
Lecture Notes:
Introduction to Communication Engineering

Changho Suh1

June 12, 2020

1Changho Suh is an Associate Professor in the School of Electrical Engineering
at Korea Advanced Institute of Science and Technology, South Korea (Email:
chsuh@kaist.ac.kr).

EE321 Communication Engineering March 18, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 1: Logistics and overview

About instructor

Welcome to EE321: Communication Engineering! My name is Changho Suh, an instructor
of the course. A brief introduction of myself. A long time ago, I was one of the students in
KAIST like you. I spent six years at KAIST to obtain the Bachelor and Master degrees all
from Electrical Engineering in 2000 and 2002, respectively. And then I left academia, joining
Samsung Electronics. At Samsung, I worked on the design of wireless communication systems
like 4G-LTE systems. Spending four and a half years, I then left industry, joining UC-Berkeley
where I obtained the PhD degree in 2011. I then joined MIT as a postdoc, spending around
one year. And then I came back to KAIST. While in Berkeley and MIT, I worked on a field, so
called information theory, which lays the foundation of digital communication that I am going
to cover in this course. This is one of the main reasons that I am teaching this course.

Today’s lecture

In today’s lecture, we will cover two very basic stuffs. The first is logistics of this course: details
as to how the course is organized and will proceed. The second thing to cover is a brief overview
to this course. Here I am going to tell you what we will study in this course in a very brief
manner.

My contact information, office hours and TAs’ information

See the syllabus uploaded on the course website (to be detailed soon). One special note: The
office hours are offline, but if you wish to meet online, please send me an email to request. Upon
request, I can open Zoom occasionally. If you cannot make it neither for my office hours nor for
TAs’ ones, please send me an email to make an appointment in different time slots.

Course format

The class runs online via Zoom. We may have offline lectures on a demand basis. The Zoom
meeting ID is 910 581 3558, and this will be fixed throughout the class. You can join via
https://kaist.zoom.us/j/9105813558. It will be open 10 minutes prior to the scheduled time.

Prerequisite

The basic prerequisite for this course is familiarity with the concept on two crucial and funda-
mental topics: (i) signals & systems; (ii) probability. In terms of courses, this means that you
should have taken: (i) EE202: Signals and Systems; (ii) EE210: Probability and Introductory
Random Processes, which is an undergraduate-level course on probability. These are the ones
that are offered in Electrical Engineering. Some of you from other departments might take
different yet equivalent courses. This is also okay.

There is another course which helps understanding this course. That is EE528, which is a
graduate-level course on random processes. It deals with the probability in a deeper manner
and also covers many important concepts on random processes. So if you have enough energy,
passion and time, I strongly recommend you to take this course simultaneously, although it is

1

not a prerequisite.

There must be a reason as to why the above courses are crucial. The reason is obviously
related to the definition of communication that this course is about. What is communication?
Communication is the transfer of information from one end (called transmitter) to the other
(called receiver), over a physical medium (like an air) between the two ends. Here the information
could be voice signals, or video signals, or text signals. So we see that communication deals
with signals. Also here we have something between the transmitter and the receiver. One can
view that as a black box, which can then be interpreted as a system. So communication deals
with systems. This is why the basic properties on signals and systems play a role to understand
the topics on communication. I believe all of you guys already took EE202, or are now taking
this. If you don’t take this course, I strongly recommend you to take this course. It’s okay to
take the course at the same time with the communication engineering course. In the beginning
part of this course, we are not going to cover the topics concerning the knowledge of signals and
systems. So don’t worry.

Now let us explain why the probability course matters. Recall that there is a physical medium
that lies in between the transmitter and the receiver. The physical medium is so called the
channel. The channel is the very entity that relates the concept of probability to communication.
If you think about how the channel behaves, then you can easily see why. As mentioned earlier,
the channel is a system (in other words, a function) which takes a transmitted signal as an input
and a received signal as an output. Here one big problem arises in the system. The problem is
that it is not a deterministic function. If the channel is deterministic and one-to-one mapping,
then one can easily reconstruct the input from the output. So there is no problem in transferring
information from the transmitter to the receiver. However, the channel is not deterministic in
reality. It is actually a random function. In other words, there is a random entity (also known
as noise in the field) added into the system. In typical communication systems, the noise is
additive: a received signal is the sum of a transmitted signal and the noise. In general, we have
no idea of the noise. In mathematics or statistics, there is a terminology which indicates such a
random quantity. That is, random variable or random process, which the probability forms the
basis for. This is the very reason that this course requires a deep understanding on probability.
Some of you may have no idea of the random processess although you took EE210. Please
don’t be offended. It is nothing but a sequence of random variables. Whenever the concept on
random process comes up, I will provide detailed explanations and/or materials which serve you
to understand the contents required.

Course website

We have a course website on the KLMS system. You can simply login with your portal ID. If
you want to only sit in this course (or cannot register the course for some reason), please let
me or one of TAs know your email address. Upon request, we are willing to distribute course
materials to the email address that you sent us.

Text

There is no required textbook. But don’t worry. Instead I will provide you with enough materials
so that you can readily follow the course. The materials are three folded. First, course notes
(CN), which contain every details and thus are self-contained. I believe reading the CNs would
suffice for you to understand all the contents covered in this course. Second, lecture slides (LS),
which I will use during lectures. The last is lecture videos (LV). The Zoom meeting will be
recorded and an edited version of the recording will be uploaded on the course website.

As mentioned earlier, this course requires the familiarity with the concept on probability. So for

2

those who are not familiar with the probability concept, I strongly recommend you to practice
the following material. This is actually a course note drafted by two MIT professors, Bertsekas
and Tsitsiklis. The names are very hard to pronounce. So I will simply call them BT. This has
already been uploaded on the website. The course note is very easy to read. So I believe you
can study by yourselves.

Problem sets

There will be weekly or bi-weekly problem sets. So there would be seven to eight problem sets
in total. Your solution (a scanned version of your handwritten writeup or just a type-based soft
version) must be submitted via email to a responsible TA, who will be designated upon the
issue of each problem set. Solutions will be usually available at the end of the due date. This
means that in principle, we do not accept any late submission. We encourage you to cooperate
with each other in solving the problem sets. However, you should write down your own. You
are welcome to flag confusing topics in the problem sets; this will not lower your grade.

Exams

As usual, there will be two exams: midterm and final. Please see the syllabus for the schedule.
Notice that exams are in-class and offline at N1-201. In case the COVID-19 crisis is not
improved until the midterm season, then I will think about a way to take the exam in an online
manner and will announce details around the time. Otherwise, you will take it offline. Please
let us know if someone cannot make it for the schedule. With convincing reasons, we can change
the schedule or can give a chance for you to take an exam in a different time slot that we will
organize individually.

Three things to notice. The first is about whether to hold regular lectures during the exam
weeks assigned by KAIST default. I will hold regular lectures even during the exam weeks.
Why? This way, we can finish the course in the middle of June, which was the original semester
end season without the outbreak. If you have concerns and/or issues, please let me know. We
can discuss further to find a better solution. Second, for both exams, you are allowed to use
one cheating sheet, A4-sized and double-sided. So it is a kind of semi-closed-book exam. Lastly,
for your convenience, we may provide an instruction note for each exam (if you wish), which
contains detailed guidelines as to how to prepare for the exam. Such information includes: (1)
how many problems are in the exam; (2) what types of problems are dealt with in what contexts;
(3) the best way to prepare for such problems.

Course grade

Here is a rule for the course grade that you are mostly interested in perhaps. The grade will be
decided based on four factors: problem sets (22%); midterm (32%); final (40%); and interaction
(6%). Here the interaction means any type of interaction. So it includes attendance, in-class
participation, questions, and discussion.

Overview

Now let’s move onto the second part. Here is information for reading materials: Course Note
(CN) 1. In this part, I will tell you the main content that we will study throughout the course.
To this end, I will first tell you how communication of this course’s interest evolves and then
point out what specific component in communication that we will focus on learning about.

History of communication systems

3

Let’s start from the beginning. What is the definition of communication? As mentioned earlier,
communication is the transfer of information from one end to the other end. Here the one end
is called transmitter, and the other end is called receiver. Something that lies in between is a
physical medium, called the channel.

As you can easily image, communication has a long history. Even in the beginning of the world,
there was a communication, which is a dialogue between people. The dialogue, also called con-
versation, is definitely a type of communication although it is a very naive way of communication
and has nothing to with electrical engineering. Actually there was a breakthrough in the history
of communication, which is now related to the communication systems that have something to
do with electrical engineering and so we are interested in. This breakthrough was the inven-
tion of telegraph. Morse code1 is the first such example: a very simple transmission scheme
that is initially used in telegraph. Actually this invention was based on a simple observation
(discovered in physics) that electrical signals, like voltage or current signals can be transmitted
over wires such as copper lines. So it is the first communication system that have something to
do with electrical signals. Actually this is the main reason as to why communication systems
have been studied within the field of electrical engineering where most of you guys are in. Later
this technology was further developed. In the 1870s, Alexander Graham Bell invented a more
advanced version of such systems, called telephone.

Communication systems were further upgraded. The upgrade was based on another finding in
physics: not only we can send electrical signals over wires, but we can also send them in a
wireless environment through electromagnetic waves, simply called radio waves. This finding
inspired an Italian engineer at that time, named Guglielmo Marconi. He developed a wireless
version of telegraph, called wireless telegraphy. Later this technology was further developed,
which led to the invention of radio and TV.

State of the affairs in early 20th century & Claude E. Shannon

These are the communication systems that were developed in the early 20th century: telegraph,
telephone, wireless telegraphy, radio and TV. Actually at this time, there was one guy who could
make some interesting observations on these communication systems, which in turn made him
do some great work in communication. The guy was Claude E. Shannon, known as the Father of
Information Theory. He made the following observation: Engineering designs are pretty ad-hoc,
being tailored for each specific application. This means that design principles were completely
different depending on signals of interest.

What he felt from this observation is that such communication systems are really annoying.
He did not like the communication systems because such systems are designed in a pretty ad-
hoc manner (no systematic design principle!), in other words, in a completely different manner
depending on each specific application of interest. He actually believed that there must be one
simple & beautiful framework that can unify all such different communication systems. So he
tried to unify the ad-hoc approach. As a specific effort, he raised the following big questions.

Shannon’s big questions

The first question is the most fundamental question regarding the possibility of unification.

Question 1: Is there a general unified methodology for designing communication systems?

The second question is a natural follow-up question which helps addressing the first question.

1Regarding the code, don’t be confused with computer programming languages (such as C++ and Python) that
have nothing to do with it. Code is a sort of terminology used in the context of communication which indicates a
transmission scheme.

4

He thought that if unification is possible, then there may exist a common currency (like dollar in
the context of economics) w.r.t. (with respect to) information. In the communication systems,
we have a variety of different information sources, like text, voice, video, images. The second
question that he asked is related to the existence of such common currency.

Question 2: Is there a common currency of information that can represent all such different

information sources?

He had spent around eight years to address the above questions. Perhaps he had quite a difficult
time as the long period of eight years indicates. But he could make a progress in the end. He
could address all the big questions in a single stroke. In the process of doing this, he could
develop a unified communication architecture.

Communication architecture

Prior to describing the unified architecture in detail, let us first recall the three terminologies
that we introduced: transmitter, receiver, and something that lies in between transmitter and
receiver, which is the channel. Now consider information signals that one wishes to transmit,
such as text, voice, and image pixels. Here is another terminology which indicates such signals:
“information source”. What Shannon thought in the first place is that there must be something
which processes the information source before transmission. He abstracted this process with
a black box that he called “encoder”. Of course there must be something at receiver which
attempts to recover the information source from the received signals that the channel yields. He
abstracted the process at the receiver end with another black box that he called “decoder”. This
is the very first basic block diagram that Shannon imagined for a communication architecture.
See Fig. 1. From a Shannon’s viewpoint, a communication system is nothing but a collection of
encoder and decoder, so designing a communication system is concerning how to develop such
encoder and decoder.

encoder channel
information

source
decoder

transmitter receiver

Figure 1: A basic communication architecture.

Representation of information source

With this simple picture in his mind, Shannon wished to unify all the different communication
systems that were prevalent in the early 20th century. Most engineers at that time attempted to
transmit information sources (which are of course different depending on applications of interest)
directly without any significant modification. Shannon thought that this is the very reason as
to why there were different communication systems.

He then thought that for the purpose of unification, there must be at least something that
can represent different information sources. He believed that the common thing would lead
to a universal framework. It turns out Shannon’s work on master thesis in MIT could play a
significant role to find a universal way of representing information source. His master thesis
was about Boolean algebra. What he did specifically is that any logical relationship in circuit
systems can be represented with 0/1 logic, in other words, binary string.

5

Inspired by this, Shannon thought that the same thing may happen in the context of commu-
nication systems, meaning that any type of information source can be represented with binary
string. He showed that it is indeed the case. Specifically what he showed is that the binary
string that he called “bits” can represent the meaning of information.

For instance, suppose that information source is an English text that comprises English letters.
Now how to represent each English letter with a binary string? Here one key observation is that
there are only a finite number of candidates that each letter can take on. This number is the
total number of English alphabets, which is 26.2 From this, we see that dlog2 26e = 5 number
of bits suffices to represent each letter.

A two-stage architecture

This observation led Shannon to introduce bits as a common currency of information. Specifically
here is what he did. He first thought that we need a block which converts information source
into bits of our interest. Motivated by this, Shannon came up with a two-stage architecture in
which the encoder is split into two parts. Here the role of the first block is to convert information
source into bits. Shannon called the block “source encoder”, as it is a part of the encoder as
well as is related to how information source looks like. The role of the second block is to convert
bits into a signal that can actually be transmitted over a channel. Shannon called it “channel
encoder” because it is obviously concerning a channel. See the upper part in Fig. 2.

channel

information

source

transmitter

receiver

bitssource

encoder

channel

encoder

bitssource

decoder

channel

decoder

digital interface

Figure 2: A two-stage communication architecture.

Similarly, receiver consists of two stages. But the way it is structured is opposite. In other
words, we first convert the received signals into the bits that we sent at the transmitter (channel
decoder). Next, we reconstruct the information source from the bits (source decoder). As you
can see, this block is nothing but an inverse function of source encoder. Obviously source encoder
should be one-to-one mapping; otherwise, there is no way to reconstruct the information source.
See the lower part in Fig. 2.

Actually there is a terminology which indicates the part spanning from channel encoder, channel,
to channel decoder. We call it “digital interface”. Here one thing to notice is that this digital
interface is universal in a sense that it has nothing to do with type of information source because
the input to the digital interference is always bits. So in that regard, it is indeed a unified

2Here we ignore any special characters such as space.

6

communication architecture.

Focus of this course

This course is about how to design this digital interface. In the next lecture, I will tell you what
specific contents within the digital interface that we will study throughout the course. I will
then embark on details.

7

EE321 Communication Engineering March 20, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 2: A statistical model for additive noise channels

Recap

Last time we introduced the key entity in communication that we are going to focus on learn-
ing about throughout the course. Recall the definition of communication. Communication is
the transfer of information from one end (called transmitter) to the other end (called receiver)
through a physical median (called channel). The entity of this course’s focus is: digital commu-
nication where a transmitted information source is of the form of binary string, bits; see Fig. 2.
Here the block that processes the bits to yield a transmitted signal is called the channel encoder,
and the one that processes a received signal to reconstruct the bits is called the channel decoder.
For simplicity, let us call a collection of them encoder/decoder. The focus of the course is to
study how to design the encoder/decoder so as to enable reliable transfer of such binary string.

CN2_1

channel

transmitter receiver

bits channel

encoder

bitschannel

decoder

Figure 1: The basic block diagram of a digital communication system.

Today’s lecture

Obviously the design of the encoder/decoder depends on properties of the associated channel.
So we need to understand the properties of the channel, which are possibly different depending
on a channel type. In today’s lecture, we are going to talk about some representative channels
that we will focus on throughout this course. I will then provide you with the detailed course
outline, being built upon the focused channels. Next, we will consider a simple example of the
channels where we can get concrete feelings as to how to design the encoder/decoder.

Modem

Prior to diving into details, let me say a few words about one terminology that you may hear
of in the context of communication. The physical world is definitely analogue, so a transmitted
signal that is fed into the channel should be a physical quantity, such as an electromagnetic
signal, say an electrical voltage signal. So the encoder needs to modulate the digital information
(bits) into an electrical voltage signal. Also a received signal (the channel output) is a voltage
signal, so the decoder needs to demodulate the analogue signal to reconstruct the bits. Hence,
people often call the encoder/decoder simply the modem, highlighting “mo” and “dem” from
modulator and demodulator, respectively.

Statistical models of the channel

One key feature of the channel is its uncertainty. The received voltage signal is not a deterministic
function of the transmitted signal. While the behavior of the channel over one experiment cannot

1

CN2_2

channel

transmitter

bits
encoder

bits
decoder

voltage

(often called modulator) (demodulator)

receiver

Figure 2: MODEM: MOdulator & DEModulator

be predicted, the average behavior, as seen over many experiments turns out to be well behaved
in many physically interesting scenarios.

Also the channel in most practical scenarios is of the form of addition: the received signal is the
sum of the transmitted signal and an additive noise, as illustrated in Fig. ??.

CN2_3

transmitter

bits
encoder decoder

receiver

bits

Figure 3: A statistical model for additive noise channels.

Hence, the additive noise, say w, can be described by a random quantity, that is usually referred
as a random variable in the language of statistics. More precisely, it is a continuous random vari-
able, which is fully described by a probability density function (pdf). If you do not understand
what I am talking about, please study the concept of a random variable from BT.

Obviously the statistical behaviour of w, i.e., the pdf of w, is crucial in the modem design.
Hence, in order to study how to design the modem (of this course’s focus), we first need to have
reasonable statical models for the channel.

Course outline

In this course, we will first study a couple of reasonable statistical models and then will study
how to design the modem accordingly. The course consists of three parts.

In Part I, we will consider the simplest yet practically-relevant setting where the pdf of w
can precisely be modeled as a very well-known distribution, called the Gaussian distribution,
which you may hear of. The Gaussian distribution can be fully described by two representative
quantities: the mean, say µ, and the variance, say σ2. It is simply denoted by:

w ∼ N (µ, σ2)

where the symbol “∼” means “is distributed according to”, and the beautiful caligraph letter
N stands for the Normal distribution.1 The corresponding pdf reads:

fw(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

1The rationale behind the naming “normal” is that such distribution appears frequently (normally) in many
contexts. This is coined by the famous German mathematician, Carl Friedrich Gauss. Later people call it the
Gaussian distribution, appreciating Gauss.

2

To know more about the Gaussian distribution, you may want to refer to Chapter 3 in BT. In
Part I, we will first study why the additive noise can be modeled as the Gaussian distribution.
We will then study how to design the modem for the additive channel with the Gaussian noise,
simply called the additive Gaussian channel.

In Part II, we will move onto another practical scenario where the channel is established via
wires (copper lines). Such channel is simply called the wireline channel. You may hear of DSL
(digital subscriber line), the name of one popular internet (wireline) service that many homes
have subscribed to. The DSL is a perfect example of the wireline channel. It turns out the
wireline channel can be modeled as the concatenation of two blocks; see Fig. ??. The second

CN2_4

transmitter

bits
LTIencoder decoder

receiver

bits

Figure 4: A statistic model for wireline channels.

block is the same as before: the additive block with the Gaussian noise. The first block is a
system that you must be very much familiar with, assuming that you took EE202. That is,
the LTI (linear time invariant) system. In Part II, we will first study the rationale behind such
modeling, and then investigate how to design the modem accordingly.

Now you may guess that the next topic is about wireless channel. A prominent example of
the wireless channel is the 5G cellular system that is prevalent nowadays in our daily life. It
turns out the wireless channel can be modeled as the concatenation of the LTV system block
and the additive block. Here the acronym LTV stands for linear time varying. In the wireless
channel, either transmitter or receiver, or both can move freely because there is no wire between
them. Such movement then yields a different channel statistics, making the system time-varying.
Unfortunately (or maybe fortunately to those who are not interested in wireless communication),
this is beyond the scope of this course. This is mainly due to the interest of time; indeed there
are many things to learn for the wireless channel. But if you desire to learn about, you may
want to take a course, EE421: Wireless Communication Systems.

Instead in Part III, we are going to switch-gear to explore something different. It turns out that
the principles and tools that we will learn about through the prior parts are quite instrumental
to addressing some important issues that arise in a trending field, machine learning. So in Part
III, we will study such machine learning applications. While there are many applications, we
will focus only on the following two:

1. Machine learning classifiers;

2. Speech recognition.

Part I: Additive Gaussian channel

In Part I, we will study why the Gaussian channel is practically relevant, and then learn about
the modem design under the Gaussian channel.

A simple example

3

Let x be the transmitted signal and y be the received signal.

y = x+ w (1)

where w is an additive noise. In order to get concrete feelings about the modem design, prior to
the Gaussian case, let us first consider a much simpler setting where w is assumed to be strictly
within a certain range, say ±σ.

A simple transmission scheme

Suppose we want to send a single bit across the above simple channel. We can do this by
transmitting a voltage v0 to transmit an information content of the bit being “zero”, and a
voltage v1 when transmitting an information content of the bit being “one”. As long as

|v0 − v1| > 2σ (2)

we can be certain that our communication of the one bit of information is reliable over this
channel. Physically, the voltage transmitted corresponds to some energy being spent. For
simplicity, assume that the energy spent in transmitting a voltage v Volts is v2 Joules. In this
context, a natural question arises: How many bits can we reliably communicate with an energy
constraint of E Joules?

Suppose we intend to transmit the number k of bits. A bit of thought lets us come up with
the following transmission scheme. We choose to transmit one of a collection of discrete voltage
levels: {

−
√
E,−

√
E + 2σ, · · · ,−

√
E + 2iσ, · · · ,+

√
E
}
, (3)

where i denotes some integer. Here how many intervals do we have in order to ensure the
successful transmission of k bits? That is, 2k−1. Why? This is because we should have at least
2k possible voltage-level candidates to guarantee the number k of bits. So we should have:

(2k − 1) · (2σ) ≤ 2
√
E

For simplicity, let us assume that
√
E is divisible by σ. This then leads to:

k = log2

(
1 +

√
E

σ

)
. (4)

v0 v1 v2 v3

00 01 10 11

Figure 5: Mapping from bits to voltage levels

The illustration in Fig. ?? demonstrates one possible mapping between the 4 sequences of 2 bits
to the 4 discrete voltage levels being transmitted. Here

√
E = 3σ and

vi = −
√
E + 2iσ, i = 0, 1, 2, 3. (5)

Relation between energy and reliable information transmitted

4

For a given energy constraint E, the number of bits we can communicate reliably is, from (5),

log2

(
1 +

√
E

σ

)
. (6)

A natural sort of question that one can ask is then: If we want to send an additional bit reliably
how much more energy do we need to expend? We can use the above expression to answer this
question: the new energy Ẽ required to send an extra bit of information reliably has to satisfy:

log2

(
1 +

√
Ẽ

σ

)
= 1 + log2

(
1 +

√
E

σ

)
(7)

1 +

√
Ẽ

σ
= 2

(
1 +

√
E

σ

)
(8)

Ẽ = σ + 2
√
E. (9)

In other words, we need more than quadruple the energy constraint to send just one extra bit
of information reliably.

Another interesting thing to note is that the amount of reliable communication transmitted
depends on the ratio between the transmit energy budget E and σ2 related to the energy of the
noise. This ratio, E

σ2 , is called the signal to noise ratio and will feature prominently in the other
additive noise models we will see.

Look ahead

This simple example of a channel model gave us a feel for simple transmission and reception
strategies. It also gave us an idea of how a physical resource such as energy is related to the
amount of information we can communicate reliably. The deterministic channel model we have
used here is rather simplistic; in particular, the choice of σ might have to be overly conservative
if we have ensure that the additive noise has to lie in the range ±σ with full certainty. It turns
out this issue brings up the motivation of knowing a more precise statistical behavior of w. Next
time, we will discuss it in detail.

5

EE321 Communication Engineering March 25, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 3: Additive Gaussian noise model

Recap

Last time, I outlined the course contents that we will study throughout the course, and mentioned
that the contents are built upon two representative & practically-relevant channels: (i) the
additive Gaussian channel; (ii) the wireline channel (which can be modelled as concatenation of
an LTI system and the additive Gaussian noise block).

In an effort to get a concrete feel as to how to design the modem of this course’s main interest,
prior to the Gaussian channel, we considered a simple channel example where the additive noise
w has the upper and lower bounds: −σ ≤ w ≤ σ. Under this channel, we then investigated
a simple transmission scheme in which a voltage-level signal is decided based on the patten of
multiple bits, say k bits, such that each voltage level is set apart at least 2σ to ensure the perfect
recovery of the bits at the receiver. We call this scheme pulse amplitude modulation, PAM for
short. The reception strategy was the Nearest Neighbour (NN) rule: Declaring a voltage level
that is nearest to a received signal, as the transmitted voltage signal. We then found the tradeoff
relationship between the energy budget of E and the maximum number k of bits that can be
transmitted reliably:

k = log2

(
1 +

√
E

σ

)
.

At the end of the last lecture, I mentioned that the assumption made on w in the simple channel
example is not realistic. I then claimed that in reality, w respects a very well-known distribution:
the Gaussian (or Normal) distribution.

Today’s lecture

Today we will prove this claim. Specifically what we are going to do are three folded. First
we will invoke physics: investigating how the additive noise occurs in practical communication
systems. We will then rely on such physics to come up with a set of mathematical assumptions
that the additive noise well respects. Finally, we will exploit the mathematical assumptions to
prove that w is indeed distributed according to the Gaussian distribution.

Physics

As we outlined in the previous section, let us first invoke physics, by investigating how such noise
occurs in interested communication systems. Here what I mean by interested communication
systems is the one with electronic circuits, which I simply call electronic communication systems.
In such electronic communication systems, a signal level is determined by its voltage. And we
know from the basic introductory course on circuits which I believe you already took: the voltage
level is dictated by the movement of electrons. The less electrons, the higher a voltage level.

In the early 1900s, it was discovered by a physicist, named John B. Johnson, that the behavior of
electrons contributes to inducing a noise that we cannot control over. The discovery was based on
an interesting observation that electrons are randomly agitated by heat. This random agitation
then makes the voltage level be out of control, as it may depend on a non-controllable factor

1

which is the temperature. So the precise movement control of electrons is almost impossible in
reality. Jonhson interpreted such undesirable random fluctuation as a major source of noise.

At that time, Johnson wanted to figure out the statistical behavior of the noise, but he could
not do so because he was an experimental physicist, not being good at math. Instead he had a
colleague in his workplace, Bell Labs, who is very smart and particularly strong at math. The
colleague was Harry Nyquist1. So he shared his experimental observation with Nyquist. As
Johnson expected, Nyquist could establish a mathematical theory for such noise to demystify its
statistical behavior. The theory formed the basis of the Gaussian noise modelling that we will
study in the sequel. At the time, the noise was named as the thermal noise, as it is dependent
of the temperature.

In reality, a noise may also depend on device imperfections and/or measurement inaccuracies.
But the major source of the randomness is due to the thermal noise. So we are going to focus
on the mathematical theory of the thermal noise done by Nyquist.

Assumptions made on the thermal noise

The mathematical theory starts with making concrete assumptions on physical properties that
the thermal noise respects. These are four folded.

1. As mentioned earlier, the noise is due to the random movement of electrons. And an
electrical signal contains tons of electrons. So one natural assumption that one can make
is: the additive noise is the overall consequence of many additive “sub-noises’. A natural
follow-up assumption is that the number of sub-noises is infinity, which reflects the fact that
there are tons of electrons in an electrical signal.

2. These electrons are known to be typically uncorrelated with each other. So the second
assumption is: the sub-noises are statistically independent.

3. Also it is known that there is no particularly dominating electron that affects the additive
noise most significantly. So the third assumption that one can make as a simplified version
of this finding is: each sub-noise contributes exactly the same amount of energy to the total
energy in the additive noise.

4. Finally, the noise energy is typically not so big relative to the energy of an interested voltage
signal. Obviously it does not blow up. So the last reasonable assumption is: the noise energy
is finite.

Mathematical representation of the four assumptions

Now let us express the above four assumptions in a mathematical language. To this end, we
first introduce some mathematical notations to write the total additive noise w as the the sum
of m sub-noises n1, . . . , nm:

w = n1 + n2 + · · ·+ nm. (1)

The mathematical expressions of the first and second assumptions are: m→∞ and (n1, . . . , nm)
are statistically independent with each other. Here what it means by “independence” is that
the joint pdf of (n1, . . . , nm) can be expressed as the product of individual pdfs:

fn1,n2,··· ,nm(a1, a2, . . . , am) = fn1(a1)fn2(a2) · · · fnm(am) (2)

1Yes, he is the famous Nyquist, being very prominent for the Nyquist sampling theorem that you may hear of
from the course on Signals and Systems.

2

where ai ∈ R denotes a realization of the sub-noise ni. If you are not familiar with the definition
of the statistical independence, please see Chapter 3 in BT. A mathematical assumption that
we will take while leading to the third assumption is: (n1, . . . , nm) are identically distributed.
Here the property of being independent and identically distributed is simply called i.i.d.

Now without loss of generality2, one can assume that w has zero-mean. Why? Suppose we have
a bias on w: E[w] = µ 6= 0. We can then always subtract the bias from the received signal so
that the mean of the effective noise is zero. More precisely, we subtract the bias µ from the
received signal y = x+ w to obtain:

y − µ = x+ (w − µ). (3)

Then, w − µ can be interpreted as the effective noise, and this has indeed zero-mean. Due to
the i.i.d. assumption, each sub-noise has the same amount of energy:

E[n2i] = E[n2j], ∀i, j = 1, . . . ,m. (4)

The energy in the total additive noise w is

E[w2] = E

(m∑
i=1

ni

)2

(a)
=

m∑
i=1

E[n2i] +
∑
j 6=i

E[njni]

(b)
= mE[n21] +

∑
j 6=i

E[nj]E[ni]

(c)
= mE[n21]

(5)

where (a) is due to the linearity of the expectation operator; (b) comes from the i.i.d. assumption;
(c) is because of the zero-mean assumption of E[w] = mE[n1] = 0 (leading to E[ni] = 0 as well).
Notice that the i.i.d. assumption implies the (pairwise) independence between ni and nj (for
j 6= i), thereby leading to E[njni] = E[nj]E[ni]. If you are not familiar with this, again see
Chapter 3 in BT.

Lastly consider the finite energy assumption. Denoting this finite energy by σ2, we see from (5)
that the energy of the sub-noises must shrink as more and more sub-noises are added:

E[n2i] =
σ2

m
, i = 1, . . . ,m. (6)

The statistical behavior of the thermal noise in the limit of m

We are interested in the statistical property of the total additive noise w. In the language of
probability, we are asking for the probability distribution or pdf of the random variable w. It
turns out that under the assumptions made on w as above, the probability distribution for w is
Gaussian, formally stated below.

Theorem 0.1 Let w = n1 + n2 + · · · + nm. Assume that (n1, . . . , nm) are i.i.d. such that

E[ni] = 0, E[n2i] = σ2

m and σ2 <∞ (finite). Then, as m→∞,

w ∼ N (0, σ2). (7)
2It means that the general case can be readily covered with some proper modification to the ground assumption

that follows after the phrase. That’s why here we say that there is no loss of generality.

3

Nyquist proved this theorem by relying on a very well-known theorem in probability and statis-
tics, called the central limit theorem that you may hear of. If you want to know a precise
mathematical statement of the central limit theorem, see Chapter 7 in BT.

Proof of Theorem (0.1)

The pdf of w depends obviously on the pdfs of the sub-noises. Here the relationship is very
well-known when the sub-noises are independent, as we assumed as above. Actually you learned
about the relationship from the course on probability (say EE210). That is,

the pdf of the sum of independent random variables can be represented as the convolution
of the pdfs of the random variables involved in the sum.

If you forget or don’t know about this, please refer to Chapter 4 in BT. Also you will have a
chance to prove this in PS1. So then how can we represent fw(a) in terms of (fn1(a), . . . , fnm(a))?
It is the convolution of all the pdfs of the sub-noises:

fw(a) = fn1(a) ∗ fn2(a) ∗ · · · ∗ fnm(a) (8)

where * indicates the convolution operator, defined as: fn1(a)∗fn2(a) :=
∫ +∞
−∞ fn1(t)fn2(a−t)dt.

But we face a challenge here. The challenge is that the convolution formula is very complicated,
as the meaning of the word “convoluted” suggests. Even worse, we have an infinite number m
of such convolutions (more precisely m − 1). Another thing you learned now from the course
on Signals and Systems (say EE202) comes to rescue. The convolutions can be very much
simplified in the Fourier or Laplace transform domain. Since the pdf is a continuous signal, the
interested transform must be Laplace transform. The simplification is based on the following
key property: the Laplace transform of the convolution of multiple pdfs is the product of the
Laplace transforms of all the pdfs involved in the convolution. To state what it means in detail,
recall the definition of the Laplace transform Fw(·) w.r.t. the pdf fw(·) of w:

Fw(s) :=

∫ +∞

−∞
fw(a)e−sada. (9)

Now using the fact that the convolution is translated to the multiplication in the Laplace trans-
form domain, we can re-write (8) as:

Fw(s) = [Fn(s)]m (10)

where Fn(·) indicates the Laplace transform of the pdf fn(·) of the generic random variable n
that represents a sub-noise ni.

Now how to proceed with (10)? More precisely, how to compute Fw(s) with what we know:

E[n] = 0 and E[n2] = σ2

m ? It turns out these moment information (0th and 1st moments) play
a crucial role to compute. Here a key observation is that these moments appear as coefficients
in the Taylor series expansion of Fn(s). And it turns out this expansion leads to an explicit
expression for Fw(s), thereby hinting the pdf of w. To see this, let us try to obtain the Taylor
series expansion of Fn(s). To this end, we first need to compute the kth derivative of Fn(s):

F (k)
n (s) :=

dkFn(s)

dsk

=

∫ ∞
−∞

(−1)kakfn(a)e−sada

(11)

4

where the second equality is due to the definition of the Laplace transform: Fn(s) :=
∫ +∞
−∞ fn(a)e−sada.

Applying the Taylor expansion at s = 0, we get:

Fn(s) =
∞∑
k=0

F
(k)
n (0)

k!
sk (12)

Plugging s = 0 into (11), we get:

F (k)
n (0) =

∫ ∞
−∞

(−1)kakfn(a)da = (−1)kE[nk].

This together with (12) yields:

Fn(s) =

∞∑
k=0

(−1)kE[nk]

k!
sk. (13)

Applying E[n] = 0 and E[n2] = σ2

m to the above, we arrive at:

Fn(s) = 1 +
σ2

2m
s2 +

∞∑
k=3

(−1)kE[nk]

k!
sk. (14)

Now what can we say about E[nk] for k ≥ 3 in the above? Notice that E[nk] = E[(n2)
k
2] and

E[n2] = σ2

m decays like 1
m . It turns out this leads to the fact that E[(n2)

k
2] decays like 1

mk/2
,

which exhibits a faster decaying rate for k ≥ 3, as compared to 1
m . It turns out this scaling

yields:

Fw(s) = lim
m→∞

(
1 +

σ2

2m
s2 +

∞∑
k=3

(−1)kE[nk]

k!
sk

)m

= lim
m→∞

(
1 +

σ2

2m
s2
)m

= e
σ2s2

2

(15)

where the last equality is due to the fact that

ex = lim
m→∞

(
1 +

x

m

)m
. (16)

Now from (15), what can we say about fw(a)? To figure this out, we need to do the Laplace

inverse transform: fw(a) = InverseLaplace(Fw(s))(a) := 1
2πi limT→∞

∫ Re(s)+iT
Re(s)−iT Fw(s)esads. But

you may feel headache because it looks very much complicated. So instead we will do the reverse
engineering: guess-&-check. A good thing about the Laplace transform is that it is an one-to-one
mapping. Also one can easily check (in PS1):

LaplaceTransform

(
1√

2πσ2
e−

a2

2σ2

)
= e

σ2s2

2 .

This together with (15) gives:

fw(a) =
1√

2πσ2
e−

a2

2σ2 , a ∈ R. (17)

5

This is indeed the Gaussian distribution with mean 0 and variance σ2. So this completes the
proof.

Look ahead

Making some assumptions on the additive thermal noise inspired by physics, we mathematically
demonstrated that the additive noise can precisely be modelled as the Gaussian distribution.
Next time, we will go back to our main interest for the course: exploring the design of the
modem but now under the Gaussian channel. We will then investigate the tradeoff relationship
between the number of transmission bits and the energy budget, as we did in the prior simple
channel example.

6

EE321 Communication Engineering March 27, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 4: Optimal receiver

Recap

In Lecture 2, we considered the simple channel example where the additive noise is within ±σ
voltages, and then came up with a simple transmission scheme and the corresponding reception
strategy: PAM and the NN rule. Under such tx/rx schemes, we next established the tradeoff
relationship between the energy budget and the number of bits transmitted reliably. Since the
considered channel is not realistic, last time we started investigating practical communication
systems and then demonstrated that the additive noise in real systems can be modelled as a
random variable with the Gaussian distribution.

Today’s lecture

Today we will go further now with the realistic additive channel, simply called the Gaussian
channel. Specifically we are going to cover the following three stuffs. First we will study a
simple transmission scheme as we did in Lecture 2. Essentially we will adopt exactly the same
transmission scheme: PAM. Next we will explore a reception strategy. Recall the simple channel
example in which the NN decision rule enables the perfect transmission as long as the minimum
distance between any two voltage levels in transmission exceeds 2σ. Unlike this channel, in the
Gaussian channel, we now need to worry about transmission failure, as the Gaussian noise level
can exceed +σ (or go below −σ) and this can incur a decision error under the NN rule (actually
under any other reception scheme that one can imagine). One natural effort given the situation
where transmission failure is unavoidable is to simply accept that we can have errors in decision
and then to come up with the best reception strategy as much as we can. In a mathematical
language, the best (or optimal) decision rule is defined the one that maximizes the success rate
for transmission (the probability that we make a correct decision), equivalently minimizes the
probability of error. So in the second part, we will derive such optimal decision rule. Lastly we
will show that under a reasonable assumption (that I will detail later), the optimal decision rule
is exactly the same as the intuitive NN decision rule that we studied earlier.

Since there is another concept (the success rate or simply called reliability) introduced in the
Gaussian channel, we are now interested in characterizing the tradeoff relationship between three
quantities: (i) the energy budget; (ii) the number of bits that can be reliably transmitted; (iii)
reliability. This would be the topic of the next lecture. Today, we will focus only on the following
two: energy and reliability. So we will consider the case of sending only one bit.

A simple transmission scheme

As mentioned earlier, consider the simple case of sending one bit: b = 1 or 0. Given the energy
budget E, the transmission scheme that we will take is the same as before. That is PAM:
transmitting +

√
E-voltage signal for b = 1 while sending −

√
E-voltage signal for b = 0, as

illustrated in Fig. 1.

Reception scheme

As mentioned earlier, the optimal decision rule is the one that maximizes reliability. Prior to
deriving the rule, let us first describe two main factors that affect the decision rule.

1

−
√
E

0 1
√
E

Figure 1: Mapping from sending one bit across the Gaussian channel.

• A priori knowledge: If there is some prior information on the statistical behaviour of the
information bit b, then that could factor in the decision rule. Why? You can easily see why
if you think about one extreme case where we somehow knew (prior to the communication
process) that the information bit is 1 for sure. In this case, we do not need to take a look
at the received voltage y. We can simply declare that the information bit is 1, no matter
what. In reality, however, we often times have no access to such prior information. In this
case, what we can do is to simply assume that the information bit is equally likely to be 1
or 0. So here we will take this assumption.

• Noise statistics: Knowing the statistical behaviour of the noise will help the receiver make
a decision. For instance, if the noise is more likely to be near zero, a good receiver would
be the one that picks the nearer of the two possible transmit voltages as compared to the
received voltage (that is exactly the nearest-neighbor rule that we studied earlier).

It turns out that under the assumption that the information bit is equally likely, the NN decision
rule is optimal, i.e., maximizes the reliability. So for the rest of this lecture, we will prove that
the NN rule is indeed the optimal decision rule that maximizes the reliability.

The optimal decision rule

To begin with, let us list all the information that the receiver has; also see Fig. 2 that illustrates
the action taken at the receiver.

Channel

Receiver

Channel

Decoder

b̂ = 0 or 1

Figure 2: The basic block diagram of a receiver

1. The a priori probabilities of the two values the information bit can take. As mentioned
earlier, we will assume that these are equal (0.5 each).

2. The received voltage y.

3. The encoding rule: We assume to know how the information bit is mapped into voltages
at the transmitter. This means that the mapping in illustrated in Fig. 1 should be known
to the receiver. This is a reasonable assumption because in real communication systems,
we can fix the transmission rule as a communication protocol that both transmitter and
receiver should agree upon.

The reliability of communication conditioned on a specific received voltage level (say, a) is simply
the probability of a correct decision event, denoted by C (the information bit b being equal to
the estimate b̂(a)):

Pr(C|y = a) = Pr(b = b̂(a)|y = a). (1)

2

We want to maximize Pr(C|y = a), so we should just choose b̂(a) as follows:

b̂(a) = arg max
i∈{0,1}

Pr(b = i|y = a) (2)

where “arg max” means “argument that maximizes”. The quantity Pr(b = i|y = a) in the above
is known as the a posteriori probability. Why “posteriori”? This is because the unconditional
probability Pr(b = i) is called the a priori probability. So Pr(b = i|y = a) can be interpreted
as the altered probability after we make an observation. The word “posteriori” is a Latin word
that means “after”. Hence, this optimum rule is called the Maximum A Posteriori probability
(MAP) rule.

Computation of the MAP rule

Now let us try to prove what I claimed earlier: the MAP rule is the same as the NN rule assuming
that Pr(b = i) = 1

2 for all i = 0, 1. To this end, we need to compute the interested quantity
Pr(b = i|y = a), possibly using the three quantities that the receiver has access to (enumerated
at the beginning of the previous section). We face a challenge in the computation though. The
challenge comes from the fact that the Gaussian statistics of our interest here are described for
analog voltage-level signals. Actually this incurs the following technical problem in calculating
the a posteriori probability:

Pr(y = a|b = i) and Pr(y = a) (3)

are both zero: the chance that an analog noise level is exactly a value we want is simply zero. So
we cannot use the Bayes rule which is crucial in computing the a posteriori probability. Recall
that the Bayes rule is:

Pr(A|B) =
Pr(A)Pr(B|A)

Pr(B)
(4)

for any two events A and B where Pr(B) 6= 0. To resolve this issue, the a posteriori probability
is defined as

Pr(b = i|y = a) := lim
ε→0

Pr(b = i|y ∈ (a, a+ ε)) (5)

For ε > 0, we can now use the Bayes rule to get:

Pr(b = i|y = a)
(a)
= lim

ε→0

Pr(b = i)Pr(y ∈ (a, a+ ε)|b = i)

Pr(y ∈ (a, a+ ε))

(b)
= lim

ε→0

Pr(b = i)εfy(a|b = i)

εfy(a)

=
Pr(b = i)fy(a|b = i)

fy(a)

(6)

where (a) comes from the definition (5) and the Bayes rule; and (b) follows from the definition
of the pdfs fy(·) and fy(·|b = i) w.r.t. the analog voltage signals. Here the conditional pdfs,
named as the likelihoods in the literature,

fy(a|b = 1) and fy(a|b = 0) (7)

are to be calculated based on the statistical knowledge of the channel noise. So, the MAP rule
when the received voltage is equal to a is:

3

decide b̂ = 1 if

Pr(b = 1)fy(a|b = 1) ≥ Pr(b = 0)fy(a|b = 0) (8)

and 0 otherwise.

ML decision rule

Under the assumption that the information bit is equally likely, the MAP rule simplifies even
further. It now suffices to just compare the two likelihoods (the two quantities in (7)). The
decision rule is then to decide that b̂ is 1 if

fy(a|b = 1) ≥ fy(a|b = 0), (9)

and 0 otherwise. This rule is called the maximum likelihood (ML) rule.

For the Gaussian channel, it is straightforward to calculate the conditional pdf of the received
voltage:

fy(a|b = 1)
(a)
= fy(a|x = +

√
E)

(b)
= fw(a−

√
E|x = +

√
E)

(c)
= fw(a−

√
E)

(10)

where (a) comes from the fact that the event b = 1 is equivalent to the event x = +
√
E due

to our encoding rule; (b) is due to the fact that the event y = a is equivalent to the event

w = a −
√
E; (c) is because of the independence between w and x. Here fw(·) = 1√

2πσ2
e−

(·)2

2σ2 .

So, the ML rule for the Gaussian channel is:

decide b̂ = 1 if

fw(a−
√
E) ≥ fw(a+

√
E) (11)

and 0 otherwise.

Using the Gaussian pdf, we can further simplify the ML rule: decide b̂ = 1 if

fw(a−
√
E) ≥ fw(a+

√
E) (12)

(a−
√
E)2 ≤ (a+

√
E)2 (13)

4
√
Ea ≥ 0 (14)

a ≥ 0. (15)

In other words, the ML decision rule take the received voltage y = a and estimates:

a ≥ 0 =⇒ 1 was sent;

Else, 0 was sent.

Fig. 3 illustrates the ML decision rule when superposed on the “bits to voltage” mapping (cf.
Fig. 1). The decision rule picks that transmitted voltage level that is closer to the received
voltage (closer in the usual sense of Euclidean distance). Hence, the maximum likelihood (ML)
rule is exactly the nearest neighbor (NN) rule.

Look Ahead

In the next lecture, we will calculate the reliability of reception using the ML decision rule.
Our focus will be on arriving at an understanding of the relation between reliability level, the
transmitted energy constraint and the variance of the noise.

4

−
√
E

√
E

0

a ≤ 0 : b=0 was sent a ≤ 0 : b=1 was sent

Figure 3: The ML rule superposed on Fig. 1

5

EE321 Communication Engineering April 1, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 5: Error probability

Recap

Last time, we started working on transmission/reception schemes for the Gaussian channel. Un-
like the simple channel example that we investigated in Lecture 2, the Gaussian channel is faced
with unavoidable communication errors. The error concept then motivated us to introduce the
definition of the optimal decision rule: the one that maximizes the success rate of communica-
tion, simply being referred to as reliability (or equivalently minimizes the probability of error).
Using this definition, we then showed that the optimal decision rule is always the maximum a
posteriori probability (MAP) rule:

b̂MAP(a) = arg max
i∈{0,1}

Pr(b = i|y = a). (1)

Next we showed that for the Gaussian channel together with the reasonable assumption of the
equal a priori probabilities, the MAP rule reduces to the maximum likelihood (ML) rule:

b̂ML(a) = arg max
i∈{0,1}

fy(a|b = i). (2)

Lastly we found that the ML rule matches with the intuitive NN decision rule:

b̂NN(a) = arg min
i∈{0,1}

‖a− (2 ∗ i− 1)
√
E‖. (3)

At the end of the last lecture, I then emphasized that one of our main goals in the course is
to characterize the tradeoff relationship between the following three: (i) energy budget E; (ii)
the number of transmission bits; (iii) reliability of communication. Obviously this requires us
to know how to compute reliability when using the NN rule.

Today’s lecture

Today we will make an attempt towards achieving the goal. Specifically we are going to do the
following three. First we will review the simple tx/rx schemes under the simple case of sending
one bit. Next we will compute reliability. Lastly we will characterize the tradeoff relationship
between reliability and energy budget.

Recall the transmission/reception schemes

Let us start by reviewing the transmission/reception schemes under the simple setting where
we transmit only one bit. We employed a very simple transmission scheme: PAM. We used the
optimal decision rule, which was shown to be the NN rule. See Fig. 1.

Reliability of communication

Recall that conditioned on y = a, the reliability of communication is simply the probability of
the success event that the information bit b is equal to its estimate b̂(a):

Pr(C|y = a) = Pr(b = b̂(a)|y = a). (4)

1

CN5_1

NN rulePAM

Figure 1: The transmission/reception schemes: PAM and the NN rule.

But there is an issue in this quantity of interest. The issue that the quantity is a function of a
and hence it varies depending on a particular realization of the received signal y. So it cannot
serve as a representative quantity that is obviously preferred to be fixed. In an effort to find a
representative quantity that does not rely on a specific realization, we consider its expectation:
a weighted sum of the reliabilities over all of the realizations a’s with the weight determined by
the pdf fy(a): ∫ ∞

−∞
fy(a)Pr(C|y = a)da

(a)
=

∫ ∞
−∞

Pr(correct decision, y = a)da

(b)
= Pr(C)

(5)

where (a) is due to the definition of conditional probability; and (b) is because of the total
probability law. If you don’t know what the total probability law is, please see BT. This is one
of very important laws in probability.

Probability of error

Alternatively we may consider the average error probability:

Pr(E) = 1− Pr(C) (6)

where E denotes an error event. In this course, we will focus on evaluating Pr(E) instead. The
receiver makes an error if it decides that a 1 was sent when a 0 was sent, or vice versa. The
average error is a weighted sum of the probabilities of these two types of error events, with the
weights being equal to the a priori probabilities of the information bit:

Pr(E) = Pr(E , b = 0) + Pr(E , b = 1)

= Pr(b = 0)Pr(E|b = 0) + Pr(b = 1)Pr(E|b = 1).
(7)

Why? Again this is due to the total probability law! More precisely, the law dictates the first
equality in the above and the second equality comes from the definition of conditional probability.
As mentioned earlier, we assume that the a priori probabilities are equal (to 0.5 each). Let us
focus on one of the error events by assuming that the information bit was actually 0. Then with

2

the NN rule, we get:

Pr(E|b = 0) = Pr(b̂(y) = 1|b = 0)

(a)
= Pr(y > 0|b = 0)

= Pr(−
√
E + w > 0|b = 0)

(b)
= Pr

(
w

σ
>

√
E

σ

)
(c)
=

∫ ∞
√
E
σ

1√
2π
e−

z2

2 dz

(d)
= Q

(√
E

σ

)
(8)

where (a) is due to the NN rule1; (b) is because of the independence between w and b; (c) follows
from the fact that w

σ ∼ N (0, 1) (why? please think about it); and (d) comes from the definition

of Q(a) :=
∫∞
a

1√
2π
e−

z2

2 dz. The Gaussian random variable with mean 0 and variance 1 is called

the standard Gaussian. It is a very important and useful random variable and the Q-function
is always tabulated in all probability textbooks and wikipedia. This integration can also be
computed numerically by using a command “erfc” in python:

erfc(x) :=

∫ ∞
x

2√
π
e−t

2
dt.

The relation between Q(a) and erfc(x) is:

Q(a) :=

∫ ∞
a

1√
2π
e−

z2

2 dz

(a)
=

∫ ∞
a√
2

1√
π
e−t

2
dt

=
1

2
· erfc

(
a√
2

)
.

where (a) comes from the change of variable t := z√
2

(dz =
√

2dt).

Let us now consider Pr(E|b = 1). Actually the error does not depend on which information
bit is transmitted. The complete symmetry of the mapping from the bit values to the voltages
levels and the NN decision rule (see Fig. 1) would suggest that the two error probabilities are
identical. For completeness, we go through the calculation for Pr(E|b = 1) and verify that it is
indeed the same:

Pr(E|b = 1) = Pr(b̂(y) = 0|b = 1)

= Pr(y ≤ 0|b = 1)

= Pr(
√
E + w ≤ 0|b = 1)

= Pr

(
w

σ
≤ −
√
E

σ

)

= Q

(√
E

σ

)
.

(9)

1For simplicity of analysis, we assume that for the event y = 0, b̂ is decided to be 0 although we should flip a
coin in the case as per the NN rule. Since the event has measure-zero (the probability of the event being occurred
is 0), the error analysis remains the same.

3

0 2 4 6 8 10 12 14 16 18 20
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

SNR (dB)

P
ro

ba
bi

lit
y

of
 E

rr
or

 (
lo

g−
sc

al
e)

0.5*exp(−SNR/2)
Q(sqrt(SNR))

Figure 2: Comparison of Q(
√
SNR) and its upper bound 1

2e
− SNR

2 .

This together with (8) gives:

Pr(E) = Q

(√
E

σ

)
. (10)

SNR and error probability

The first observation that one can make from the expression (10) on error probability is that it
depends only on the ratio of E and σ2: the error probability is

Pr(E) = Q
(√

SNR
)
. (11)

We have already seen this phenomenon earlier. This ratio is called the signal to noise ratio,
or simply SNR. Basically, the communication engineer can design for a certain reliability level
by choosing an appropriate SNR setting. While the Q(·) function can be found in standard
statistical tables, it is useful for the communication engineer to have a rule of thumb for how
sensitive this SNR “knob” is in terms of the reliability each setting offers. For instance, it would
be useful to know by how much the reliability increases if we double the SNR setting. To do
this, it helps to use the following approximation:

Q(a)≈1

2
e−

a2

2 . (12)

Here we use a very rough approximation that we denote by “≈”. This approximation means that

the exponent of Q(a) is very close to that of 1
2e
−a

2

2 , i.e., lnQ(a) ≈ ln(12e
−a

2

2). The reason that
we consider this very rough approximation is that the exponent plays an enough role as a proper
measure when we deal with the probability of error. For example, the following probabilities of
error (10−7 and 2 · 10−7) are considered to provide almost the same performance although those

4

differ by two times, since they have roughly the same exponent. Actually 1
2e
−a

2

2 is an upper
bound of the Q-function. See Fig. 2. You will have a chance to check this rigorously from one of
the problems in PS2. In this course, we will frequently approximate Q(a) by the upper bound.
This approximation implies that the unreliability level

Q
(√

SNR
)
≈1

2
e−

SNR
2 . (13)

Equation (13) is saying something very interesting. It says that the SNR has an exponential
effect on the probability of error. What happens if we double the energy, i.e., Ẽ = 2E?

Q
(√

2SNR
)
≈1

2
e−SNR≈

[
Q
(√

SNR
)]2

. (14)

Doubling the energy has thus squared the probability of error and squaring a number less than
1 means that we have significantly reduced the probability of error. Actually a typical range of
SNR is 100 ∼ 10000, and for this range, the probability of error is quite a small value.

Look ahead

So far we have considered the case of sending only one bit. Recall that we are interested in
characterizing the tradeoff relationship between the three quantities: (i) energy budget; (ii) the
number of transmission bits; (iii) error probability. So next time we will figure out by how much
the reliability is reduced when we transmit multiple bits under an energy budget.

5

EE321 Communication Engineering April 3, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 6: Transmitting multiple bits

Recap

Last time we studied how to compute the error probability when using the optimal decision rule
in the case of sending only one bit. Based on this, we could find a tradeoff relationship between
error probability and energy budget. From this, we saw that the SNR has a significant effect
upon error probability: doubling the SNR, the doubly-exponential decaying in error probability.

At the end of the last time, I mentioned that we are interested in investigating the tradeoff
relationship between three quantities: (i) energy budget; (ii) the number of transmission bits;
(iii) error probability.

Today’s lecture

Today we are going to derive such triplet relationship. Specifically what we are going to do are
four-folded. First, we will consider a simple setting of sending two bits and employ a simple
transmission scheme: PAM. We will then derive the optimal decision rule, thereby showing that
it is the same as the NN decision rule. Next we will analyse error probability. Finally we will
extend to an arbitrary number of k bits to figure out the tradeoff between the three quantities.

A transmission scheme for sending two bits

For illustrative purpose, let us first consider a simple case: sending two bits. Assume that we
have the same energy budget E as in the single-bit transmission case. As in Lecture 2, we adopt
the same PAM: mapping the bits to voltage levels so that they are as far apart from each other.
Specifically, the encoding rule is the following:

00→ −
√
E

01→ −
√
E

3

10→
√
E

3

11→
√
E.

Also see Fig. 1 for illustration. Here there is one important factor that I would like to highlight:
the minimum distance, say d. It is defined as the minimum distance among all distances between

any two voltage levels. So in this case, d = 2
√
E

3 . It turns out this factor plays a crucial role to
compute error probability. This will be clearer soon.

The optimal decision rule

Now what is the optimal decision rule w.r.t. such transmission scheme? Recall that the optimal
decision rule is the one that maximizes the reliability of communication. As we proved during the
past few lectures, it is always the MAP rule: choosing a transmission candidate that maximizes
the a posteriori probability:

b̂MAP = arg max
i,j∈{0,1}

Pr(b = ij|y = a). (1)

1

−
√
E

√
E0−

√
E

3

√
E

3

d d
d

2

d

2

Figure 1: Sending two bits over the Gaussian channel using PAM.

Similar to the prior settings, let us consider a realistic scenario where we have no idea as to the
statistics of two information bits. So we assume that transmission bits are simply equally likely:
Pr(b = ij) = 1

4 for all possible pairs of (i, j). Massaging the above MAP rule together with this
assumption, we can then show that the MAP is the same as the ML rule:

b̂MAP = arg max
i,j∈{0,1}

Pr(b = ij|y = a)

(a)
= arg max

i,j∈{0,1}

fb,y(ij, a)

fy(a)

(b)
= arg max

i,j∈{0,1}

Pr(b = ij)fy(a|b = ij)

fy(a)

(c)
= arg max

i,j∈{0,1}
Pr(b = ij)fy(a|b = ij)

(d)
= arg max

i,j∈{0,1}
fy(a|b = ij) =: b̂ML

(2)

where (a) follows from the definition of conditional probability (here fb,y(ij, a) denotes the joint
pdf of b and y); (b) is due to the definition of conditional probability (this together with (a) is
essentially the Bayes rule); (c) is because fy(a) is irrelevant of the change of information bits b;
and (d) comes from the assumption that the bits are equally likely.

Using the properties of the Gaussian likelihood function fy(a|b = ij) that it is symmetric around
the mean and more likely near the mean, we can readily verify that the ML rule is the same as
the NN rule: picking a transmit voltage level that is closest to the received voltage level. See
Fig. 2 for justification.

CN6_1

Figure 2: The ML rule is equivalent to the NN rule.

2

Error probability

Now let us analyse the probability of error when we use the optimal NN decision rule under the
PAM illustrated in Fig. 1. Using the total probability law, we get:

Pr(E) = Pr(b = 00)Pr(E|b = 00) + Pr(b = 11)Pr(E|b = 11)

+ Pr(b = 01)Pr(E|b = 01) + Pr(b = 10)Pr(E|b = 10).
(3)

From the encoding rule as illustrated in Fig. 1, we see that there are two types of voltage levels:

(i) inner voltage levels (−
√
E
3 and

√
E
3); (ii) outer voltage levels (−

√
E and

√
E). With the

symmetry argument that we made in the last lecture, we can see that the probability of error
for the inner voltage levels are the same with each other. Similarly for the outer voltage levels.
So let us consider only one of the voltage levels within the same kind.

Let us first calculate the error probability w.r.t. an outer level, say −
√
E. Using similar

procedures that we did in Lecture 5, we get:

Pr (E|b = 00) = Pr
(
b̂(y) 6= 00|b = 00

)
(a)
= Pr

(
y > −

√
E +

d

2
|b = 00

)
(b)
= Pr

(
w >

d

2

)
(c)
= Q

(
d

2σ

)
(d)
= Q

(√
E

3σ

)
(4)

where (a) is because the event b̂(y) 6= 00 is equivalent to the event y > −
√
E + d

2 under the NN

rule; (b) is due to the independence between w and b and the fact that w = y − x = y +
√
E

under b = 00; (c) comes from the fact that w
σ ∼ N (0, 1); and (d) is due to d = 2

√
E

3 .

On the other hand, the error probability w.r.t. an inner voltage level, say −
√
E
3 is:

Pr (E|b = 01) = Pr

({
y > −

√
E

3
+
d

2

}
∪

{
y < −

√
E

3
− d

2

}
|b = 01

)

= Pr

({
w >

d

2

}
∪
{
w < −d

2

})
(a)
= Pr

(
w >

d

2

)
+ Pr

(
w < −d

2

)
(b)
= 2Q

(√
E

3σ

)
(5)

where (a) is because the two associated events are disjoint; and (b) is due to the fact that −w
follows the same distribution as w ∼ N (0, 1).

Applying (4) and (5) to (3), we compute the average probability of making an error (averaged

3

over all the four different voltage levels):

Pr(E) = 2× 1

4
×Q

(√
E

3σ

)
+ 2× 1

4
× 2Q

(√
E

3σ

)

=
3

2
Q

(√
E

3σ

)
.

(6)

Extension to the case of sending k bits

So far we have focused on the case of transmitting k = 2 information bits. The same procedures
carry over to the general number k of information bits.

Extending the encoding rule in Fig. 1 to general k, we can now see that the minimum distance
d in this setting reads:

d =
2
√
E

2k − 1
(7)

where the denominator 2k − 1 denotes the number of intervals in the bits-to-voltage mapping.
We can also readily verify that the optimal decision rule (MAP) is the same as the ML rule and
the ML rule is identical to the NN rule. See Fig. 3 for a short justification.

k information bits⇐⇒ 2k voltage levels v1, · · · , v2k

Receiving voltage y, the likelihood of the mth voltage level is fw(y − vm)

Compare likelihoods: Only |y − vm| matters

(since the pdf of Gaussian with 0 mean is symmetric about 0)

ML rule: Pick m such that |y − vm| is smallest (Nearest Neighbor Rule)

Figure 3: ML rule for k information bits is the nearest neighbor rule.

Now using the symmetry argument, we can calculate the error probability as:

Pr(E) =
of outer levels

2k
· Pr(E|b = 00 · · · 0) +

of inner levels

2k
· Pr(E|b = 00 · · · 1)

=
2

2k
· Pr(E|b = 00 · · · 0) +

2k − 2

2k
· Pr(E|b = 00 · · · 1)

(8)

The probability of making an error given the transmission of an outer voltage level is:

Pr(E|b = 00 · · · 0)
(a)
= Pr

(
w >

d

2

)
(b)
= Q

(
d

2σ

)
(c)
= Q

(√
E

(2k − 1)σ

)
,

(9)

4

where (a) is because the only thing that matters in an error event is whether the noise w is
beyond the minimum distance divided by 2; (b) is due to w

σ ∼ N (0, 1); and (c) comes from the

fact that the minimum distance is d = 2
√
E

2k−1 .

As in the k = 2 case, the error probability w.r.t. an inner voltage level is simply twice the one
w.r.t. an outer voltage level:

Pr(E|b = 00 · · · 1) = 2Q

(√
E

(2k − 1)σ

)
, (10)

Why? An error event w.r.t. an inner voltage level involves another tail probability of error.

Hence, the error probability is readily calculated to be:

Pr(E) =

(
2− 1

2k−1

)
Q

(√
E

(2k − 1)σ

)

=

(
2− 1

2k−1

)
Q

(√
SNR

2k − 1

)
.

(11)

An engineering conclusion

At the end of Lecture 2, in the simple channel example where −σ ≤ w ≤ σ, we noted the
relationship between k and SNR:

k = log2

(
1 +
√
SNR

)
. (12)

Here we saw that k has a logarithmic relationship with
√
SNR: k increases very slowly (loga-

rithmically) with an increase in
√
SNR.

Interestingly even in the Gaussian channel where having errors is unavoidable and hence the
concept of reliability comes naturally, k has exactly the same (logarithmic) relationship with√
SNR. To see this clearly, recall the key equation (11) that we derived in the prior section.

Consider a certain reliability level. Now in order to guarantee the same reliability, the input
argument in the Q-function, say t, should be similar among different pairs of (k,

√
SNR):

t ≈
√
SNR

2k − 1
. (13)

This implies that

k ≈ log2

(
1 +

√
SNR

t

)
. (14)

Hence, we can see that even in the Gaussian channel, the essential relationship between transmit
energy and the number of information bits you can reliably transmit (at any reliability level) is
unchanged.

Look ahead

One key observation that we can make from (11) is that error probability shoots up to 1, as
the number k of information bits increases. This is sort of disappointing. Also if you think
about current communication systems where we still enable reliable communication even with
a very large number k of bits, this result looks weird. You may then ask: what’s wrong with

5

the tradeoff relationship (11)? Is our math derivation simply wrong? Or something else? It
turns out it is due to something else: this is just a consequence of the specific communication
scheme (PAM) that we have chosen in our setting. Actually there are multiple ways to improve
reliability significantly. Next time, we will investigate one of them.

6

EE321 Communication Engineering April 8, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 7: Sequential communication

Recap

Last time, we investigated the tradeoff relationship between three quantities: (i) SNR; (ii) reli-
ability; (iii) the number of transmission bits (say B bits). This study was based on a particular
transmission scheme: PAM; see Fig. 1 for illustration. Using PAM together with the assump-

CN7_1

Figure 1: Pulse amplitude modulation.

tion that the bits are equally likely, we showed that the optimal decision rule (the MAP rule)
is equivalent to the intuitive NN rule. We then employed basic probability tools to analyse the
error probability:

Pr(E) =
2

2B
·Q
(
d

2σ

)
+

2B − 2

2B
· 2Q

(
d

2σ

)
where the number 2 colored in blue indicates the number of outer voltage levels associated with
the one-sided tail error event and the number 2B − 2 colored in denotes the number of inner
voltage levels associated with the two-sided tail error event. Here the minimum distance d plays

a crucial role to compute the error probability. Plugging d = 2
√
E

2B−1 , we get:

Pr(E) =

(
2− 1

2B−1

)
Q

(√
SNR

2B − 1

)

≈
(

1− 1

2B

)
e
− SNR

2(2B−1)2 .

(1)

At the end of the last lecture, one critical observation that we made was: the error probability
surges with an increase in B. This is in fact disappointing because in practical communication
scenarios, there are tons of bits to communicate (think about typical file transmission in our daily
life which amounts easily to a few mega (or giga) bytes (1 byte = 8 bits), and this huge-sized
file transmission yields almost-sure error under a reasonable SNR level (ranging typically from
100 to 10,000). On the other hand, our current communication systems are working properly
to enable reliable communication even for huge-sized file transmission that amounts to a few
giga bytes. A natural question that one can ask is then: What is wrong with above tradeoff
relationship (1)?

Today’s lecture

Today we will try to address the question. Specifically what we are going to do are three
folded. First of all, I will point out that the tradeoff relationship (1) is an artifact of the specific

1

communication scheme (PAM) that we have chosen. By introducing another communication
resource that is not employed in the prior scheme, we will then investigate another natural
alternative that exploits the introduced communication resource. Finally we will derive error
probability under the scheme to figure out whether we can obtain a reasonably-small error
probability even with a very large B.

A natural alternative

Recall the previous transmission scheme in Fig. 1. Here one key observation is that we employ
only one time slot, although there can be much more time slots available for communication. In
other words, we never exploited another very natural communication resource: time!

So one natural alternative is to employ multiple time slots. For instance, we can think of the
following transmission scheme, as illustrated in Fig. 2. We read the information bits serially,

CN7_2

001010101101010111011011101110001….

chunk

Figure 2: Sequential communication.

say, k bits at a time. Let us consider these k bits as one entity that we are going to send in
one time slot. Let’s name the entity chunk. Then, one natural idea is to send these chunks in a
sequential manner. For example, in time 1, we send one chunk spanning the first k bits, using
PAM. In time 2, we transmit another chuck again (spanning the next k bits) using the same
PAM, and all the way up to the last chunk. We call the scheme “sequential communication”.
In the example of Fig. 2, the chunk size k is 4. In the case of sending B bits, the number (say
n) of chunks is B/k.

The optimal decision rule

Now the question is: Can this sequential communication boost up reliability significantly with a
moderate level of SNR? To answer this question, we have to evaluate the reliability (equivalently
the probability of error) when we apply this sequential communication scheme. To this end, we
first need to figure out what the optimum decision rule is.

By definition, the optimal decision rule is always the MAP rule. Assuming a typical setting
where the bits are equally likely:

Pr((b1, . . . , bB) = (i1, . . . , iB)) =
1

2B
,

the MAP rule is the same as the ML rule. If you still don’t know why, please review Lecture 4.
Now in order to figure out what the ML rule is, we need to know about the pdf of the received
signal:

y[m] = x[m] + w[m], m = 1, . . . , n, (2)

where (x[m], w[m]) indicate the transmitted signal and the additive noise at the mth chunk.
Notice that the received signal contains a sequence of additive noises w[m]’s. So we need to
figure out the statistics of the noise sequence.

A statistical model for w[m]’s

2

Our previous discussion in Lecture 3 lets us argue that the statistics of the additive noise at any
time instant is Gaussian. In practice, the statistics does not change over time significantly. So
one reasonable assumption is that the mean and the variance are unchanged over time. Also
the noises have little correlation across different time slots. So another reasonable assumption
is that w[m]’s are statistically independent. In other words, the noises are assumed to be i.i.d.
Such a noise model is said to be white. So we will refer to this noise as the additive white
Gaussian noise or simply AWGN. You may wonder why we name it “white”. It turns out the
AWGN contains the frequency components that span the entire spectrum. So it has the same
property that the white light has: containing every frequency component. That’s why people
name it white.

The ML rule

Now under the AWGN channel, what is the ML decision rule? First consider the first chunk of

k bits, say b[1]. The ML estimate b̂[1] is obviously a function of the sequence of the received
signals. So let us denote it by

b̂[1] = ML(b[1]|y[1], . . . , y[n]).

Recall the typical assumption that we made earlier: the bits are equally likely.

Pr((b1, · · · , bB) = (i1, · · · , iB)) =
1

2B
.

From this, one can also show that the bits bi’s are i.i.d. Why? Check in PS3. This then implies
that the transmitted signals x[m]’s at different time slots are also statistically independent
with each other. Since w[m]’s are i.i.d. under the AWGN, the received signals y[m]’s are also
statistically independent. This then suggests that the first chuck of bits b[1] is independent of
the received signals w.r.t. the remaining chunks (y[2], . . . , y[n]). So one can readily see that

(y[2], . . . , y[n]) does not help decoding b̂[1]. This yields:

b̂[1] = ML(b[1]|y[1], y[2], . . . , y[n])

= ML(b[1]|y[1]).

Applying the same argument at different time slots, we arrive at:

b̂[m] = ML(b[m]|y[m]), m = 1, 2, . . . , n.

In other words, sequential transmission over the AWGN channel naturally leads to sequential
reception as well: at each time m, make an ML decision on the local k bits transmitted over
that time instant. As we verified in the previous lectures, this local ML rule is the same as the
NN rule.

Reliability of sequential communication

In the last lecture, we have analysed the reliability of communication w.r.t. a particular time
slot. Denoting by p the error probability for one time slot, we get:

p =

(
2− 1

2k−1

)
Q

(√
SNR

2k − 1

)
. (3)

Due to the statistical independence of error events, the reliability w.r.t. the entire time slots n
would be:

Pr (C1 ∩ C2 ∩ · · · ∩ Cn) =

n∏
i=1

Pr(Ci) = (1− p)n, (4)

3

where Ci denotes the correction decision event at time i. Now we get a hint of what might go
wrong with sequential communication: even though we have ensured that the reliability is pretty
high at any given time instant, the overall reliability of communicating correctly at each and
every time instant is quite slim. To get a concrete feel, let us consider the following example:
k = 4 and n = 20000. Suppose we had set the error probability p at any time instant to be
10−4 (based on (3), how much should the SNR be?). Then the reliability of the entire sequential
communication process is, from (4),

(1− 10−4)20000 ≈ 2× 10−9. (5)

This is almost zero. Obviously this is a very low reliability level. The only way to compensate
for this is to set the SNR so high that the overall reliability is large enough. Typical reliability
levels are of the order of 10−10 or so. For large enough files this would mean astronomical SNR
values. Even small files need very large SNR values. Details will be explored in PS3.

Look ahead

You may wonder if the above phenomenon is fundamental, i.e., the unavoidable price for reliable
communication. Successful communication technologies around us provide a solid clue to the
answer. It turns out the trouble is with the sequential nature of transmission and reception. Next
time, we will study another communication scheme that can improve reliability significantly.

4

EE321 Communication Engineering April 10, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 8: Repetition coding

Recap

Last time, in an effort to improve reliability, we investigated a chunk-based sequential communi-
cation scheme where we read information bits as a chunk unit (consisting of k bits), apply PAM
w.r.t. each chunk, and then transmit the PAM signal using a single time slot. See Fig. 1.CN8_1

transmitter

encoder

0010101011….

PAMtime 1:

time 2:

chunk k: chunk size

n: # of chunks

(= # of time slots)

PAM

Figure 1: A chunk-based sequential communication scheme.

We showed that under the uniform distribution assumption on information bits, the optimal
decision rule is simply the local NN rule where we apply the NN rule locally w.r.t. each received
signal y[m]. We found that this sequential communication scheme could indeed improve relia-
bility relative to the naive PAM using only one time slot. But the improvement was not that
impressive, as error probability cannot be made small enough.

Recall in current communication systems that we enable reliable transmission even with many
bits. This implies that the sequential communication is not the one that is employed in the
current systems. There must be something else.

Today’s lecture

Today we will study another communication scheme that can improve reliability significantly.
Specifically we are going to do the following three. First I will introduce a new idea for transmis-
sion, which was never discussed before, but is the one that people can naturally come up with.
Next we will study a simple scheme (inspired by the idea) in the simplest non-trivial setting
where we wish to transmit a single bit (B = 1) yet using two time slots (n = 2). Finally we
will extend to arbitrary (B,n), thereby demonstrating that the extended scheme can make the
probability of error arbitrarily small.

The idea of repetition

Recall the sequential communication scheme illustrated in Fig. 1. Here we see that each chunk
signal contains only the corresponding bit string, being irrelevant of those w.r.t. other chunks.
For instance, x[2] is concerned only about b[2], having nothing to do with b[1]. Actually this
is not what we are doing for communication in our daily life. In our daily conversation, what
are we doing especially when communication fails? We say again until a listened person can

1

understand. But this idea, so called the repetition idea, was never implemented in the sequential
communication scheme, although it is a very natural idea that anybody can easily think of. So
one natural alternative is to employ such repetition idea. It turns out the idea of repetition
helps a lot. So from now on, we will show that a simple repetition coding scheme can indeed
improve reliability significantly.

Repetition coding for the simplest case (B, n) = (1, 2)

Let us first consider the simplest yet non-trivial setting. That must be the case where we send
only one bit (B = 1) but now through two time slots (n = 2). Assume that the energy budget
per time slot is E. A naive trial based on the repetition idea could be: sending a voltage level
±
√
E at time 1 and send the same voltage again at time 2. See Fig. 2. A fancy term for this

CN8_2

transmitter

encoder

Figure 2: Repetition coding for (B,n) = (1, 2).

kind of a scheme is repetition coding. For this coding scheme, the received signals read:

y[1] = x[1] + w[1] = (2b− 1)
√
E + w[1],

y[2] = x[2] + w[2] = (2b− 1)
√
E + w[2].

(1)

Guess for the optimal decision rule

Now what is the optimal decision rule? In other words, how does the MAP rule look like?
Remember the case of n = 1. Under the uniform distribution on b, the optimal decision rule
(MAP) is the same as the ML rule, and it further reduces the NN decision rule. Now any guess
for the optimal decision rule when n = 2? The following observation gives an insight.

Notice in (1) that x[1], x[2] are identical. So one naive thinking is to add the received signals
and then make a decision w.r.t. the sum:

y[1] + y[2]︸ ︷︷ ︸
=:y

= x[1] + x[2]︸ ︷︷ ︸
=:x

+w[1] + w[2]︸ ︷︷ ︸
=:w

. (2)

This way, one can align x[1] and x[2] to boost up the power of an interested signal. On the other
hand, w[1] and w[2] point to different random directions, so such booting effect is not expected
w.r.t. the summed noise w. It turns out that as you may expect, the NN rule w.r.t. the summed
received signal y is indeed the optimal decision rule. Let us prove this in the next section.

The optimal decision rule

2

Assuming the uniform distribution on b, the MAP is equivalent to the ML rule:

b̂ML = arg max
i∈{0,1}

fy(a|b = i) (3)

where a = (a[1], a[2])T denotes a realization of the received signal vector y = (y[1], y[2])T . Here
(·)T indicates a transpose. Now consider the likelihood function of interest:

fy(a|b = i) = fy (a[1], a[2]|b = i)

= fw (a[1]− x[1], a[2]− x[2]|b = i)

(a)
= fw

(
a[1]− (2i− 1)

√
E, a[2]− (2i− 1)

√
E|b = i

)
(b)
= fw

(
a[1]− (2i− 1)

√
E, a[2]− (2i− 1)

√
E
)

(c)
= fw[1]

(
a[1]− (2i− 1)

√
E
)
fw[2]

(
a[2]− (2i− 1)

√
E
)

(d)
=

1

2πσ2
exp

(
− 1

2σ2

{(
a[1]− (2i− 1)

√
E
)2

+
(
a[2]− (2i− 1)

√
E
)2})

=
1

2πσ2
exp

(
− 1

2σ2
(a[1]2 + E + a[2]2 + E)

)
× exp

(
1

σ2
(a[1] + a[2])(2i− 1)

√
E

)
where (a) comes from our encoding rule (x[m] = (2b − 1)

√
E); (b) is due to the independence

between w and b; (c) is due to the independence of the additive noises at different time slots;
and (d) comes from the the explicit pdf of the Gaussian noise.

Here one key observation that we can make is that the first part in the last equality (marked in
red) is irrelevant of i. Hence, we get:

b̂ML = arg max
i∈{0,1}

fy(a|b = i)

= arg max
i∈{0,1}

exp

(
1

σ2
(a[1] + a[2])(2i− 1)

√
E

)
= arg max

i∈{0,1}
(a[1] + a[2])(2i− 1).

(4)

From this, we see that the sum a[1] + a[2] plays a significant role in the decision:

a[1] + a[2] ≥ 0 =⇒ b̂ML = 1;

a[1] + a[2] < 0 =⇒ b̂ML = 0.

What sense can we make of this rule? It seems that we are collecting the two received signals
and taking some sort of a “joint opinion”. If the sum is positive, we decide that the bit must
correspond to a positive signal (and vice-versa). This indeed coincides with our initial guess:
the NN decision rule w.r.t. y := y[1] + y[2].

A sufficient statistic

As above, we observed that the sum of the received signals

a[1] + a[2] (5)

is sufficient to evaluate the ML rule for repetition coding. In other words, even though we
received two different voltage levels, only their sum is relevant to making a decision based on

3

CN8_3

ML decoder

ML decoder

Figure 3: The sum is a sufficient statistic for deriving the ML rule.

the ML rule. Such a quantity is called a sufficient statistic; we say that the sum of the received
signals is a sufficient statistic to derive the ML rule for repetition coding.

Error probability

Now what about the probability of error Pr(E)? If you focus on the sufficient statistic, then the
analysis of the error probability is straightforward

y[1] + y[2]︸ ︷︷ ︸
=:y

= x[1] + x[2]︸ ︷︷ ︸
=:x

+w[1] + w[2]︸ ︷︷ ︸
=:w

. (6)

Here one key claim is that the summed noise w is also Gaussian; the mean is 0 and the variance
is 2σ2:

E[w2] = E[(w[1] + w[2])2]

= E[w[1]2] + E[w[2]2] + E[w[1]w[2]]

(a)
= E[w[1]2] + E[w[2]2]

(b)
= 2σ2

where (a) follows due to the independence and zero-mean properties of the AWGN; (b) is because
E[w[1]2] = E[w[2]2] = σ2. Yo may wonder why w is also Gaussian. You will have a chance to
prove this in PS3.

Now what is Pr(E)? If we can apply what we learned during the past lectures, then this
calculation is trivial. In the case of sending one bit, Pr(E) always takes the following formula:

Pr(E) = Q

(
d

2
√

var[w]

)
(7)

where d denotes the minimum distance w.r.t. x := x[1] + x[2]:

d = 2
√
E − (−2

√
E) = 4

√
E. (8)

So we get:

Pr(E) = Q

(
4
√
E

2
√

2σ2

)
= Q

(√
2 · SNR

)
. (9)

4

Extension to (B, n) = (1, n)

We transmit the same voltage level at each time instant, for n consecutive time slots. So the
received signals read:

y[m] = x[m] + w[m] = (2b− 1)
√
E + w[m], m = 1, · · · , n. (10)

Applying exactly the same arguments that we made in the previous sections, one can easily
verify that the optimal decision rule is again the NN rule w.r.t. the sum:

y[1] + · · ·+ y[n]︸ ︷︷ ︸
=:y

= x[1] + · · ·+ x[n]︸ ︷︷ ︸
=:x

+w[1] + · · ·+ w[n]︸ ︷︷ ︸
=:w

.

If you are not convinced, please check. Also the error probability is simply given by:

Pr(E) = Q

(
d

2
√
var[w]

)
(a)
= Q

(
2n
√
E

2
√
nσ2

)
= Q

(√
n · SNR

)
where (a) is because the minimum distance is d = n

√
E − (−n

√
E) = 2n

√
E and var[w] =

n var[w[1]] = nσ2.

Extension to arbitrary (B, n)

The idea for transmission is to apply PAM to the entire bit strong and then do repetition
x[1] = x[2] = · · · = x[m]. Again one can also prove that the sum y[1] + y[2] + · · · + y[n] is a
sufficient statistic to derive the ML rule.

y[1] + · · ·+ y[n]︸ ︷︷ ︸
=:y

= x[1] + · · ·+ x[n]︸ ︷︷ ︸
=:x

+w[1] + · · ·+ w[n]︸ ︷︷ ︸
=:w

.

Now x is a 2B-PAM signal; see Fig. 4. So the minimum distance d reads:

d =
2n
√
E

2B − 1
. (11)

The summed noise w ∼ N (0, nσ2).
CN8_4

Figure 4: A 2B-PAM signal w.r.t. x = x[1] + x[2] + · · ·+ x[n].

5

Again the optimal decision rule is the NN rule w.r.t. the sum, and the corresponding error
probability is:

Pr(E) =

(
2− 1

2B−1

)
Q

(
d

2
√

noise var

)
=

(
2− 1

2B−1

)
Q

(
2n
√
E

2(2B − 1)
√
nσ2

)

=

(
2− 1

2B−1

)
Q

(√
nSNR

2B − 1

)
.

(12)

Can we make Pr(E)→ 0?

Now let us check if we can make the error probability small enough with the repetition coding
scheme. From (12), we can see that it is possible. For example, let us set:

n = B · 22B. (13)

Plugging this into (12), we get:

Pr(E) ≈ 2Q
(√

B · SNR
)
.

So by increasing B, we can make Pr(E) arbitrarily close to zero.

Any other issue?

But there is an issue in the repetition coding scheme. The issue is w.r.t. transmission efficiency,
often quantified as data rate:

R :=
total # of transmission bits

total # of time slots
=
B

n
(data rate).

In the above example n = B · 22B, we see that the data rate tends to zero as B increases:

R =
B

n
=

1

22B
→ 0 as B →∞.

Obviously this is not what we want.

Look ahead

A natural question that arises is then: Is there any smarter communication scheme that yields
R > 0 while ensuring Pr(E)→ 0? In the next lecture, we will answer this question.

6

EE321 Communication Engineering April 17, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 9: Capacity of the AWGN Channel

Recap

Last time, we investigated repetition coding. In an effort to check whether the scheme enables
reliable communication (meaning Pr(E) ≈ 0) even for a typical range of SNR, we analysed the
probability of error:

Pr(E) =

(
2− 1

2B−1

)
Q

(√
nSNR

2B − 1

)
(1)

where B indicates the total number of transmission bits, and n denotes the total number of time
slots used. From this, we found that repetition coding indeed enables reliable communication.
Recall an example in which we choose the number of time slots as n = B · 22B. In this example,
we see that

Pr(E) ≈ 2Q
(√

B · SNR
)
→ 0 as B →∞.

While repetition coding yields a good performance in reliability, we found it comes at a cost in
transmission efficiency, which can be quantified as data rate R := B

n (bits/time). In the above
example, the increase in B that yields an arbitrarily small Pr(E) makes also R approach 0. This
is obviously disappointing. So one natural question that one can ask in this context is:

Is there a scheme that yields both R > 0 and reliable communication Pr(E)→ 0?

At the end of the last lecture, I claimed that the answer is yes.

Today’s lecture

Today I am going to provide details that support my claim. Specifically what I will do are three
folded. First I will tell you a story regarding the question. Actually there was an initial reaction
and a follow-up conjecture on the question that many communication engineers had in the early
20th century. The conjecture was: whenever we want Pr(E) → 0, we must have R → 0. Here
I will tell why people believed so. Next I will tell you a story about a guy who answered the
question positively and how it was addressed. Actually the guy is the one that I mentioned
in Lecture 1, the Father of Information Theory: Claude Shannon. Here I will tell you details
on how he addressed the question. Interestingly, Shannon could answer the question without
developing explicit coding schemes. But later people came up explicit coding schemes that yield
both R > 0 and reliable communication. Lastly I will tell you two major such efforts.

A belief in the early 20th century

In the early 20th century, most people thought that the only way to achieve reliable communi-
cation over the noisy AWGN channel (i.e., to make the error probability as small as desired)
was to add redundancies infinitely many (like repetition coding). Adding an infinite amount of
redundancies leads to a negligible data rate. So the common belief at the time was that: it is
impossible to achieve Pr(E)→ 0 as long as the date rate R is strictly positive.

Claude Shannon’s finding

1

In contrast to such intuition, however, Shannon proved that this belief is incorrect. Actually
he could do so in the process of developing a mathematical theory of communication that I
mentioned earlier: information theory. Specializing the information theory into the AWGN
channel of our current interest, he could show that intelligent coding schemes beyond repetition
coding can yield both R > 0 and reliable communication:

Pr(E)→ 0 for R > 0. (2)

Shannon’s efforts

Let us now explain how he could come up with the interesting result reflected in (2). First of
all, he developed a non-trivial transmission scheme which is obviously different from repetition
coding. Here for simplicity, I will not elaborate on the scheme. He then came up with a receiver
strategy, which turns out to be not the optimal decision rule yet pretty close to the optimal rule.
You may wonder why he considered such a non-optimal yet close-to-optimal decision rule. There
was a highly non-trivial reason behind his choice. Explaining the reason is not that simple, so
I will omit details - I do not want to distract you much; nonetheless, if you are interested in,
you may want to take an information theory course: EE326 (an undergraduate level) or EE623
(a graduate level). Next he tried to derive Pr(E) in an effort to check if the probability of error
can be made arbitrarily close to zero even when R > 0. Unfortunately, he failed to do so. Then,
how could he prove (2) without deriving Pr(E)? This is where one can see Shannon’s genius.

A smart upper-bound technique CN9_1

n

Figure 1: Upper bounds P̄e on error probability for various n.

Instead he was able to derive an upper bound on the error probability, say P̄e. This inspired him
to come up with the following very smart trick: if an upper bound tends to 0, then the exact
error probability also goes to 0. Why? Because the probability cannot go below 0. The trick is
based on a sort of sandwich argument: 0 ≤ Pr(E) ≤ P̄e → 0 implies that Pr(E) → 0. Here the
key was that Shannon was able to derive a tight-enough upper bound so that he can apply such
smart trick. Here is the upperbound formula that Shannon derived:

Pr(E) ≤ exp (n(R− C)) =: P̄e (3)

where n denotes the total number of time slots used and C indicates some strictly positive value
that I will detail soon. From this, we see that as long as R < C, we can make P̄e arbitrarily

2

close to 0 as n→∞, therefore making the exact error probability Pr(E) arbitrarily small as well.
Fig. 1 shows how the upper bound varies depending on a choice of n. Notice that increasing n,
the more sharply the upper bound drops to 0 around at R = C − ε. This is how he proved the
main claim (2) of our interest.

Law governed by the Nature

In fact, this was not the end of the story. Shannon wanted to go beyond this. He was a sort
of scientist who pursues to understand the law governed by the Nature. He actually believed
that there must be a fundamental limit on the data rate above which reliable communication is
not guaranteed fundamentally (i.e., Pr(E) cannot be made arbitrarily close to 0 no matter what
and whatsoever). It turned out this is indeed the case. Specifically what he proved was that: if
R > C, then there is no way to make Pr(E) → 0, i.e., it is fundamentally impossible to enable
reliable communication whenever the data rate exceeds the quantity C.

To prove this, he came up with another very smart trick: if a lower bound of the error probability
does not go to 0, then the exact error probability does not go to 0 either. This is because:
Pr(E) ≥ Pe 9 0 implies that Pr(E) 9 0. Shannon was able to come up with a tight-enough
lower bound so that he can apply the smart trick. Here is the lower bound formula that Shannon
developed:

Pr(E) ≥ 1− C

R
− 1

nR
∀n. (4)

Here the bound holds for all n. So we must have:

Pr(E) ≥ max
n∈N

(
1− C

R
− 1

nR

)
= 1− C

R
=: Pe

(5)

where the equality is achieved when n → ∞. From this, we see that if R > C, Pe > 0 and
therefore Pr(E) > 0, meaning it is impossible to enable reliable communication. Fig. 2 illustrates
such a lower bound: the lower bound is strictly above 0 for any R > C.CN9_2

Figure 2: A lower bound Pe on error probability.

Capacity of the AWGN Channel

3

The upper (3) and lower (5) bounds imply that the quantity C is a sort of fundamental quantity
which delineates the sharp threshold on the data rate below which reliable communication is
possible and above which reliable communication is impossible no matter what. See Fig. 3. There

CN9_3

data rate

Figure 3: Error probability as a function of R.

is a terminology which indicates such maximum data rate that enables reliable communication.
It is called the channel capacity or Shannon capacity. You may wonder where the letter C comes
from. Here C stands for capacity.

What is the explicit formula for the channel capacity C? Let me now specify what the capacity
C is. Given a power constraint P , the capacity of the AWGN channel is shown to be

C =
1

2
log2

(
1 +

P

σ2

)
bits/time (6)

where σ2 is the noise variance. The rigorous proof is out of the scope of this course. So we will
not prove this here. Instead we will provide an intuition as to why this must be the capacity
in Appendix. If you are interested in a detailed derivation, again you may want to take an
information theory course (EE326 or EE623).

The engineering conclusion

Note that the capacity (6) depends only on P
σ2 , which is the average SNR. What does this

remind you of? Yes, you saw such a similar relationship in Lecture 2 in the context of the
simple channel example. Hence, we can arrive at the conclusion: the SNR is the sole factor that
determines the number of transmission bits.

Moreover, we can see a fundamental relationship between the data rate R and SNR. Earlier
we noted a relationship between the two: the required energy essentially quadrupled when we
looked to transmit one extra bit. Here you can see that the essential relationship is unchanged.
To see this clearly, let us do the following calculation. Suppose that ˜SNR is a new SNR required
to transmit an extra one bit on top of the C bits/time. We then have

1

2
log2

(
1 + ˜SNR

)
= 1 +

1

2
log2 (1 + SNR) (7)

1 + ˜SNR = 4(1 + SNR) (8)

˜SNR ≈ 4SNR. (9)

Note that the ˜SNR is a roughly quadruple of the SNR.

Capacity-achieving codes?

One may wonder how to achieve the capacity. Unfortunately, Shannon never constructed an
explicit coding scheme that achieves the capacity. Instead he could show only the existence of
such a capacity-achieving coding scheme. You may not understand what I am talking about

4

here. To fully understand this, you should actually grasp the proof of the upper bound (3) which
I omitted. Let’s just not worry about this, and simply trust me even if you are annoyed.

The fact that Shannon could only show the existence of an optimal code is one of the reasons
that Shannon’s work could not be applied to the design of real communication systems at that
time. You may wonder what about now. Perhaps surprisingly to you, capacity-achieving explicit
codes for the AWGN channel are still open.

From an engineering standpoint, however, we may be okay as long as we can achieve a perfor-
mance close to the capacity. Hence, lots of works have thus far been done along the following
research direction: developing capacity-approaching explicit coding schemes. Let us here intro-
duce two such efforts.

Two major efforts towards capacity-approaching codes
CN9_4

Robert G. Gallager

Erdal Arikan

Figure 4: (Left): Robert G. Gallager; (Right): Erdal Arikan.

One effort was made by Robert G. Gallager. See the left picture in Fig. 4. He is actually
my academic grandfather - an advisor of my PhD advisor, David Tse. He developed a code
called “Low Density Parity Check code” (LDPC code for short) in 1960. Obviously it is an
explicit code, meaning that it provides a detailed guideline as to how to design such a code. The
performance of the code is shown to be remarkable. It has been shown that it approaches the
capacity as the number n of time slots used tends to infinity, although it does not match the
capacity exactly. You may wonder how close it approaches to the capacity. Here is an example
that demonstrates the degrees of closeness.

Suppose we want the data rate R = 0.5 bits/time. Then, according to Shannon’s capacity
result (6), we must admit:

0.5 ≤ 1

2
log2 (1 + SNR) . (10)

This is then equivalent to saying that:

SNR ≥ 1 (0 dB). (11)

Here what it means by an LDPC code approaches the capacity is that: the LDPC code yields
very small error probability Pr(E) ≈ 0 with SNR = 1.0233 (0.1 dB), which has only a 0.1 dB
gap to the optimal SNR limit 0 dB. Here you may wonder how very small the error probability
it. It is very small in the following sense: with n = 8000, Pr(E) ≈ 10−4 and we can achieve a
smaller Pr(E) with a larger n.

Encouragingly (perhaps especially to you guys), he developed such a code during his “PhD
study”, meaning that you can also do that kind of great work in the near future if you purse

5

PhD study! Unfortunately, his work did not receive enough credits at that time. The main
reason was that the LDPC code was of high implementation complexity considering the digital
signal processing (DSP) technology of the day.1 30 years later, however, the code was revived,
receiving significant attention. The reason was that the code became an efficient code – the
DSP technology had been evolved, finally enabling the code to be implemented. Later the code
was more appreciated with a more advanced DSP technology – it is now widely being employed
in a variety of systems such as LTE, WiFi, DMB2 and storage systems.

At the time when Gallager developed the LDPC code, he was not fully satisfied with his result
though. The reason was that his code is not guaranteed to exactly achieve the capacity even in
the limit of n. This motivated one of his PhD students, Erdal Arikan (see the right picture in
Fig. 4), to work on developing the capacity-achieving code. It turned out Arikan could develop
such a code, called Polar code. It is a first capacity-achieving code. Interestingly, he could
develop the code in 2007, 30+ years later than his PhD day when the motivation began.3 Due
to its great performance and low-complexity nature, it is now being seriously considered for
implementation in a variety of systems.

In fact, learning about LDPC and Polar codes requires lots of efforts and strong backgrounds on
random processes which you are not familiar with. So in this course, we will not deal with the
codes. If you are interested in, you may want to take a graduate level course on coding theory:
EE621.

Summary of Part I

We have so far focused on the AWGN channel. We learned how to design transmission and
reception strategies, and investigated the relationship between the data rate R, SNR and Pr(E).
We also learned about the concept of channel capacity and some efforts towards achieving the
channel capacity. This constitutes Part I of this course.

Outline of Part II

Actually the AWGN channel is far from realistic channels that arise in real communication
systems. It turns out it only serves as a building block of many interested practical channels. So
from next lectures, we will consider one of the practical channels: the wireline channel. We will
first show that the channel can be modeled as a concatenation of LTI system and the AWGN
block. We will then learn how to design transmission and reception strategies for the channel.
These topics constitute Part II.

1Nonetheless, he became an MIT faculty right after graduation mainly due to that piece of work. It is fortunate
that there are some serious & patient scholars who appreciate the potential of the great work which does not
demonstrate any immediate impact upon the world.

2It is the name of the technology for a digital broadcast system, standing for Digital Multmedia Broadcasting.
3Remarkably he devoted most of his time to the development of the code, and finally succeeded. How dramatic

the story is!

6

Appendix: Packing spheres

y[1]

y[n]

y[2]

(
√
P, · · · ,

√
P)

(−
√
P, · · · ,−

√
P)

�
n(P + σ2)

Figure 5: Repetition coding packs constellation points inefficiently in the n-dimensional signal
space.

Geometrically, repetition coding puts all the constellation points in just one dimension. Fig. 5
provides an illustration. Here all the constellation points are on the same line. On the other
hand, the signal space has a large number of dimensions n. This is a very inefficient way of
packing the constellation points. To communicate more efficiently, the points should be spread
over all the n dimensions.

y[1]

y[n]

y[2]

�
n(P + σ2)

√
nσ2

Figure 6: The number of noise spheres that can be packed into the received-signal-sphere yields
the maximum number of constellation points that can be reliably distinguished.

7

We can get an estimate on the maximum number of constellation points that can be packed
in for the given power constraint P , by appealing to the classic sphere-packing picture. See
Fig. 6. By the law of large numbers4, the n-dimensional received vector y = x + w will, with
high probability, lie within a received-signal-sphere of radius

√
n(P + σ2). So without loss of

generality we need only focus on what happens inside this sphere. On the other hand,

1

n

n∑
m=1

w[m]2 → σ2 (12)

as n→∞, by law of large numbers again. So, for large n, the received vector y lies, with high
probability, near the surface of a noise sphere of radius

√
nσ2 around the transmitted signal

point. Reliable communication occurs as long as the noise spheres around the constellation
points do not overlap. The maximum number of constellation points that can be packed with
non-overlapping noise spheres is the ratio of the volume of the received-signal-sphere to the
volume of a noise sphere:5 (√

n(P + σ2)
)n(√

nσ2
)n . (13)

This implies that the maximum number of bits per time slot that can be reliably communicated
is

1

n
log2

(√

n(P + σ2)
)n(√

nσ2
)n

 =
1

2
log2

(
1 +

P

σ2

)
. (14)

This is indeed the capacity of the AWGN channel. The argument might sound very heuristic.
If you are interested in a rigorous proof, you may want to take EE326 or EE623.

4To learn about the law of large numbers, see BT.
5The volume of an n-dimensional sphere of radius r is proportional to rn.

8

EE321 Communication Engineering April 22, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 10: Waveform shaping (1/2)

Recap

So far we have focused on the AWGN channel. Under the AGWN channel, we have studied
several transmission/reception schemes and investigated corresponding tradeoff relationships
between SNR, data rate and error probability. However, as I mentioned at the end of the last
lecture, the AWGN channel is far from reality. It can serve only as a building block of practical
channels.

In fact, the impracticality is related to the concept of time slots that we introduced earlier yet
without explicitly specifying what the time slots mean in reality. Here not specifying the physical
meaning of the time slots mean that we have considered only discrete-time signals which look
like lollypops as illustrated in Fig. 1 (denoted by x[m]’s).CN10_1

bits bits-to-voltage
waveform shaper
(discretecontinuous)

continuous

-time
practical channel

discrete

-time

encoder

Figure 1: The two-stage mapping in the encoder: (i) bits-to-voltages mapping; (ii) voltages-to-
waveforms mapping.

Here the issue is that the discrete-time signals are not what we sent in reality. What we
send out are actually electromagnetic waveforms which convey information about the discrete-
time signals. See Fig. 1 for an example of such waveform, denoted by x(t). Obviously these
electromagnetic waveforms need to be specified in a continuous-time domain. So we have to
somehow convert the discrete-time signals to continuous-time waveforms.

Today’s lecture

Today we will study how to do such a conversion. Specifically what we are going to do are three
folded. First we will try to identify design criteria that the converter should satisfy. It turns out
that one of the design criteria that I will mention soon comes from a key property of practical
channels that we will focus on. So in the second part, we will investigate the key property and
then figure out the corresponding design criterion accordingly. Lastly we will phrase the design
criterion explicitly using a mathematical language. Due to the interest of time, next time, we
will embark on the design of a converter that respects the to-be-identified design criteria.

The waveform shaping problem

1

Fig. 1 illustrates an encoder structure that practical communication systems have to take. As
mentioned earlier, the encoder should consist of two key mappings. The first is mapping bits to
voltages – this is the mapping that we have studied in Part I. Here our focus is on the second
mapping: mapping voltages to waveforms that we can transmit across a practical channel. There
is a commonly used terminology that indicates the second mapper. That is, waveform shaper.
This naming comes from the fact that the output signal should be waveforms.

Design criteria for waveform shaper

There are two design criteria that the waveform shaper should satisfy. The first is an obvious
one: the input x[m] to the waveform shaper must have one-to-one relationship with the output
x(t): x(t) should contain exactly the same information as the discrete-time signals x[m] (we
need no loss of information). As mentioned in the beginning, the second criterion comes from a
property of practical channels. So let us first investigate what the property is.

Properties of practical channels

One of the practical channels that we will deal with mostly is: the wireline channel. It is also
called the telephone channel, as it has been a representative wireline channel in the communi-
cation history. It turns out the wireline channel of our main interest induces restriction on the
waveform x(t). Actually the restriction comes even when there is no additive noise, say w(t), in
the system. So for simplicity, let us assume for the time being that there is no additive noise.

The wireline channel is very simple. It is nothing but a copper wire. Why copper? Why not
gold? Because the copper is sort of the cheapest conductor that enables the flow of electrical
signals. With terminologies in the field of electrical circuits, the copper wire can be interpreted
as a collection of three key components: (i) a resistance R; (ii) inductance L; (iii) capacitance
C. See Fig. 2. This interpretation together with what we learned form EE201 (Circuit Theory)

CN10_3

copper (an electrical circuit)

Figure 2: An electrical circuit based interpretation of the wireline channel is: the channel consists
of three components: (i) resistance R; (ii) inductance L; (iii) capacitance C.

and/or EE202 (Signals & Systems) enables us to figure out one key property that the wireless
channel has. That is, linearity. Remember one important property that we learned from the
courses: any system that contains (R, L, C) elements only is linear. If you don’t remember,
that is fine too. Actually you don’t need to understand why such RLC-based system is linear.
It suffices to simply adopt that is the case.

Now what is the mathematical definition of a linear system? We say that a system is linear if any
linear combination of two inputs yields exactly the same linear combination of the corresponding
outputs. Precisely, given input-output pairs (x1(t), y1(t)) and (x2(t), y2(t)), a linear system

2

respects:

c1x1(t) + c2x2(t) −→ c1y1(t) + c2y2(t) (1)

where c1 and c2 are arbitrary real values.

There is another property that the wireline channel has. The property is related to the fact that
(R,L,C) parameters depend on environmental conditions, e.g., distance between transmitter and
receiver, and temperature of the wire. Here the conditions can change over time of course, so
the parameters may vary. But a key observation here is that the time scale of such change is
pretty large relative to the communication time scale. Hence, it is fairly reasonable to assume
that the system does not vary over time, in other words, time invariant. This forms the second
property of the channel: time invariance. The formal definition of a time-invariant system is
the following. A system is said to be time invariant if a time-shifted input x(t− t0) by t0 yields
the output y(t− t0) with exactly the same shift.

The above two properties imply that the wireless channel is a linear time invariant (LTI) system.CN10_4

system

(R, L, C)

Figure 3: Key properties of an LTI system: (i) linearity; (ii) time invariance.

Impulse response h(t) of an LTI system

We know that an LTI system can be described by an entity that you learned from EE202:
impulse response. So the channel can be fully expressed by an impulse response, say h(t).
Do you remember what the mathematical definition of the impulse response is? The impulse
response is defined as the output fed by the Dirac delta input δ(t), defined as a function satisfying
the following two:

δ(t) =

{
∞, t = 0;
0, t 6= 0,

∫ +∞

−∞
f(t)δ(t)dt = f(0) (2)

for a function f(t). The definition allows us to express the relationship between input x(t) and
output y(t) via h(t). Actually you already know that the output is a convolution between the
input and the impulse response:

y(t) = x(t) ∗ h(t) :=

∫ ∞
−∞

x(τ)h(t− τ)dτ. (3)

For those who forgot about this and/or do not understand why that is the case, let me prove it.
The proof is very simple. It is based on the LTI property and the definition of impulse response.
First notice that an input δ(t− τ) yields an output h(t− τ) due to the time invariance property.
Now by the multiplicative property of linearity, an input x(τ)δ(t− τ) gives x(τ)h(t− τ). Finally

3

the superposition property of linearity yields:∫ ∞
−∞

x(τ)δ(t− τ)dτ −→
∫ ∞
−∞

x(τ)h(t− τ)dτ. (4)

Notice that ∫ ∞
−∞

x(τ)δ(t− τ)dτ = x(t) (5)

due to the definition of the Dirac delta function. Hence, this proves the convolution relation (3)
between x(t) and y(t). Also see Fig. 4. CN10_5

LTI system

Figure 4: Impulse response of an LTI system and the relationship between x(t) and y(t).

Shape of h(t) and its spectrum

You may now wonder how h(t) looks like in practice. One typical example is shown in Fig. 5.
Here we define a notion which indicates how much the impulse response is spread over time.

t

h(t)

Td
dispersion time

negligible

Figure 5: A typical shape of the impulse response of a wireline channel.

We adopt a very rough definition for this. Let Td be the dispersion time of the channel which
denotes the time duration during which the impulse response is not negligible. We may have a
different value for Td depending on the definition of the negligibility. Here for simplicity we will
just take as a given parameter of the channel without going into more discussion.

The corresponding typical spectrum shape is shown in Fig. 6. One distinctive feature of the
curve is that it is symmetric. This is because the magnitude of the spectrum of any real-valued
signal is symmetric. The second feature is that the more spread in the time domain, the sharper
the spectrum looks like, and vice versa. Similar to the dispersion time Td, there is another
notion in the frequency domain. That is, WH , which indicates a range of frequencies in which

4

CN10_5

Figure 6: A typical spectrum shape of the impulse response of the wireline channel. HereWH

indicates a range of frequencies in which |H(f)| is not negligible.

the spectrum magnitude |H(f)| is not negligible. Then, what the second feature means in terms
of Td and WH is that the smaller Td, the larger WH and vice versa.

Restriction on x(t)

It turns out the shape of the spectrum of the wireline channel as illustrated in Fig. 6 induces
some restriction on x(t). To see this, consider:

Y (f) = H(f)X(f) (6)

where X(f) and Y (f) denote the Fourier transforms of x(t) and y(t), respectively. From this,
we see that the high frequency components in x(t) are significantly attenuated, e.g., where |f |
is beyond WH

2 . To avoid this distortion, we need restriction on x(t). The restriction is that x(t)
should contain no component at high frequencies:

|X(f)| = 0 |f | ≥ WH

2
. (7)

We can rephrase this restriction with an important concept that often arises in communication
systems. That is, bandwidth. The bandwidth, often denoted by W , is defined as a range of non-
zero frequencies. A formal definition of the bandwidth relies on some mathematical notations.
Let the upper frequency fU be the largest frequency such that |X(f)| = 0 for f ≥ fU. Let
the lower frequency fL be the smallest frequency such that |X(f)| = 0 for f ≤ fL. Then, the
bandwidth W is defined as the difference between the upper and lower frequencies: W := fU−fL.
For example, in Fig. 7, fU = W

2 , fL = −W
2 and thus the bandwidth is W .

|X(f)|

f
Wbandwidth

W

2
−W

2

Figure 7: Spectrum of a continuous-time signal x(t).

Now in terms of W and WH , the restriction (7) can then be rephrased as:

W ≤WH . (8)

5

Look ahead

In this lecture, we have identified two design criteria that the waveform shaper should satisfy:
(i) the shaper must be one-to-one mapping; (ii) x(t) should be bandwidth-limited: W ≤ WH .
Next time, we will develop “waveform shaper” that respects these criteria.

6

EE321 Communication Engineering April 24, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 11: Waveform shaping (2/2)

Recap

Last time, we intended to design a block (followed by the bits-to-voltage mapper at the trans-
mitter side), of which the role is to convert discrete signals x[m] (lollypops) into waveforms
x(t) that can actually be transmitted over practical channels. See Fig. 1. We called the block

CN11_1

bits
practical channelbits-to-voltage waveform

shaper

bandwidth: W

Figure 1: The two-stage mapping in the encoder: (i) bits-to-voltages mapping; (ii) voltages-to-
waveforms mapping.

“waveform shaper”, inspired by the naming of x(t): waveforms.

As an initial effort, we figured out two design criteria that the waveform shaper should satisfy.
The first is that it must be an one-to-one mapping function in order to ensure no loss of infor-
mation. The second criterion comes from the key property of practical wireline channels of our
main interest: there is a range of frequencies in which the spectrum |H(f)| of channel impulse
response h(t) is not negligible: |H(f)| ≈ 0 (or considered to be negligible) for |f | ≥ WH

2 . So high
frequency components in the interested signal x(t) can be significantly distorted. To avoid this,
we imposed the second constraint: the bandwidth W of x(t) should be limited, i.e., W ≤WH .

Today’s lecture

Today we will design “waveform shaper” that meets the above two criteria. Specifically what
we are going to do are three folded. First we will introduce a proper structure of the waveform
shaper that turns out to ease construction. Next we will incorporate the two design criteria into
the structure and then translate the criteria into mathematical expressions. Finally, by relying
on Signals & Systems backgrounds (Fourier transform and series techniques), we will derive a
precise mathematical relationship between x[m] and x(t), thus completing the design.

One-to-one mapping

Let us start by investigating the one-to-one mapping criterion. Here what the one-to-one map-
ping means is that we have to ensure reconstruction of x(t) from x[m] and vice versa. See Fig. 2.
In fact, the other way around (obtaining x[m] from x(t)) is called “sampling”, and the sampling
process is straightforward. As long as we specify the sampling period, say T (indicating the

1

CN11_6

sampling

Figure 2: Meaning of the one-to-one mapping criterion.

physical time duration between two consecutive samples), this process is obvious as the naming
suggests. Here the one-to-one mapping criterion means that we have to ensure:

x[m] = x(mT) ∀m ∈ {0, 1, . . . , n− 1} (1)

where n denotes the total number of time slots used. Here we start from time 0. This is sort of
convention that many people adopt in the field, although some people prefer to use time 1 as a
starting point.

As for the forward direction of our interest, there are actually infinitely many ways to connect
discrete signals (lollypops), reflected in many green curves in Fig. 2. So you may wonder which
way to take. It turns out the way to connect (often called the interpolation in the literature)
is intimately related to a careful choice of the sampling period T and the bandwidth constraint
W ≤WH . Let us investigate the relationship from the next section on.

Structure of waveform shaper

In an effort to ease construction, we introduce a proper structure for the waveform shaper.
Notice that the waveform shaper is sort of an annoying system that we are not familiar with.
Why annoying? This is because the signal types are distinct across input x[m] and output x(t):
x[m] is discrete while x(t) being continuous. In fact, from EE202 or other relevant courses, we
have mainly studied sort of homogeneous systems where the signal types are the same. In order
to close this gap, we introduce a two-stage architecture as illustrated in Fig. 3.CN11_2

waveform shaper

discrete-to-
continuous

discrete-valued

continuous-time

interpolator

continuous

Figure 3: A two-stage architecture for waveform shaper: (i) time-domain converter (from discrete
to continuous); (ii) interpolator g(t).

First we have a so called time-domain converter from discrete to continuous. Here the output
to the converter is defined in the continuous time, yet still preserving discrete-valued signals.
What does it mean by having discrete-valued signals? It means that signals contain spiked

2

values (reflected in the Dirac delta function, x[m]δ(t−mT); also see the middle plot in Fig. 3)
only at sampled time instants, while having nothing at other continuous times. So it is sort of
an intermediate imaginary signal introduced only for conceptual simplicity.

The role of the second block is to generate continuous-valued signals from such intermediate
signals. See the right plot in Fig. 3. The second block is obviously a standard homogeneous LTI
system where the signal types are the same: input and output are all continuous-time signals.
Hence, we can describe it simply with an impulse response, say g(t). The conventional name of
the block is interpolator, as its role suggests: interpolating discrete values to generate smoothly
changing analog signals.

Now the question of interest is then: how to design g(t)? As I hinted earlier, the way to design
g(t) is related to a choice of the sampling period T and the bandwidth constraint W ≤WH . Let
us now dive into details on this.

Representation of continuous-time yet still discrete-valued signal xd(t)

In fact, there is a useful and common way to represent such immediate signal xd(t). The way
is to use the Dirac delta function δ(t), as I briefly mentioned while referring to the second plot
in Fig. 3. I told you that xd(t) contains discrete values only at the sampled time instants,
say 0, T, 2T . The signal at time 0 corresponds to x[0]. But in the continuous-time domain,
we represent the signal in a slightly different manner. We employ the Dirac delta function to
indicate the signal as x[0]δ(t). For time 1, we express it as x[1]δ(t−T). So the compact formula
of xd(t) reads:

xd(t) =

n−1∑
m=0

x[m]δ(t−mT). (2)

Using the fact that x[m] = 0 for m < 0 and m ≥ n, we can alternatively represent xd(t) as:

xd(t) =
∞∑

m=−∞
x[m]δ(t−mT). (3)

For notational simplicity, we will use
∑

m to indicate
∑∞

m=−∞. You may wonder why we multiply
by the Dirac delta function. This will be clearer when I will explain the design of g(t). Please
be patient until we get to the point.

Applying one of the criteria x[m] = x(mT) to (3), xd(t) must read:

xd(t) =
∑
m

x(mT)δ(t−mT)

(a)
=
∑
m

x(t)δ(t−mT)

= x(t)

(∑
m

δ(t−mT)

) (4)

where (a) comes from the fact that δ(t−mT) = 0 when t 6= mT .

How to design the interpolator g(t)?

Now what is g(t) such that x(t) = xd(t) ∗ g(t)? The formula (4) shows the relationship between
xd(t) and x(t). However, it is still very difficult to figure it out from the formula (4). It turns

3

out taking Fourier transform, we can gain insights into identifying g(t). To see this, let us take
Fourier transform on both sides in (4) to obtain:

Xd(f) = X(f) ∗ F

(∑
m

δ(t−mT)

)
(5)

where we used the duality property of Fourier transform: x(t)h(t) ↔ X(f) ∗H(f). Here F(·)
indicates the Fourier transform of (·).
There is a key observation which allows us to represent (5) in a more insightful formula. The
key observation is that the insider of F(·) in (5),

∑
m δ(t−mT), is a periodic signal with period

T . So we can now use Fourier series to represent the periodic signal as:∑
m

δ(t−mT) =
∑
k

ake
j 2πkt

T (6)

where ak indicates the kth Fourier coefficient, expressed as:

ak =
1

T

∫ T
2

−T
2

(∑
m

δ(t−mT)

)
e−j

2πkt
T dt

=
1

T

∫ T
2

−T
2

δ(t)e−j
2πkt
T dt

=
1

T
.

(7)

Here the second equality comes from the fact that
∑

m δ(t −mT) = δ(t) for −T
2 ≤ t ≤ T

2 ; and
the last equality is because of the definition of the Dirac delta function. Plugging (6) (together
with (7)) into (5), we then get:

Xd(f) = X(f) ∗ F

(
1

T

∑
k

ej
2πkt
T

)
(a)
= X(f) ∗

(
1

T

∑
k

δ

(
f − k

T

))
(b)
=

1

T

∑
k

X

(
f − k

T

) (8)

where (a) is due to F(ej2πf0t) = δ(f − f0); and (b) is because X(f) ∗ δ(f − k
T) = X(f − k

T).

What is G(f) that respects (8)?

Notice in (8) that Xd(f) is a periodic signal with the period 1
T . Here the shape of the periodic

signal Xd(f) depends on the relationship between the bandwidth W of x(t) and the period 1
T .

Suppose we choose T such that the period 1
T exceeds the bandwidth W . Then, we can get a

spectrum which looks like the one in Fig. 4. Observe in the low frequency regime |f | ≤ W
2

that we have 1
TX(f). Here the key point is that there is no overlap across many shifted copies

because the period 1
T is greater than the bandwidth W . Hence, the interested signal X(f) is

sort of intact, although it is scaled by 1
T .

On the other hand, if T is chosen such that 1
T < W , then the interested signal X(f) is now

compromised by the neighboring shifted copies. See Fig. 5.

4

CN11_3

Figure 4: The spectrum of xd(t) when 1
T ≥W : Xd(f) = 1

T

∑
kX

(
f − k

T

)
.

CN11_4

Figure 5: The spectrum of xd(t) when 1
T < W : Xd(f) = 1

T

∑
kX

(
f − k

T

)
.

CN11_5

Figure 6: An example of the spectrum G(f) of an interpolator that satisfies the relationship (4)
between xd(t) and x(t).

5

So this advises us to choose T such that 1
T ≥ W . With the choice, there is hope to extract the

interested signal X(f) from Xd(f). Indeed, by applying G(f) with the shape as illustrated in
Fig. 6, we can get the desired X(f).

The impulse response g(t) that corresponds to G(f) in Fig. 6

Now the question is: what is g(t) that corresponds to G(f) in Fig. 6? To figure this out, let us
use some notation used in the Signals-&-Systems literature:

rect(x) =

{
1, −1

2 ≤ x ≤
1
2 ;

0, otherwise.

Using this rect function, we can represent G(f) in Fig. 6 as:

G(f) = T rect(fT). (9)

We learned from EE202 that the rect function has the Fourier transform relationship with the
sinc function:

T rect(fT) ↔ sinc

(
t

T

)
(10)

where sinc(x) := sin(πx)
πx . Hence, we get:

g(t) = sinc

(
t

T

)
. (11)

Relationship between x[m] and x(t)

Recall in the introduced structure of waveform shaper that:

x(t) = xd(t) ∗ g(t). (12)

Plugging (11) into the above with the choice of T such that 1
T ≥W , we then get:

x(t) = xd(t) ∗ sinc
(
t

T

)
(a)
=

(∑
m

x[m]δ(t−mT)

)
∗ sinc

(
t

T

)
(b)
=
∑
m

x[m]sinc

(
t−mT
T

)
=
∑
m

x[m]sinc

(
t

T
−m

)
(13)

where (a) is due to (2); and (b) comes from the fact that y(t) ∗ δ(t − t0) = y(t − t0) for any
y(t) and t0. Finally, recall the bandwidth constraint: W ≤ WH . This constraint can be easily
satisfied with the following choice of T :

W ≤ 1

T
≤WH . (14)

Look ahead

So far we have focused only on the transmitter side. So a natural follow-up question is: what
about for the receiver side? Next time, we will develop a corresponding receiver architecture.

6

EE321 Communication Engineering May 1, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 12: Optimal receiver structure

Recap

During the past two lectures, we studied how to design the waveform shaper, wherein the role is
to convert discrete-time signals (lollypops) into continuous-time signals (waveforms). The reason
that we had to introduce such converter was that the actual signals (that would be transmitted
over practical channels) should be continuous-time analog signals. See Fig. 1.

CN11_1

bits
practical channelbits-to-voltage waveform

shaper

bandwidth: W

Figure 1: Encoder: (i) bits-to-voltages mapper; (ii) waveform shaper.

For the design, we considered two criteria. The first is that it should be an one-to-one mapping
function, i.e., the output x(t) of the waveform shaper should contain the same information as
the discrete-time signal x[m] (having no information loss in the process). The second criterion
is that x(t) should be bandwidth-limited. This is because in reality, practical channels may
induce signal distortion. We could see this clearly in the frequency domain: the frequency
spectrum of the channel’s impulse response is not flat, so without the bandwidth constraint,
the transmitted signal may be significantly distorted. To avoid such distortion, we impose the
bandwidth constraint: the bandwidth of the transmitted signal, say W , does not exceed the
range WH of frequency bands in which channel’s spectrum is significant (at least not negligible).

Keeping in mind the two design criteria, we could design the shaper. Inspired by the Nyquist rate
above which one can avoid signal overlap that occurs in the frequency domain (called aliasing),
we set the sampling period T such that the sampling rate 1

T is above the signal bandwidth W .
Relying to the picture in the frequency domain, we could then come up with an explicit way to
interpolate the discrete signals to yield continuous signals:

x(t) =
∑
m

x[m]sinc

(
t

T
−m

)
(1)

where sinc(x) := sinπx
πx .

This is what we have done so far. Notice that this design only concerns the transmitter side.
So a natural follow-up question is: What about for the receiver side? What is a corresponding
receiver architecture?

Today’s lecture

1

Today we will explore details on this question. Specifically what we are going to do are four
folded. First we will come up with a corresponding receiver architecture in a very simple context:
the perfect channel setting in which the channel’s impulse response h(t) = δ(t) and there is no
additive noise w(t) = 0. It turns out the receiver architecture in the simple setting includes
exactly the reverse operation (relative to the waveform shaper). That is, sampling which yields
y[m] from y(t). We will then argue the optimality of the sampler-based receiver architecture, still
under the AWGN channel and even under practical channels including the wireline channel of
interest. Next we will rely on the structure to derive an equivalent discrete-time channel model
which directly relates x[m] to y[m]. Lastly we will discuss how to design the optimal receiver in
the context of discrete-time channel model.

A corresponding receiver architecture in the perfect channel

Recall that the wireline channel of our main interest can be modeled as a concatenation of an
LTI system and the AWGN channel. Hence, one can write down the channel output y(t) as:

y(t) = h(t) ∗ x(t) + w(t) (2)

where h(t) denotes an impulse response of the LTI system and w(t) indicates the AWGN noise.
The received waveform y(t) is then fed into the optimal receiver which intends to decode infor-
mation bits b. See Fig. 2. The question of interest is: What is the optimal receiver structure

CN12_1

waveform
shaper

optimal
receiver?

bits-to-voltage

Figure 2: A block diagram of a two-stage communication system.

corresponding to the transmitter structure developed last time?

Observe two complications here in the received waveform (2). One is that these are continuous-
time signals. We never learned about the optimal decision rule concerning continuous-time
signals. The second complication comes from the convolution operation. To gain insights, let
us first consider a simple perfect channel setting in which h(t) = δ(t) and w(t) = 0:

y(t) = x(t). (3)

Remember in the transmitter side that we took discrete-time signals x[m] and interpolated
them to obtain waveforms x(t) that contain all the information in x[m]. The ultimate goal at
the receiver is to decode the transmitted bits, so we can readily see that the receiver strategy
would be to do exactly the reverse of what the transmitter is doing – sample the received
waveforms y(t) at t = mT , and obtain discrete-time signals y[m]. Under this perfect channel,
we then get:

y[m] = y(mT) = x(mT) = x[m]. (4)

Optimality of the sampler-based receiver

2

Now what if we have an AWGN noise? Assuming to still employ the sampler, for the AWGN
channel, y[m] would be the sum of x[m] and an additive noise:

y[m] = x[m] + w[m] (5)

where w[m] denotes a sample version of w(t). Since w(t) is an AWGN, w[m] := w(mT) is also
i.i.d. ∼ N (0, σ2). In the presence of a noise, all we need to do for decoding the information bits
from y[m] is to apply the ML decision rule. This is something that we have been doing in Part
I. Given y[m]’s, make the best possible estimate b̂. This leads to the initial guess of the optimal
receiver architecture as illustrated in Fig. 3.

CN12_2

ML detector

waveform
shaper

bits-to-voltage

sampling @

Figure 3: The sampler-based receiver architecture.

At this moment, this is nothing but a guess for the optimal receiver. Why still a guess? Remem-
ber in the perfect channel that we had only the sampler, and we saw that the sampler-based
structure leads naturally to the optimal receiver. On the other hand, in the presence of a noise,
it is not quite clear if we need the sampler in the first place. In fact, the optimal receiver should
have the following structure in which we have the continuous-time waveform-level signal input.
See Fig. 4.

CN12_3

channel
= waveform-level ML detector

optimal receiver

Figure 4: The waveform-level optimal ML receiver.

Here b̂ML,wave denotes the output of the waveform-level optimal ML detector:

b̂ML,wave := arg max
i
fy(t)(a(t)|b = i) (6)

where fy(t)(a(t)|b = i) indicates the likelihood function w.r.t. the received waveform y(t) given
b = i. Now a natural question arises:

Is the sampler-based ML solution, say b̂ML, the same as the waveform-level (raw signal level)
ML counterpart b̂ML,wave?

It turns out that for typical channels including the AWGN channel as well as the wireline
channel, b̂ML is indeed the same as b̂ML,wave. This implies that we do not lose any information
while passing through the sampling process. In fact, this is a deep result known as the irrelevance

3

theorem. A formal proof of this theorem is not that easy. So we will omit the proof here. If you
are interested in the proof, you may want to take a graduate-level course on Random Processes.
In this course, we will simply adopt the optimal receiver structure that features the sampler
followed by the ML detector.

An equivalent discrete-time channel model

Now the only thing that is left is how to design such sampler-based ML detector in the context of
the wireline channel. To this end, we first need to figure out relationship between input/output
in the discrete-time domain: x[m] and y[m]. Starting with the property of LTI systems, we get:

y(t) = h(t) ∗ x(t) + w(t)

=

∫ ∞
−∞

h(τ)x(t− τ)dτ + w(t)

(a)
=

∫ ∞
0

h(τ)x(t− τ)dτ + w(t)

(b)
=

∫ ∞
0

h(τ)

(∑
k

x[k]sinc

(
t− τ
T
− k
))

dτ + w(t)

=
∑
k

x[k]

(∫ ∞
0

h(τ)sinc

(
t− τ
T
− k
)
dτ

)
+ w(t)

(7)

where (a) is because h(τ) = 0 when τ < 0 for a realistic wireline channel (see Fig. 5; you may
wonder why h(τ) = 0 for τ < 0; this is because otherwise the output is a function of future
inputs, which never occurs in reality); (b) follows from (1).

CN12_5

Figure 5: A typical shape of the wireline channel’s impulse response.

Now by sampling y(t) at t = mT , we get:

y[m] := y(mT)

=
∑
k

x[k]

∫ ∞
0

h(τ)sinc
(
m− k − τ

T

)
dτ︸ ︷︷ ︸

=:h[m−k]

+w[m]

=
∑
k

x[k]h[m− k] + w[m].

(8)

We recognize (8) as a discrete-time convolution and thus we have for the final received signal:

y[m] = h[m] ∗ x[m] + w[m] (9)

where h[m] is a discrete-time impulse response that represents a sampled version of h(t):

h[m] =

∫ ∞
0

h(τ)sinc
(
m− τ

T

)
dτ. (10)

4

This gives us an equivalent discrete-time channel model as summarized in Fig. 6.
CN12_4

bits-to-voltage ML detector

Figure 6: The equivalent discrete-time model for the wireline channel.

Remarks on h[m]

Remember our main goal: designing the optimal ML detector based on y[m] in (9). Now how
can we achieve this? It turns out the discrete-time convolution in (9) incurs a serious issue.
Prior to discussing what that issue is, let me say a few about about h[m]. First of all, there is
a terminology for this. To figure this out, notice that

y[m] = x[m] ∗ h[m] + w[m]

(a)
= h[m] ∗ x[m] + w[m]

=
∑
k

h[k]x[m− k] + w[m]

(11)

where (a) is due to the commutative property of convolution. Here the kth channel impulse
response h[k] is called a channel tap or simply a tap. Why do we call tap? It is a very short
name. Also this is because the channel impulse response looks like a sequence of faucets (taps).
With the notation h[k], the tap index k may be confused with the time index m. Hence, in
order to differentiate the tap index from the time index, we denote h[k] by hk.

The second remark is about a range of k for non-zero hk’s. As mentioned earlier, the output
cannot depend on future inputs, which led to h(τ) = 0 for τ < 0 (gain see Fig. 5). In the
discrete-time domain, this is translated to:

hk = 0, k < 0. (12)

To see this clearly, observe:

y[m] =
∑
k

hkx[m− k] + w[m]

= h0x[m] (current)

+ h1x[m− 1] + h2x[m− 2] + · · · (past)

+ h−1x[m+ 1] + h−2x[m+ 2] + · · · (future)

+ w[m].

(13)

In light of the current symbol, say x[m], (h−1, h−2, . . . ,) are w.r.t. the future inputs (x[m +
1], x[m+ 2], . . .). Hence, (h−1, h−2, . . . ,) must be all zero.

Intersymbol interference (ISI)

5

Now let us get back to the issue. What is that issue? To see this, let us again observe (13):

y[m] = h0x[m] (current)

+ h1x[m− 1] + h2x[m− 2] + · · · (past)

+ w[m].

(14)

To see the issue concretely, let us consider a sequential communication scheme in which the
mth information bit, say bm, is mapped to x[m]. Here in light of the current symbol, say x[m],
the past symbols (x[m− 1], x[m− 2], . . .) play as interference. This phenomenon is called the
intersymbol interference, ISI for short. This is the new phenomenon that we did not observe in
Part I. It turns out the ISI incurs some complication in the ML decision rule.

Look ahead

Next we will study how to deal with ISI and then to develop the optimal ML decision rule.

6

EE321 Communication Engineering May 13, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 13: Optimal receiver in ISI channels

Recap

Last time, we came up with an optimal receiver architecture that corresponds to the sampler-
based transmitter which we developed during Lectures 11 & 12. It turns out the optimal receiver
architecture includes the sampler in front that yields y[m] := y(mT) from the received waveform
y(t). With the proper and smart definition of h[m] as below:

h[m] :=

∫ ∞
0

h(τ)sinc
(
m− τ

T

)
dτ, (1)

we could then establish an equivalent discrete-time channel model that relates x[m] directly to
y[m]:

y[m] = h[m] ∗ x[m] + w[m] (2)

where w[m]’s are i.i.d. ∼ N (0, σ2) and h(t) indicates an impulse response of the wireline channel.
We then introduced a terminology that indicates the discrete-time channel’s impulse response.
That was, channel tap, and we denoted it by hk in an effort to differentiate the tap index k from
the time index m. Hence, the equation (2) is re-written as:

y[m] =
∞∑
k=0

hkx[m− k] + w[m].

Notice that hk = 0 for k < 0. This is because the output cannot depend on future inputs.

We then investigated an issue that arises in the above channel. To see the issue clearly, we
considered a sequential communication scheme in which an information bit bm is mapped to
each transmitted signal x[m], and focused on the equation in the following form:

y[m] = h0x[m]

+ h1x[m− 1] + h2x[m− 2] + · · ·
+ w[m].

(3)

The issue was that in view of the current symbol, say x[m], the past symbols (marked in red
above) cause interference. The phenomenon is called inter-symbol interference, ISI for short.

Today’s lecture

Today we will explore the design of the optimal receiver that takes into account the ISI issue.
Specifically what we are going to do are three folded. First we will derive the optimal ML
receiver. I will then argue that a naive way of implementing the optimal receiver comes with a
challenge in complexity. Lastly I will introduce an efficient algorithm that addresses the issue.
That is, the Viterbi algorithm.

Signal representation

1

For illustrative simplicity, let us consider a simple two-tap ISI channel:

y[m] = h0x[m] + h1x[m− 1] + w[m]. (4)

We consider the sequential communication scheme in which we send one bit at a time:

x[m] =

{
+
√
E, bm = 1;

−
√
E, bm = 0

(5)

where m = 0, . . . , n− 1. Here n denotes the total number of time slots used. Suppose we want
to decode x[m]. Note that at time m, the interference h1x[m−1] explicitly contains information
about the bit that was sent in time m − 1. Since x[m − 1] is related to x[m − 2] due to the
ISI and so on, it implicitly contains information about all the bits that were sent before time
m. Hence we can readily expect that all of the received signals y[m]’s affect decoding x[m].
Similarly decoding the other transmitted signals is affected by all of the received signals. This
motivates us to consider a block decoding scheme in which we decode all the bits looking at all
the received signals. Specifically, given (y[0], . . . , y[n− 1]), we wish to decode (x[0], . . . , x[n− 1])
altogether.

In light of this block decoding, the signals x[m] and x[m − 1] in (4) are all desired. This then
naturally motivates us to represent (4) as:

y[m] = [h1 h0]︸ ︷︷ ︸
=:hT

[
x[m− 1]
x[m]

]
︸ ︷︷ ︸

=:s[m]

+w[m]. (6)

This way, the equation (6) looks like the AWGN channel for which we are familiar with the ML
derivation. Here we call s[m] a state. Later you will readily figure out the rationale behind the
naming. Since decoding (x[0], x[1], . . . , x[n−1]) is equivalent to decoding(s[0], s[1], . . . , s[n−1]),
it suffices to decode the states. Here we will focus decoding the states instead.

Optimal ML decision rule

The optimal ML decision rule is to find the sequence of states that maximizes the likelihood
function w.r.t. the received signals y := (y[0], y[1], . . . , y[n−1]). So let us massage the likelihood
function:

fy (y[0], . . . , y[n− 1]|s) (a)
= fw

(
y[0]− hT s[0], . . . , y[n− 1]− hT s[n− 1]|s

)
(b)
=

n−1∏
m=0

fw[m]

(
y[m]− hT s[m]

)
(c)
=

n−1∏
m=0

1√
2πσ2

exp

(
− 1

2σ2
(
y[m]− hT s[m]

)2)
(7)

where (a) is because w[m] = y[m]− hT s[m]; and (b) is due to the independence of w[m]’s; and
(c) comes from w[m] ∼ N (0, σ2). Hence, the optimal s∗ would be:

s∗ = arg max
s

n−1∏
m=0

1√
2πσ2

exp

(
− 1

2σ2
(
y[m]− hT s[m]

)2)

= arg max
s

exp

(
− 1

2σ2

n−1∑
m=0

(
y[m]− hT s[m]

)2)

= arg min
s

n−1∑
m=0

(
y[m]− hT s[m]

)2
.

(8)

2

A challenge in computation

Now how to compute s∗ in (8)? One naive way is to do an exhaustive search. For all possible
sequences of states, we compute the following interested quantity:

n−1∑
m=0

(
y[m]− hT s[m]

)2
. (9)

We then find the sequence pattern that yields the minimum quantity. However, under this naive
way, we are faced with a challenge in complexity. Why? Think about the total number of possible
sequence patterns. How many possible sequences? That is, 2n. Why? This is because decoding
(s[0], s[1], . . . , s[n − 1]) is equivalent to decoding (x[0], x[1], . . . , x[n − 1]) and the sequence of
(x[0], x[1], . . . , x[n− 1]) takes one of the 2n possibilities. So the challenge is that the complexity
grows exponentially with n, which is definitely very prohibitive for a large value of n. To figure
out exactly what the complexity is, let us compute the numbers of multiplication, addition and
comparison required to figure out s∗ from (8).

For each time slot, say m, the computation of
(
y[m]− hT s[m]

)2
requires 3 multiplications and

2 additions. Since we have n of such computations, we get the following complexity:

multiplication: 3n · 2n;

addition: (2n+ (n− 1)) · 2n;

comparison: 2n − 1,

where the number n− 1 marked in blue comes from the complexity w.r.t.
∑n−1

m=0.

A low complexity solution

Now a natural question that arises is then: Is there any smarter approach that implements
the ML receiver with a much lower complexity? A giant in the communication and information
theory fields addressed the question to develop a very efficient algorithm in which the complexity
grows linearly with n. The name of the giant is Andrew Viterbi ; see Fig. 1. Naming after his
last name, the algorithm is called the Viterbi algorithm. For the rest of this lecture, we will
study some concepts that form the basis of the Viterbi algorithm.

CN13_5

Andrew Viterbi ‘67

Figure 1: Andrew Viterbi is a giant in the communication and information theory fields.

3

Cost & finite state machine

The first is concerned about an interested quantity in the minimization problem:

s∗ = arg min
s

n−1∑
m=0

(
y[m]− hT s[m]

)2︸ ︷︷ ︸
=: cm(s[m])

(10)

Here the quantity
(
y[m]− hT s[m]

)2
colored in green can be viewed as something negative,

because the smaller the quantity, the better the situation is. Hence, we can call it “cost” w.r.t.
the state s[m].

The second is related to the state (or state vector) s[m] that can take one of the following six
candidates: [

0

−
√
E

]
,

[
0

+
√
E

]
,

[
+
√
E

+
√
E

]
︸ ︷︷ ︸

s0

,

[
−
√
E

+
√
E

]
︸ ︷︷ ︸

s1

,

[
−
√
E

−
√
E

]
︸ ︷︷ ︸

s2

,

[
+
√
E

−
√
E

]
︸ ︷︷ ︸

s3

.

Observe that the first two occur only at the beginning (m = 0), assuming that x[−1] = 0. So
the two states are negligible relative to the others for a large value of n. For simplification, let
us not worry about the two states. To this end, we intentionally set x[−1] = +

√
E.

Notice that each state s[m] can move from one to another, depending on the value of x[m]. So
one can now think of a Finite State Machine (FSM) which exhibits state transitions as illustrated
in Fig. 2. Here the + or − labeled above a transition arrow indicates the sign of x[m+ 1], given

CN13_1

s3 s0

s2 s1

+

-

-

+

+

-

- +

Figure 2: A finite state machine with four states. A transition occurs depending on the value
of x[m].

the current state s[m]. For instance, suppose that x[m+ 1] = −
√
E given the current state s0.

Then, we move along the red transition arrow to arrive at the state s3 of [+
√
E;−

√
E]. While

the state transition diagram well represents how each state moves around to another, it does

4

not capture the time evolution. This is exactly where another concept w.r.t. the state machine
arises. That is, the trellis diagram.

Trellis diagram

The trellis diagram exhibits both state transitions and time evolution. To clearly understand
how it works, let me walk you through details with Figs. 3 and 4.CN13_2

s0

s1

s2

s3

If + occurs, stay at s0.

If – occurs, move to s3.

state
time ??

Figure 3: A trellis diagram at m = 0 .
CN13_3

s0

s1

s2

s3

state
time

Figure 4: A trellis diagram at m = 1 .

Consider the state at time 0:

s[0] =

[
x[−1]
x[0]

]
=

[
+
√
E

x[0]

]
=

[

+
√
E

+
√
E

]
= s0, if x[0] = +

√
E;[

+
√
E

−
√
E

]
= s3, if x[0] = −

√
E,

where the second equality is due to our assumption x[−1] = +
√
E. Notice that s[0] takes one of

the two possible states s0 and s3, reflected in the two dots at time 0 in Fig. 3. In time −1, we
have two options for s[−1] depending on the value of x[−2]: s0 and s1. To remove the ambiguity
in time −1, let us further assume x[−2] = +

√
E to fix the initial state as s0. This way, we can

ensure that we start always from s0. As mentioned earlier, if x[0] = +
√
E, s[0] = s0; otherwise

5

s[0] = s3. To be more familiar with how it works, let us consider one more time slot as illustrated
in Fig. 4. Suppose s[0] = s0. If x[0] = +

√
E, then it stays at the same state s0 (reflected in the

blue transition arrow; otherwise, it moves to s3 (reflected in the red arrow). On the other hand,
given s[0] = s3, if x[0] = +

√
E, then it moves to s1; otherwise, it goes to s2.

Cost calculation

Now how to calculate the cost in (10) of our interest from the trellis diagram? To see how it
works, consider a concrete example for n = 4, as illustrated in Fig. 5.

CN13_4

s0

s1

s2

s3

state
time

Figure 5: A trellis diagram for the sequence (x[0], x[1], x[2], x[3]) = (+
√
E,−

√
E,+

√
E,+

√
E) .

This is the example in which (x[0], x[1], x[2], x[3]) = (+
√
E,−

√
E,+

√
E,+

√
E), so the trellis

path takes the blue-red-blue-blue transition arrows, yielding the state change as: s0-s0-s3-s1-s0.
To ease cost calculation, here we leave an associated cost at the corresponding state node. For
instance, we put c0([+

√
E; +

√
E]) (marked in green in Fig. 5) nearby the black dot s0 in time 0.

Similarly we leave c1([+
√
E;−

√
E]), c2([−

√
E; +

√
E]), c3([+

√
E; +

√
E]) for the corresponding

black dots. By aggregating all the costs associated with the black dots, we can readily compute
the cost for one such sequence. Considering all possible sequence patterns, we can compute the
optimal path as:

s∗ = arg min
s
{c0(s[0]) + c1(s[1]) + c2(s[2]) + c3(s[3])} .

As mentioned earlier, a naive exhaustive search requires 24 possibilities - so the complexity is
very expensive especially for a large n.

Look ahead

Next time, we will study the Viterbi algorithm that well exploits the structure of the trellis
diagram to find s∗ efficiently.

6

EE321 Communication Engineering May 15, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 14: The Viterbi algorithm

Recap

Last time, we investigated the optimal ML receiver for a simple two-tap ISI channel:

y[m] = h0x[m] + h1x[m− 1] + w[m] (1)

where w[m]’s are i.i.d. ∼ N (0, σ2). For simplicity, we considered a simple sequential communi-
cation scheme in which an information bit bm is mapped to each transmitted signal x[m]. Since
each symbol propagates upto the last received signal through the ISI term h1x[m− 1], we con-
sidered a block decoding in which we wish to decode the entire symbols (x[0], x[1], . . . , x[n− 1])
based on all the received signals (y[0], y[1], . . . , y[n − 1]). Here n denotes the total number of
time slots used. Specifically we represented (1) as:

y[m] = [h1 h0]︸ ︷︷ ︸
=:hT

[
x[m− 1]
x[m]

]
︸ ︷︷ ︸

=:s[m]

+w[m]. (2)

We then intended to encode the entire state vectors (s[0], s[1], . . . , s[n− 1]) which is equivalent
to decoding (x[0], x[1], . . . , x[n − 1]). Manipulating the likelihood function w.r.t. the received
signals, we could obtain the ML solution:

s∗ = arg min
s

n−1∑
m=0

(
y[m]− hT s[m]

)2
. (3)CN13_4

s0

s1

s2

s3

state
time

Figure 1: A trellis diagram for the sequence (x[0], x[1], x[2], x[3]) = (+
√
E,−

√
E,+

√
E,+

√
E) .

Since a native exhaustive approach requires a heavy computation for 2n possible sequence pat-
terns, we introduced an efficient algorithm with a much lower complexity: the Viterbi algorithm.
We then studied a couple of concepts that form the basis of the algorithm. One is the cost that
represents an interested quantity in the optimization (3), marked in blue. The second is the

1

finite state machine (FSM) that concerns the state vector s[m]. The third is the trellis di-
agram that visualizes how each state changes in time. Fig. 1 illustrates an example of the
trellis diagram for the sequence (x[0], x[1], x[2], x[3]) = (+

√
E,−

√
E,+

√
E,+

√
E), assuming

that x[−1] = x[−2] = +
√
E.

Today’s lecture

It turns out the structure of the trellis diagram gave a significant insight into the invention of
the Viterbi algorithm. Today we will study the trellis-diagram-inspired Viterbi algorithm which
yields a much lower complexity growing linearly with n.

Key observation

The Viterbi algorithm is inspired by the following key observation. To see this clearly, let us
consider two possible sequence patterns presented in Fig. 2:

(i) (x[0], x[1], x[2], x[3]) = (−
√
E,+

√
E,−

√
E,+

√
E) (marked in purple);

(ii) (x[0], x[1], x[2], x[3]) = (−
√
E,+

√
E,−

√
E,−

√
E) (makred in blue).

Here the key observation is that the two trellis paths are significantly overlapped ; hence, theCN14_1

s0

s1

s2

s3

state
time

- + - +
- + - -

overlap

Figure 2: Key observation.

two corresponding costs are identical except w.r.t. the last state vector. This motivated Viterbi
to come up with the following natural idea.

Idea of the Viterbi algorithm

The idea is to successively store only an aggregated cost up to time t and then use this to compute
a follow-up aggregated cost w.r.t. the next time slot. In order to understand what this means
in detail, let us consider a simple example in which (h0, h1) = (1, 1), E = 1 and we receive:

(y[0], y[1], y[2], y[3]) = (2.1, 1.8, 0.5,−2.2).

2

CN14_2

s0

s1

s2

s3

state
time

Figure 3: Cost computation and store strategy.

See Figs. 3 and 4. First compute the cost at time 0 when x[0] = +1:

c0

([
+
+

])
=

(
y[0]− [1 1]

[
+1
+1

])2

= 0.01. (4)

The cost value of 0.01 is then placed along the blue transition arrow, as illustrated in Fig. 3. We
then store the cost at the state s0 node at time 0 (a black dot). Here we indicate the store by
marking a purple-colored number nearby the black dot. We do the same thing w.r.t. the cost
yet now when x[0] = −1:

c0

([
+
−

])
=

(
y[0]− [1 1]

[
+1
−1

])2

= 4.41. (5)

We place the 4.41 along the associated red transition arrow and then store 4.41 nearby the black
dot w.r.t. the state s3.

Next we compute the cost w.r.t. time 1. The cost for x[1] = +
√
E is computed as 0.04 (check!).

So the aggregated cost up to time 1 w.r.t. the state s0 would be 0.01+0.04, as illustrated in
Fig. 3. Similarly the aggregated costs for the other states (s1, s2, s3) would be 4.41+3.24, 4.41+
14.44, 0.01+3.24, respectively. Also check!

Now one can see the core idea of the Viterbi algorithm from time 2. See Fig. 4. Consider the
state s0 at time 2. This state occurs when x[2] = +1 and comes from two possible prior states:
s0 and s1. The cost for x[2] = +1 is first computed as 2.25. So the aggregated cost assuming
that it comes from the prior s0 state (storing 0.05 for the aggregated cost up to time 1) would
be: 0.05 + 2.25 = 2.3. On the other hand, the aggregated cost w.r.t. the prior s1 state would
be: 7.65 + 2.25 = 9.9. Now how to deal with the two cost values? Remember at the end of
the day that we are interested in finding the path that yields the minimum aggregated cost. So
the path w.r.t. the larger cost 9.9 would be eliminated in the competition. So we don’t need
to worry about any upcoming paths w.r.t. the larger cost. This naturally motivates us to store
only the minimum between the two cost values at the state s0 in time 2, while ignoring the
other loser path. So we store 2.3 at the node, as illustrated in Fig. 5. We do the same thing

3

CN14_3

s0

s1

s2

s3

state
time

Figure 4: Ided of the Viterbi algorithm

CN14_4

s0

s1

s2

s3

state
time

Figure 5: Choose s∗ that minimizes the aggregated cost.

4

for the other states. For the state s1, the lower path turns out to be the winner, so we store
the corresponding aggregated cost 3.5 at the state s1 node, while deleting the upper loser path.
Similarly for the states s2 and s3. We repeat this procedure until the last time slot. See all the
associated computations in Fig. 5.

Now how to find the path that yields the minimum aggregated cost from the picture? It is very
simple. Take a look at the four aggregated costs at the last time slot: 19.94, 5.14, 0.34, 7.14.
We then pick up the minimum cost 0.34. Now how to find the corresponding sequence pattern?
Since we leave only the survivor paths in the picture while deleting loser paths, we can readily
find the path via backtracking. The survivor paths form a purple trajectory in Fig. 5, which
corresponds to the sequence (x[0], x[1], x[2], x[3]) = (+

√
E,+

√
E,−

√
E,−

√
E).

Complexity

Remember I argued that the complexity of the Viterbi algorithm grows linearly with n. To see
this clearly, let us consider the essential operation that occurs in each node. Focus on the opera-
tion w.r.t. the state s0 node at time 2, as illustrated in Fig. 6. Here the current cost computation

CN14_5

s0

s1

state
time

multiplication:

addition:

comparison:

Figure 6: Complexity per state.

requires three multiplications and two additions. Next we need one comparison for taking the
minimum between the two, and one additional addition for aggregating the costs. Hence, the
complexity per state would be: three multiplications; three additions; and one comparison.

This operation is repeated for the other states spanning the entire time slots, reflected in all the
dots in the picture. Since the total number of black dots is 4n, the complexity of the Viterbi
algorithm grows linearly with n; see the precise numbers in Fig. 7.

Issue

While the Viterbi algorithm has a much lower complexity relative to the native exhaustive
search, it still comes with a challenge in complexity. The complexity is concerned about the
number of states. The problem is that this number can be large. For instance, for an L-tap ISI
channel: the number of states would be 2L. Hence, the complexity grows exponentially with L.

Look ahead

It turns out there is another scheme that can further reduce the complexity even when L is
large. Next time, we will study such scheme.

5

CN14_6

Exhaustive Viterbi

multiplication:

addition:

comparison:

Figure 7: Complexity comparison.

6

EE321 Communication Engineering May 20, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 15: OFDM (1/3)

Recap

Last time, we investigated how to optimally decode transmitted symbols in the context of a
two-tap ISI channel:

y[m] = h0x[m] + h1x[m− 1] + w[m]

= [1 h0]︸ ︷︷ ︸
=:hT

[
x[m− 1]
x[m]

]
︸ ︷︷ ︸

=:s[m]

+w[m] (1)

where w[m]’s are i.i.d. ∼ N (0, σ2). Inspired by the fact that x[m]’s are closely coupled in the
received signals via the ISI term, we focused on the block decoding which intends to decode
(x[0], x[1], . . . , x[n− 1]) altogether, based on the entire received signals: (y[0], y[1], . . . , y[n− 1]).
Here n indicates the number of time slots used. We then derived the optimal ML receiver w.r.t.
the sequence of state vectors s[m]’s (one-to-one mapping with (x[0], x[1], . . . , x[n− 1])):

s∗ = arg min
s

n−1∑
m=0

(
y[m]− hT s[m]

)2
. (2)

We emphasized that a naive way of implementing the ML solution based on an exhaustive search
requires a very expensive complexity: 2n growing exponentially with n.

I then mentioned about another yet very efficient way of implementing the ML solution: the
Viterbi algorithm whose complexity grows linearly with n. However, in light of the complexity
w.r.t. the number of states in an associated FSM, it is still problematic. The complexity grows
linearly in the number of states 2L, therefore it is exponential with L. Here L could be very
large in practice, so it could be very much problematic.

Today’s lecture

Today we will study another scheme that can significantly reduce the complexity even when L is
large. The scheme that we will study is known as Orthogonal Frequency Division Multiplexing,
OFDM for short. Today we will study the key idea of OFDM as well as how it works in the
context of the simplest ISI channel setting: L = 2. Next time, we will extend to arbitrary L-tap
ISI channels.

A fixed transmission scheme

So far we have considered a receiver-centric approach in which a transmission scheme is fixed,
e.g., as the sequential communication scheme where we send each bit bm by transmitting x[m] =
±
√
E. It turns out using a sophisticated transmitter-side technique, one can make a channel

effectively ISI-free so that the complexity becomes irrelevant to L. Encouragingly, the technique
yields a receiver architecture no more complicated than the one used in the past lectures. While
this seems too good to be true, we will see this is the case remarkably.

Cyclic signaling

1

Suppose we send N transmitted symbols:

x := [x[0], x[1], . . . , x[N − 1]]T .

Note that time slots begin at zero. We have not yet specified how to map information bits into
x[m]’s. Later we will provide details for the encoding rule. Consider received signals:

y[0] = h0x[0] + w[0]

y[1] = h1x[0] + h0x[1] + w[1]

y[2] = h1x[1] + h0x[2] + w[2]

...

y[N − 1] = h1x[N − 2] + h0x[N − 1] + w[N − 1].

(3)

Employing a matrix notation, we can then write a sequence of the received signals as:

y = Hx + w, (4)

where y := [y[0], . . . , y[N − 1]]T , w := [w[0], . . . , w[N − 1]]T , and

H =

h0
h1 h0

h1 h0
. . .

h1 h0

 . (5)

Notice that H has a very systematic structure: Each row contains a shifted version of (h1, h0),
except the first row. Why we have an exception in the first row? This is because x[−1] = 0.
This motivates us to consider a beautiful yet imaginary structure as the one in Fig. 1. Here we

CN15_1

Figure 1: A nicely looking structure for H.

have h1 in front of h0 in the first row. But it is placed in an invalid position in the matrix.
Another beautiful yet valid matrix might be the following:

Hc =

h0 h1
h1 h0

h1 h0
. . .

h1 h0

 . (6)

where the position for h1 in the first row (marked in red) is now valid while yielding a shifted
copy of (h1, h0). Here the shift means any type of shift that allows for a cyclic shift. Observe

2

that every row is rotated one element to the right relative to the preceding row. This is a
well-known property in the linear algebra literature, called the circulant property. So Hc is a
circulant matrix. It turns out that the circulant matrix has a very nice property that helps
converting the original ISI channel into multiple ISI-free subchannels.

A way to enable cyclic signaling

Actually we can also implement this cyclic signaling. So prior to digging into the nice property,
let us first investigate the way that enables such signaling. Notice in Fig. 1 that h1 in the first
row (marked in red) is placed in a position corresponding to time slot −1 in view of the real
channel H. In light of Hc, however, the corresponding time slot w.r.t. h1 is N − 1. Hence,
the idea is to send a dummy symbol x[−1] at time −1 so that it acts as the symbol at time
N − 1. In other words, the idea is to set x[−1] = x[N − 1] and then send x′ that augments
x[−1] = x[N − 1] in front of x:

x′ = [x[N − 1], x[0], . . . , x[N − 1]]T . (7)

See Fig. 2.

CN15_4

channelcyclic

signaling

decyclic

signaling

cyclic channel

Figure 2: How to generate cyclic signaling.

This way we get:

y′ = Hx′ + w′ (8)

where y′ := [y[−1], y[0], . . . , y[N − 1]]T and w′ := [w[−1], w[0], . . . , w[N − 1]]T . By removing the
first component in y′ (that we call “decyclic operation” in Fig. 2), we obtain:

y = Hcx + w. (9)

A nice property of Hc

Now let us investigate the nice property that enables us to remove ISI very efficiently with the
cyclic structure reflected in (9). The nice property is that an eigenvalue decomposition of the
circulant matrix Hc has the following structure:

Hc = F−1ΛF (10)

where F denotes the Discrete Fourier Transform (DFT) matrix:

F :=
1√
N

ω0·0 ω1·0 · · · ω(N−1)·0

ω0·1 ω1·1 · · · ω(N−1)·1

...
...

. . .
...

ω0·(N−1) ω1·(N−1) · · · ω(N−1)·(N−1)

 . (11)

3

Here w := e−j
2π
N .

Frequency-domain signals

Now why does the nice property (10) help removing ISI? To see this, let us apply (10) to (9)
and then multiply the DFT matrix F to both sides. This way we obtain:

ỹ := Fy

= Λ (Fx)︸ ︷︷ ︸
=:x̃

+ (Fw)︸ ︷︷ ︸
=:w̃

= Λx̃ + w̃.

(12)

Here the key observation is that Λ is a diagonal matrix:

Λ =

λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 0 · · · λN−1

 . (13)

This means that ỹ does not contain any ISI terms w.r.t. frequency-domain signal components
in x̃. So if we map information bits into frequency-domain signal vector x̃, then we get multiple
ISI-free parallel subchannels. Denoting x̃ = [X[0], . . . , X[N−1]]T and ỹ = [Y [0], . . . , Y [N−1]]T ,
the parallel subchannels are described as:

Y [0] = λ0X[0] +W [0];

Y [1] = λ1X[1] +W [1];

...

Y [N − 1] = λN−1X[N − 1] +W [N − 1].

(14)

Note that frequency-domain signals X[k]’s are not interfering with each other. Hence, the
above transmitter-receiver technique that yields (14) is called Orthogonal Frequency Division
Multiplexing, OFDM for short. Here is the overall OFDM structure. See Fig. 3.

CN15_2

channel
cyclic

operation
decyclic

operation
IDFT DFT

effective ISI-free channel

Figure 3: The transmitter-receiver structure of OFDM.

At the transmitter, we first generate frequency-domain signal vector x̃ with information bits -
we will study how to map information bits into x̃ shortly. We then apply the IDFT matrix F−1,
in order to convert information-bearing frequency-domain signals x̃ into time-domain signals x.
Finally we send over the channel x′ that augments x[N − 1] in front of x, as described in (7).

4

At the receiver, we do exactly the other way around. We first remove the first component from
the received signal vector y′ to obtain y. We then multiply the DFT matrix F to y, thus
obtaining ỹ that will be used for decoding the information bits.

How to map information bits

Now the last thing to worry about is how to map information bits into X[k]’s. The idea is
straightforward: mapping bits into x̃ via some encoding rule as illustrated in Fig. 4. As for

CN15_3

effective

ISI-free channel
encoding decoding

Figure 4: How to map information bits into frequency-domain signals in OFDM.

encoding, we may want to any coding schemes that we learned in Part I, such as repetition
code, LDPC code, Polar code.

What about decoding? Note that the frequency-domain received signals in (12) is very much
similar to those in the AWGN channel. Here one thing that is not clear is whether W [k]’s are
i.i.d. ∼ N (0, σ2). It turns out this is also the case. So we can apply any decoding schemes used
in the AWGN channel.

Look ahead

We developed a transmitter-receiver technique (OFDM) that yields multiple ISI-free subchannels
in the context of L = 2. While doing this, we relied on the nice property (10) as well as the fact
that W [k]’s are i.i.d. ∼ N (0, σ2), without proving them. Next time, we will extend to general
L-tap ISI channels. We will also prove the properties in the context of general channels. Further
we will figure out the explicit expression for Λ in terms of hk’s. Finally we will demonstrate that
the complexity of the scheme is reasonably good even for a large value of L.

5

EE321 Communication Engineering May 22, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 16: OFDM (2/3)

Recap

Last time, we investigated a transmitter-receiver technique, called OFDM, in the context of the
simplest ISI channel setting L = 2:

y[m] = h0x[m] + h1x[m− 1] + w[m], m = 0, 1, . . . , N − 1 (1)

where w[m]’s are i.i.d. ∼ N (0, σ2) and N denotes the number of transmitted symbols. In-
troducing matrix notations x := [x[0], x[1], . . . , x[N − 1]]T , y := [y[0], y[1], . . . , y[N − 1]]T and
w := [w[0], w[1], . . . , w[N − 1]]T , we represented (1) simply as:

y = Hx + w (2)

where

H =

h0
h1 h0

h1 h0
. . .

h1 h0

 . (3)

Motivated by the beautiful (yet non-perfectly beautiful) structure of H, we invoked the idea of
sending an augmented signal vector x′ := [x[−1], x[0], x[1], . . . , x[N − 1]]T while setting x[−1] =
x[N − 1]. This then led to:

y = Hcx + w (4)

where Hc indicates a circulant matrix:

Hc =

h0 h1
h1 h0

h1 h0
. . .

h1 h0

 . (5)

Next by relying on the nice property of the circulant matrix (that we deferred proving):

Hc = F−1ΛF, (6)

we could make the ISI channel effectively ISI-free in the frequency domain:

ỹ = Λx̃ + w̃. (7)

Here ỹ = Fy, x̃ = Fx, w̃ = Fw and F denotes the Discrete Fourier Transform (DFT) matrix:

F :=
1√
N

ω0·0 ω1·0 · · · ω(N−1)·0

ω0·1 ω1·1 · · · ω(N−1)·1

...
...

. . .
...

ω0·(N−1) ω1·(N−1) · · · ω(N−1)·(N−1)

 (8)

1

CN15_2

channel
cyclic

operation
decyclic

operation
IDFT DFT

effective ISI-free channel

Figure 1: The transmitter-receiver structure of OFDM.

where w := e−j
2π
N . The overall procedure is illustrated in Fig. 1.

Today’s lecture

Today we will extend this idea to general L-tap ISI channels. We will then demonstrate that the
computational complexity of OFDM is reasonably good even for a large value of L. Finally we
will prove the nice property (6) and investigate an explicit expression for the effective channel
matrix Λ.

General L-tap ISI channel

In the general L-tap ISI channel, the received signals read:

y[m] = h0x[m] + h1x[m− 1] + · · ·+ hL−1x[m− L+ 1] + w[m], m = 0, 1, . . . , N − 1. (9)

In light of the matrix notation (2), the channel matrix reads:

H =

h0
h1 h0
h2 h1 h0

. . .

hL−1 · · · h1 h0

 . (10)

The corresponding circulant matrix would be then:

Hc =

h0 hL−1 · · · h1
h1 h0 hL−1 · · · h2
h2 h1 h0 hL−1 · · · h3

. . .

hL−1 · · · h1 h0

 . (11)

Now imagine the desired received signal w.r.t. the first row in (11):

y[0] = h0x[0] + h1x[N − 1] + h2x[N − 2] + · · ·+ hL−1x[N − L+ 1] + w[0]. (12)

This motivates us to send the following dummy symbols in front of x as:

(x[−L+ 1], x[−L+ 2], . . . , x[−1]) = (x[N − L+ 1], x[N − L+ 2], . . . , x[N − 1]). (13)

In other words, we send an augmented signal vector x′:

x′ = [x[N − L+ 1], . . . , x[N − 1], x[0], x[1], . . . , x[N − L], x[N − L+ 1], . . . , x[N − 1]]T . (14)

2

Here the first (L− 1) elements are identical to the last (L− 1) elements. x′ passes through the
channel matrix H, yielding:

y′ = Hx′ + w (15)

where y′ := [y[−L+ 1], . . . , y[−1], y[0], . . . , y[N−1]]T . By removing the first L components from
y′ (that we call “remove CP” in Fig. 2), we can then obtain:

y = Hcx + w. (16)

The whole procedure is illustrated in Fig. 2.

CN16_1

channel

add CP
remove

CP

Cyclic Prefix (CP)

Figure 2: How to generate cyclic signaling.

Frequency-domain signals

Recall the nice property of the circulant matrix:

Hc = F−1ΛF. (17)

Applying this to (16), we obtain an effective channel:

ỹ = Λx̃ + w̃ (18)

where ỹ = Fy, x̃ = Fx and w̃ = Fw are frequency-domain signals. Note that the effective
channel is ISI-free, as Λ is a diagonal matrix.

Complexity

Now let us investigate the complexity of OFDM to demonstrate that it is indeed irrelevant to
L. If we employ the normal IDFT/DFT matrix operations that require N2 multiplications,
we may still be concerned about a computational complexity. However, there is a very well-
known transform that implements the DFT matrix operation much more efficiently. That is, Fast
Fourier Transform, FFT for short. The FFT operation requires roughlyN log2N multiplications,
which is much smaller than N2 especially for a large value of N . Compared to the complexity
of the Viterbi algorithm (≈ 2LN multiplications), this is also a lower complexity particularly
when L is large.

Penalty

Unfortunately there is a price to pay for reducing complexity in OFDM. Notice that we need
lots of dummy signals when L is large. So the penalty (adding (L − 1) redundant signals) for
creating the cyclic signaling increases with L.

Proof of (6)

3

We are now ready to prove the nice property (6) that we have relied on. By multiplying F−1 to
the right in both sides in (6), we get:

HcF
−1 = F−1Λ. (19)

The IDFT matrix F−1 reads:

F−1 =
1√
N

ej

2π
N

0·0 ej
2π
N

0·1 · · · ej
2π
N

0·(N−1)

ej
2π
N

1·0 ej
2π
N

1·1 · · · ej
2π
N

1·(N−1)

...
...

. . .
...

ej
2π
N

(N−1)·0 ej
2π
N

(N−1)·1 · · · ej
2π
N

(N−1)·(N−1)

 .
Here what we are going to prove specifically is that the following vector vk (the kth column
vector in F−1) is an eigenvector of Hc.

vk :=

ej

2π
N

0·k

ej
2π
N

1·k

...

ej
2π
N

(N−1)·k

 .
To this end, we compute:

Hcvk =

h0 hL−1 · · · h1
h1 h0 hL−1 · · · h2
h2 h1 h0 hL−1 · · · h3

. . .

hL−1 · · · h1 h0

ej
2π
N

0·k

ej
2π
N

1·k

...

ej
2π
N

(N−1)·k

 .
Consider the 0th component:

h0e
j 2π
N

0·k + h1e
j 2π
N

(N−1)·k + h2e
j 2π
N

(N−2)·k + · · ·+ hL−1e
j 2π
N

(N−(L−1))·k

= h0e
−j 2π·0k

N + h1e
−j 2π·k

N + h2e
−j 2π·2k

N + · · ·+ hL−1e
−j 2π·(L−1)k

N

=
L−1∑
`=0

h`e
−j 2π`k

N =: λk

where the first equality is due to ej2π = 1. Similarly we can compute the 1st component as:

h0e
j 2π
N

1·k + h1e
j 2π
N

(1−1)·k + h2e
j 2π
N

(1+N−2)·k + · · ·+ hL−1e
j 2π
N

(1+N−(L−1))·k

= ej
2π·1k
N

[
h0e
−j 2π·0k

N + h1e
−j 2π·k

N + h2e
−j 2π·2k

N + · · ·+ hL−1e
−j 2π·(L−1)k

N

]
= ej

2π·1k
N

L−1∑
`=0

h`e
−j 2π`k

N

= ej
2π·1k
N λk.

Here the point is that it is a simple multiplication version of the 0th component λk (by a factor of

ej
2π·1k
N). The similar computation leads us to the computation of the 2nd component: ej

2π·2k
N λk.

Hence,

Hcvk = λk

ej

2π
N

0·k

ej
2π
N

1·k

...

ej
2π
N

(N−1)·k

 = λkvk.

4

This proves that vk is indeed an eigenvector of Hc with an eigenvalue of λk.

Frequency-domain channel response Λ

Next let us figure out the explicit expression for λk that relates the kth frequency-domain
transmitted signal X[k] to the corresponding received signal counterpart Y [k]:

Y [k] = λkX[k] +W [k]. (20)

Actually we already figured this out while proving (6). λk was the eigenvalue w.r.t. vk:

λk =

L−1∑
`=0

h`e
−j 2π

N
`k. (21)

Manipulating this in terms of the DFT matrix F, we get:

λk =
√
N ·

{
1√
N

N−1∑
`=0

h`e
−j 2π

N
`k

}
=
√
N · [Fh]k

(22)

where h := [h0, . . . , hL−1, 0, . . . , 0]T . We can then also view this as a frequency-domain channel
response.

Look ahead

In Lecture 15, we argued that mapping information bits into frequency-domain transmitted
signals x̃ is simple. But it turns out this is not that simple. This is because the time-domain
transmitted signal vector x = F−1x̃ may contain some complex signals which we have no idea
about how to send over a practical channel. Next time, we will study details on this. We will
also study how to design the optimal receiver accordingly.

5

EE321 Communication Engineering May 27, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 17: OFDM (3/3)

Recap

During the past lectures, we investigated the OFDM technique that enables making the original
ISI channel effectively ISI-free. The key idea of the technique was to generate “cyclic signaling”
so as to yield the following beautiful relationship between x := [x[0], . . . , x[N − 1]]T and y :=
[y[0], . . . , y[N − 1]]T :

y = Hcx + w (1)

where w := [w[0], . . . , w[N − 1]]T and Hc indicates a circulant matrix:

Hc =

h0 hL−1 · · · h1
h1 h0 hL−1 · · · h2
h2 h1 h0 hL−1 · · · h3

. . .

hL−1 · · · h1 h0

 . (2)

Here L is the number of channel taps and N denotes the number of transmitted signals. The
way to generate cyclic signaling was to send an augmented signal vector x′ ∈ RN+L−1 over a
channel, as illustrated in Fig. 1.

CN17_1

last (L-1) symbolsCyclic Prefix

Figure 1: An augmented signal vector x′ with cyclic prefix.

We then applied the nice property of the circulant matrix Hc = F−1ΛF into (1), thus obtaining
the effective ISI-free channel that relates the frequency-domain transmitted signal vector x̃ = Fx
to the frequency-domain received signal vector ỹ = Fy as follows:

ỹ = Λx̃ + w̃ (3)

where w̃ = Fw and Λ := diag(λ0, λ1, . . . , λN−1). Here the frequency-domain channel response
λk reads:

λk =
L−1∑
`=0

h`e
−j 2π

N
`k.

At the end of the last lecture, I then mentioned that an issue arises in mapping information
bits into frequency-domain signal vector x̃. The issue was that the time-domain signal vector
x = F−1x̃ may contain some complex-valued signals which we have no idea about how to

1

send over a practical channel. So the question of interest is: How to ensure real-valued signal
components for x?

Today’s lecture

Today we will study a mapping rule that ensures real-valued signal components for x. We will
then investigate encoding/decoding schemes in the context of the OFDM system. Lastly we will
study the optimal receiver in-depth yet under a simple scenario.

How to map information bits

With the notations of x̃ := [X[0], . . . , X[N − 1]]T , ỹ := [Y [0], . . . , Y [N − 1]]T and W̃ :=
[W [0], . . . ,W [N − 1]]T , one can write down all the components in (3) as:

Y [0] = λ0X[0] +W [0];

Y [1] = λ1X[1] +W [1];

...

Y [N − 1] = λN−1X[N − 1] +W [N − 1].

(4)

Since Y [k]’s are complex values in general, we can view these as 2N real subchannels. Denoting
W [k] := WR[k] + WI [k], one can readily verify that WR[k] and WI [k] are Gaussian. So an
individual subchannel is an additive Gaussian channel that we are very much familiar with.
This naturally leads us to map information bits into frequency-domain transmitted signals X[k]’s
as an encoding rule. This way, we can apply every transmission/reception technique that we
learned in Part I. See Fig. 2.

CN15_3

effective

ISI-free channel
encoding decoding

Figure 2: How to map information bits into frequency-domain signals in OFDM.

However, there is an issue in mapping information bits into X[k]’s. The problem is that we
may have complex-valued signals for actually-transmitted signals x[m]’s although x[m]’s must
be real values. For example, in a sequential communication scheme where we send X[k] = ±

√
E

depending on the value of bk, x[m]’s can often be complex numbers. So we need to worry about
the condition on X[k]’s that ensures real-valued signals for x[m]’s. To find this, let us start by
considering a necessary and sufficient condition for real-valued x[m]’s:

A condition for ensuring real-valued x[m]’s

The condition is obviously the following:

x[m] = x∗[m], ∀m. (5)

where ∗ denotes a complex conjugate. Now what is then an equivalent condition w.r.t. X[k]’s?
To figure this out, one can apply the IDFT on both sides in the above to obtain:

x[m] =

N−1∑
k=0

X[k]ej
2π
N
mk =

N−1∑
k=0

X∗[k]e−j
2π
N
mk = x∗[m]. (6)

2

Substituting k = N − k in the right-hand-side of the above, we then get:

N−1∑
k=0

X[k]ej
2π
N
mk =

N∑
k′=1

X∗[k]ej
2π
N
mk′ . (7)

Here we used the fact that

e−j
2π
N
m(N−k′) = e−j2πm · ej

2π
N
mk′

= 1 · ej
2π
N
mk′ ,

which then yields:

x∗[m] =
N−1∑
k=0

X∗[k]e−j
2π
N
mk

=

N∑
k′=1

X∗[N − k′]ej
2π
N
mk′ .

An equivalent condition w.r.t. X[k]’s

Now we can readily obtain an equivalent condition w.r.t. X[k]’s by rewriting (7) as:

X[0] +

N−1∑
k=1

X[k]ej
2π
N
mk = X∗[0] +

N−1∑
k′=1

X∗[N − k′]ej
2π
N
mk′ . (8)

Hence, the condition can be summarized as:

X[0] = X∗[0];

X[k] = X∗[N − k], 1 ≤ k ≤ N − 1.
(9)

This implies that there are actually N real symbols that can be freely chosen out of 2N real
symbols. Why? To see this clearly, let us consider a simple setting in which N is an even
number. First express X[k] as:

X[k] = XR[k] +XI [k], k = 0, 1, . . . , N − 1. (10)

Then, as per the condition (9), we must respect:

X[0] = XR[0]

X[k] = XR[0] + jXI [k], k = 1, . . . ,
N

2
− 1,

X

[
N

2

]
= XR

[
N

2

]
;

(11)

and the other signals should be fixed as:

X[N − k] = XR[k] + jXI [k], k = 1, . . . ,
N

2
− 1. (12)

We see that there are only N real-valued symbols that can be freely chosen. For instance, given
the sequential communication scheme, the mapping rule between information bits and X[k]’s
can be chosen as the one in Fig. 3. Note that only N real symbols are employed in mapping N

3

CN17_3

Figure 3: How to map information bits into frequency-domain signals in OFDM when employing
a sequential communication scheme.

information bits.

Of course, we can apply any other coding schemes that we learned in Part I (such as repetition
codes, LDPC codes, and Polar codes), as long as we satisfy the real-valued signal constraint,
reflected in (9).

Optimal decision rule

Now what about decoding? For the rest of this lecture, we will explicitly develop the optimal
receiver for a very simple scenario in which N = 2 and L = 2 and we use the sequential
communication scheme. In this case, the number of so-called effective symbols (that can be
freely chosen) is N = 2. So we map (b0, b1) to (XR[0], XR[1]), which in turn yields: X[0] = XR[0]
and X[1] = XR[1]. Now consider the received signals in the frequency domain:

Y [0] = λ0XR[0] +W [0];

Y [1] = λ1XR[1] +W [1]
(13)

where

λ0 =

1∑
`=0

h`e
−j 2π

2
`·0 = h0 + h1; λ1 =

1∑
`=0

h`e
−j 2π

2
`·1 = h0 − h1, (14)

and the frequency-domain noise signals are:

W [0] =
1√
2

1∑
`=0

w[m]e−j
2π
2
m·0 =

1√
2

(w[0] + w[1]);

W [1] =
1√
2

1∑
`=0

w[m]e−j
2π
2
m·1 =

1√
2

(w[0]− w[1]).

(15)

There is a good news w.r.t. the relationship between W [0] and W [1]. The good news is that

(W [0],W [1]) are statistically independent. (16)

4

Why is good? The reason is that the independence also yields the independence between Y [0]
and Y [0] and therefore the optimal decoder would be the local ML rule:

b̂k = ML(bk|Y [k]), k = 0, 1.

Proof of (16)

Let us finally prove the good news of (16). We can readily prove this by using the defini-
tion of independence: the joint distribution fW [0],W [1](W [0],W [1]) is the product of individual
distributions:

fW [0],W [1](W [0],W [1])
(a)
= fw[0],w[1]

(
W [0] +W [1]√

2
,
W [0]−W [1]√

2

)
(b)
=

1

2πσ2
exp

(
− 1

2σ2

(
(W [0] +W [1])2

2
+

(W [0]−W [1])2

2

))
=

1

2πσ2
exp

(
− 1

2σ2
(
W 2[0] +W 2[1]

))
= fW [0](W [0])fW [1](W [1])

(17)

where (a) comes from (15); and (b) is due to the independence of w[0] and w[1].

Look ahead

In Parts I and II, we have studied channel modeling as well as transmission/reception strategies
for the two channels: (i) AWGN channel (Part I); (ii) Wireline channel (Part II). In Part III,
we will study applications of the key principles that we have learned into other interested fields
beyond communications.

5

EE321 Communication Engineering May 29, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 18: Overview of Part III and supervised learning

Key principles covered in Parts I and II

In Parts I and II, we have learned a lot while investigating channel modeling as well as trans-
mission/reception strategies for two representative channels in communications: (i) the AWGN
channel (Part I); (ii) the Wireline channel (Part II). Among many tools and concepts that we
have learned thus far, I would like to put a particular emphasis on the following key principles
covered in the two parts:

1. Maximum A Posterior (MAP) decision rule;

2. Maximum Likelihood (ML) decision rule;

3. Viterbi algorithm.

The reason that I am emphasizing the principles is that these are shown to play crucial roles in
many other fields beyond communications.

Goal of Part III

The goal of Part III is to demonstrate such roles in one recent spotlight field:

Machine learning

that you may be excited about. Specifically we will investigate: (i) Role of the MAP/ML
principles in the design of one very popular methodology that arises in machine learning, called
supervised learning ; (ii) Role of the Viterbi algorithm in the design of one very important machine
learning system, speech recognition.

For this and next lectures

For this and next lectures, we will dig into details regarding the role of the MAP/ML principles in
the context of supervised learning. Specifically what we are going to do are three folded. First
we will study what supervised learning is. We will then formulate an optimization problem
that allows us to achieve the goal of supervised learning. Next we will demonstrate that the
MAP/ML principles play an important role in the design of an optimization problem that ensures
optimality in a certain sense (to be detailed later).

Machine learning

Let us start by figuring out what machine learning is. Machine learning is about an algorithm
which is defined to be a set of instructions that a computer system can execute. Formally
speaking, machine learning is the study of algorithms with which one can train a computer
system so that the trained system can perform a specific task of interest. Pictorially, it means
the following; see Fig. 1.

Here the entity that we are interested in building up is a computer system, which is definitely
a machine. Since it is a system (i.e., a function), it has an input and an output. The input,
usually denoted by x, indicates information which is employed to perform a task of interest.

1

CN18_1

computer system

(machine)

algorithm

training

(together w/ data)

Figure 1: Machine learning is the study of algorithms which provide a set of explicit instructions
to a computer system (machine) so that it can perform a specific task of interest. Let x be the
input which indicates information employed to perform a task. Let y be the output that denotes
a task result.

The output, usually denoted by y, indicates a task result. For instance, if a task of interest is
legitimate-emails filtering against spam emails, then x could be multi-dimensional quantities1:
(i) frequency of a keyword like dollar signs $$$; (ii) frequency of another keyword, say winner.
And y could be an email entity, e.g., y = +1 indicates a legitimate email while y = −1 denotes
a spam email. In machine learning, such y is called a label. Or if an interested task is cat-vs-dog
classification, then x could be image-pixel values and y is a binary value indicating whether the
fed image is a cat (say y = 1) or a dog (y = 0).

Machine learning is about designing algorithms, wherein the main role is to train (teach) the
computer system (machine) so that it can perform such task well. In the process of designing
algorithms, we use something that is data.

Why called “Machine Learning”?

One can easily see the rationale of the naming via changing a viewpoint. From a machine’s
perspective, one can say that a machine learns the task from data. Hence, it is called machine
learning, ML for short. This naming was coined in 1959 by Arthur Lee Samuel. See Fig. 2.CN18_5

Arthur Samuel ’59

Father of machine learning
checkers

Figure 2: Arthur Lee Samuel is an American pioneer in the field of artificial intelligence, known
mostly as the Father of machine learning. He found the field in the process of developing
computer checkers which later formed the basis of AlphaGo.

1In machine learning, such quantity is called the feature. Usually this refers to a key component that well
describes characteristics of data.

2

Arthur Samuel is actually one of the pioneers in the broader field of Artificial Intelligence (AI)
which includes machine learning as a sub-field. The AI field is the study of creating intelligence
by machines, unlike the natural intelligence displayed by intelligent beings like humans and
animals. Since the ML field is about building up a human-like machine, it is definitely a sub-
field of AI.

In fact, Arthur Samuel found the ML field in the process of developing a human-like computer
player for a board game, called checkers; see the right figure in Fig. 1. He proposed many
algorithms and ideas while developing computer checkers. It turns out those algorithms could
form the basis of AlphaGo, a computer program for the board game Go which defeated one of
the 9-dan professional players, Lee Sedol with 4 wins out of 5 games in 2016.

Mission of machine learning

Since ML is a sub-field of AI, its end-mission is achieving artificial intelligence. So in view of the
block diagram in Fig. 1, the goal of ML is to design an algorithm so that the trained machine
behaves like intelligence beings.

Supervised learning

There are some methodologies which help us to achieve the goal of ML. One specific yet very
popular method is the one called:

Supervised Learning.

What supervised learning means is learning a function f(·) (indicating a functional of the ma-
chine) with the help of a supervisor. See Fig. 3.

CN18_2

machine

Figure 3: Supervised Learning: Design a computer system (machine) f(·) with the help of a
supervisor which offers input-output pair samples, called a training dataset {(x(i), y(i))}mi=1.

What the supervisor means in this context is the one who provides input-output samples. Ob-
viously the input-output samples form the data employed for training the machine, usually
denoted by:

{(x(i), y(i))}mi=1, (1)

where (x(i), y(i)) indicates the ith input-output sample (or called a training sample or an exam-
ple) and m denotes the number of samples. Using this notation (1), one can say that supervised
learning is to:

Estimate f(·) using the training samples {(x(i), y(i))}mi=1. (2)

3

Optimization

A common way to estimate f(·) is through optimization. To understand what this means, let
us first explain what optimization is.

Optimization is to choose an optimization variable that minimizes (or maximizes) a certain
quantity of interest possibly given some constraints. There are two important quantities in the
definition. One is the optimization variable which affects the interested quantity and is subject
to our design. This is usually a multi-dimensional quantity. The second is the certain quantity
of interest that we wish to minimize (or maximize). This is called the objective function in the
field, and an one-dimensional scalar.

Objective function

Now what is the objective function in the supervised learning framework? To figure this out,
we need to know about the objective that supervised learning wishes to achieve. In view of the
goal (2), what we want is obviously:

y(i) ≈ f(x(i)), ∀i ∈ {1, . . . ,m}.

A natural question that arises is then: How to quantify closeness (reflected in the “≈” notation)
between the two quantities: y(i) and f(x(i))? One very common way that has been used in the
field is to employ a function, called a loss function, usually denoted by:

`(y(i), f(x(i))). (3)

One obvious property that the loss function `(·, ·) should have is that it should be small when
the two arguments are close, while being zero when the two are identical. Using such loss
function (3), one can then formulate an optimization problem as:

min
f(·)

m∑
i=1

`(y(i), f(x(i))). (4)

How to introduce optimization variable?

Now what is optimization variable? Unfortunately, there is no variable. Instead we have a
different quantity that we can optimize over: the function f(·), marked in red in (4). The
question is then: How to introduce optimization variable? A common way employed in the field
is to represent the function f(·) with parameters (or called weights), denoted by w, and then
consider such weights as an optimization variable. Taking this approach, one can then translate
the problem (4) into:

min
w

m∑
i=1

`(y(i), fw(x(i))) (5)

where fw(x(i)) denotes the function f(x(i)) parameterized by w.

The above optimization problem depends on how we define the two functions: (i) fw(x(i)) w.r.t.
w; (ii) the loss function `(·, ·). In machine learning, lots of works have been done for the choice
of such functions.

A choice for fw(·)

4

Around at the same time when the machine learning (ML) field was founded, one architecture
was suggested for the function fw(·) in the context of simple binary classifiers in which y takes
one among the two options only, e.g., y ∈ {−1,+1} or y ∈ {0, 1}. The architecture is called:

Perceptron,

and was invented in 1957 by one of the pioneers in the AI field, named Frank Rosenblatt.
Interestingly, Frank Rosenblatt was a psychologist. He was interested in how brains of intelligent
beings work and his study on brains led him to come up with the perceptron, and therefore gave
significant insights into neural networks that many of you guys heard of.

How brains work

Here are details on how the brain structure inspired the perceptron architecture. Inside a brain,
there are many electrically excitable cells, called neurons; see Fig. 4. Here a red-circled oneCN18_3

neuron

voltage

activation

Figure 4: Neurons are electrically excitable cells and are connected through synapses.

indicates a neuron. So the figure shows three neurons in total. There are three major properties
about neurons that led to the architecture.

The first is that a neuron is an electrical quantity, so it has a voltage. The second property is
that neurons are connected with each other through mediums, called synapses. So the main role
of synapses is to deliver electrical voltage signals across neurons. Depending on the connectivity
strength level of a synapse, a voltage signal from one neuron to another can increase or decrease.
The last is that a neuron takes a particular action, called activation. Depending on its voltage
level, it generates an all-or-nothing pulse signal. For instance, if its voltage level is above a
certain threshold, then it generates an impulse signal with a certain magnitude, say 1; otherwise,
it produces nothing.

Perceptron

The above three properties led Frank Rosenblatt to propose the perceptron architecture, as
illustrated in Fig. 5.

Let x be an n-dimensional real-valued signal: x := [x1, x2, . . . , xn]T . Suppose each component xi
is distributed to each neuron, and let xi indicates a voltage level of the ith neuron. The voltage
signal xi is then delivered through a synapse to another neuron (placed on the right in the figure,
indicated by a big circle). Remember that the voltage level can increase or decrease depending
on the connectivity strength of a synapse. To capture this, a weight, say wi, is multiplied to xi
so wixi is a delivered voltage signal at the terminal neuron. Based on an empirical observation
that the voltage level at the terminal neuron increases with more connected neurons, Rosenblatt

5

CN18_4

neuron

synapse

activation

Figure 5: The architecture of perceptron.

introduced an adder which simply aggregates all the voltage signals coming from many neurons,
so he modeled the voltage signal at the terminal neuron as:

w1x1 + w2x2 + · · ·+ wnxn = wTx. (6)

Lastly in an effort to mimic the activation, he modeled the output signal as

fw(x) =

{
1 if wTx > th,
0 o.w.

(7)

where “th” indicates a certain threshold level. It can also be simply denoted as

fw(x) = 1{wTx > th}. (8)

Activation functions

Taking the percentron architecture in Fig. 5, one can then formulate the optimization problem (5)
as:

min
w

m∑
i=1

`(y(i),1{wTx(i) > th}). (9)

This is an initial optimization problem that people came up with. However, people figured
out there is an issue in solving this optimization. The issue comes from the fact that the
objective function contains an indicator function, so it is not differentiable. It turns out non-
differentiability makes the problem difficult to solve. This will be clearer soon in a later lecture.
Please be patient until we get to the point. What can we do then? One typical way that people
have taken in the field is to approximate the activation function. There are many ways for
approximation. From below, we will investigate one of them.

Approximate the activation!

One popular way is to use the following function that makes a smooth transition from 0 to 1:

fw(x) =
1

1 + e−wT x
. (10)

6

Notice that fw(x) ≈ 0 when wTx is very small; it then grows exponentially with an increase in
wTx; later grows logarithmically; and finally saturates as 1 when wTx is very large. Actually
the function (10) is a very popular one used in statistics, called the logistic2 function. There is
another name for the function, which is the sigmoid3 function.

There are two good things about the logistic function. First it is differentiable. The second is
that it can serve as the probability for the output in the binary classifier, e.g., Pr(y = 1) where
y denotes the ground-truth label in the binary classifier. So it is interpretable.

Look ahead

Under the choice of the logistic activation, what is then a good choice for a loss function?
It turns out the MAP/ML principles play an important role in the design of an optimal loss
function in some sense. Next time we will investigate in what sense it is optimal. We will then
figure out how the principles come up in the design of the optimal loss function.

2The word logistic comes from a Greek word which means a slow growth, like a logarithmic growth.
3Sigmoid means resembling the lower-case Greek letter sigma, S-shaped.

7

EE321 Communication Engineering June 3, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 19: Logistic regression

Recap

Last time we formulated an optimization problem for supervised learning based on the percetron
architecture:

min
w

m∑
i=1

`(y(i), ŷ(i)) (1)

where {(x(i), y(i))}mi=1 indicate data-label paired examples; `(·, ·) denotes a loss function; and
ŷ(i) := fw(x(i)) is the prediction parameterized by the weights w. As an activation function, we
considered a logistic function that is widely used in the field:

fw(x) =
1

1 + e−wT x
. (2)

I then claimed that the ML principle plays a crucial role in the design of the optimal loss
function.

Today’s lecture

Today we will prove this claim. Specifically what we are going to do are three-folded. We will
first investigate what it means by the optimal loss function. We will next figure out how the
ML principle comes up in the design of the optimal loss function. Lastly we will learn how to
solve the formulated optimization.

Optimality in a sense of maximizing likelihood

A binary classifier with the logistic function (2) is called logistic regression. See Fig. 1 for
illustration.

CN19_2

logistic

regression

Figure 1: Logistic regression

Notice that the output ŷ lies in between 0 and 1:

0 ≤ ŷ ≤ 1.

1

Hence, one can interpret the output as a probability quantity. Now the optimality of a classifier
can be defined under the following assumption inspired by such interpretation:

Assumption : ŷ = Pr(y = 1|x). (3)

To understand what it means in detail, consider the likelihood of the ground-truth classifier:

Pr
(
{y(i)}mi=1 | {x(i)}mi=1

)
. (4)

Notice that the classifier output ŷ is a function of weights w. Hence, we see that assuming (3),
the likelihood (4) is also a function of w.

We are now ready to define the optimality of w. The optimal weight, say w∗, is defined as the
one that yields the maximum likelihood (4):

w∗ := arg max
w

Pr
(
{y(i)}mi=1|{x(i)}mi=1

)
. (5)

Similarly the optimal loss function, say `∗(·, ·) is defined as the one that satisfies:

arg min
w

m∑
i=1

`∗(y(i), ŷ(i)) = arg max
w

Pr
(
{y(i)}mi=1|{x(i)}mi=1

)
. (6)

It turns out the condition (6) would give us the optimal loss function `∗(·, ·) that yields a very
well-known machine learning classifier: logistic regression, in which the loss function is:

`∗(y, ŷ) = `logistic(y, ŷ) = −y log y − (1− y) log(1− y). (7)

Let us now prove this.

Derivation of the optimal loss function `∗(·, ·)
Usually samples are obtained from different data x(i)’s. Hence, it is reasonable to assume that
such samples are independent with each other:

{(x(i), y(i))}mi=1 are independent over i. (8)

Under this assumption, we can then rewrite the likelihood (4) as:

Pr
(
{y(i)}mi=1|{x(i)}mi=1

)
(a)
=

Pr
(
{(x(i), y(i))}mi=1

)
Pr
(
{x(i)}mi=1

)
(b)
=

∏m
i=1 P

(
x(i), y(i)

)∏m
i=1 P(x(i))

(c)
=

m∏
i=1

P
(
y(i)|x(i)

)
(9)

where (a) and (c) are due to the definition of conditional probability; and (b) comes from
the independence assumption (8). Here P(x(i), y(i)) denotes the probability distribution of the
input-output pair of the system:

P(x(i), y(i)) := Pr(X = x(i), Y = y(i)) (10)

where X and Y indicate random variables of the input and the output, respectively.

2

Recall the probability-interpretation-related assumption (3) made with regard to ŷ:

ŷ = Pr(y = 1|x).

This implies that:

y = 1 : P(y|x) = ŷ;

y = 0 : P(y|x) = 1− ŷ.

Hence, one can represent P(y|x) as:

P(y|x) = ŷy(1− ŷ)1−y.

Now using the notations of (x(i), y(i)) and ŷ(i), we then get:

P
(
y(i)|x(i)

)
= (ŷ(i))y

(i)
(1− ŷ(i))1−y(i) .

Plugging this into (9), we get:

Pr
(
{y(i)}mi=1|{x(i)}mi=1

)
=

m∏
i=1

(ŷ(i))y
(i)

(1− ŷ(i))1−y(i) . (11)

This together with (5) yields:

w∗ = arg max
w

m∏
i=1

(ŷ(i))y
(i)

(1− ŷ(i))1−y(i)

(a)
= arg max

w

m∑
i=1

y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))

(b)
= arg min

w

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i))

(12)

where (a) comes from the fact that log(·) is a non-decreasing function and
∏m

i=1(ŷ
(i))y

(i)
(1 −

ŷ(i))1−y(i) is positive; and (b) is due to changing the sign of the objective function.

In fact, the term inside the summation in the last equality in (12) respects the formula of an
important notion that arises in the field of information theory: cross entropy. In particular, in
the context of a loss function, it is named the cross entropy loss:

`CE(y, ŷ) := −y log ŷ − (1− y) log(1− ŷ). (13)

Hence, the optimal loss function that yields the maximum likelihood is the cross entropy loss:

`∗(·, ·) = `CE(·, ·).

Remarks on cross-entropy loss (13)

Let me say a few words about why the loss function (13) is called the cross-entropy loss. Actually
this comes from the definition of cross entropy. The cross entropy is defined w.r.t. two random
variables. For simplicity, let us consider two binary random variables, say X ∼ Bern(p) and
Y ∼ Bern(q) where X ∼ Bern(p) indicates a binary random variable with p = Pr(X = 1). For
such two random variables, the cross entropy is defined as:

H(p, q) := −p log q − (1− p) log(1− q). (14)

3

Notice that the formula of (13) is exactly the same as the term inside summation in (12), except
for having different notations. Hence, it is called the cross entropy loss. In PS7, you will have
a chance to know about the rationale behind the naming “cross entropy”. If you want to know
more about cross entropy, you may want to take the course on information theory: EE326.

How to solve (12)?

From (12), we can write the optimization problem as:

min
w

m∑
i=1

−y(i) log
1

1 + e−wT x(i)
− (1− y(i)) log

e−wT x(i)

1 + e−wT x(i)
. (15)

Let J(w) be the normalized version of the objective function:

J(w) :=
1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)). (16)

It turns out the above optimization belongs to convex optimization which is one of very important
optimization classes. Simply put, convex optimization means a class of optimization problems
which can be efficiently solved on a computer. More formally, it is a class of problems wherein
the objective is a convex function. Roughly speaking, here the convex function is defined as a
bowl-shaped function as illustrated in Fig. 2. See Appendix for the formal definition.

In light of the definition of convex optimization, J(w) is convex in optimization variable w. So
for the rest of this lecture, we will prove the convexity of the objective function, and then discuss
how to solve such convex optimization.

Proof of convexity

One can readily show that convexity preserves under addition (why? think about the definition
of convex functions). So it suffices to prove the following two:

(i)− log
1

1 + e−wT x
is convex in w;

(ii)− log
e−wT x

1 + e−wT x
is convex in w.

Since the second function in the above can be represented as the sum of a linear function and
the first function:

− log
e−wT x

1 + e−wT x
= wTx− log

1

1 + e−wT x
,

it suffices to prove the convexity of the first function.

Notice that the first function can be rewritten as:

− log
1

1 + e−wT x
= log(1 + e−wT x). (17)

In fact, proving the convexity of (17) is a bit involved if one relies directly on the definition of
convex functions. It turns out there is another way to prove. That is based on the computation
of the second derivative of a function, called the Hessian. How to compute the Hessian? What
is the dimension of the Hessian? For a function f : Rd → R, the gradient ∇f(x) ∈ Rd and the
Hessian ∇2f(x) ∈ Rd×d. If you are not familiar, check from the vector calculus course or from
Wikipedia.

4

A well-known fact says that if the Hessian of a function is positive semi-definite (PSD)1, then the
function is convex. We will not prove this here. Don’t worry about the proof, but do remember
this fact. The statement itself is very instrumental. Here we will use this fact to prove the
convexity of the function (17).

Taking a derivative of the RHS formula in (17) w.r.t. w, we get:

∇w log(1 + e−wT x) =
−xe−wT x

1 + e−wT x
.

This is due to a chain rule of derivatives and the fact that d
dz log z = 1

z , d
dz e

z = ez and d
dww

Tx = x.
Taking another derivative of the above, we obtain a Hessian as follows:

∇2
w log(1 + e−wT x) = ∇w

(
−xe−wT x

1 + e−wT x

)
(a)
=
xxT e−wT x(1 + e−wT x)− xxT e−wT xe−wT x

(1 + e−wT x)2

=
xxT e−wT x

(1 + e−wT x)2

� 0

(18)

where (a) is due to the derivative rule of a quotient of two functions: d
dz

f(z)
g(z) = f ′(z)g(z)−f(z)g′(z)

g2(z)
.

Here you may wonder why d
dw (−xe−wT x) = xxT e−wT x. Why not xx, xTxT or xTx in front of

e−wT x? One rule-of-thumb that I strongly recommend is to simply try all the candidates and
choose the one which does not have a syntax error (matrix dimension mismatch). For instance,
xx (or xTxT) is just an invalid operation. xTx is not a right one because the Hessian must be an
d-by-d matrix. The only candidate left without any syntax error is xxT ! We see that xxT has
the single eigenvalue of ‖x‖2 (Why?). Since the eigenvalue ‖x‖2 is non-negative, the Hessian is
PSD, and therefore we prove the convexity.

Gradient descent algorithm

Now how to solve the convex optimization problem (12)? Since there is no constraint in the
optimization, w∗ must be the stationary point, i.e., the one such that

∇J(w∗) = 0. (19)

But there is an issue in deriving such optimal point w∗ from the above. The issue is that an-
alytically finding such point is not doable because it turns out there is no closed-form solution
(check!). However, there is a good news. The good news is that there developed several algo-
rithms which allow us to find such point efficiently without the knowledge of the closed-form
solution. One prominent algorithm that has been widely used in the field is: the gradient descent
algorithm.

Here is how the algorithm works. It is an iterative algorithm. Suppose that at the t-th iteration,
we have an estimate of w∗, say w(t). We then compute the gradient of the function evaluated
at the estimate: ∇J(w(t)). Next we update the estimate along a direction being opposite to the
direction of the gradient:

w(t+1) ←− w(t) − α∇J(w(t)) (20)

1We say that a symmetric matrix, say Q = QT ∈ Rd×d, is positive semi-definite if vTQv ≥ 0, ∀v ∈ Rd, i.e.,
all the eigenvalues of Q are non-negative. It is simply denoted by Q � 0.

5

where α > 0 indicates the stepsize (or called the learning rate). If you think about it, this update
rule makes sense. Suppose w(t) is placed right relative to the optimal point w∗, as illustrated in
Fig. 2.

CN16_2

slope:

t-th estimate

Figure 2: Gradient descent algorithm.

Then, we should move w(t) to the left so that it is closer to w∗. The update rule actually does
this, as we subtract by α∇J(w(t)). Notice that ∇J(w(t)) points to the right direction given that
w(t) is placed right relative to w∗. We repeat this procedure until it converges. It turns out: as
t→∞, it actually converges:

w(t) −→ w∗, (21)

as long as the learning rate is chosen properly, like the one delaying exponentially w.r.t. t. We
will not touch upon the proof of this convergence. Actually the proof is not that simple - even
there is a big field in statistics which intends to prove the convergence of a variety of algorithms
(if it is the case).

Look ahead

So far we have formulated an optimization problem for supervised learning, and found that
the ML principle serves as a key component in the design of the optimal loss function. We
also learned how to solve the problem via a famous algorithm, called gradient descent. This is
the end of the first application. Next time, we will move onto the second application: speech
recognition.

6

Appendix: Convex functions

An informal yet intuitive definition of a convex function is the following. We say that a function
is convex if it is bowl-shaped, as illustrated in Fig. 3.

Figure 3: A geometric intuition behind a convex function.

Now what is the formal definition? The following observation can help us to easily come up with
the definition. Take two points, say x and y, as in Fig. 3. Consider a point that lies in between
the two points, say λx + (1 − λ)y for λ ∈ [0, 1]. Then, the bowl-shaped function suggests that
the function evaluated at an λ-weighted linear combination of x and y is less than or equal to
the same λ-weighted linear combination of the two functions evaluated at x and y:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (22)

This motivates the following definition. We say that a function f is convex if (22) holds for all
λ ∈ [0, 1].

7

EE321 Communication Engineering June 5, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 20: Speech recognition: Modeling

Recap

In Parts I & II, we have considered a communication problem wherein the goal is to deliver a
sequence of information bits from a transmitter to a receiver over a channel. Two prominent
channels are taken into consideration: (i) the additive white Gaussian channel (in Part I);
the wireline ISI channel (in Part II). Specifically, what we did repeatedly throughout the past
lectures is: Given an encoding strategy (e.g., the PAM-based sequential communication scheme,
repetition coding, etc), we strive to achieve two things:

1. Derive the optimal receiver for decoding the bit string;

2. Analyze the error probability when using the optimal receiver.
CN20_1

channel decoder

system

input
output

recovery

encoder

fixed

Figure 1: Viewing the communication problem as an inference problem.

With the one-to-one mapping relationship between the information bits and the transmitted
signals x := [x[0], x[1], . . . , x[n−1]]T , we see that decoding the bit string is equivalent to decoding
x. We can then view this communication problem as an inference problem, as the goal of the
problem is now to infer input x from output y. Note that any problem that aims to infer an input
from an output is categorized into an inference problem, as long as the input and the output
are related in a probabilistic manner. In the communication problem setting, the randomness
coming from the channel dictates the probabilistic relation between the input and the output.

We have so far learned useful decoding principles such as MAP, ML and the Viterbi algorithm.
It turns out that the MAP principle and the Viterbi algorithm play a crucial role in addressing
many of the significant inference problems in other various applications. For the remaining
lectures, we will demonstrate the tools from communication are indeed instrumental for one
such interference problem: speech recognition.

Today’s lecture

Today we will focus on proving the probabilistic relationship between the input/output of speech
recognition systems. In other words, we will show that speech recognition is indeed an inference
problem.

Speech recognition systems

Speech recognition is one of popular applications prevalent in our daily life. Siri in the iphone is
one such example, aiming at speech recognition. We speak into the iphone microphone, which

1

samples the analog sound waveform. The iphone then tries to figure out what we spoke. The
goal of speech recognition is to transform the analog waveform (comprising spoken words) into
a written command, which can then be represented in the form of a text without losing the
meaning of the spoken words. So what we wish to decode in speech recognition is a text. We
will first show that speech recognition can be cast as an inference problem: decoding input x
(text) from output y that has bearing on spoken words. See Fig. 2 for explicit details.

CN20_2

system
speech

recognition

Figure 2: Viewing speech recognition as an inference problem.

In Fig. 2, the input x refers to a text that we intend to recognize in the speech recognition block.
Now what are components that constitute the text x? How does the text look like? Of course
it depends on a spoken language. Here we will consider the English language.

Structure of an English text
CN20_3

Figure 3: Structure of an English text.

A text is composed of a sequence of words, so one can view each word as a natural unit into
which we can decompose the text. Actually we can further decompose the words into smaller
units. For instance, consider a word “speech”. One natural smaller unit that one can think of is
an English alphabet (such as “s”)? But there is an issue in adopting such a unit. The problem
comes from the fact that an actual input to the speech recognition block is something related to
actual sound. Here an issue is that the mapping between sound and alphabet is not one-to-one.
For example, /i/ corresponds to “e” when we say “nike”, but it may refer to “i” when we say
“bit”. Here the slash indicates a conventional notation used for representing phonemes (“eumso”

2

in Korean).

On the other hand, from a phonetic point of view, a word is decomposed into phonemes. For
example, the word “speech” consists of four phonemes: /s/, /p/, /i/ and /ch/. The phoneme
is indeed the smallest phonetic unit in a language. There are two types of phonemes: (1)
consonants; (2) vowels. There are 44 phonemes (24 consonants and 20 vowels) in English. See
Fig. 4.

CN20_4

24 consonants 20 vowels

Figure 4: 44 phonemes in English: (1) 24 consonants; (2) 20 vowels.

In light of this, the speech recognition problem can be viewed as the problem of figuring out the
sequence of phonemes that forms a text. The sequence x of phonemes is the one that we wish
to decode, so the phonemes can be considered as random variables. Here we let x[m] ∈ X be
the mth phoneme of x where X is the set of phonemes whose alphabet size is |X | = 44.

Output in speech recognition systems

Now let us figure out what the output is in the speech recognition system? The output y is the
one that will be put into the speech recognition block, so it should reflect something related to
actual sound. To figure out what it is, we first need to relate x to the actual sound signal that
will be picked at the microphone in the system. A user who desires to say what the text x means
speaks corresponding spoken words into the microphone, generating the analog waveform, say
y(t). This analog waveform is then translated into a sequence y of discrete-time signals through
the following procedure.

Each phoneme roughly spans 10 ms. We chop the analog waveform into 10 ms intervals. We
then take the signal in each 10 ms interval and extract some key features from it. It turns out
that the relevant information contained in speech is most apparent in the frequency domain.
So usually, a short window Fourier analysis is done on the sampled signal from each 10 ms
time interval, and the corresponding Fourier coefficients are extracted. These coefficients serve
as spectral information to describe the phoneme in that 10 ms interval. Typically there are
multiple Fourier coefficients for the signal in each 10 ms interval. But let us simplify the story
by assuming there is only one spectral component. Here we call that component a feature. We
let y[m] be the mth feature with respect to the mth phoneme. See Fig. 5 for the entire system

3

diagram that describes this procedure.

CN20_5

system

10 ms

feature

extraction
speech

recognition

Figure 5: A block diagram of speech recognition.

Relation between x and y

Now how do x and y relate with each other? There is a lot of randomness involved in the system.
Two major sources of the randomness are: (1) different voice characteristics (e.g., accent) and (2)
noise (e.g., thermal noise due to random movements of electrons in the electrical circuit). This
randomness induces uncertainty in y, making the input and the output related probabilistically.
Hence, we can view the speech recognition problem as an inference problem.

Optimal algorithm

Now a natural question that arises is: What is the speech recognition algorithm that optimally
decodes x from y? Suppose we say that an algorithm is optimal if it minimizes the probability
of error Pe := Pr(x̂ 6= x). Then, as we learned in Part I, the optimal algorithm is the MAP rule
which finds the one that maximizes the a posterior probability:

x̂MAP = arg max
x

Pr(x|y)

= arg max
x

Pr(x,y)

f(y)

= arg max
x

Pr(x)f(y|x)

when the second equality follows from the definition of conditional probability. One can easily see
that to compute the MAP solution, we need to figure out two quantities: (1) A priori probability
on the input: p(x); (2) conditional pdf (likelihood function): f(y|x), which captures the relation
between the input and the output. Here the speech recognition system can be considered as a
channel by analogy with the communication problem.

Look ahead

Next time, we will study how to obtain these two and then will compute the MAP solution given
the information. It turns out that there is a surprising parallel between the speech recognition
and communication problems, allowing us to invoke the Viterbi algorithm which provides a
computationally efficient way in computing the MAP solution.

4

EE321 Communication Engineering June 10, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 21: Statistical modeling for speech recognition

Recap

Last time we showed that the speech recognition problem can be cast into an inference problem
in which the goal of the problem is to decode a sequence x of phonemes (that allows us to
recognize what a speaker says) from a sequence y of features (that have bearing on actual
spoken words). See Fig. 1 for details.

CN21_1

system

10 ms

feature

extraction
speech

recognition

Figure 1: A block diagram of the speech recognition system and recovery block

We also found that there is a lot of randomness in the system due to different voice characteristics
of a certain speaker and the system noise (e.g, thermal noise). The randomness is the one that
makes the input and output of the system related probabilistically, demonstrating that the
speech recognition problem is indeed an inference problem. We then derived the optimal MAP
algorithm:

x̂MAP = arg max
x

p(x)f(y|x). (1)

Here the optimality is w.r.t. maximizing the reliability, quantified as Pr(x̂ = x).

Today’s lecture

In todays lecture, we will study how to obtain the quantities which are required to compute the
MAP solution: (1) a priori knowledge p(x); and (2) the likelihood function f(y|x). Next time
we will use the two quantities to compute the MAP solution.

A sequence of x[m]’s (random process)

A naive approach to obtain p(x) is investigating the quantity for each sequence of x. However,
this simple way comes with a challenge in computation. The reason is that the number of
possible patterns of the sequence x grows exponentially with n:

|X |n = 44n, (2)

where X denotes a set of all the phonemes that each x[m] can take on, usually called the
alphabet. Here the equality comes from the fact that there are 44 phonemes in English: 24
consonants and 20 vowels. Note that the number of probability values required to fully specify
p(x) is huge for a large value of n, rendering it challenging to obtain the a priori knowledge.
But it turns out there is a very nice statistical structure of the random process concerning the

1

sequence of phonemes. Exploiting the statistical structure, we are able to model the sequence
of phonemes as a simple random process for which the joint distribution p(x) can be specified
with a much smaller number of parameters.

One naive way of modeling the sequence of phonemes is assuming that these random variables
are independent. We saw an independent process before many times. Actually the additive
white Gaussian noise that often appeared is an i.i.d. random process. However, this is not a
good idea in this application. Some phonemes are more likely to follow other phonemes. For
example, the phoneme /th/ is more likely to be followed by /e/ rather than /s/. So assuming
the random variables to be independent seems like a very bad idea.

A simple dependency model: A Markov process

Now how are we going to capture the dependency of phonemes? It turns out we can capture
the dependency, to some extent, with a simple dependency model, in which the dependency of
x[m] on the past is entirely through the random variable x[m− 1] that immediately precedes it.
What it means is that

p(x[m]|x[m− 1], x[m− 2], . . . , x[0]) = p(x[m]|x[m− 1]). (3)

Here the interpretation is that given the current state, say x[m − 1], the future x[m] and the
past (x[m− 1], . . . , x[0]) are conditionally independent. Actually the random process with this
property was intensively explored by a very famous Russian mathematician, Andrey Markov.
See Fig. 2. So named after him, this is called the Markov property, and a process with the

CN21_2

Andrey Markov 1906

Figure 2: Andrey Markov is a Russian mathematician who made important achievements w.r.t.
the random process (later named a Markov process) that satisfies a simple dependency property
reflected in (3).

property is called a Markov process. In fact, the dependency of phonemes in reality is much
more complicated than that imposed by the simple Markov property. But it turns out that we
can properly capture the dependency of a realistic sequence of phonemes by invoking a so-called
generalized Markov process that is characterized by

p(x[m]|x[m− 1], . . . , x[m− `], x[m− `− 1], . . . , x[0]) = p(x[m]|x[m− 1], . . . , x[m− `]).

Observe that the dependency of x[m] on the past is now through possibly more past states, say
` : x[m− 1], x[m− 2], . . . , x[m− `]. One can readily see that this is indeed a generalized Markov
process, as it subsumes the Markov process as a special case of ` = 1. For simplicity, we will
assume that the sequence of phonemes is a single-memory Markov process.

A graphical model

2

In statistics and machine learning, this Markov property is usually represented by an insightful
picture which illustrates the relation across random variables: called a graphical model. In fact,
the graphical model is concerning a generic random process, say (X1, X2, . . . , Xn), not limited
to the Markov process. It captures the statistical structure of a random process with two
entities: (1) nodes (corresponding to random variables); (2) edges (reflecting the dependency
of a pair of two random variables involved). The interpretation of a graph is as follows. If
one disconnects the interested graph into two subgraphs G1 and G2 by removing a node Xi,
then the random variables in G1 and G2 are independent conditional on Xi. For instance,
consider (X1, X2, X3) with p(X1, X2, X3) = p(X1)p(X2|X1)p(X3|X2). One can easily see from
the relation that p(X3|X2, X1) = p(X3|X2), implying that X1 are X3 are independent conditional
on X2. So the graph is illustrated as:

X1 −X2 −X3. (4)

Note that the removal of X2 disconnects X1 and X3.

A priori probability p(x)

Going back to the sequence of phonemes, recall we assume that x[m] is independent of all the
past given x[m− 1]. In this case, one can simply obtain the graphical model as:

x[0]− x[1]− x[2]− · · · − x[n− 2]− x[n− 1]. (5)

This model is called a Markov model. Or it is called a Markov chain as it looks like a chain.
Using this statistical structure, one can now write down the joint distribution as:

p(x) = p(x[0], x[1], x[2], . . . , x[n− 1])

(a)
= p(x[0])p(x[1]|x[0])p(x[2]|x[1], x[0]) · · · p(x[n− 1]|x[n− 2], . . . , x[0])

(b)
= p(x[0])p(x[1]|x[0])p(x[2]|x[1]) · · · p(x[n− 1]|x[n− 2])

= p(x[0])
n−1∏
m=1

p(x[m]|x[m− 1])

(6)

where (a) is due to the definition of condition probability; (b) comes from the Markov property.

Note that it suffices to know only p(x[0]) and p(x[m]|x[m− 1]) to compute p(x). So we need to
specify only 44 values for p(x[0]) and 442 values for p(x[m]|x[m− 1]). The sum 44 + 442 is much
smaller than the huge number 44n required to specify the joint distribution when the statistical
structure is not exploited. In reality, one can estimate individual pmf p(x[0]) and the transition
probability p(x[m]|x[m− 1]) from any large text by computing the following averages:

p(s) = Pr(x[0] = s) ≈ # of occurences of “s”

of phonemes in the interested text
; (7)

p(t|s) = Pr(x[m] = t|x[m− 1] = s) ≈ # of “t” that follows “s”

of occurrences of “s”
. (8)

By the law of large numbers1, these estimates become concentrated around the ground-truth
distributions as the number of phonemes in the text increases.

Likelihood function f(y|x)
1This is one of very important and famous laws in mathematics and statistics. I assume that you may be

familiar with this law dealt with in EE210. Otherwise, don’t worry. You can simply consider it as a simple and
intuitive law, saying that the sample average converges to the true average as the number of samples tends to
infinity. A rigorous proof of this is not that difficult, once you rely on some important inequalities such as Markov
inequality and Chebyshev inequality. If you feel offended, just forget about it for now.

3

Now let us figure out how to obtain the knowledge of the likelihood function. We find that a key
observation on the system enables us to identify the statistical structure of the random process
y, thus providing a concrete way of computing f(y|x). Here the key observation is that y[m]
can be viewed as a noisy version of x[m] and the noise has nothing to do with any other random
variables involved in the system. The mathematical representation of the observation is that
given x[m], y[m] is statistically independent of all the other random variables: e.g.,

y[1]⊥(x[0], x[1], . . . , x[n− 1], y[0])|x[1]

This property leads to the graphical model for y as follows:CN21_4

Figure 3: A Hidden Markov Model (HMM) for the speech recognition system output y.

Notice that if we remove the node x[m], the node y[m] will be disconnected from the rest of
the graph. This reflects the fact that y[m] depends on other random variables only through
x[m]. One interesting question about the model: Is the observation sequence y[0], . . . , y[n− 1] a
Markov model? No! Why? But the underlying sequence that we want to figure out is a Markov
model. That is the reason as to why this is called the Hidden Markov Model, HMM for short.

Using this statistical property, one can now write down the conditional distribution as:

f(y|x) = f(y[0], y[1], . . . , y[n− 1]|x[0], x[1], . . . , x[n− 1])

= f(y[0]|x[0], x[1], . . . , x[n− 1])f(y[1], . . . , y[n− 1]|x[0], x[1], . . . , x[n− 1], y[0])

(a)
= f(y[0]|x[0])f(y[1], . . . , y[n− 1]|x[0], x[1], . . . , x[n− 1], y[0])

...

(b)
= f(y[0]|x[0])f(y[1]|x[1]) · · · f(y[n− 1]|x[n− 1])

=
n−1∏
m=0

f(y[m]|x[m])

(9)

where (a) and (b) are because given x[m], y[m] is independent of everything else for any m.

Note that it suffices to know only f(y[m]|x[m]) to compute f(y|x). Now a question is: How can
we obtain the knowledge of the individual likelihood function f(y[m]|x[m]). If the mth feature
y[m] is a discrete value, then we need to specify only the number |X |× |Y| of possible values for
f(y[m]|x[m]). But the value of the feature is in general a continuous value although it can be
quantized so that it can be represented by a discrete random variable. So we need to figure out
the functional relation across y[m] and x[m] to specify the likelihood function.

Look ahead

It turns out there is a way to estimate f(y[m]|x[m]). Next time, we will learn how to estimate
f(y[m]|x[m]). We will then employ the estimate to compute the MAP solution.

4

EE321 Communication Engineering June 12, 2020
KAIST, Spring 2020 Changho Suh (chsuh@kaist.ac.kr)

Lecture 22: Viterbi algorithm & supervised learning

Recap

During the past few lectures, we modeled the speech recognition problem, as illustrated in Fig. 1.
We let x[m] be the mth phoneme and y[m] be the corresponding feature extracted from the sound

CN22_1

system
speech

recognition

phonemes features

Figure 1: A block diagram of the speech recognition system and recovery block.

picked up at the microphone. In general, each y[m] is complicated and multi-dimensional. For
example, y[m] can be a vector of Fourier coefficients of the signal. But to simplify matter, we
assumed that y[m] is a single continuous random variable. We then derived the optimal MAP
algorithm associated with the inference problem:

x̂MAP = arg max
x

p(x)f(y|x). (1)

Last time, we have shown that the relation between the input and output of the system can be
represented by the graphical model as illustrated in Fig. 2.CN21_4

Figure 2: A graphical model for the speech recognition system.

Using this property, we could then identify the statistical structure of x and y:

p(x) = p(x[0])

n−1∏
m=1

p(x[m]|x[m− 1]);

f(y|x) =

n−1∏
m=0

f(y[m]|x[m]).

(2)

We also learned how to estimate p(x[0]) and p(x[m]|x[m − 1]) from a sample text containing
sufficiently many words. But for f(y[m]|x[m]), I just claimed that there is a way to estimate.

Today’s lecture

Today we will learn about the way to estimate the likelihood f(y[m]|x[m]). But prior to that,
we will first finish computing the MAP solution (1), assuming the knowledge of f(y[m]|x[m])

1

together with p(x[0]) and p(x[m]|x[m − 1]). To this end, we will first show the equivalence to
the communication problem for the ISI channel. We will next show that the Viterbi algorithm
can serve as an efficient way to find the MAP solution.

Viterbi algorithm

Using (2) and defining p(x[0]|x[−1] = ∅) := p(x[0]), we can write down the objective function
in (1) as:

p(x)f(y|x) = p(x[0])
n−1∏
m=1

p(x[m]|x[m− 1])
n−1∏
m=0

f(y[m]|x[m])

=
n−1∏
m=0

p(x[m]|x[m− 1])
n−1∏
m=0

f(y[m]|x[m])

=

n−1∏
m=0

p(x[m]|x[m− 1])f(y[m]|x[m]).

(3)

Taking a logarithm function at both sides, we then get:

log (p(x)f(y|x)) =

n−1∑
m=0

log {p(x[m]|x[m− 1])f(y[m]|x[m])} . (4)

Now using the fact that log(·) is a non-decreasing function, we can obtain another optimization
problem equivalent to (1):

x̂MAP = arg min
x

n−1∑
m=0

log

{
1

p(x[m]|x[m− 1])f(y[m]|x[m])

}
. (5)

Letting s[m] = [x[m − 1], x[m]]T , one can view the term inside the log function in (5) as a
function depending solely on m and s[m]. Note that the feature y[m] is given, and the transition
probability p(·|·) and the likelihood function f(y[m]|x[m]) are assumed to be known. In fact, we
already learned how to estimate the transition probability, and we are planning to study how to
obtain the knowledge of the likelihood function later. And this interpretation motivates us to
define the cost function as:

cm(s[m]) := log

{
1

p(x[m]|x[m− 1])f(y[m]|x[m])

}
. (6)

Now noting one-to-one mapping relation between x and s := (s[0], s[1], . . . , s[n − 1]), we can
translate the problem (5) into the one that finds the sequence s of states:

ŝMAP = arg min
s

n−1∑
m=0

cm(s[m]). (7)

Here the key observation is that this problem is exactly the same as that we encountered in the
two-tap ISI communication problem. The only difference is that in the communication problem,
the cost function is defined in a different manner:

cm(s[m]) :=
(
y[m]− hT s[m]

)2
(communication problem).

Remember that there was a fascinating low-complexity algorithm that solves the optimization
problem of the form (7) in a very efficient way: the Viterbi algorithm. Hence, we can simply run

2

the Viterbi algorithm to find ŝMAP. Recall that the complexity of Viterbi algorithm is roughly
the order of the number of states times n. In the speech recognition problem, each x[m] can take
on 44 possible phonemes, so the number of possible states that s[m] can be in is 442. Therefore,
the complexity of Viterbi algorithm, associated with the speech recognition problem setting, is:

∼ (# of states)× n = 442n.

Statistical modeling for y[m]’s
CN22_2

feature

extraction

Figure 3: Speech recognition system.

So far we have assumed the knowledge of the likelihood function f(y[m]|x[m]). Now we will
explain how to estimate this. Remember that the likelihood function depends on randomness
that occurs in the system due to different voice characteristics and the noise.

If the system has no noise and a speaker is given, then we can think of y[m] as simply a
deterministic function of x[m]. For example, given x[m] = /a/, y[m] is a deterministic function
of /a/, say µa. However, due to the noise in the system, the feature y[m] would be randomly
distributed around the true feature µa corresponding to the phoneme /a/. Notice that the major
source of this noise is the random movement of electrons due to heat, known as the thermal
noise. We learned in Part I that the thermal noise can be modeled as an additive white Gaussian
noise (AWGN). Hence, given x[m] = /a/, we can model y[m] as:

y[m] = µa + w[m] (8)

where w[m]’s are i.i.d. ∼ N (0, σ2). Similarly given x[m] = /b/, y[m] can be modeled as the
true feature concerning /b/, say µb, plus an additive Gaussian noise. Here for simplicity, we will
assume that we know the variance of the additive noise σ2. Actually there are a variety of ways
to estimate σ2. One simple way is to infer the variance from multiple measurements y[m]’s fed
by null signals. More concretely, suppose x[m] = ∅ for m = 0, 1, . . . , n − 1. Then, under the
statistical modeling on y[m] as above, we get:

y[m] = w[m], m = 0, 1, . . . , n− 1. (9)

Now then the empirical mean of y2[m]’s can be used as a good surrogate of σ2:

y2[0] + y2[1] + · · ·+ y2[n− 1]

n
≈ σ2. (10)

For a large value of n, the empirical mean is expected to concentrate around the variance, and
especially as n tends to infinity, it does converge to the variance, by the law of large numbers.

Even if we know the noise variance, the likelihood function f(y[m]|x[m]) is not specified yet.
This is because the true features such as µa and µb are user-specific parameters, so these can be
viewed as random variables. Hence, these need to be estimated to fully specify the likelihood

3

function. There is one very popular approach that enables the estimation. For the rest of this
lecture, we will study that approach.

Supervised learning

Assume for a moment that we knew the sequence of phonemes. This sounds like an absurd
assumption given that the sequence of phonemes is exactly what we would like to infer! However,
we could ask the speaker to say some predetermined phonemes for us at the beginning. In fact,
some speech recognition software does this. Then we could use this sequence to estimate µa and
µb based on the known phonemes. Note that in this method, we are learning the parameters by
instructing (or supervising) the speaker to do something at the beginning. In other words, the
parameters are learned in a supervising way. So this learning approach is supervised learning.

Here is how supervising learning works. Suppose we ask the user to say “aaaaaaaa” for eight
time slots. This then gives us:

y[m] = µa + w[m], m = 0, 1, . . . , 7. (11)

Here notice that µa is the mean of the samples y[m]’s since w[m] has zero mean. So one
reasonable approach to estimate the parameter µa is taking the empirical mean:

µ̂a =
y[0] + y[1] + · · ·+ y[7]

8
. (12)

Now a question is: Is this estimate optimal? It turns out the answer is yes! To see this, let us
consider the optimal estimate. As in Part I and Part II, we say that an estimate is optimal if it
maximizes the reliability. But here is the conventional definition of the reliability Pr(µ̂a = µa)
proper? No! The reason is that the definition leads the reliability to take always zero no matter
what an estimate is. Note that the entity µa that we wish to infer takes a continuous value. To
resolve this, we employ a so-called ε-reliability:

ε-reliability := Pr(µa − ε ≤ µ̂a ≤ µa + ε). (13)

Note that this quantity can be strictly positive for ε > 0. One can easily verify that the estimate
that maximizes the ε-reliability in the limit of ε→ 0 is an MAP estimate:

µ̂MAP
a = arg max

µa
fa(µa|y)

= arg max
µa

fa(µa)f(y|µa).
(14)

Check in PS8. Here we encounter a challenge. The challenge is that we know nothing about
fa(µa). One reasonable way to proceed in this case is assuming a uniformly distributed density
for fa(µa). Making this assumption, we can then simplify the MAP estimate as the ML estimate:

µ̂MAP
a = arg max

µa
f(y|µa) =: µ̂ML

a . (15)

Now using the fact that y[m] ∼ N (µa, σ
2), we can explicitly compute the ML estimate as follows:

µ̂ML
a = arg max

µa
f(y|µa)

= arg max
µa

exp

(
− 1

2σ2

7∑
m=0

(y[m]− µa)2
)

= arg min
µa

7∑
m=0

(y[m]− µa)2.

(16)

4

Taking the derivative of the objective function w.r.t. µa and setting it to 0, we finally get:

µ̂ML
a =

y[0] + y[1] + · · ·+ y[7]

8

which coincides with the good estimate that we expected earlier.

Closing

Finally I would like to leave a remark which may be helpful for your future careers. One key
message that we could arrive at from Part III is that fundamental concepts (the MAP/ML prin-
ciples and the Viterbi algorithm) play important roles. So in view of this, I strongly recommend
you to make every efforts for being strong at fundamentals! The fundamentals that I would like
to put a special emphasis on are w.r.t. modern AI technologies that you may be very interested
in. As you may image, being an expert in the AI field requires many backgrounds. One major
background that I believe crucial is mathematics, in particular four fundamental branches in
mathematics.

The first is obviously optimization. Remember that the goal of machine learning can be achieved
through optimization. The second is a field which provides instrumental tools with which one
can translate the objective function and/or constraints into simple and tractable formulas. The
field is: linear algebra. As you may be familiar with, many seemingly-complicated mathematical
formulas can be expressed as simple terms that involve matrix multiplications and additions. The
third is a field that plays a role in dealing with uncertainty that appears in random quantities.
The field is: probability. The last is a field that serves to shed optimal architectural insights into
machine learning models of interest. That is: information theory. Remember the role of cross
entropy (an information-theoretic notion) in the design of the optimal loss function.

These are the very fundamentals which I believe are crucial for advancing the 4th industrial
revolution empowered by AI technologies. So my advice is: Be strong at these fundamentals.
Here are some relevant courses offered at KAIST:

1. EE424: Introduction to Optimization;

2. MA109: Introduction to Linear Algebra;

3. EE210: Introduction to Probability & Random Processes;

4. EE326: Introduction to Information Theory & Coding.

One caveat here is that such fundamentals are highly likely to be built only when you are
at school. Of course it is a bit exaggerated, but it seems indeed the case according to the
experiences of my own and many others. You may be able to understand what this means after
you graduate; not enough time would be given for you to deeply understand some principles and
also your stamina would not be as good as that of now.

5

	cover_page_temp2
	textbook_introduction_comm_engineering
	CN01
	CN02
	CN03
	CN04
	CN05
	CN06
	CN07
	CN08
	CN09
	CN10
	CN11
	CN12
	CN13
	CN14
	CN15
	CN16
	CN17
	CN18
	CN19
	CN20
	CN21
	CN22

