well-known loss function, which is
the squared-error function: `(y, ŷ) = ‖y − ŷ‖2. This then leads to the following optimization
problem:

min
w

m∑
i=1

‖wTx(i) − y(i)‖2. (11)

Notice that this is the Least-Squares optimization problem that we studied earlier:

min
w
‖Aw − b‖2 (12)

6



where

A :=

 x(1)T

...

x(m)T

 , b :=

 y(1)

...

y(m)

 .

Logistic regression

The second approach is to take a more accurate approximation. To this end, it takes sort of a
smooth transition from 0 to 1:

fw(x) =
1

1 + e−wT x
. (13)

Notice that fw(x) ≈ 0 when wTx is very small; it then grows exponentially with an increase in
wTx; later grows logarithmically; and finally saturates as 1 when wTx is very large. Actually
the function (13) is a very popular one used in statistics, called the logistic1 function. There is
another name for the function, which is the sigmoid2 function.

There are two good things about the logistic function. First it is differentiable. The second is
that it can play a role as the probability for the output in the binary classifier, e.g., Pr(y = 1)
where y denotes the ground-truth label in the binary classifier. So it is very much interpretable.

For this function, people came up with a loss function, which turns out to be optimal in some
sense and expressed as:

`(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ). (14)

This function is called cross-entropy and the rationale behind the naming will be explained later
(next lecture). Taking the logistic function together with the cross-entropy loss function, we can
then formulate the problem (5) as:

min
w

m∑
i=1

−y(i) log
1

1 + e−wT x(i)
− (1− y(i)) log

e−wT x(i)

1 + e−wT x(i)
. (15)

It turns out this optimization problem is convex and provides the optimal performance in some
sense. The name of this classifier is logistic regression.

CN18_6

activation loss classifier

Least-Squares

Logistic regression

Figure 6: Two popular classifiers.

Look ahead

Next time, we will show that the logistic regression is indeed a convex classifier. We will also
study in what sense the logistic regression is optimal and will prove the optimality.

1The word logistic comes from a Greek word which means a slow growth, like a logarithmic growth.
2Sigmoid means resembling the lower-case Greek letter sigma, S-shaped.

7



EE523 Convex Optimization May 9, 2019
KAIST, Spring 2019

Lecture 19: Logistic regression

Recap

Last time we embarked on Part III which deals with application topics of optimization tech-
niques. We investigated one such topic (that arises in the context of a trending field, machine
learning) where optimization techniques play a significant role. That is, supervised learning,
which serves as a powerful and classical methodology in achieving the goal of ML. The goal
of supervised learning is to estimate a function fw(·) of a computer system (machine) using
input-output samples: {(x(i), y(i))}mi=1 where m denotes the number of training samples. Here
w indicates a collection of parameters which serve to implement the function fw(·). For the
function fw(·), we studied one specific yet historical architecture, inspired by brains’ neural net-
works of intelligent beings: perceptron. It first takes a linear operation with an input, say x, to
compute wTx. It then passes it to an activation function to yield an output, say ŷ := fw(x); see
Fig. 1. CN19_1

activ.

Figure 1: An architecture of Perceptron.

We then formulated an optimization problem accordingly:

min
w

m∑
i=1

`(y(i), fw(x(i))) (1)

where `(y(i), fw(x(i))) indicates a loss function which plays a role to quantify closeness between
the ground truth label y(i) and its estimate fw(x(i)). Since the impulse-shaped activation func-
tion that Frank Rosenblatts introduced initially is not differentiable and thus inapplicable to
algorithms, we considered two other functions: (i) the linear function fw(x) = wTx; and (ii)
the logistic function fw(x) = 1

1+e−wT x
. Taking the linear activation function together with the

squared-error loss function, we obtained the Least-Squares classifier.

Taking the logistic function together with a different loss function, called the cross-entropy loss,

`entropy(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ), (2)

1



we obtained a classifier, named logistic regression. We then claimed that the logistic regression
is formulated as a convex optimization problem. We also claimed that the classifier based on
the cross-entropy loss (2) yields the optimal performance in some sense.

Today’s lecture

Today we will prove this claim. Specifically what we are going to do are three folded. First, we
will show that logistic regression is indeed a convex classifier. Next, we will investigate in what
sense the classifier is optimal. We will then prove the optimality. We will also discuss how to
solve the optimization problem of logistic regression.

Optimization problem of logistic regression

Taking the logistic function and the cross-entropy loss (2), we obtain the logistic regression
optimization problem:

min
w

m∑
i=1

`entropy(y
(i), fw(x(i)))

= min
w

m∑
i=1

`entropy

(
y(i),

1

1 + e−wT x(i)

)

= min
w

m∑
i=1

−y(i) log
1

1 + e−wT x(i)
− (1− y(i)) log

e−wT x(i)

1 + e−wT x(i)
.

(3)

Proof of convexity

Let us first prove that the optimization problem (3) is indeed convex. Since convexity preserves
under addition, it suffices to prove:

(i)− log
1

1 + e−wT x
is convex in w;

(ii)− log
e−wT x

1 + e−wT x
is convex in w.

Since the second function in the above can be represented as the sum of an affine function and
the first function:

− log
e−wT x

1 + e−wT x
= wTx− log

1

1 + e−wT x
,

it suffices to prove the convexity of the first function.

Notice that the first function can be rewritten as:

− log
1

1 + e−wT x
= log(1 + e−wT x). (4)

Taking a derivative of the RHS formula in (4) w.r.t. w, we get:

∇w log(1 + e−wT x) =
−xe−wT x

1 + e−wT x
.

2



This is due to a chain rule of derivatives. Taking another derivative of the above, we obtain a
Hessian as follows:

∇2
w log(1 + e−wT x) = ∇w

(
−xe−wT x

1 + e−wT x

)
(a)
=
xxT e−wT x(1 + e−wT x)− xxT e−wT xe−wT x

(1 + e−wT x)2

=
xxT e−wT x

(1 + e−wT x)2

� 0

(5)

where (a) is due to the derivative rule of a quotient of two functions. As the Hessian is PSD,
we prove the convexity.

In what sense logistic regression optimal?CN19_2

logistic 

regression

Figure 2: Logistic regression

Notice that the range of the output ŷ of the logistic regression classifier is in between 0 and 1:

0 ≤ ŷ ≤ 1.

Hence, one can interpret this as a probability quantity. Then, what would ŷ be in order to ensure
a good classifier? Since we are interested in classifying whether y = 1 or y = 0 given x, a good
classifier should yield ŷ to well serve as sort of critical information that helps classification. One
such critical information of probability type would be: Pr(y = 1|x). Hence, one very natural
wish that one can imagine for ensuring a good classifier is:

ŷ = Pr(y = 1|x). (6)

We are now ready to explain in which sense we are talking about optimality. Here what we
mean by optimality is:

Logistic regression is optimal in a sense of achieving the wish : ŷ = Pr(y = 1|x). (7)

Then, a question that arises is: How to achieve the wish? Unfortunately, there is no good
direct way to achieve the wish. One direct way is to empirically estimate Pr(y = 1|x) from
the training samples {(x(i), y(i))}mi=1 which are given in the problem. But there is a significant
problem in performing an empirical estimation. To see this, let us consider a case in which
we wish to estimate Pr(y = 1|x = (0.5, 0.2)) where x is a particular two-dimensional vector,
e.g., x = (0.5, 0.2). To come up with a good empirical estimation of such quantity, we need a

3



sufficiently large number of training samples in which y(i) = 1 and x(i) = (0.5, 0.2). But in many
applications of interest, x is a real-valued quantity. So in general, there would no such training
sample. Therefore, such empirical estimation is not a viable way.

Fortunately, there is an indirect yet viable approach to achieve the wish (6). This is based on
the following natural expectation:

If ŷ = Pr(y = 1|x), then such ŷ would well explain the statistics of {(x(i), y(i))}mi=1. (8)

Here you may wonder what it means by “well explain the statistics of training data”. What
that means is that it makes the occurrence of such training data highly likely (probable), i.e., it
makes the following probability maximized:

Pr
(
{(x(i), y(i))}mi=1}

)
=Pr

(
{(x(1), y(1))} ∩ · · · ∩ {(x(m), y(m))}

)
.

(9)

Here the key observation is that once we assume that ŷ = Pr(y = 1|x), then the probability (9)
of training data being occurred is a function of ŷ. Hence the probability is also a function of w,
as ŷ depends on how we choose w. Therefore, one can say that the optimal w is the one that
maximizes such probability (9):

w∗ := arg max
w

Pr
(
{(x(1), y(1))} ∩ · · · ∩ {(x(m), y(m))}

)
, (10)

assuming that we set ŷ = Pr(y = 1|x).

As mentioned earlier, logistic regression yields such optimal w under a mild assumption. Here
the mild assumption is that samples are independent across the samples:

{(x(i), y(i))}mi=1 are independently. (11)

Proof of optimality

Consider the probability of interest (9):

Pr
(
{(x(1), y(1))} ∩ · · · ∩ {(x(m), y(m))}

)
(a)
=

m∏
i=1

P
(
x(i), y(i)

)
(b)
=

m∏
i=1

P(x(i))P
(
y(i)|x(i)

) (12)

where (a) comes from the mild assumption (11); and (b) follows from the definition of conditional
probability. Here P(x(i), y(i)) denotes the probability distribution of input and output of the
system:

P(x(i), y(i)) := Pr(X = x(i), Y = y(i)) (13)

where X and Y indicate random variables of the input and the output, respectively.

Recall the setting (6) that we assumed:

ŷ = Pr(y = 1|x).

4



This implies that:

y = 1 : P(y|x) = ŷ

y = 0 : P(y|x) = 1− ŷ.

Hence, one can represent P(y|x) as:

P(y|x) = ŷy(1− ŷ)1−y.

Now using the notations of (x(i), y(i)) and ŷ(i), we then get:

P
(
y(i)|x(i)

)
= (ŷ(i))y

(i)
(1− ŷ(i))1−y(i) .

Plugging this into (12), we get:

Pr
(
{(x(1), y(1))} ∩ · · · ∩ {(x(m), y(m))}

)
=

m∏
i=1

P(x(i))
m∏
i=1

(ŷ(i))y
(i)

(1− ŷ(i))1−y(i) .
(14)

This together with (10) yields:

w∗ := arg max
w

m∏
i=1

P(x(i))

m∏
i=1

(ŷ(i))y
(i)

(1− ŷ(i))1−y(i)

(a)
= arg max

w

m∏
i=1

(ŷ(i))y
(i)

(1− ŷ(i))1−y(i)

(b)
= arg max

w

m∑
i=1

y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))

(c)
= arg min

w

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i))

(15)

where (a) follows from the fact that
∏m

i=1 P(x(i)) is irrelevant to w; (b) comes from the fact that

log(·) is a non-decreasing function and
∏m

i=1(ŷ
(i))y

(i)
(1− ŷ(i))1−y(i) is positive; and (c) is due to

changing a sign of the objective while replacing max with min.

Notice that the term inside the summation in the last equality in (15) is the cross entropy loss:
`entropy(y

(i), ŷ(i)). This implies that the optimization problem for logistic regression yields the
optimal w.

Remarks on cross-entropy loss (2)

Before moving onto the next topic about how to solve the optimization problem (3), let me say
a few words about why the loss function (2) is called the cross-entropy loss. Actually this comes
from the definition of cross entropy, which is a measure used in the field of information theory.
The cross entropy is defined w.r.t. two random variables. For simplicity, let us consider two
binary random variables, say X ∼ Bern(p) and Y ∼ Bern(q) where X ∼ Bern(p) indicates a
binary random variable with p = Pr(X = 1). For such two random variables, the cross entropy
is defined as:

H(p, q) := −p log q − (1− p) log(1− q). (16)

5



Notice that the formula of (2) is exactly the same as the term inside summation in (15), except
for having different notations. Hence, it is called the cross entropy loss.

Then, you may now wonder why H(p, q) in (16) is called cross entropy. Of course, there is a
rationale. The rationale comes from the following fact:

H(p, q) ≥ H(p) := −p log p− (1− p) log(1− p) (17)

where H(p) is a very-well known quantity in information theory, named entropy (or Shannon
entropy). One can actually prove the inequality in (17) using Jensen’s inequality that you saw in
PS1. Also one can verify that the equality holds when p = q. We will not prove this here. But
don’t worry. You will have a chance to check this in PS. So from this, one can interpret H(p, q)
as an entropic-measure of discrepancy across distributions. Hence, it is called cross entropy.

How to solve logistic regression?

Now let us get back to the main stream of this lecture. How to solve the optimization problem (3)
for logistic regression? Let J(w) be the objective function normalized by the number m of
samples:

J(w) :=
1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)). (18)

Remember in the beginning of this lecture that we proved the convexity of the objective function.
Also the optimization problem (3) is unconstrained. Hence, we can use the gradient decent
algorithm to find the optimal solution. Specifically one can take the following update rule:

w(t+1) ← w(t) − α(t)∇J(w(t))

where w(t) denotes the estimate of weights at the tth iteration, and α(t) indicates a stepsize (or
called a learning rate in the ML field). The gradient of the normalized objective function can
be computed as:

∇J(w) =
1

m

m∑
i=1

−y(i)∇ŷ
(i)

ŷ(i)
+ (1− y(i)) ∇ŷ

(i)

1− ŷ(i)
. (19)

Here the gradient of y(i) (marked in red) can be expressed as:

∇ŷ(i) =
x(i)e−wT x(i)

(1 + e−wT x(i)
)2

= x(i)ŷ(i)(1− ŷ(i))

Plugging this to (19), we get:

∇J(w) =
1

m

m∑
i=1

x(i)
{
−y(i)(1− ŷ(i)) + (1− y(i))ŷ(i)

}
=

1

m

m∑
i=1

x(i)
{
ŷ(i) − y(i)

}
.

Notice that ∇J(w) is simple to calculate.

AI boomed in the 1960s but ...

6



As we verified above, the logistic regression is the best binary classifier in a sense of maximizing
the likelihood of training data, assuming that the overall architecture is based on the perceptron.
But as you can see, the perceptron architecture is somewhat restricted. So you may guess that
the performance of the logistic regression based on the restricted architecture may not be that
good in many applications. It turns out this is the case. Actually it was already verified in 1969
by two pioneers in the AI field, named Marvin Minsky and Seymour Papert; see Fig. 3.

CN19_3

Marvin Minsky Seymour Papert ‘69

Figure 3: Two AI pioneers, Minsky & Papert, demonstrated limitations of the architecture of
Perceptron in a book titled “Perceptrons”. Unfortunately, this led to a very long depression
period in the AI field, called the AI winter.

They published a book, titled “Perceptrons”, where they demonstrated that the Perceptron
architecture cannot implement even very simple functions, like XOR. Their results made many
people at that time disappointed. This finally led to a very long depression period of the AI
field, called the AI winter.

AI revived in 2012

The AI winter had continued until recently. However, a big event happened in 2012, enabling
the AI field to revive. The big event was the winning of ImageNet recognition competition by
the following three people: Geoffrey Hinton (a very well-known figure in the AI field, known as
the Godfather of deep learning) and his two PhD students (Alex Krizhevsky and Ilya Sutskever);
see Fig. 4.

CN19_4

Alex Krizhevsky Geoffrey HintonIlya Sutskever

Figure 4: A giant in the AI field, Geoffrey Hinton, together with his PhD students, Alex
Krizhevsky and Ilya Sutskever, developed a deep neural network, named AlexNet, intended
for image classification. The AlexNet achieved almost human-level recognition performances,
which were never attained earlier. This won them the ImageNet competition in 2012. More
importantly, this recognition anchored the start of deep learning revolution!

They built a perceptron-like neural network but which consists of many layers, called a deep

7



neural network (DNN). They then showed that their DNN, which they named AlexNet, could
achieve almost human-level recognition performances, which were astonishing at the time. This
actually enabled deep learning revolution in the AI field.

During upcoming lectures

In the next lectures, we will investigate deep neural networks (DNNs) and the role of optimization
in that context. Specifically we will cover the following four stuffs. Firs of all, we will study the
architecture of DNNs. We will then formulate a corresponding optimization problem. Next, we
will explore an efficient way of solving the problem. Lastly we will briefly discuss why DNNs
offer great performances.

8



EE523 Convex Optimization May 14, 2019
KAIST, Spring 2019

Lecture 20: Deep learning

Recap

During the past two lectures, we have studied one of application topics of optimization: super-
vised learning. The goal of supervised learning is to learn a functional of a machine of interest
using training samples. We considered a specific yet brain-inspired architecture for the function
structure: perceptron; see Fig. 1. Taking a linear activation function together with a squared-
error loss, we obtained the least-squares classifier. Taking a logistic function together with a
cross-entropy loss, we obtained logistic regression. We then proved that logistic regression is
optimal in a sense of maximizing the likelihood of training samples.CN20_1

activ.

input layer output layer

no layer btw input/output layers

Figure 1: An architecture of Perceptron.

At the end of the last lecture, I mentioned briefly about how the AI field has evolved with
research on neural networks. While one of the first neural networks, perceptron, enabled the AI
revolution in the 1960s, the boom ended shortly after publication of a book by Minsky & Papert,
titled “Perceptrons”. The book criticized limitations of the perceptron architecture, and this
freezed the passion of many people working on the AI field, thus leading to the AI winter.

Fortunately, the AI field boomed again in 2012 by Hinton & his group members. They developed
a neural network (which they called AlexNet) that demonstrated human-level performances of
image recognition, thus making people excited about the field again. AlexNet is based on a deep
neural network architecture (DNN for short).

Today’s lecture

Today we are going to start investigating deep neural networks (DNNs). Specifically we will cover
the following four stuffs. First, we will study what DNNs mean and the network architecture.
We will then investigate how DNNs were proposed, i.e., who the inventor was, as well as, what
the motivation was. Next, we will discuss why DNNs were recently appreciated, in other words,
why they were not appreciated during the AI winter. Finally we will formulate a corresponding
optimization problem to start talking about connection to the interest (optimization) of this

1



course.

Terminologies

Let us start by recalling the perceptron architecture, illustrated in Fig. 1. Before defining the
deep neural network (DNN), we need to introduce a couple of terminologies. The first is the
input layer. We say that a collection of neurons which take input x is the input layer. Similarly,
the output layer is defined as a collection of the output neuron(s) y. A shallow neural network is
defined as a network which consists of only input and output layers, i.e., there is no intermediate
layer between the two, like the perceptron in Fig. 1.

Definition of deep neural networks (DNNs)

On the other hand, we say that a neural network is deep if it has at least one intermediate layer
between input and output layers. Such in-between-placed layer is called a hidden layer. So a
deep neural network is defined as a network which contains hidden layer(s).

DNN architecture

Here are details on how such DNN looks like. For illustrative purpose, let us explain the
architecture with a simple setting in which there is only one hidden layer, named a 2-layer
neural network in the field1; also see Fig. 2.CN20_2

input layer

activ.

output layerhidden layer

Figure 2: Operation at a neuron in the hidden layer.

Let us consider an operation at the first neuron in the hidden layer. The operation is exactly the
same as the operation that we saw earlier at the output layer. First it takes a linear combination
to yield:

z
[1]
1 := w

[1]
11x1 + w

[1]
12x2 + · · ·+ w

[1]
1nxn (1)

where w
[1]
1j indicates a weight associated with xj and the 1st neuron in the (1st) hidden layer.

1Someone may argue that this is a 3-layer neural network as it has input/hidden/output layers. But the
convention in the deep learning field, adopted by many of the pioneers in the field, is that the number of layers
is counted as the total number of layers minus 1. Perhaps the reason is that they wanted to say that the shallow
neural network is simply a single-layer neural network, although it actually has two input/output layers. While I
believe that this way of defining a network is confusing, we will adopt this convention as it has already been so
widely used.

2



Here the upper-script (·)[1] denotes the indexing of hidden layers. In general, a bias term, say b
[1]
1 ,

can be added into (1). But for illustrative simplicity, we will drop all the bias terms throughout.
Next the linear combination is passed onto an activation function, so we get:

a
[1]
1 := σ[1](z

[1]
1 ) (2)

where σ[1](·) indicates an activation function employed in the 1st hidden layer. Usually we are
allowed to use different activation functions across different layers, while the same activation
function applies within the same layer by convention. Applying the same operation to the other
neurons in the hidden layer, we obtain a picture like the one in Fig. 3.

CN20_3

input layer output layerhidden layer

Figure 3: Architecture of the hidden layer.

For notational simplicity, we introduce a matrix, say W [1], which aggregates all the weight
components associated with the input layer and the hidden layer:

W [1] :=


w

[1]
11 w

[1]
12 · · · w

[1]
1n

w
[1]
21 w

[1]
22 · · · w

[1]
2n

...
...

. . .
...

w
[1]

n[1]1
w

[1]

n[1]2
· · · w

[1]

n[1]n

 ∈ Rn[1]×n, (3)

where n[1] denotes the number of neurons in the (1st) hidden layer. Using this matrix notation,
we can then represent the output of the hidden layer as:

a[1] = σ[1]
(
W [1]x

)
∈ Rn[1]

, (4)

where σ[1](·) indicates a component-wise function.

Applying the same operation into the one between the hidden and output layers, we obtain a
picture like the one in Fig. 4. Using another matrix notation, say W [2] ∈ R1×n[1]

, we can then
represent the output in the output layer as:

ŷ = σ[2]
(
W [2]a[1]

)
∈ R, (5)

where σ[2] indicates an activation function at the output layer, which can possibly be different
from σ[1](·), as mentioned earlier.

3



CN20_4

input layer output layerhidden layer

Figure 4: Architecture of an one-hidden-layer DNN, or called a 2-layer DNN.

DNN architecture in general

In general, L-hidden-layer DNN (or called (L+ 1)-layer DNN) can be expressed as:

a[1] = σ[1]
(
W [1]x

)
∈ Rn[1]

,

a[2] = σ[2]
(
W [2]a[1]

)
∈ Rn[2]

,

...

a[L] = σ[L]
(
W [L]a[L−1]

)
∈ Rn[L]

,

ŷ = σ[L+1]
(
W [L+1]a[L]

)
∈ R,

(6)

where a[i] ∈ Rn[i]
indicates the output of the ith hidden layer; σ[i](·) denotes the component-wise

activation function at the ith hidden layer; and W [i] ∈ Rn[i]×n[i−1]
denotes the weight matrix

associated with the ith hidden layer and (i− 1)th hidden layer. Here for notational consistency,
one can define the 0th hidden layer as the input layer; (L + 1)th hidden layer as the output
layer, and hence, n[0] := n and n[L+1] := 1.

How DNNs are proposed

Now let me explain how such DNN expressed in (6) was proposed. The first DNN was proposed
in 1965 by an Ukrainian mathematician, named Alexey Ivakhnenko; see the first left picture
in Fig. 6. He noticed that the perceptron architecture is too simple to represent a somewhat
complex system. So he believed that a proper architecture should incorporate much more
neurons as well as capture much higher connectivities across neurons. Obviously the most
complex structure is the one in which each neuron is connected with all of the other neurons.
But it was not that clear to him as to whether such complex structure is indeed the case in
biological networks for brains of intelligent beings.

He was trying to gain some insights into this from another field: evolution in biology. In
particular, he was inspired by genetic natural selection in evolution. What he was inspired
is that a complex species is a consequence of evolution through many generations by natural

4



genetic selection. He then made an analogy between such evolution process and the process
of a complex system (machine) of interest. Specifically he came up with operations/entities
in a complex system which correspond to species, generation and selection that appear in the
evolution process. See Fig. 5. CN20_5

species 

activation = selection

another generation

generation

Figure 5: Analogy between the evolution process (by genetic natural selection in biology) and
the process of a complex system (machine).

First of all, the species was mapped to the output ŷ in an interested system. The generation was
interpreted as the process that occurs in between two consecutive layers in the system. So the
process with two generations yields a 2-layer neural network. Lastly the selection was captured
by the activation process in the system. These analogies naturally led to the DNN architecture
illustrated in Fig. 5.

Some pioneering efforts on DNNs

Initially, the DNN architecture in Fig. 5 was investigated in depth by only a few people in the
field. One of the reasons was that there was no theoretical basis which supports that such
architecture can represent any arbitrary complex functional of a system. The architecture was
based solely on the hypothesis. There was no proof. Even worse, it was not that simple to
do experimental verification because the technology of the day was so immature that the time
required to train a DNN was very long from days to weeks. Nonetheless, there were some people
who studied this architecture in depth. Here we list three of them below.

The first is obviously the inventor of the DNN architecture: Alexey Ivakhnenko. One of his great
achievements in this field was to propose a 7-hidden-layer DNN in 1971. The second pioneer
is a Japanese computer scientist, named Kunihiko Fukushima; see the middle picture in Fig. 6.
He developed a specially-structured DNN intended for pattern recognition in computer vision
in 1980. That was actually the first convolutional neural network (CNN), which is now known
as the most famous and widely-used DNN in the computer vision field. The third pioneer is
a French computer scientist, which is now very famous in the deep learning field and also a
winner of the 2018 Turing Award (considered as the Nobel Prize in computer science). In
1989, he trained a CNN for the purpose of recognizing handwritten ZIP codes on mails. This
development played a role to vitalize the deep learning field because the trained CNN actually
worked very well and so was commercialized. Nonetheless, it was not enough to enable the deep
learning revolution. One of the reasons was that the training time required 3 days with the

5



CN20_6

Alexey 

Ivakhnenko

Kunihiko

Fukushima
Yann LeCun

Figure 6: Three pioneers in deep learning.

technology of the day.

Not appreciated much in early days

There were more critical reasons as to why the DNN architecture was not appreciated much at
that time. These are two-folded. The first reason is concerning performances. The DNN-based
algorithms at the time were easily outperformed by much simpler approaches. One of the simpler
approaches was Support Vector Machines (SVMs), which is sort of a variant of the margin-based
LP classifier that we learned in Part I. Remember that the margin-based LP classifier is very
simple and runs very fast. On the other hand, the DNN architecture was relatively much more
complex, yet even worse, the performance was not better. The second reason is about model
complexity. The DNN model was so complex considering the technology of the day, so it required
very long training time, from days to weeks.

Why appreciated nowadays?

But as many of you know, the DNN is greatly appreciated nowadays. Why is that? As I
mentioned earlier, this is mainly due to the recent big event by Hinton2 and his PhD students who
demonstrated that DNNs can achieve human-level recognition performances. Then, how that
happened? There are two technology breakthroughs that enabled the deep learning revolution;
see Fig. 7.

The first breakthrough is the advent of big data! Nowadays we are living in the big data era.
There are tons of data that are floating in the cyber-world. So it is possible to gather lots of
training data. One such huge dataset gathered for the purpose of image cognition was ImageNet.
The dataset was created in 2009 by a computer-vision team at Stanford, led by a young professor,
Fei-Fei Li. It turned out this dataset played a crucial role for Hinton’s team to demonstrate
the power of DNN by offering a sufficiently large number of training samples enough to learn a
complex model.

The second breakthrough is the supply of very fast and not-so-expensive Graphic Processing
Units (GPUs). The major company that provided such GPUs is NVIDIA. It turned out GPUs
offered great computational power to reduce training time of DNNs significantly.

An optimization problem

2By the way, he is also a co-winner of the 2018 Turing Award with Yann LeCun and another giant in the field,
named Yoshua Bengio.

6



CN20_7

Figure 7: Two technology breakthroughs that enabled the deep learning revolution.

Now let us connect the DNN architecture to the optimization of this course’s interest. For
illustrative purpose, let us formulate an optimization problem for the simple two-layer DNN in
Fig. 4. The optimization problem based on the DNN reads:

min
w

m∑
i=1

1

m
`(y(i), ŷ(i)) (7)

where:

ŷ(i) = σ[2]
(
W [2]a[1],(i)

)
,

a[1],(i) = σ[1]
(
W [1]x(i)

)
,

w = (W [1],W [2]).

Optimal loss function

Suppose we use the logistic function for

σ[2](z) = σ(z) :=
1

1 + e−z
.

Then, using exactly the same argument that we made in the previous lecture (Lecture 19), one
can show that the optimal loss is cross-entropy loss:

`∗(y, ŷ) = `entropy(y, ŷ) = −y log y − (1− y) log(1− ŷ). (8)

Is it convex?

Pugging the cross-entropy loss into (7), we can then get:

arg min
w

1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)) (9)

where ŷ(i) = σ
(
W [2]a[1],(i)

)
. Now a natural question that arises is: how to solve the problem?

We are familiar with solving only convex optimization problems. So the question of our interest

7



is: Is the objective function convex? Obviously it depends on how to choose an activation
function in the hidden layer: σ[1](·).

Look ahead

It turns out there is a very well-known and powerful activation function for σ[1](·). Unfortunately,
under the choice of such function, the optimization problem (9) was shown to be non-convex.
But there is a good news. That is, we have a way to handle such non-convex problem. Next
time, we will study details on such way.

8



EE523 Convex Optimization May 16, 2019
KAIST, Spring 2019

Lecture 21: Deep learning II

Recap

Last time we studied about the architecture of DNNs which have been shown to be quite
powerful in recent years. We also discussed a brief history of DNNs; who the inventor was; what
the motivation was; why they were not appreciated until recently; what led to the deep learning
revolution. We then formulated an optimization problem for DNNs to start talking about
connection to optimization topics of this course’s interest. Here is the optimization problem
intended for a 2-layer DNN:

arg min
w=(W [1],W [2])

1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)) (1)

where

ŷ(i) = σ
(
W [2]a[1],(i)

)
; a[1],(i) = σ[1]

(
W [1]x(i)

)
.

Here σ(·) indicates a component-wise logistic function defined as:

σ(z) :=
1

1 + e−z
. (2)

On the other hand, σ[1](·) denotes a possibly-different activation function used at the hidden
layer.

At the end of the last lecture, we claimed that for a widely-used σ[1](·), the objective function
in (1) is non-convex, which is intractable in general. We also claimed that fortunately, there is
a good way to address such non-convex optimization problem.

Today’s lecture

Today we are going to support these claims. Specifically what we are going to do are four folded.
First of all, we will study what the widely-used activation function is nowadays. We will then
check that the objective function is not convex. Next we will investigate what the good way is.
Finally we will discuss how to solve the optimization problem in detail.

Widely-used activation function

Consider an operation that occurs at one neuron in the hidden layer; see Fig. 1. As mentioned
earlier, the DNN architecture takes the perception architecture as the basic operation unit. So
the basic operation consists of two procedures. First we do a linear operation by aggregating
weighted signals coming from neurons in the preceding layer, thus yielding an output, say z.
The output z is then passed onto an activation function, so we get an output, say a.

The activation function which has been widely used during recent years is a function named the
Rectified Linear Unit, simply called ReLU. The functional is very simple; it simply bypasses the
input if it is non-negative; yields 0 otherwise:

a =

{
z, if z ≥ 0;
0, if z < 0.

(3)

1



CN21_1

ReLU

Figure 1: Rectified Linear Unit (ReLU).

So it can be represented as:

a = max(0, z). (4)

A brief history of ReLU

Actually the ReLU function was introduced in very early days in a variety of fields, not limited
to the deep learning field. It appeared even in Fukushima’s 1980 paper on convolutional neural
networks (CNNs).

But the function was not frequently used in DNNs until recently. Instead more interpretable
activation functions like the logistic function were widely used. Another popular activation
function was a shifted version of the logistic function, called the tanh function:

tanh(z) :=
ez − e−z

ez + e−z

=
1

1 + e−2z
− e−2z

1 + e−2z

= σ(2z)− (1− σ(2z))

= 2σ(2z)− 1.

(5)

Note that tanh(z) = 2σ(2z)− 1, so the range of the function is shifted from (0, 1) to (−1, 1).

A common rule of thumb that had been applied in the deep learning field until recently was to
use the logistic function only at the output layer while taking the tanh function at all of the
other neurons placed in hidden layers. Many empirical results have demonstrated that such
rule of thumb always yields a better or equal performance, as compared to the other alternative
which takes the logistic function at all places. There is no theoretical justification on this. But it
looks more or less making-sense. The reason is that taking the tanh function at hidden neurons
broadens the output range, thus yielding a more degree of freedom relative to the one by the
logistic function.

ReLU became prevalent since 2011

A recent big wave arose in the domain of activation functions. In 2011, one of the deep learning
heroes, named Yoshua Bengio (see the left picture in Fig. 2), together with his group members,
Xavier Glorot (PhD student) and Antoine Bordes (postdoc), demonstrated via extensive simu-
lation results that ReLU enables faster and more effective training of DNNs, compared to the
logistic and/or tanh functions. This also was empirically confirmed by numerous practitioners
on many datasets. Hence, ReLU now acts as a default activation function in hidden layers.

They also provided some intuitions as to why that is the case. One intuition is that ReLU better
mimicks how brains of intelligent beings work. A report by neuroscientists says that only a few

2



CN21_2

Yoshua Bengio Seppo Linnainmaa

Figure 2: Yoshua Bengio (left) is one of the giants in the deep learning field, and also a co-
recipient of the 2018 Turing Award. One of his main achievements is to demonstrate the power
of ReLU activation function, thus popularizing the use of the function in the deep learning
society. Seppo Linnainmaa (right) is the inventor of backpropagation which serves as an efficient
way of computing gradients in DNNs.

percentages of the neurons in human brains are activated even during active brain activities.
This is somewhat consistent with a consequence of taking ReLU, as that way leads many of the
neurons to be simply set to 0 when their values take negative.

Another explanation is sort of technical one, being tailored for a particular yet popular learning
algorithm. One of the popular training algorithms employed in the field is based on computation
of gradients of the objective function w.r.t. weights (optimization variables). Dynamics of
gradients for the logistic or tanh functions are somewhat limited. They are close to 0 for large
or small z. Why? Think about the shape of the function. It takes some meaningful gradient
only when z is in a small range. On the other hand, the gradient of ReLU does not vanish even
when z is very large. Notice that the gradient of ReLU reads:

dReLU(z)

dz
=


1, if z > 0;
0, if z < 0;
undefined, if z = 0.

(6)

Note that the gradient takes 1 even when z is very large. So they believed that this non-vanishing
gradient effect yields a better training, which I also agreed with more or less.

Remark on ReLU

As you may see from (6), there is an issue in computing the gradient of ReLU. The issue is that
the function is not differentiable. The gradient is undefined at z = 0. But it turns out this is not
a big deal in reality. In reality, the event z = 0 rarely happens. Actually the exactly-zero-event
never happened - it has a measure-zero-event. So there is no problem to use in practice, although
it is indeed mathematically problematic.

Convex vs. non-convex?

Let us get back to the optimization problem now when taking the ReLU activation function:

arg min
w=(W [1],W [2])

1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)) (7)

3



where

ŷ(i) = σ
(
W [2] max(0,W [1]x(i))

)
.

The question of this course’s interest is: Is the objective function convex? As claimed earlier,
the answer is no. The objective function is non-convex in general. Actually the proof of this is
a bit involved, as it may include a very complicated Hessian calculation. So this may distract
us from the main stream of the contents of this lecture. So we omit the proof here. But don’t
worry. Of course you will have a chance to prove this in PS.

A way to handle such non-convex problem

As mentioned earlier, there is a good way to handle such non-convex optimization problem. The
way is inspired by the observation made by numerous practitioners working on the field. Many
experimental results by them revealed that in most cases:

Any local minimum is the global minimum. (8)

What this means is that in many of the practical settings, there is no spurious local minimum. As
you may conjecture, this is not a mathematically correct statement. Actually this was proven to
be mathematically wrong, meaning that there are counter-examples in which there are spurious
local minima. But it was also empirically shown that those counter-examples rarely happen in
many of the working DNNs. In fact, we are still very much lacking in our understanding on this.
In other words, currently we have no idea what is the necessary/sufficient condition for (8) to
hold.

Nonetheless, in many realistic scenarios, (8) was observed. So many people believe that in most
interested cases, that is the case, e.g., the landscape of the objective function for a DNN-based
optimization problem looks like the one in Fig. 3.

CN21_4

Figure 3: Landscape of the objective function in optimization for DNNs.

Note in Fig. 3 that there is no spurious local minimum. We have only the global minimum
or saddle points1. This observation made through many experimental results suggested a good
guideline in practice. That is, simply to find any minimum and then take it as a solution, no
matter what the type of an optimization problem is. The question of interest is then: How to
find a minimum? One very popular way is to apply the gradient decent algorithm which we
are very much familiar with! Of course, the gradient decent algorithm may lead us to stuck at
some saddle point which we do not want to arrive at. But the good news in practice is that it

1Remember the definition of a saddle point. A saddle point is defined as a point which is both local minimum
and local maximum.

4



is extremely rare to stuck at a saddle point when there are minima. Actually it is even difficult
to arrive at a saddle point even if we wish to do so. Hence, a general rule of thumb is to simply
apply the gradient decent algorithm no matter what and whatsoever.

Gradient decent algorithm

What is the gradient decent algorithm in the interested optimization problem below?

arg min
w=(W [1],W [2])

1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i))︸ ︷︷ ︸
=:J(w)

(9)

where ŷ(i) = σ
(
W [2] max(0,W [1]x(i))

)
.

The algorithm is to iterate the following procedure: for the tth iteration, the new (t + 1)th
estimate for weights takes:

w(t+1) ← w(t) − α(t)∇wJ(w(t))

where α(t) indicates a stepsize (a learning rate). Since w is a collection of (W [1],W [2]), the
detailed procedure is:

W [2],(t+1) ←W [2],(t) − α(t)∇W [2]J(w(t));

W [1],(t+1) ←W [1],(t) − α(t)∇W [1]J(w(t)).

As you can see here, there are multiple weight update procedures - in this case, two procedures.
Actually these multiple procedures yielded a critical concern in early days of the DNN research.
The reason is that it requires computationally heavy calculations. Especially when a DNN has
many layers, it raises definitely a critical computational concern. So some people tried to address
this problem in early days to come up with an efficient way of computing such many gradients,
called:

Backpropagation.

Backpropagation

The same backpropagation algorithm was independently developed by a bunch of research groups
including Hinton’s development in 1986 together with his colleagues, David Rumelhart & Ronald
Williams. But the first invention was much earlier. It was around when the book of Perceptrons
was published - that was 1970! In 1970, a Finnish mathematician (as well as a computer
scientist), named Seppo Linnainmaa (see the right picture in Fig. 2), invented the algorithm.

The idea of the algorithm is very natural although it involves some complicatedly-looking math
equations. Perhaps this may be one of the reasons that there were several independent yet same
inventions. The idea is to:

Successively compute gradients in a backward manner by using a chain rule for derivatives.

For illustrative purpose, let us first explain how the algorithm works for a simple single-example
setting (m = 1). We will then extend it to the general case.

Backpropagation in action: m = 1

5



CN21_3

Figure 4: Illustration of the backpropagation algorithm: m = 1.

The illustration of the algorithm can be streamlined with the help of some picture which visu-
alizes paths of signals. One such path is the forward path; see the top row in Fig. 4. The input
signal x passes through the hidden layer to yield z[1] and then a[1]. Similarly we get z[2] and
then ŷ := a[2].

The backpropagation algorithm starts from backward. Consider the gradient of the objective
function J(w) w.r.t. the last output signal ŷ: dJ(w)

dŷ . To ease algorithm illustration, we will use

the notation of d
dŷ instead of ∇ŷ. The reason is that the algorithm is based on the chain rule for

derivatives, so the notation d
dŷ helps us to better understand how the algorithm works, relative

to ∇ŷ. Since J(w) is simply the cross-entropy loss for m = 1, the gradient reads:

dJ(w)

dŷ
= −y

ŷ
+

1− y
1− ŷ

. (10)

Notice that one can easily compute this, since y is given in the problem and ŷ is available once
we compute the forward path.

Next, we consider the gradient of J(w) now w.r.t. the second-last signal z[2]: dJ(w)

dz[2]
. This is

where the idea of the chain rule kicks in. Using the chain rule, we get:

dJ(w)

dz[2]
=
dJ(w)

dŷ

dŷ

dz[2]

(a)
=

(
−y
ŷ

+
1− y
1− ŷ

)
ŷ(1− ŷ)

= ŷ − y.

(11)

where (a) follows from (10) (already computed earlier) as well as the fact that the gradient of
the logistic function can simply be expressed as:

dσ(z)

dz
=

d

dz

(
1

1 + e−z

)
=

e−z

(1 + e−z)2

=
1

1 + e−z
· e−z

1 + e−z

= σ(z)(1− σ(z)).

(12)

From (11), we can now compute one of the interested gradients: dJ(w)

dW [2] . Again using the chain

6



rule, we get:

dJ(w)

dW [2]
=
dJ(w)

dz[2]
dz[2]

dW [2]

(a)
=
dJ(w)

dz[2]
a[1]T

(13)

where (a) comes from z[2] = W [2]a[1] (why taking a transpose to get a[1]T ?). Notice that this can

be computed from dJ(w)

dz[2]
(already computed from (11)) and the knowledge of a[1]. To indicate

how it can be computed, we draw red-lined flows in Fig. 4.

You may now grab the idea of how the backpropagation algorithm works! We compute gradients
w.r.t. from the last output signal (ŷ) to the inner signals (z[2],W [2]), all the way back to
(z[1],W [1]). Did you get it? For those who did not get this yet, let me repeat.

We next consider the gradient of J(w) now w.r.t. the third -last signal a[1]: dJ(w)

da[1]
. Again using

the chain rule, we obtain:

dJ(w)

da[1]
=
dJ(w)

dz[2]
dz[2]

da[1]

(a)
= W [2]T dJ(w)

dz[2]

(14)

where (a) is due to z[2] = W [2]a[1]. Here you may be very confused about how the last equality

comes up. Why we take a transpose for W [2]? Why we first have W [2]T , followed by dJ(w)

dz[2]
?

Why not the other way around? Remember the rule of thumb that I mentioned in past lectures.
First of all, you need to check what the dimension of the final result is. In this case, the final

result is dJ(w)

da[1]
. The dimension should be exactly the same as that of a[1], so dJ(w)

da[1]
∈ Rn[1]

. Next

think about the dimension of dJ(w)

dz[2]
. It should be dJ(w)

dz[2]
∈ Rn[2]

. Why? This suggests that dJ(w)

dz[2]

should come after W [2]T . Otherwise, dimensions do not match - a syntax error occurs! Now
why taking a transpose for W [2]? Again this is due to dimension matching. With the transpose,
we can make sure that the dimension of the end result is n[1] × 1, which is what we want.

Again the key observation in (14) is that dJ(w)

da[1]
can be computed from dJ(w)

dz[2]
(which we already

obtained from (11)) and the knowledge of W [2]. See the knowledge path marked with red lines
in Fig. 4.

We can next do the same thing for dJ(w)

dz[1]
and dJ(w)

dW [1] . Using the chain rule, we get:

dJ(w)

dz[1]
=
dJ(w)

da[1]
da[1]

dz[1]

(a)
=
dJ(w)

da[1]
.∗1{z[1] ≥ 0}

(15)

where (a) follows from (6): dReLU(z)
dz = 1{z ≥ 0}. Actually this is not quite correct mathemati-

cally, since the ReLU function is not differentiable at z = 0. But since it is okay to ignore such
rare event in practice, we simply assume that the gradient is 1 at z = 0. Here the symbol .∗ in-
dicates the component-wise multiplication (MATLAB notation), not the normal multiplication.
You can also easily think that it should be the component-wise multiplication, since otherwise
dimensions do not match. Next we get:

dJ(w)

dW [1]
=
dJ(w)

dz[1]
dz[1]

dW [1]

(a)
=
dJ(w)

dz[1]
xT

(16)

7



where (a) is due to z[1] = W [1]x.

Here is a summary of all the important gradients that we derived in a backward manner:

dJ(w)

dz[2]
= ŷ − y; (17)

dJ(w)

dW [2]
=
dJ(w)

dz[2]
a[1]T ; (18)

dJ(w)

da[1]
= W [2]T dJ(w)

dz[2]
; (19)

dJ(w)

dz[1]
=
dJ(w)

da[1]
.∗1{z[1] ≥ 0}; (20)

dJ(w)

dW [1]
=
dJ(w)

dz[1]
xT . (21)

To run the gradient decent algorithm, what we need to use are (18) and (21). But the other
gradients are still important because they serve as bridges to compute the interested gradients
((18) and (21)) in the end.

Backpropagation for general m

Now what about for the general m case? The idea is exactly same. The only distinction is
that we now need to incorporate all the examples in computing gradients. It turns out matrix
notations help us to derive such generalized gradients. Let

Y :=
[
y(1) y(2) · · · y(m)

]
∈ R1×m;

Ŷ :=
[
ŷ(1) ŷ(2) · · · ŷ(m)

]
∈ R1×m;

A[1] :=
[
a[1],(1) a[1],(2) · · · a[1],(m)

]
∈ Rn[1]×m;

Z [1] :=
[
z[1],(1) z[1],(2) · · · z[1],(m)

]
∈ Rn[1]×m;

Z [2] :=
[
z[2],(1) z[2],(2) · · · z[2],(m)

]
∈ Rn[2]×m;

X :=
[
x(1) x(2) · · · x(m)

]
∈ Rn×m.

(22)

Using these matrix notations, one can readily show that the important corresponding gradients
for the general m case are:

dJ(w)

dZ [2]
=

1

m
(Ŷ − Y ); (23)

dJ(w)

dW [2]
=
dJ(w)

dZ [2]
A[1]T ; (24)

dJ(w)

dA[1]
= W [2]T dJ(w)

dZ [2]
; (25)

dJ(w)

dA[1]
=
dJ(w)

dA[1]
.∗1{Z [1] ≥ 0}; (26)

dJ(w)

dW [1]
=
dJ(w)

dZ [1]
XT . (27)

Note that these are exactly the same as those in the m = 1 case except two things. One is that
we have now all the capital letters, which is obvious. The second thing is that we have the factor
of 1

m in the first gradient (23). Why? You will have a chance to think about this while proving
the above in PS.

Look ahead

8



This is the end of the supervised learning part. Actually there may be more contents that may
be of your interest. But we stop here due to the interest of time. Obviously we cannot cover all
the contents. If you are interested in more on supervised learning, then I strongly recommend
you to take an online deep learning course on Coursera, taught by Prof. Andrew Ng at Stanford.

Next time, we will move onto the next application topic of optimization: unsupervised learning.
Specifically we will study one of very popular machine-learning frameworks for unsupervised
learning, called Generative Adversarial Networks (GANs for short). It turns out the duality
theorems that we learned in Part II play a crucial role to understand the GANs. We will cover
details from the next lecture on.

9



EE523 Convex Optimization May 21, 2019
KAIST, Spring 2019

Lecture 22: Unsupervised learning: Generative models

Recap

During the past four lectures, we have studied some basic and trending contents on super-
vised learning. The goal of supervised learning is to estimate a functional f(·) of an interested
computer system (machine) from input-output samples, as illustrated in Fig. 1.CN22_1

machine

Figure 1: Supervised learning: Learning the functional f(·) of an interested system from data
{(x(i), y(i))}mi=1.

In an effort to translate a function optimization problem (a natural formulation of supervised
learning) into a parameter-based optimization problem that we are familiar with, we expressed
the function with parameters (or called weights) assuming a certain architecture of the system.

The certain architecture was: Perceptron. Taking the linear activation function together with
squared-error loss, we obtained the Least-Squares classifier. Taking the logistic function together
with cross-entropy loss, we obtained logistic regression. We then proved that logistic regression
is optimal in a sense of maximizing the likelihood of training data.

We next considered the Deep Neural Networks (DNNs) architecture for f(·), which has been
shown to be more expressive. Since there is no theoretical basis on the choice of activation
functions in the DNN context, we investigated only a rule-of-thumb which is common to use in
the field: Taking ReLU at all hidden neurons while taking the logistic function at the output
layer. We have a theoretical justification only on the choice of a loss function: cross-entropy loss.
We have also learned that in many of the interested settings, optimization problems for DNNs
have no spurious local minima, although the problems are highly non-convex. This motivated
the use of the gradient decent algorithm for such problems. Lastly we studied an efficient way
of computing gradients: backpropagation, or simply called backprop.

Today’s lecture

Now what is next? Actually we face one critical challenge in supervised learning. The challenge
is that it is not that easy to collect labeled data in many realistic situations. In general, gathering
labeled data is very expensive, as it usually requires extensive human-labour-based annotations.
So people wish to do something without such labeled data. Then, a natural question that arises
is: What can we do only with {x(i)}mi=1?

1



This is where the concept of unsupervised learning kicks in. Unsupervised learning is an algo-
rithm of learning something about the data {x(i)}mi=1 without a particular task in mind. You
may then ask: What is something? There are a few candidates for such something to learn in
the field. Depending on target candidates, there are different unsupervised learning methods.

Today we will start investigating details on these. Specifically we are going to cover the following
four stuffs. First of all, we will study what such candidates for something to learn are. We will
then investigate what the corresponding unsupervised learning methods are. Next we will focus
on arguably the most prominent and fundamental learning method among them: Generative
models. Finally, we will connect this to optimization of this course’s interest, by formulating an
optimization problem for generative models.

Candidates for something to learn

There are three candidates for something to learn, from simple to complex. The first candidate,
which is perhaps the simplest, is the basic structure of data. For instance, when {xi}mi=1 indicates
users/customers data, such basic structures could be membership of individuals, community
type, gender type, or race type. For products-related data, it could be abnormal (defect) vs
normal information. The second candidate is the one that we learned about in Part I, which
is features: expressive (and/or compressed) components that well describe characteristics of
data. The last is a sort of the most complex yet most fundamental information: the probability
distribution of data, which allows us to create data as we wish.

Three unsupervised learning methods

Depending on which candidate that we focus on, we have three different unsupervised learning
methods. The first is clustering, which serves to identify the basic structures of data. You may
hear of k-means, k-nearest neighbors, community-detection, or anomaly-detection algorithms.
All of these belong to this category. The second is feature learning (or called representation learn-
ing), which allows us to extract some well-representative features. You may hear of autoencoder,
matrix factorization, principal component analysis, or dictionary learning, all of which can be
categorized into this class. The last is generative models, which enable us to create arbitrary
examples that well mimick real data. This is actually the most famous unsupervised learning
method, which has received a particularly significant attention in the field nowadays. So in this
course, we are going to focus on this method.

Why generative models prominent?

Before explaining details on generative models, let me say a few words about why generative
models are most prominent in the field. We list three reasons below which I believe major.

The first reason is somewhat related to a famous quote by one of my heroes, Richard Feynman;
see Fig. 2. Right before he died in 1988, he left an intriguing quote in his blackboard: “What
I cannot create, I do not understand.” What this quote implies in the context of unsupervised
learning is that creating convincing examples of data is a necessary condition for complete
understanding. In this regard, a generative model serves a very important role as it enables us
to create arbitrary yet plausible examples that mimick real data.

The second reason is related to a recent breakthrough made in the history of the AI field by a
very young research scientist, named Ian Goodfellow; see Fig. 3. He was a bachelor and master
student at Stanford, working with Andrew Ng. But he moved to the University of Montreal
for PhD study to join Joshua Bengio’s group. During his PhD, he could develop a powerful
generative model, which he named “Generative Adversarial Networks (GANs)”. The GANs are

2



CN22_2

Richard Feynman ‘88

Figure 2: Richard Feynman left a quote on the relationship between understanding and creating
on a blackboard around right before he died in 1988. The quote says, “What I cannot create, I
do not understand.” What this quote suggests is that being able to create convincing examples
of data is a strong evidence of having understood it.

shown to be extremely instrumental in a wide variety of applications, even not limited to the
AI field. Such applications include: image creation, human image synthesis, image inpainting,
coloring, super-resolution image synthesis, speech synthesis, style transfer, robot navigation, to
name a few. Since it works pretty well, as of May 16 2019 (a few days ago), the state of California
is even considering a bill that would ban the use of GANs to make fake pornography without the
consent of the people depicted. So the GANs have played a crucial role to popularize generative
models.

CN22_3

Ian Goodfellow 2014

Figure 3: Ian Goodfellow, a young yet big figure in the modern AI field. He is best known as the
inventor of the Generative Adversarial Networks (GANs), which made a big wave in the history
of the AI field.

The third reason is related to optimization of this course’s interest. Actually the GANs borrow
very interesting ideas from optimization, thus making many optimization experts excited about
the generative models. In particular, the duality theorems that we studied in Part II play a
crucial role to understand the GANs as well as many GAN variants.

Generative models

Now let us dive into details on generative models. As you may easily guess, a generative model
is defined as a mathematical model which allows us to generate fake data which has a similar
distribution as that of real data. See Fig. 4 for a pictorial representation. The model parameters
are learned via real data so that the learned model outputs fake data that resemble real data.

3



CN22_4

generative 

model

real data

fake data

Figure 4: A generative model is the one that generates fake data which resembles real data.
Here what resembling means in a mathematical language is that it has a similar distribution.

Here an input signal can be either an arbitrary random signal or a specifically synthesized signal
that forms the skeleton of fake data. The type of the input depends on applications of interest
- this will be detailed later on.

Remarks on generative models

In fact, the problem of designing a generative model is one of the most important problems in
statistics, so it has been a classical age-old problem in that field. This is because the major goal
of the field of statistics is to figure out (or estimate) the probability distribution of data that arise
in the real world (that we call real data), and the generative model plays a role as a underlying
framework in achieving the goal. Actually the model can do even more - it provides a concrete
function block (called the generator in the field) which can create real-like fake data. There is
a very popular name in statistics that indicates such problem, that is the density estimation
problem. Here the density refers to the probability distribution.

As you may guess from the second reason that I mentioned above regarding why generative
models are prominent, this problem was not that popular in the AI field until very recently,
precisely 2014 when the GANs were invented.

How to formulate an optimization problem?

Now let us relate generative models to optimization of our interest. As mentioned earlier, we can
feed some input signal (that we call fake input) which one can arbitrarily synthesize. Common
ways employed in the field to generate them are to use Gaussian or uniform distributions. Since
it is an input signal, we may wish to use a conventional “x” notation. So let us use x ∈ Rk to
denote a fake input where k indicates a dimension of the signal.

Notice that this has a conflict with real data notation {x(i)}mi=1. To avoid the conflict, let us use a
different notation, say {y(i)}mi=1, to denote real data. Please don’t be confused with labeled data
- these are not labels. In fact, the convention in the machine learning field is to use a notation z
to indicate a fake input while maintaining real data notation as {x(i)}mi=1. This may be another
way to go; perhaps this is the way that you should take while writing papers. Anyhow let us
take the first unorthodox yet reasonable option for this course.

Let ŷ ∈ Rn be a fake output. Considering m examples, let {(x(i), ŷ(i))}mi=1 be such fake input-
output m pairs and let {y(i)}mi=1 be m real data examples. See Fig. 5.

4



CN22_5

real data

fake outputfake input
generative 

model

Figure 5: Problem formulation for generative models.

Goal

Let G(·) be a function of the generative model. Then, the goal of the generative model can be
stated as: Designing G(·) such that

{ŷ(i)}mi=1 ≈ {y(i)}mi=1 in distribution.

Here what does it mean by “in distribution”? To make it clear, we need to quantify closeness
between two distributions. One natural yet prominent approach employed in the statistics field
is to take the following two steps:

1. Compute empirical distributions or estimate distributions from {y(i)}mi=1 and {(x(i), ŷ(i))}mi=1.
Let such distributions be:

QY ,QŶ

for real and fake data, respectively.

2. Next employ a well-known divergence measure in statistics which can serve to quantify
the closeness of two distributions. Let D(·, ·) be one such divergence measure. Then, the
similarity between QY and QŶ can be quantified as:

D(QY ,QŶ ).

Taking the above natural approach, one can concretely state the goal as: Designing G(·) such
that

D(QY ,QŶ ) is minimized.

Optimization under the approach

Hence, under the approach, one can formulate an optimization problem as:

min
G(·)

D(QY ,QŶ ). (1)

As you may easily notice, there are some issues in solving the above problem (1). There are
three major issues.

5



The first is that it is function optimization which we are not familiar with. Notice that the
optimization is over the function G(·). Second, the objective function D(QY ,QŶ ) is a very
complicated function of the knob G(·). Note that QŶ is a function of G(·), as ŷ = G(x). So the
objective is a twice folded composite function of G(·). The last is perhaps the most fundamental
issue. It is not clear as to how to choose a divergence measure D(·, ·).

Look ahead

It turns out there are some ways to address the above issues. Very interestingly, one such way
leads to an optimization problem for GANs! So next time, we will study what that way is, and
then will take the way to derive an optimization problem for GANs.

6



EE523 Convex Optimization May 23, 2019
KAIST, Spring 2019

Lecture 23: Generative Adversarial Networks (GANs)

Recap

Last time we started investigating unsupervised learning. The goal of unsupervised learning is
to learn something about the data, which we newly denoted by {y(i)}mi=1, instead of {x(i)}mi=1.
Depending on target candidates for something to learn, there are a few unsupervised learning
methods. Among them, we explored one very prominent method, which is generative models.
We formulated an optimization problem for generative models:

min
G(·)

D(QY ,QŶ ), (1)

where QY and QŶ indicate the empirical distributions (or the estimates of the true distributions)
for real and fake data, respectively; G(·) denotes the function of a generative model; D(·, ·) is a
divergence measure. We then encountered a couple of issues that arise in the problem: (i) it is
a function optimization which we are not familiar with; (ii) the objective is a very complicated
function of G(·); (iii) not clear as to how to choose D(·, ·).
At the end of the last lecture, I claimed that there are some ways to address such issues, and very
interestingly, one such way leads to an optimization problem for a recently-developed powerful
generative model, named Generative Adversarial Networks (GANs).

Today’s lecture

Today we are going to explore details on the GANs. Specifically what we are going to do are
three-folded. First we will investigate what that way leading to the GANs is. We will then
take the way to derive an optimization problem for the GANs. Lastly we will demonstrate that
the GANs indeed address the issues: (i) the GAN optimization problem is tractable; (ii) the
problem can also be expressed as that in (1).

What is the way to address the issues?

Remember one challenge that we faced in the optimization problem (1): D(QY ,QŶ ) is a compli-
cated function of G(·). To address this, Ian Goodfellow, the inventor of GANs, took an indirect
way to represent D(QY ,QŶ ). He was thinking how D(QY ,QŶ ) should behave, and then based
on his observation, he was able to come up with an indirect way of mimicking the behaviour. It
turned out the way led him to explicitly compute D(QY ,QŶ ). Below are details.

How D(QY ,QŶ ) should behave?

First of all, Goodfellow imagined how D(QY ,QŶ ) should behave. What he imagined is that if
one can easily discriminate real data y from fake data ŷ, then the divergence must be large;
otherwise, it should be small. This naturally motivated him to:

Interpret D(QY ,QŶ ) as a measure that can quantify the ability to discriminate.

In order to express such ability, he believed there must be something that plays a role of dis-
criminating. So he introduced an entity that can play such role, and named it:

Discriminator.

1



Goodfellow considered a simple binary-output discriminator which takes as an input, either real
data y or fake data ŷ. He then wanted to design D(·) such that D(·) well approximates the
probability that the input (·) is real data:

D(·) ≈ Pr((·) = real data).

Noticing that

Pr(y = real) = 1;

Pr(ŷ = real) = 0,

he wanted to design D(·) such that:

D(y) is as large as possible, close to 1;

D(ŷ) is as small as possible, close to 0.

See Fig. 1. CN23_1

Discriminator

fake data

real data

Figure 1: Discriminator wishes to output D(·) such that D(y) is as large as possible while D(ŷ)
is as small as possible.

How to quantity the ability to discriminate?

Keeping the picture in Fig. 1 in his mind, he then wanted to quantify the ability to discriminate.
To this end, he first observed that if D(·) can easily discriminate, then we should have:

D(y) ↑; 1−D(ŷ) ↑.

One naive way to capture the ability is simply adding the above two terms. But Goodfellow did
not take the naive way. Instead he took the following logarithmic summation:

logD(y) + log(1−D(ŷ)). (2)

Actually I was wondering why he took this particular way, as his paper does not mention about
the rationale behind the choice. In NIPS 2016, he gave a tutorial on GANs, mentioning that
the problem formulation was inspired by a paper published in AISTATS 2010:

http : //proceedings.mlr.press/v9/gutmann10a.html

Reading the paper, I realized that the logarithmic summation (2) comes from Eq. (3) in the
paper.

2



Making the particular choice, the ability to discriminate for m examples can be quantified as:

1

m

m∑
i=1

logD(y(i)) + log(1−D(ŷ(i))). (3)

A two-player game

Goodfellow then imagined a two-player game in which Player 1, Discriminator D(·), wishes to
maximize the quantified ability (3), while Player 2, Generator G(·), wants to minimize (3). See
Fig. 2.

CN23_2

real data

fake data
Generator

Discriminator

Player #1

Player #2

Figure 2: A two-player game.

Optimization for GANs

This naturally motivated him to formulate the following min max optimization problem:

min
G(·)

max
D(·)

1

m

m∑
i=1

logD(y(i)) + log(1−D(ŷ(i))). (4)

You may wonder why not max min. That may be another way to go, but Goodfellow made the
above choice. Actually there is a reason why he took the way. This will be clearer soon. Here
notice that the optimization is over the two functions of D(·) and G(·), meaning that it is still
a function optimization. Luckily the year of 2014 (when the GAN paper was published) was
after the starting point of the deep learning revolution, the year of 2012. Also at that time,
Goodfellow was a PhD student of Joshua Bengio, one of the giants in the deep learning field.
So he was very much aware of the power of neural networks:

“Deep neural networks can well represent any arbitrary function.”

This motivated him to parameterize the two functions with DNNs, which in turn led to the
following optimization problem:

min
G(·)∈N

max
D(·)∈N

1

m

m∑
i=1

logD(y(i)) + log(1−D(ŷ(i))), (5)

where N denotes a set of DNN-architecture-based functions. This is exactly the optimization
problem for GANs!

Related to original optimization?

3



Remember what I mentioned earlier: the way leading to the GAN optimization is an indirect
way of solving the original optimization problem:

min
G(·)

D(QY ,QŶ ). (6)

Then, a natural question that arises is: How are the two problems (5) and (6) related? It
turns out these are very much related. This is exactly where the choice of min max (instead of
max min) plays the role; the other choice cannot establish a connection - it was a smart choice. It
has been shown that assuming that deep neural networks can represent any arbitrary function,
the GAN optimization (5) can be translated into the original optimization form (6). We will
prove this below.

Simplification & manipulation

Let us start by simplifying the GAN optimization (5). Since we assume that N can represent
any arbitrary function, the problem (5) becomes unconstrained :

min
G(·)

max
D(·)

1

m

m∑
i=1

logD(y(i)) + log(1−D(ŷ(i))). (7)

Notice that the objective is a function of D(·), and the two functions D(·)’s appear but with
different arguments: one is y(i), marked in blue; the other is ŷ(i), marked in red. So in the
current form (7), the inner (max) optimization problem is not quite tractable to solve. In an
attempt to make it tractable, let us express it in a different manner using the following notations.

Define a random vector Y which takes one of the m real examples with probability 1
m (uniform

distribution):

Y ∈ {y(1), . . . , y(m)} =: Y; QY (y(i)) =
1

m
, i = 1, 2, . . . ,m,

where QY indicates the probability distribution of Y . Similarly define Ŷ for fake examples:

Ŷ ∈ {ŷ(1), . . . , ŷ(m)} =: Ŷ; QŶ (ŷ(i)) =
1

m
, i = 1, 2, . . . ,m,

where QŶ indicates the probability distribution of Ŷ . Using these notations, one can then
rewrite the problem (7) as:

min
G(·)

max
D(·)

m∑
i=1

QY (y(i)) logD(y(i)) + QŶ (ŷ(i)) log(1−D(ŷ(i))). (8)

Still we have different arguments in the two D(·) functions.

To address this, let us introduce another quantity. Let z ∈ Y∪Ŷ. Newly define QY (·) and QŶ (·)
such that:

QY (z) := 0 if z ∈ Ŷ \ Y; (9)

QŶ (z) := 0 if z ∈ Y \ Ŷ. (10)

Using the z notation, one can then rewrite the problem (8) as:

min
G(·)

max
D(·)

∑
z∈Y∪Ŷ

QY (z) logD(z) + QŶ (z) log(1−D(z)). (11)

4



We now see that the same arguments appear in the two D(·) functions.

Solving the inner optimization problem

We are ready to solve the inner optimization problem in (11). Key observations are: logD(z)
is concave in D(·); log(1 − D(z)) is concave in D(·); and therefore, the objective function is
concave in D(·). This implies that the objective has the unique maximum in the function space
D(·). Hence, one can find such maximum by searching for the one in which the derivative is
zero. Taking a derivative and setting it to zero, we get:

Derivative =
∑
z

[
QY (z)

D∗(z)
−

QŶ (z)

1−D∗(z)

]
= 0.

Hence, we get:

D∗(z) =
QY (z)

QY (z) + QŶ (z)
. (12)

Plugging this into (11), we obtain:

min
G(·)

∑
z∈Y∪Ŷ

QY (z) log
QY (z)

QY (z) + QŶ (z)
+ QŶ (z) log

QŶ (z)

QY (z) + QŶ (z)
. (13)

Jensen-Shannon divergence

Let us massage the objective function in (13) to express it as:

min
G(·)

∑
z∈Y∪Ŷ

QY (z) log
QY (z)

QY (z)+QŶ (z)

2

+ QŶ (z) log
QŶ (z)

QY (z)+QŶ (z)

2︸ ︷︷ ︸
−2 log 2. (14)

It turns out the above underbraced term can be expressed with a well-known divergence measure
in statistics, called Jensen-Shannon divergence1: for any two distributions, say p and q,

JSD(p, q) :=
1

2

∑
z

p(z) log
p(z)

p(z)+q(z)
2

+
1

2

∑
z

q(z) log
q(z)

p(z)+q(z)
2

. (15)

This is indeed a valid divergence measure, i.e., it is non-negative, being equal to zero if and only
if p = q. We will not prove this here, but you will have a chance to prove in PS.

Equivalent form

Using the divergence, one can then rewrite the problem (14) as:

min
G(·)

2JSD(QY ,QŶ )− 2 log 2. (16)

Hence, we get:

G∗GAN = arg min
G(·)

JSD(QY ,QŶ ). (17)

1One may guess that this is the divergence that Johan Jensen (the inventor of Jensen’s inequality) and Claude
Shannon (the Father of Information Theory) developed. But it is not the case. Johan Jensen died in 1925 when
Claude Shannon was a child, so there was no collaboration between the two. Actually it was invented much later
days in 1991 by a Taiwanese information theorist, named Jianhua Lin.

5



We see that this indeed belongs to the original optimization form (6) if one makes a choice for
D(·, ·) as: D(·, ·) = JSD(·, ·).

An issue

The above derivation (17) was initially done by Ian Goodfellow in his seminal paper. Perhaps he
might be happy about his derivation, as it is very simple and insightful, connecting the GAN to
the beauty of statistics. In fact, I was surprised how the two-player game led to a very insightful
JSD-based optimization problem. But Goodfellow missed something critical in the derivation.

Instead another person figured out that something almost immediately. That person is a com-
puter scientist (as well as a mathematician), named Léon Bottou; see Fig. 3. He is a long

CN23_3

Léon Bottou 2017

Figure 3: Léon Bottou is the inventor of Wasserstain GANs. He is another big figure in the AI
field. He was a professor in NYU, but now moved to Facebook AI Research (FAIR).

collaborator of Yann LeCun. He is very strong at math and stats. So he could figure out that
there is a critical issue in the GAN optimization (17), which comes from some undesirable prop-
erty of JSD. More importantly, he knew how to address the issue. In the course of addressing
the issue, he could develop a variant of GAN, which he called:

Wasserstein GAN.

For the remaining lectures

For the remaining two lectures, we will figure out what that critical issue is. We will then
investigate how Bottou came up with Wasserstein GAN.

6



EE523 Convex Optimization May 28, 2019
KAIST, Spring 2019

Lecture 24: Wasserstein GAN

Recap

Last time we formulated the optimization problem for GANs: Given the data {y(i)}mi=1,

min
G(·)∈N

max
D(·)∈N

1

m

m∑
i=1

logD(y(i)) + log(1−D(ŷ(i))) (1)

where G(·) and D(·) indicate the functions of the generator and the discriminator, respectively;
and N denotes a set of DNN-based functions. We then showed that the GAN optimization be-
longs to a very generic divergence-based optimization problem (an age-old problem in statistics),
assuming that DNNs can represent any arbitrary function.

At the end of the last lecture, however, I claimed that there is a critical issue in the GAN
optimization, and this is what Bottou figured out. I also claimed that in the course of addressing
the issue, Bottou came up with a variant of GANs, which he named: Wasserstein GAN (WGAN
for short).

Today’s lecture

Supporting these claims form the contents of this lecture. Specifically we will cover the following
three stuffs. First of all, we will figure out what the critical issue that arises in GANs is. We
will then investigate how Bottou addressed the issue. Lastly we will discuss how Bottou’s way
is related to an optimization problem for WGAN.

What is the critical issue that arises in the GAN optimization?

Recall in the GAN optimization that the optimal generator G∗(·) reads:

G∗ = arg min
G(·)

JSD(QY ,QŶ ) (2)

where QY and QŶ indicate the empirical distributions of Y ∈ {y(1), . . . , y(m)} =: Y and Ŷ ∈
{ŷ(1), . . . , ŷ(m)} =: Ŷ respectively, and

JSD(QY ,QŶ ) =
1

2

∑
z∈Y∪Ŷ

QY (z) log
QY (z)

QY (z)+QŶ (z)

2

+ QŶ (z) log
QŶ (z)

QY (z)+QŶ (z)

2

. (3)

Here z indicates a dummy variable which takes an element either from Y or from Ŷ. One key
observation that one can make here is that in almost all practically-relevant settings, fake and
real samples are different with each other:

Y ∩ Ŷ = ∅. (4)

Why? Imagine an image-data setting in which the dimension of data is usually very large,
e.g., the dimension of an image in ImageNet is: 256 × 256 × 3 = 196, 608. In this setting, the
probability that any fake image is exactly the same as one of the real images is almost 0, so it is

1



a measure-zero event. This (4) together with the definitions of QY and QŶ (that we established
in Lecture 23) then yields:

QY (z)
QY (z)+QŶ (z)

2

=


1
m

1
m+0

2

= 2, if z ∈ Y;

0
1
m+0

2

= 0, if z ∈ Ŷ;

QŶ (z)
QY (z)+QŶ (z)

2

=


0

1
m+0

2

= 0, if z ∈ Y;

1
m

0+ 1
m

2

= 2, if z ∈ Ŷ.

(5)

Plugging this into (3), we get:

JSD(QY ,QŶ ) =
1

2

∑
z∈Y

QY (z) log
QY (z)

QY (z)+QŶ (z)

2

+
1

2

∑
z∈Ŷ

QŶ (z) log
QŶ (z)

QY (z)+QŶ (z)

2

=
1

2

∑
z∈Y

QY (z) log 2 +
1

2

∑
z∈Ŷ

QŶ (z) log 2

= log 2

(6)

where the last equality comes from
∑

z∈Y QY (z) = 1 and
∑

z∈Ŷ QŶ (z).

From (6), we can now see the critical issue:

JSD(QY ,QŶ ) is irrelevant of how we choose G(·),

meaning that

G∗ = arg min
G(·)

JSD(QY ,QŶ ) = arg min
G(·)

log 2 could be anything. (7)

This implies that we may arrive at a very stupid solution from the JSD-based optimization (2),
as any G(·) can be optimal.

But wait! You may see that something weird is happening. Why? We already knew that GANs
are working well in practice. This suggests that the phenomena observed by many practitioners
look inconsistent with the theory due to the above simple derivation (7). Any mistake in the
above derivation? Or something wrong in simulations done by many practitioners? Or something
else? It turns out the answer is “something else”. Remember in the GAN optimization (1) that
G(·) and D(·) should be DNN-based functions, not arbitrary functions. So precisely speaking,
the optimal generator should read:

G∗GAN := arg min
G(·)∈N

max
D(·)∈N

1

m

m∑
i=1

logD(y(i)) + log(1−D(ŷ(i))).

In practice, DNN is not perfectly expressive, and hence:

G∗GAN 6= G∗.

This is the reason why there is inconsistency between the theory and the practice. There are some
groups of people (including Prof. Sanjeev Arora at Princeton, a brilliant theoretical computer
scientist) who have been investigating why the GANs with DNN-function constraints lead to
good performances. Nonetheless, as of now, no clear understanding on this.

Motivated the use of the Wasserstein distance!

2



The critical issue, reflected in (7), motivated Bottou to reconsider the generic divergence-based
optimization problem:

min
G(·)

D(QY ,QŶ ) (8)

where D(·, ·) is of our design choice. He knew that there are some good divergence measures
which do no yield the critical issue (7). One of the measures that he chose was the 1st order
Wasserstein distance that we studied in Part I. This led him to obtain:

min
G(·)

W (QY ,QŶ ) (9)

where

W (QY ,QŶ ) = min
QY,Ŷ

E[‖Y − Ŷ ‖]

= min
QY,Ŷ

m∑
i=1

m∑
j=1

QY,Ŷ (y(i), ŷ(j))‖y(i) − ŷ(j)‖.
(10)

Notice that ‖y(i) − ŷ(j)‖ placed inside the doubled summation (marked in blue) depends on the
values of {ŷ(i)}mi=1 themselves. Hence, we can readily see that the objective is indeed a function
of G(·) which directly controls {ŷ(i)}mi=1.

How to solve the Wasserstein-distance-based optimization?

Replacing D(·, ·) with the Wasserstein distance in (8), Bottou then wrote the optimization prob-
lem (9) as:

min
G(·)

min
QY,Ŷ

m∑
i=1

m∑
j=1

QY,Ŷ (y(i), ŷ(j))‖y(i) − ŷ(j)‖ :

m∑
j=1

QY,Ŷ (y(i), ŷ(j)) = QY (y(i)), i = 1, . . . ,m;

m∑
i=1

QY,Ŷ (y(i), ŷ(j)) = QŶ (ŷ(j)), j = 1, . . . ,m.

(11)

Consider the inner optimization problem in (11). This is the problem that we are familiar
with: LP! We know how to solve an LP using the simplex algorithm. Then, no problem?
Unfortunately, that is not the case. There are some issues in solving the above problem. Two
major issues.

The first is that there is no closed-form solution for LP, so this gives a challenge in finding
G∗(·) in the end. The second issue is a more critical one. Notice in practice that the number
of optimization variables, which are m2 of QY,Ŷ (y(i), ŷ(j)), in the inner problem is huge. In the

big data era, m is typically an order of more than thousands or million, or even billion. So m2

is typically a huge number. Even if we use a very fast algorithm, like the simplex algorithm, it
would take very long time. So it is computationally very expensive.

Bottou immediately recognized the issues. More importantly, he knew how to address the issues.
The idea is to rely on the Father of LP: Kantorovich! In fact, Kantorovich already established
the strong duality theorem for this Wasserstein-distance-based LP, called Kantorovich duality
or Kantorovich-Rubinstein duality. What Kantorovich showed is that the dual problem of the

3



Wasserstein-distance-based LP has exactly the same solution as that of the primal problem1, and
more importantly, the dual problem is computationally much more efficient. This is what Bottou
already knew. So he simply applied the Kantorovich duality to come up with an optimization
problem, which is now known as the WGAN optimization. We will describe the Kantorovich
duality in detail below.

Notational simplification

Let us consider the inner optimization problem in (11). For notational simplification, we employ
the dummy variable z that we introduced earlier: z ∈ Y ∪ Ŷ. Let us use z and ẑ to indicate y(i)

and ŷ(j), respectively. Using this notation, we can then rewrite the inner optimization problem
as:

min
QY,Ŷ

∑
z∈Y∪Ŷ

∑
ẑ∈Y∪Ŷ

QY,Ŷ (z, ẑ)‖z − ẑ‖ :

∑
ẑ∈Y∪Ŷ

QY,Ŷ (z, ẑ) = QY (z) ∀z ∈ Y ∪ Ŷ;

∑
z∈Y∪Ŷ

QY,Ŷ (z, ẑ) = QŶ (ẑ) ∀ẑ ∈ Y ∪ Ŷ.

(12)

For further notational simplification, let

x(z, ẑ) := QY,Ŷ (z, ẑ) ≥ 0. (13)

Then, the problem can be rewritten as:

min
x(z,ẑ)

∑
z∈Y∪Ŷ

∑
ẑ∈Y∪Ŷ

‖z − ẑ‖x(z, ẑ) :

− x(z, ẑ) ≤ 0, ∀z, ẑ ∈ Y ∪ Ŷ;∑
ẑ∈Y∪Ŷ

x(z, ẑ) = QY (z) ∀z ∈ Y ∪ Ŷ;

∑
z∈Y∪Ŷ

x(z, ẑ) = QŶ (ẑ) ∀ẑ ∈ Y ∪ Ŷ.

(14)

Lagrange function, dual function & dual problem

In an effort to derive the dual problem, we first consider the Lagrange function:

L(x, λ, ν, µ) =
∑

z∈Y∪Ŷ

∑
ẑ∈Y∪Ŷ

‖z − ẑ‖x(z, ẑ)−
∑

z∈Y∪Ŷ

∑
ẑ∈Y∪Ŷ

λ(z, ẑ)x(z, ẑ)

+
∑

z∈Y∪Ŷ

ν(z)

QY (z)−
∑

ẑ∈Y∪Ŷ

x(z, ẑ)

 +
∑

ẑ∈Y∪Ŷ

µ(ẑ)

QŶ (ẑ)−
∑

z∈Y∪Ŷ

x(z, ẑ)


=

∑
z∈Y∪Ŷ

∑
ẑ∈Y∪Ŷ

(‖z − ẑ‖ − λ(z, ẑ)− ν(z)− µ(ẑ))x(z, ẑ) +
∑

z∈Y∪Ŷ

ν(z)QY (z) +
∑

ẑ∈Y∪Ŷ

µ(ẑ)QŶ (ẑ)

(15)

1This is what we already know. But at that time, the strong duality theorem for convex optimization was
not established yet. In fact, the Kantorovich duality formed the basis of the strong duality theorem for generic
convex problems.

4



where (λ, ν, µ) are Lagrange multipliers. Notice that the multiplication factors associated with
x(z, ẑ)’s in the double summation term in the above last equation (marked in red) should be
zeros:

‖z − ẑ‖ − λ(z, ẑ)− ν(z)− µ(ẑ) = 0 ∀z, ẑ ∈ Y ∪ Ŷ. (16)

Otherwise, one can set x(z, ẑ) = ∞ (or −∞) depending on the sign of a non-zero such term
while setting x(z, ẑ) = 0 for the other terms. This then yields L(x, λ, ν, µ) = −∞, and hence
g(λ, ν, µ) = −∞. Obviously this is not an interested case. Hence, applying (16), we derive the
dual function as:

g(λ, ν, µ) =
∑

z∈Y∪Ŷ

ν(z)QY (z) +
∑

ẑ∈Y∪Ŷ

µ(ẑ)QŶ (ẑ). (17)

Now notice that λ(z, ẑ) ≥ 0 is a constraint that appears in the dual problem. This together
with (16) then yields:

‖z − ẑ‖ − ν(z)− µ(ẑ) = λ(z, ẑ) ≥ 0 ∀z, ẑ ∈ Y ∪ Ŷ. (18)

Using this, we can then formulate the dual problem as:

d∗ := max
ν,µ

∑
z∈Y∪Ŷ

ν(z)QY (z) +
∑

ẑ∈Y∪Ŷ

µ(ẑ)QŶ (ẑ) :

ν(z) + µ(ẑ) ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ.
(19)

How to deal with two functions in the optimization?

How to solve the dual problem (19)? Actually it is not that simple. One may think of the
following native approach: Searching for all the possible functions of ν(·) and µ(·) in finding the
maximum. Then, it would have similar complexity as that of solving the primal problem!

Of course, Kantorovich did not take that naive approach. Instead he came up with a very
interesting and smart idea. The idea is to translate the problem (19) with two functions (ν(·)
and µ(·)) that one can control over, into an equivalent problem but with only one function, say
ψ(·). It turns out the idea led Kantorovich to come up with the following equivalent problem:

d∗∗ := max
ψ

∑
z∈Y∪Ŷ

QY (z)ψ(z) −
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)ψ(ẑ) :

|ψ(z)− ψ(ẑ)| ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ.
(20)

Notice in the translated problem that we have only one function to optimize over, so now the
complexity is significantly reduced relative to that of (19).

Relying on the proof of d∗ = d∗∗ together with the outer optimization problem (w.r.t. G(·)),
Bottou was able to derive a simpler form of an optimization problem, which is now known as
the WGAN optimization.

Look ahead

Next time, we will prove that d∗ is indeed d∗∗. We will then demonstrate that this proof leads
to the WGAN optimization.

5



EE523 Convex Optimization June 4, 2019
KAIST, Spring 2019

Lecture 25: Wasserstein GAN II

Recap

Last time we figured out there is a critical issue in GANs: JSD(QY ,QŶ ) is irrelevant of G(·),
which in turns suggests that the optimal G∗ could be anything - this is definitely not what we
want. In an effort to address this issue, we considered the 1st-order Wasserstein distance which
does not have such undesirable property:

min
G(·)

W (QY ,QŶ ) (1)

where QY and QŶ indicate the empirical distributions of Y ∈ {y(1), . . . , y(m)} =: Y and Ŷ ∈
{ŷ(1), . . . , ŷ(m)} =: Ŷ, respectively. We then checked that the objective function in (1) is a
sensitive function of G(·).
Since the inner optimization in (1) involves so many optimization variables (whose number scales
at m2) and hence is not computationally tractable (which is often the case in the current big data
era), we started considering the dual problem which is known to be computationally tractable
due to the Kantorovich duality. Introducing the z ∈ Y ∪ Ŷ notation, we expressed the dual
problem as:

d∗ := max
ν,µ

∑
z∈Y∪Ŷ

QY (z)ν(z) +
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)µ(ẑ) :

ν(z) + µ(ẑ) ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ
(2)

where ν(z) and µ(z) denote Lagrange multipliers w.r.t. the marginal-distribution-associated
equality constraints, one for QY and the other for QŶ .

At the end of the last lecture, we claimed that the above problem is equivalent to the following
simpler optimization problem containing only one function variable:

d∗∗ := max
ψ

∑
z∈Y∪Ŷ

QY (z)ψ(z) −
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)ψ(ẑ) :

|ψ(z)− ψ(ẑ)| ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ.
(3)

Today’s lecture

Today we will prove the above claim and then derive the WGAN optimization accordingly.
Specifically what we are going to cover are three-folded. We will first prove d∗ = d∗∗. We will
then use the claim to derive an optimization for WGAN. Finally we will discuss on the optimality
of the Wasserstein distance for divergence-measure based optimization problems.

Proof of d∗ ≥ d∗∗

We will show d∗ ≥ d∗∗ and d∗ ≤ d∗∗ to complete the proof. First let us prove the former.

1



Consider:

d∗∗ := max
ψ

∑
z∈Y∪Ŷ

QY (z)ψ(z)−
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)ψ(ẑ)

≤ max
ψ

max
µ

∑
z∈Y∪Ŷ

QY (z)ψ(z) +
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)µ(ẑ)

= max
ν

max
µ

∑
z∈Y∪Ŷ

QY (z)ν(z) +
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)µ(ẑ)

(4)

where the inequality follows from the fact that −ψ(ẑ) (next to QŶ (ẑ) in the first equation) can
be interpreted as a particular choice among general functions represented by µ(·); and the last
equality comes from a change of function variable from ψ(·) to ν(·).
On the other hand, with the new function notations, one can represent the constraint in (3) as:

|ν(z) + µ(ẑ)| ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ. (5)

Since the RHS in the above is non-negative, the constraint implies that:

ν(z) + µ(ẑ) ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ. (6)

This together with (4) then yields:

d∗ ≥ d∗∗. (7)

Proof of d∗ ≤ d∗∗

Moving the ν(z) term in the constraint of (2) to the RHS, we get:

µ(ẑ) ≤ −ν(z) + ‖z − ẑ‖. (8)

Since this holds ∀z, ẑ ∈ Y ∪ Ŷ, we obtain:

µ(ẑ) ≤ min
z∈Y∪Ŷ

− ν(z) + ‖z − ẑ‖

≤ −ν(ẑ)
(9)

where the second inequality comes form choosing the optimization variable z as ẑ. We now
define:

−ψ(ẑ) := min
z∈Y∪Ŷ

−ν(z) + ‖z − ẑ‖. (10)

This definition together with the two inequalities in (9) gives:

ν(z) ≤ ψ(z) ∀z ∈ Y ∪ Ŷ;

µ(ẑ) ≤ −ψ(ẑ) ∀ẑ ∈ Y ∪ Ŷ.
(11)

Applying these into (2), we get:

d∗ ≤ max
ψ

∑
z∈Y∪Ŷ

QY (z)ψ(z) −
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)ψ(ẑ).
(12)

This coincides with the objective function in the other interested optimization problem (3). And
it turns out that the definition (10) incurs a constraint which matches with the one in (3).

2



To see this, consider:

ψ(z) = max
t∈Y∪Ŷ

ν(t)− ‖t− z‖ ∀z ∈ Y ∪ Ŷ;

−ψ(ẑ) = min
t′∈Y∪Ŷ

−ν(t′) + ‖t′ − ẑ‖ ∀ẑ ∈ Y ∪ Ŷ.
(13)

This comes simply from the definition (10). Adding the above two, we get: ∀z, ẑ ∈ Y ∪ Ŷ,

ψ(z)− ψ(ẑ) = max
t∈Y∪Ŷ

ν(t)− ‖t− z‖+ min
t′∈Y∪Ŷ

−ν(t′) + ‖t′ − ẑ‖

(a)

≤ max
t∈Y∪Ŷ

ν(t)− ‖t− z‖ − ν(t) + ‖t− ẑ‖

(b)

≤ ‖z − ẑ‖

(14)

where (a) follows from choosing t′ = t in the minimization part; and (b) comes from the triangular
inequality:

‖t− ẑ‖ ≤ ‖t− z‖+ ‖z − ẑ‖.

Swapping the roles of z and ẑ in (14), one can also get: ∀z, ẑ ∈ Y ∪ Ŷ,

ψ(ẑ)− ψ(z) ≤ ‖z − ẑ‖. (15)

This together with (14) then yields:

|ψ(ẑ)− ψ(z)| ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ. (16)

Using this and (12), we can conclude that:

d∗ ≤ d∗∗. (17)

1-Lipschitz constraint

Notice the constraint in (3). Actually this is a very well-known constraint in math and stats,
called the 1-Lipschitz constraint. It comes from the definition of an 1-Lipschitz function. We
say that a function f(·) is 1-Lip if

|f(x1)− f(x2)| ≤ ‖x1 − x2‖ ∀x1, x2. (18)

Using this definition, one can therefore say that the function ψ(·) in (3) is 1-Lip. Applying this
to (3), we can obtain a simpler expression for the optimization problem as:

max
ψ(·): 1-Lip

∑
z∈Y∪Ŷ

QY (z)ψ(z) −
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)ψ(ẑ). (19)

Wasserstein GAN

Recall the definitions of QY and QŶ :

QY (z) =

{ 1
m , if z ∈ Y;

0, if z ∈ Ŷ \ Y;

QŶ (ẑ) =

{
1
m , if ẑ ∈ Ŷ;

0, if ẑ ∈ Y \ Ŷ.

3



Also in the original optimization (1), we have the outer minimization over G(·). Taking all of
these into consideration, we can translate the original Wasserstein-distance-based optimization
into:

min
G(·)

max
ψ(·): 1-Lip

1

m

m∑
i=1

ψ(y(i))− 1

m

m∑
i=1

ψ(ŷ(i)). (20)

Obviously this is a function optimization problem. Hence, as Goodfellow did, Bottou employed
neural networks for G(·) and ψ(·) to approximate the optimization problem (20) as:

min
G(·)∈N

max
ψ(·)∈N : 1-Lip

1

m

m∑
i=1

ψ(y(i))− 1

m

m∑
i=1

ψ(ŷ(i)) (21)

where N indicates a set of DNN-based functions. This is exactly the optimization problem
for WGAN! It turns out the WGAN works pretty well, outperforming the original GAN by
Goodfellow in many application scenarios. So as of now, it is the state of the art - many GAN
variants that work best for some applications are based on the WGAN.

A fundamental question

Recall the generic divergence-based optimization problem:

min
G(·)

D(QY ,QŶ ).

Obviously the WGAN optimization (1) belongs to the above generic problem. Then, one very
natural question that arises is: Is the Wasserstein distance the best choice for D(·, ·)? In other
words,

D∗(·, ·) = W (·, ·)? (22)

A special case

In an effort to address this question, a few groups including my group have investigated a special
setting in which the optimal generator G∗ is known. The special setting is so called the Gaussian
linear-generator setting wherein the data {y(i)}mi=1 follows a Gaussian distribution, say:

y(i) ∼ N (0,KY ) where KY = UΛUT , (23)

and the generator is subject to a linear operation:

ŷ(i) := G(x(i)) = Gx(i) where G ∈ Rn×k. (24)

Here one natural assumption that one can make on the distribution of x(i) is:

x(i) ∼ N (0, I), (25)

as this way suggests that fake samples are also Gaussian, which coincides with the same type of
distribution as that of real samples:

ŷ(i) ∼ N (0,E[(Gx(i))(Gx(i))T ]) = N (0, GGT ). (26)

Fortunately, under the above Gaussian setting, the optimal G∗ is well-known. Here what it
means by being optimal is in a sense of maximizing the likelihood of the data, as we adopted

4



while discussing on the optimality of a cross-entropy loss function in Lecture 19. It turns out
the optimal G∗ is the one that performs Principle Component Analysis (PCA):

E[ŷ(i)ŷ(i)T ] = G∗G∗T = Udiag(λ1, . . . , λk, 0, . . . , 0)UT (27)

where (λ1, . . . , λk) denote the k principal (largest) eigenvalues1 of KY = UΛUT . In a usual
setting in which k < n, the PCA solution looks making sense. The rank of GGT is limited by
k, so it may not fully represent KY as the rank of KY can be n. In this case, what one can do
for the best is to make GGT as close as possible to KY . One such natural way is to take the k
largest eigenvalues of KY to form a covariance matrix. It turns out it is the best way in a sense
of maximizing the likelihood of the data. The proof of this will be explored in PS.

Now under the special Gaussian linear-generator setting, one can ask the fundamental ques-
tion (22):

G∗ = G∗WGAN = arg min
G∈Rn×k

W (QY ,QŶ )? (28)

Interestingly it turns out the answer is yes! Actually the proof is not that short. So due to the
interest of time, we will not prove it here; if you are interested, you can consult with me.

However, the answer holds under such special Gaussian setting. So you may wonder if that is
the case also under general settings in which the data distribution is arbitrary. Unfortunately
it has been unanswered - it is an open question. I believe this is one of the fundamental and
intriguing questions in the context of the GAN-based framework. Someone may believe that the
answer depends on what distribution of data we consider. This may be the case, but even this
was not answered. So any progress on this will be interested.

Closing

Now let’s conclude the course. In Part I, we investigated several instances of convex optimization
problems, ranging from LP, Least-Squares, QP, SOCP, and all the way up to SDP. We stud-
ied how such problems are categorized, as well as how to formulate some real-world problems
into such specialized problems via some translation techniques possibly aided by matrix-vector
notations. For some certain settings including LP, unconstrained optimization and equality-
constrained QP, we also studied how to solve the problems explicitly.

In Part II, we studied two important theorems regarding duality: (1) strong duality theorem; (2)
weak duality theorem. With the strong duality theorem, we came up with a generic algorithm
which provides detailed guidelines as to how to solve arbitrary convex optimization problems:
the interior point method. With the weak duality theorem, we investigated a certain yet powerful
method, called Lagrange relaxation, which can provide reasonably-good approximation solutions
for a variety of non-convex problems.

In Part III, we explored one trending application where optimization tools that we learned play
central roles: Machine learning. In particular, we studied two certain yet popular methodologies
of machine learning: (1) supervised learning; (2) unsupervised learning. For supervised learn-
ing, we put an emphasis on deep learning, which is based on deep neural network architectures
which received significant attention recently. We saw that the optimization tools and concepts
that we learned are instrumental particularly to choosing objective functions as well as gaining
algorithmic insights. As for unsupervised learning, we investigated the most fundamental learn-
ing method, called generative models, and then studied one specific yet powerful framework for

1Here one may ask how to compute such principal eigenvalues when KY is unknown, which is the case in
reality. In this case, the optimal way is to compute an empirical covariance matrix S := 1

m

∑m
i=1 y

(i)y(i)T and
then to take the k largest eigenvalues of S.

5



such generative models, named GANs. In this context, we observed that the duality theorems
play a crucial role in enabling a practical implementation for the state-of-the-art GAN, which is
WGAN.

It is no doubt that tools for convex optimization are very powerful - the usefulness has already
been proved by many researchers working on a wide variety of fields. While this course put
an emphasis on a particular application (machine learning), it is shown to have much broader
applicability. So I hope you would find all of these useful in your own research field.

6


	cover_page_temp
	textbook_introduction_convex_optimization
	CN01
	CN02
	CN03
	CN04
	CN05
	CN06
	CN07
	CN08
	CN09
	CN10
	CN11
	CN12
	CN13
	CN14
	CN15
	CN16
	CN17
	CN18
	CN19
	CN20
	CN21
	CN22
	CN23
	CN24
	CN25


