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Abstract

We consider a matrix completion problem that exploits social or item similarity
graphs as side information. We develop a universal, parameter-free, and computa-
tionally efficient algorithm that starts with hierarchical graph clustering and then
iteratively refines estimates both on graph clustering and matrix ratings. Under a
hierarchical stochastic block model that well respects practically-relevant social
graphs and a low-rank rating matrix model (to be detailed), we demonstrate that our
algorithm achieves the information-theoretic limit on the number of observed ma-
trix entries (i.e., optimal sample complexity) that is derived by maximum likelihood
estimation together with a lower-bound impossibility result. One consequence of
this result is that exploiting the hierarchical structure of social graphs yields a
substantial gain in sample complexity relative to the one that simply identifies dif-
ferent groups without resorting to the relational structure across them. We conduct
extensive experiments both on synthetic and real-world datasets to corroborate our
theoretical results as well as to demonstrate significant performance improvements
over other matrix completion algorithms that leverage graph side information.

1 Introduction

Recommender systems have been powerful in a widening array of applications for providing users
with relevant items of their potential interest [1]. A prominent well-known technique for operating
the systems is low-rank matrix completion [2–18]: Given partially observed entries of an interested
matrix, the goal is to predict the values of missing entries. One challenge that arises in the big data era
is the so-called cold start problem in which high-quality recommendations are not feasible for new
users/items that bear little or no information. One natural and popular way to address the challenge
is to exploit other available side information. Motivated by the social homophily theory [19] that
users within the same community are more likely to share similar preferences, social networks such
as Facebook’s friendship graph have often been employed to improve the quality of recommendation.

While there has been a proliferation of social-graph-assisted recommendation algorithms [1, 20–40],
few works were dedicated to developing theoretical insights on the usefulness of side information,
and therefore the maximum gain due to side information has been unknown. A few recent efforts
have been made from an information-theoretic perspective [41–44]. Ahn et al. [41] have identified
the maximum gain by characterizing the optimal sample complexity of matrix completion in the
presence of graph side information under a simple setting in which there are two clusters and users
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within each cluster share the same ratings over items. A follow-up work [42] extended to an arbitrary
number of clusters while maintaining the same-rating-vector assumption per user in each cluster.
While [41, 42] lay out the theoretical foundation for the problem, the assumption of the single rating
vector per cluster limits the practicality of the considered model.

In an effort to make a further progress on theoretical insights, and motivated by [45], we consider a
more generalized setting in which each cluster exhibits another sub-clustering structure, each sub-
cluster (or that we call a “group”) being represented by a different rating vector yet intimately-related
to other rating vectors within the same cluster. More specifically, we focus on a hierarchical graph
setting wherein users are categorized into two clusters, each of which comprises three groups in
which rating vectors are broadly similar yet distinct subject to a linear subspace of two basis vectors.

Contributions: Our contributions are two folded. First we characterize the information-theoretic
sharp threshold on the minimum number of observed matrix entries required for reliable matrix
completion, as a function of the quantified quality (to be detailed) of the considered hierarchical
graph side information. The second yet more practically-appealing contribution is to develop a
computationally efficient algorithm that achieves the optimal sample complexity for a wide range of
scenarios. One implication of this result is that our algorithm fully utilizing the hierarchical graph
structure yields a significant gain in sample complexity, compared to a simple variant of [41, 42]
that does not exploit the relational structure across rating vectors of groups. Technical novelty
and algorithmic distinctions also come in the process of exploiting the hierarchical structure; see
Remarks 2 and 3. Our experiments conducted on both synthetic and real-world datasets corroborate
our theoretical results as well as demonstrate the efficacy of our proposed algorithm.

Related works: In addition to the initial works [41, 42], more generalized settings have been taken
into consideration with distinct directions. Zhang et al. [43] explore a setting in which both social
and item similarity graphs are given as side information, thus demonstrating a synergistic effect due
to the availability of two graphs. Jo et al. [44] go beyond binary matrix completion to investigate a
setting in which a matrix entry, say (i, j)-entry, denotes the probability of user i picking up item j as
the most preferable, yet chosen from a known finite set of probabilities.

Recently a so-called dual problem has been explored in which clustering is performed with a partially
observed matrix as side information [46, 47]. Ashtiani et al. [46] demonstrate that the use of side
information given in the form of pairwise queries plays a crucial role in making an NP-hard clustering
problem tractable via an efficient k-means algorithm. Mazumdar et al. [47] characterize the optimal
sample complexity of clustering in the presence of similarity matrix side information together with
the development of an efficient algorithm. One distinction of our work compared to [47] is that we are
interested in both clustering and matrix completion, while [47] only focused on finding the clusters,
from which the rating matrix cannot be necessarily inferred.

Our problem can be viewed as the prominent low-rank matrix completion problem [1–4, 6–18] which
has been considered notoriously difficult. Even for the simple scenarios such as rank-1 or rank-2
matrix settings, the optimal sample complexity has been open for decades, although some upper and
lower bounds are derived. The matrix of our consideration in this work is of rank 4. Hence, in this
regard, we could make a progress on this long-standing open problem by exploiting the structural
property posed by our considered application.

The statistical model that we consider for theoretical guarantees of our proposed algorithm relies on
the Stochastic Block Model (SBM) [48] and its hierarchical counterpart [49–52] which have been
shown to well respect many practically-relevant scenarios [53–56]. Also our algorithm builds in part
upon prominent clustering [57,58] and hierarchical clustering [51,52] algorithms, although it exhibits
a notable distinction in other matrix-completion-related procedures together with their corresponding
technical analyses.

Notations: Row vectors and matrices are denoted by lowercase and uppercase letters, respectively.
Random matrices are denoted by boldface uppercase letters, while their realizations are denoted
by uppercase letters. Sets are denoted by calligraphic letters. Let 0m×n and 1m×n be all-zero and
all-one matrices of dimension m × n, respectively. For an integer n ≥ 1, [n] indicates the set of
integers {1, 2, . . . , n}. Let {0, 1}n be the set of all binary numbers with n digits. The hamming
distance between two binary vectors u and v is denoted by dH (u, v) := ‖u⊕ v‖0, where ⊕ stands
for modulo-2 addition operator. Let 1 [·] denote the indicator function. For a graph G = (V,E) and
two disjoint subsets X and Y of V , e (X,Y ) indicates the number of edges between X and Y .
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2 Problem Formulation

Setting: Consider a rating matrix with n users and m items. Each user rates m items by a binary
vector, where 0/1 components denote “dislike”/“like” respectively. We assume that there are two
clusters of users, say A and B. To capture the low-rank of the rating matrix, we assume that each
user’s rating vector within a cluster lies in a linear subspace of two basis vectors. Specifically, let
vA1 ∈ F1×m

2 and vA2 ∈ F1×m
2 be the two linearly-independent basis vectors of cluster A. Then users

in Cluster A can be split into three groups (e.g., say GA1 , GA2 and GA3 ) based on their rating vectors.
More precisely, we denote by GAi the set of users whose rating vector is vAi for i = 1, 2. Finally,
the remaining users of cluster A from group GA3 , and their rating vector is vA3 = vA1 ⊕ vB2 (a linear
combination of the basis vectors). Similarly we have vB1 , v

B
2 and vB3 = vB1 ⊕ vB2 for cluster B.

For presentational simplicity, we assume equal-sized groups (each being of size n/6), although our
algorithm (to be presented in Section 4) allows for any group size, and our theoretical guarantees (to
be presented in Theorem 2) hold as long as the group sizes are order-wise same. Let M ∈ Fn×m be
a rating matrix wherein the ith row corresponds to user i’s rating vector.

We find the Hamming distance instrumental in expressing our main results (to be stated in Section 3)
as well as proving the main theorems. Let δg be the normalized Hamming distance among distinct
pairs of group’s rating vectors within the same cluster: δg = 1

m minc∈{A,B}mini,j∈[3] dH
(
vci , v

c
j

)
.

Also let δc be the counterpart w.r.t. distinct pairs of rating vectors across different clusters: δc =
1
m mini,j∈[3] dH

(
vAi , v

B
j

)
, and define δ := {δg, δc}. We partition all the possible rating matrices into

subsets depending on δ. LetM(δ) be the set of rating matrices subject to δ.

Problem of interest: Our goal is to estimate a rating matrix M ∈ M(δ) given two types of
information: (1) partial ratings Y ∈ {0, 1, ∗}n×m; (2) a graph, say social graph G. Here ∗ indicates
no observation, and we denote the set of observed entries of Y by Ω, that is Ω = {(r, c) ∈
[n] × [m] : Yrc 6= ∗}. Below is a list of assumptions made for the analysis of the optimal sample
complexity (Theorem 1) and theoretical guarantees of our proposed algorithm (Theorem 2), but not
for the algorithm itself. We assume that each element of Y is observed with probability p ∈ [0, 1],
independently from others, and its observation can possibly be flipped with probability θ ∈ [0, 12 ).
Let social graph G = ([n], E) be an undirected graph, where E denotes the set of edges, each
capturing the social connection between two associated users. The set [n] of vertices is partitioned
into two disjoint clusters, each being further partitioned into three disjoint groups. We assume that
the graph follows the hierarchical stochastic block model (HSBM) [51, 59] with three types of edge
probabilities: (i) α indicates an edge probability between two users in the same group; (ii) β denotes
the one w.r.t. two users of different groups yet within the same cluster; (iii) γ is associated with two
users of different clusters. We focus on realistic scenarios in which users within the same group (or
cluster) are more likely to be connected as per the social homophily theory [19]: α ≥ β ≥ γ.

Performance metric: Let ψ be a rating matrix estimator that takes (Y,G) as an input, yielding an
estimate. As a performance metric, we consider the worst-case probability of error:

P (δ)
e (ψ) := max

M∈M(δ)
P [ψ(Y,G) 6= M ] . (1)

Note that M(δ) is the set of ground-truth matrices M subject to δ := {δg, δc}. Since the error
probability may vary depending on different choices of M (i.e., some matrices may be harder to
estimate), we employ a conventional minimax approach wherein the goal is to minimize the maximum
error probability. We characterize the optimal sample complexity for reliable exact matrix recovery,
concentrated around nmp? in the limit of n and m. Here p? indicates the sharp threshold on the
observation probability: (i) above which the error probability can be made arbitrarily close to 0 in the
limit; (ii) under which P (δ)

e (ψ) 9 0 no matter what and whatsoever.

3 Optimal sample complexity

We first present the optimal sample complexity characterized under the considered model. We
find that an intuitive and insightful expression can be made via the quality of hierarchical social
graph, which can be quantified by the following: (i) Ig := (

√
α −√β)2 represents the capability

of separating distinct groups within a cluster; (ii) Ic1 := (
√
α − √γ)2 and Ic2 := (

√
β − √γ)2

capture the clustering capabilities of the social graph. Note that the larger the quantities, the easier
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to do grouping/clustering. Our sample complexity result is formally stated below as a function of
(Ig, Ic1, Ic2). As in [41], we make the same assumption on m and n that turns out to ease the proof
via prominent large deviation theories: m = ω(log n) and logm = o(n). This assumption is also
practically relevant as it rules out highly asymmetric matrices.
Theorem 1 (Information-theoretic limits). Assume that m = ω(log n) and logm = o(n). Let c
and g denote the number of clusters and groups, respectively. Within each cluster, let the set of g
rating vectors be spanned by any r ≤ g vectors in the same set. Let

p? =
1

(
√

1− θ −
√
θ)2

max
{ gc

g − r + 1

logm

n
,

log n− n
gcIg

δgm
,

log n− n
gcIc1 −

(g−1)n
gc Ic2

δcm

}
. (2)

Fix ε > 0. If p ≥ (1+ε)p?, then there exists a sequence of estimators ψ satisfying limn→∞ P
(δ)
e (ψ) =

0. Conversely, if p ≤ (1− ε)p?, then limn→∞ P
(δ)
e (ψ) 6= 0 for any ψ. Setting (c, g, r) = (2, 3, 2),

the bound in (1) reduces to

p? :=
1

(
√

1− θ −
√
θ)2

max

{
3 logm

n
,

log n− 1
6nIg

mδg
,

log n− 1
6nIc1 − 1

3nIc2

mδc

}
, (3)

which is the optimal sample complexity of the problem formulated in Section 2.

Proof. We provide the proof sketch for (c, g, r) = (2, 3, 2). We defer the complete proof for
(c, g, r) = (2, 3, 2) to the supplementary material. The extension to general (c, g, r) is a natural
generalization of the analysis for the parameters (c, g, r) = (2, 3, 2).

The achievability proof is based on maximum likelihood estimation (MLE). We first evaluate the
likelihood for a given clustering/grouping of users and the corresponding rating matrix. We then
show that if p ≥ (1 + ε)p?, the likelihood is maximized only by the ground-truth rating matrix in the
limit of n: limn→∞ P

(δ)
e (ψML) = 0.

For the converse (impossibility) proof, we first establish a lower bound on the error probability, and
show that it is minimized when employing the maximum likelihood estimator. Next we prove that
if p is smaller than any of the three terms in the RHS of (3), then there exists another solution that
yields a larger likelihood, compared to the ground-truth matrix. More precisely, if p ≤ (1−ε)3 logm

(
√
1−θ−

√
θ)2n

,
we can find a grouping with the only distinction in two user-item pairs relative to the ground truth,
yet yielding a larger likelihood. Similarly when p ≤ (1−ε)(logn− 1

6nIg)

(
√
1−θ−

√
θ)2mδg

, consider two users in the
same cluster yet from distinct groups such that the hamming distance between their rating vectors
is mδg . We can then show that a grouping in which their rating vectors are swapped provides a larger

likelihood. Similarly when p ≤ (1−ε)(logn− 1
6nIc1−

1
3nIc2)

(
√
1−θ−

√
θ)2mδc

, we can swap the rating vectors of two
users from different clusters with a hamming distance of mδc, and get a greater likelihood.

The technical distinctions w.r.t. the prior works [41,42] are three folded: (i) the likelihood computation
requires more involved combinatorial arguments due to the hierarchical structure; (ii) sophisticated
upper/lower bounding techniques are developed in order to exploit the relational structure across
different groups; (iii) delicate choices are made for two users to be swapped in the converse proof.

We next present the second yet more practically-appealing contribution: Our proposed algorithm
in Section 4 achieves the information-theoretic limits. The algorithm optimality is guaranteed for a
certain yet wide range of scenarios in which graph information yields negligible clustering/grouping
errors, formally stated below. We provide the proof outline in Section 4 throughout the description of
the algorithm, leaving details in the supplementary material.
Theorem 2 (Theoretical guarantees of the proposed algorithm). Assume thatm = ω(log n), logm =

o(n), m = O(n), Ic2 > 2 logn
n and Ig > ω( 1

n ). Then, as long as the sample size is beyond the
optimal sample complexity in Theorem 1 (i.e., mnp > mnp?), then the algorithm presented in
Section 4 with T = O(log n) iterations ensures the worse-case error probability tends to 0 as
n→∞. That is, the algorithm returns M̂ such that P[M̂ = M ] = 1− o(1).

Theorem 1 establishes the optimal sample complexity (the number of entries of the rating matrix to be
observed) to be mnp?, where p? is given in (3). The required sample complexity is a non-increasing
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Figure 1: Let n = 1000, m = 500 and θ = 0. (a), (b) The different regimes of the optimal
sample complexity reported in (3), where in (a) δc < δg and in (b) δc > δg. Diagonal stripes, dots,
and horizontal stripes refer to perfect clustering/grouping, grouping-limited, and clustering-limited
regimes, respectively. (c) Comparison between the sample complexity reported in (3) for γ = 0.01
and Ic2 = 0.002 and that of [42].

function of δg and δc. This makes an intuitive sense because increasing δg (or δc) yields more
distinct rating vectors, thus ensuring easier grouping (or clustering). We emphasize three regimes
depending on (Ig, Ic1, Ic2). The first refers to the so-called perfect clustering/grouping regime in
which (Ig, Ic1, Ic2) are large enough, thereby activating the 1st term in the max function. The second
is the grouping-limited regime, in which the quantity Ig is not large enough so that the 2nd term
becomes dominant. The last is the clustering-limited regime where the 3rd term is activated. A few
observations are in order. For illustrative simplicity, we focus on the noiseless case, i.e., θ = 0.
Remark 1 (Perfect clustering/grouping regime). The optimal sample complexity reads 3m logm.
This result is interesting. A naive generalization of [41,42] requires 4m logm, as we have four rating
vectors (vA1 , v

A
2 , v

B
1 , v

B
2 ) to estimate and each requires m logm observations under our random

sampling, due to the coupon-collecting effect. On the other hand, we exploit the relational structure
across rating vectors of different group, reflected in vA3 = vA1 ⊕ vA2 and vB3 = vB1 ⊕ vB2 ; and we
find this serves to estimate (vA1 , v

A
2 , v

B
1 , v

B
2 ) more efficiently, precisely by a factor of 4

3 improvement,
thus yielding 3m logm. This exploitation is reflected as novel technical contributions in the converse
proof, as well as the achievability proofs of MLE and the proposed algorithm. �

Remark 2 (Grouping-limited regime). We find that the sample complexity n logn− 1
6n

2Ig
δg

in this
regime coincides with that of [42]. This implies that exploiting the relational structure across different
groups does not help improving sample complexity when grouping information is not reliable. �

Remark 3 (Clustering-limited regime). This is the most challenging scenario which has not been
explored by any prior works. The challenge is actually reflected in the complicated sample complexity
formula: n logn− 1

6n
2Ic1− 1

3n
2Ic2

δc
. When β = γ, i.e., groups and clusters are not distinguishable,

Ig = Ic1 and Ic2 = 0. Therefore, in this case, it indeed reduces to a 6-group setting: n logn− 1
6n

2Ig
δc

.
The only distinction appears in the denominator. We read δc instead of δg due to different rating
vectors across clusters and groups. When Ic2 6= 0, it reads the complicated formula, reflecting
non-trivial technical contribution as well. �

Fig. 1 depicts the different regimes of the optimal sample complexity as a function of (Ig, Ic2) for
n = 1000, m = 500 and θ = 0. In Fig. 1a, where δg = 1

3 and δc = 1
6 , the region depicted by

diagonal stripes corresponds to the perfect clustering/grouping regime. Here, Ig and Ic2 are large,
and graph information is rich enough to perfectly retrieve the clusters and groups. In this regime, the
1st term in (3) dominates. The region shown by dots corresponds to grouping-limited regime, where
the 2nd term in (3) is dominant. In this regime, graph information suffices to exactly recover the
clusters, but we need to rely on rating observation to exactly recover the groups. Finally, the 3rd term
in (3) dominates in the region captured by horizontal stripes. This indicates the clustering-limited
regimes, where neither clustering nor grouping is exact without the side information of the rating
vectors. It is worth noting that in practically-relevant systems, where δc > δg (for rating vectors of
users in the same cluster are expected to be more similar compared to those in a different cluster),
the third regime vanishes, as shown by Fig. 1b, where δg = 1

7 and δc = 1
6 . It is straightforward to

show that the third term in (3) is inactive whenever δc > δg. Fig. 1c compares the optimal sample

5



complexity between the one reported in (3), as a function of Ig, and that of [42]. The considered
setting is n=1000, m=500, θ=0, δg= 1

3 , δc= 1
6 , γ=0.01 and Ic2 =0.002. Note that [42] leverages

neither the hierarchical structure of the graph, nor the linear dependency among the rating vectors.
Thus, the problem formulated in Section 2 will be translated to a graph with six clusters with linearly
independent rating vectors in the setting of [42]. Also, the minimum hamming distance for [42]
is δc. In Fig. 1c, we can see that the noticeable gain in the sample complexity of our result in the
diagonal parts of the plot (the two regimes on the left side) is due to leveraging the hierarchical graph
structure, while the improvement in the sample complexity in the flat part of the plot is a consequence
of exploiting the linear dependency among the rating vectors within each cluster (See Remark 1).

4 Proposed Algorithm

We propose a computationally feasible matrix completion algorithm that achieves the optimal sample
complexity characterized by Theorem 1. The proposed algorithm is motivated by a line of research
on iterative algorithms that solve non-convex optimization problems [6, 58, 60–70]. The idea is to
first find a good initial estimate, and then successively refine this estimate until the optimal solution
is reached. This approach has been employed in several problems such as matrix completion [6, 60],
community recovery [58, 61–63], rank aggregation [64], phase retrieval [65, 66], robust PCA [67],
EM-algorithm [68], and rating estimation in crowdsourcing [69, 70]. In the following, we describe
the proposed algorithm that consists of four phases to recover clusters, groups and rating vectors.
Then, we discuss the computational complexity of the algorithm.

Recall that Y ∈ {0,+1, ∗}n×m. For the sake of tractable analysis, it is convenient to map Y to
Z ∈ {−1, 0,+1}n×m where the mapping of the alphabet of Y is as follows: 0←→ +1, +1←→ −1
and ∗ ←→ 0. Under this mapping, the modulo-2 addition over {0, 1} in Y is represented by the
multiplication of integers over {+1,−1} in Z. Also, note that all recovery guarantees are asymptotic,
i.e., they are characterized with high probability as n→∞. Throughout the design and analysis of
the proposed algorithm, the number and size of clusters and groups are assumed to be known.

4.1 Algorithm Description

Phase 1 (Exact Recovery of Clusters): We use the community detection algorithm in [57] on G to
exactly recover the two clusters A and B. As proved in [57], the decomposition of the graph into two
clusters is correct with high probability when Ic2 > 2 logn

n .

Phase 2 (Almost Exact Recovery of Groups): The goal of Phase 2 is to decompose the set of users
in cluster A (cluster B) into three groups, namely GA1 , GA2 , GA3 (or GB1 , GB2 , GB3 for cluster B). It is
worth noting that grouping at this stage is almost exact, and will be further refined in the next phases.
To this end, we run a spectral clustering algorithm [58] on A and B separately. Let Ĝxi (0) denote the
initial estimate of the ith group of cluster x that is recovered by Phase 2 algorithm, for i ∈ [3] and
x ∈ {A,B}. It is shown that the groups within each cluster are recovered with a vanishing fraction
of error if Ig = ω(1/n). It is worth mentioning that there are other clustering algorithms [62, 71–77]
that can be employed for this phase. Examples include: spectral clustering [62, 71–74], semidefinite
programming (SDP) [75], non-backtracking matrix spectrum [76], and belief propagation [77].

Phase 3 (Exact Recovery of Rating Vectors): We propose a novel algorithm that optimally recovers
the rating vectors of the groups within each cluster. The algorithm is based on maximum likeli-
hood (ML) decoding of users’ ratings based on the partial and noisy observations. For this model,
the ML decoding boils down to a counting rule: for each item, find the group with maximum gap
between the number of observed zeros and ones, and set the rating entry of this group to 0. The
other two rating vectors are either both 0 or both 1 for this item, which will be determined based
on the majority of the union of their observed entries. It turns out that the vector recovery is exact
with probability 1−o(1). This is one of the technical distinctions, relative to the prior works [41, 42]
which employ the simple majority voting rule under non-hierarchical SBMs.

Define v̂xi as the estimated rating vector of vxi , i.e., the output of Phase 3 algorithm. Let the cth

element of the rating vector vxi (or v̂xi ) be denoted by vxi (c) (or v̂xi (c)), for i ∈ [3], x ∈ {A,B}
and c ∈ [m]. Let Yr,c be the entry of matrix Y at row r and column c, and Zr,c be its mapping to
{+1, 0,−1}. The pseudocode of Phase 3 algorithm is given by Algorithm 1.
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Algorithm 1 Exact Recovery of Rating Vectors

1: function VECRCV (n,m,Z, {Ĝxi (0) : i ∈ [3], x ∈ {A,B}})
2: for c ∈ [m] and x ∈ {A,B} do
3: for i ∈ [3] do ρi,x(c)←∑

r∈Ĝxi (0)
Zr,c

4: j ← arg maxi∈[3] ρi,x(c)

5: v̂xj (c)← 0
6: if

∑
i∈[3]\{j} ρi,x(c) ≥ 0 then

7: for i ∈ [3] \ {j} do v̂xi (c)← 0
8: else
9: for i ∈ [3] \ {j} do v̂xi (c)← 1

10: return {v̂xi : i ∈ [3], x ∈ {A,B}}

Algorithm 2 Local Iterative Refinement of Groups (Set flag = 0)

1: function REFINE (flag, n,m, T, Y, Z,G, {(Ĝxi (0), v̂xi ) : i ∈ [3], x ∈ {A,B}})
2: α̂← 1

6(n/62 )
|{(f, g) ∈ E : f, g ∈ Gxi , x ∈ {A,B}, i ∈ [3]}|

3: β̂ ← 6
n2

∣∣{(f, g) ∈ E : f ∈ Gxi , g ∈ Gxj , x ∈ {A,B}, i ∈ [3], j ∈ [3] \ i
}∣∣

4: θ̂ ← |{(r, c) ∈ Ω : Yrc 6= v̂xi (c), r ∈ Ĝxi (0)}|/|Ω|
5: for t ∈ [T ] and x ∈ {A,B} do
6: for i ∈ [3] do Ĝxi (t)← ∅
7: for r ← 1 to n do
8: j ← arg maxi∈[3] |{c : Yr,c = v̂xi (c)}|· log

(
1−̂θ
θ̂

)
+e
(
{r}, Ĝxi (t− 1)

)
· log

(
(1−β̂)α̂
(1−α̂)β̂

)

9: Ĝxj (t)← Ĝxj (t) ∪ {r}
10: if flag == 1 then
11: {v̂xi : i∈ [3], x∈{A,B}} ← VECRCV (n,m,Z, {Ĝxi (t) : i∈ [3], x∈{A,B}})
12: return {Ĝxi (T ) : i ∈ [3], x ∈ {A,B}}, {v̂xi : i ∈ [3], x ∈ {A,B}}

Phase 4 (Exact Recovery of Groups): Finally, the goal is to refine the groups which are almost
recovered in Phase 2, to obtain an exact grouping. To this end, we propose an iterative algorithm that
locally refines the estimates on the user grouping within each cluster for T iterations. Specifically,
at each iteration, the affiliation of each user is updated to the group that yields the maximum local
likelihood. This is determined based on (i) the number of edges between the user and the set of users
which belong to that group, and (ii) the number of observed rating matrix entries of the user that
coincide with the corresponding entries of the rating vector of that group. Algorithm 2 describes the
pseudocode of Phase 4 algorithm. Note that we do not assume the knowledge of the model parameters
α, β and θ, and estimate them using Y and G, i.e., the proposed algorithm is parameter-free.

In order to prove the exact recovery of groups after running Algorithm 2, we need to show that the
number of misclassified users in each cluster strictly decreases with each iteration of Algorithm 2.
More specifically, assuming that the previous phases are executed successfully, if we start with
ηn misclassified users within one cluster, for some small η > 0, then one can show that we end
up with η

2n misclassified users with high probability as n → ∞ after one iteration of refinement.
Hence, running the local refinement for T = log(ηn)

log 2 within the groups of each cluster would
suffice to converge to the ground truth assignments. The analysis of this phase follows the one
in [42, Theorem 2] in which the problem of recovering K communities of possibly different sizes is
studied. By considering the case of three equal-sized communities, the guarantees of exact recovery
of the groups within each cluster readily follows when T = O(log n).

Remark 4. The iterative refinement in Algorithm 2 can be applied only on the groups (when
flag = 0), or on the groups as well as the rating vectors (for flag = 1). Even though the former is
sufficient for reliable estimation of the rating matrix, we show, through our simulation results in the
following section, that the latter achieves a better performance for finite regimes of n and m. �

Remark 5. The problem is formulated under the finite-field model only for the purpose of making
an initial step towards a more generalized and realistic algorithm. Fortunately, as many of the
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theory-inspiring works do, the theory process of characterizing the optimal sample complexity under
this model could also shed insights into developing a universal algorithm that is applicable to
a general problem setting rather than the specific problem setting considered for the theoretical
analysis, as long as some slight algorithmic modifications are made. To demonstrate the universality
of the algorithm, we consider a practical scenario in which ratings are real-valued (for which linear
dependency between rating vectors is well-accepted) and observation noise is Gaussian. In this
setting, the detection problem (under the current model) will be replaced by an estimation problem.
Consequently, we update Algorithm 1 to incorporate an MLE of the rating vectors; and modify the
local refinement criterion on Line 8 in Algorithm 2 to find the group that minimizes some properly-
defined distance metric between the observed and estimated ratings such as Root Mean Squared
Error (RMSE). In Section 5, we conduct experiments under the aforementioned setting, and show that
our algorithm achieves superior performance over the state-of-the-art algorithms. �

4.2 Computational Complexity

One of the crucial aspects of the proposed algorithm is its computational efficiency. Phase 1 can be
done in polynomial time in the number of vertices [57,78]. Phase 2 can be done inO(|E| log n) using
the power method [79]. Phase 3 requires a single pass over all entries of the observed matrix, which
corresponds to O(|Ω|). Finally, in each iteration of Phase 4, the affiliation update of user r ∈ [n]
requires reading the entries of the rth row of Y and the edges connected to user r, which amounts to
O(|Ω|+ |E|) for each of the T iterations, assuming an appropriate data structure. Hence, the overall
computational complexity reads poly(n) +O(|Ω| log n).

Remark 6. The complexity bottleneck is in Phase 1 (exact clustering), as it relies upon [57, 78],
exhibiting poly(n) runtime. This can be improved, without any performance degradation, by replacing
the exact clustering in Phase 1 with almost exact clustering, yielding O(|E| log n) runtime [79].
In return, Phase 4 should be modified so that the local iterative refinement is applied on cluster
affiliation, as well as group affiliation and rating vectors. As a result, the improved overall runtime
reads O((|Ω|+ |E|) log n). �

5 Experimental Results

We first conduct Monte Carlo experiments to corroborate Theorem 1. Let α = α̃ logn
n , β = β̃ logn

n ,
and γ = γ̃ logn

n . We consider a setting where θ = 0.1, β̃ = 10, γ̃ = 0.5, δg = δc = 0.5. The synthetic
data is generated as per the model in Section 2. In Figs. 2a and 2b, we evaluate the performance of
the proposed algorithm (with local iterative refinement of groups and rating vectors), and quantify
the empirical success rate as a function of the normalized sample complexity, over 103 randomly
drawn realizations of rating vectors and hierarchical graphs. We vary n and m, preserving the ratio
n/m = 3. Fig. 2a depicts the case of α̃ = 40 which corresponds to perfect clustering/grouping
regime (Remark 1). On the other hand, Fig. 2b depicts the case of α̃ = 40 which corresponds to
grouping-limited regime (Remark 2). In both figures, we observe a phase transition2 in the success rate
at p = p?, and as we increase n and m, the phase transition gets sharper. These figures corroborate
Theorem 1 in different regimes when the graph side information is not scarce. Fig. 2c compares the
performance of the proposed algorithm for n = 3000 and m = 1000 under two different strategies
of local iterative refinement: (i) local refinement of groups only (set flag = 0 in Algorithm 2); and
(ii) local refinement of both groups and rating vectors (set flag = 1 in Algorithm 2). It is clear that
the second strategy outperforms the first in the finite regime of n and m, which is consistent with
Remark 4. Furthermore, the gap between the two versions shrinks as we gradually increase α̃ (i.e., as
the quality of the graph gradually improves).

Next, similar to [41–44], the performance of the proposed algorithm is assessed on semi-real data
(real graph but synthetic rating vectors). We consider a subgraph of the political blog network [80],
which is shown to exhibit a hierarchical structure [50]. In particular, we consider a tall matrix setting
of n = 381 and m = 200 in order to investigate the gain in sample complexity due to the graph
side information. The selected subgraph consists of two clusters of political parties, each of which
comprises three groups. The three groups of the first cluster consist of 98, 34 and 103 users, while the

2The transition is ideally a step function at p = p? as n and m tend to infinity.
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Figure 2: (a), (b) The success rate of the proposed algorithm as a function of p/p? under different
values of n, m and α̃, where (a) corresponds to perfect clustering/grouping regime, and (b) corre-
sponds to grouping-limited regime. (c) Performance of the proposed algorithm under two different
local iterative refinement strategies. (d) Comparison of RMSE achieved by various recommendation
algorithm on the Poliblog dataset [80] as a function of p. (e) Comparison of RMSE achieved by
various recommendation algorithm on the Poliblog dataset as a function of 1/σ2.

Table 1: Runtimes of recommendation algorithms for the experiment setting of Fig. 2d and p = 0.1.

User Average Item Average User k-NN Item k-NN TrustSVD Biased MF SoReg Proposed Algorithm

Time (sec) 0.021 0.025 0.299 0.311 0.482 0.266 0.328 0.055

three groups of the second cluster consist of 58, 68 and 20 users3. The corresponding rating vectors
are generated such that the ratings are drawn from [0, 10] (i.e., real numbers), and the observations
are corrupted by a Gaussian noise with mean zero and a given variance σ2. We use root mean square
error (RMSE) as the evaluation metric, and assess the performance of the proposed algorithm against
various recommendation algorithms, namely User Average, Item Average, User k-Nearest Neighbor
(k-NN) [81], Item k-NN [81], TrustSVD [28], Biased Matrix Factorization (MF) [82], and Matrix
Factorization with Social Regularization (SoReg) [24]. Note that [41, 42] are designed to work for
rating matrices whose elements are drawn from a finite field, and hence they cannot be run under
the practical scenario considered in this setting. In Fig. 2d, we compute RMSE as a function of
p, for fixed σ2 = 0.5. On the other hand, Fig. 2e depicts RMSE as a function of the normalized
signal-to-noise ratio 1/σ2, for fixed p = 0.08. It is evident that the proposed algorithm achieves
superior performance over the state-of-the-art algorithms for a wide range of observation probabilities
and Gaussian noise variances, demonstrating its viability and efficiency in practical scenarios.

Finally, Table 1 demonstrates the computational efficiency of the proposed algorithm, and reports
the runtimes of recommendation algorithms for the experiment setting of Fig. 2d and p = 0.1. The
runtimes are averaged over 20 trials. The proposed algorithm achieves a faster runtime than all other
algorithms except for User Average and Item Average. However, as shown in Fig. 2d, the performance
of these faster algorithms, in terms of RMSE, is inferior to the majority of other algorithms.

3We refer to the supplementary material for a visualization of the selected subgraph of the political blog
network using t-SNE algorithm.
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Broader Impact

We emphasize two positive impacts of our work. First, it serves to enhance the performance of
personalized recommender systems (one of the most influential commercial applications) with the
aid of social graph which is often available in a variety of applications. Second, it achieves fairness
among all users by providing high quality recommendations even to new users who have not rated
any items before. One negative consequence of this work is w.r.t. the privacy of users. User privacy
may not be preserved in the process of exploiting indirect information posed in social graphs, even
though direct information, such as user profiles, is protected.
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