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Abstract

As machine learning becomes prevalent in a widening array of sensitive applica-
tions such as job hiring and criminal justice, one critical aspect in the design of
machine learning classifiers is to ensure fairness: Guaranteeing the irrelevancy of
a prediction to sensitive attributes such as gender and race. This work develops
a kernel density estimation (KDE) methodology to faithfully respect the fairness
constraint while yielding a tractable optimization problem that comes with high
accuracy-fairness tradeoff. One key feature of this approach is that the fairness
measure quantified based on KDE can be expressed as a differentiable function
w.r.t. model parameters, thereby enabling the use of prominent gradient descent to
readily solve an interested optimization problem. This work focuses on classifi-
cation tasks and two well-known measures of group fairness: demographic parity
and equalized odds. We empirically show that our algorithm achieves greater or
comparable performances against prior fair classifers in accuracy-fairness tradeoff
as well as in training stability on both synthetic and benchmark real datasets.

1 Introduction

During the last decade, we have witnessed an unprecedented explosion of academic and popular
interests in machine learning. Machine learning is no longer just an engine behind image classifiers
and spam filters. It is now employed to make critical decisions that affect our lives, cultures, and
rights, e.g., screening job applicants, and informing bail & parole decisions. With a surge of such
applications, one major criterion in the design of machine learning algorithms is to ensure fairness.

A fair classifier aims at achieving the irrelevancy of a prediction to sensitive attributes such as race,
sex, age, and religion. Prior works in the fairness literature have developed several metrics that
capture various notions of discrimination. Three major fairness measures have been taken into
consideration: (i) group fairness [8, [3, [12} 42| [41]] that intends to ensure similar statistics across
distinct demographics; (ii) individual fairness [[7} 9} 33,40 that targets nondiscriminatory predictions
across nearby examples; (iii) causality-based fairness counterparts [20} 24} 30} 37,145 46 [18]]. This
work focuses on group fairness that has been widely explored in a variety of applications. Prominent
group fairness measures include demographic parity [8l42]], equal opportunity [12], and equalized
odds [12]]. All of these intend to quantify how prediction outputs vary depending on sensitive
attributes.

There has been a proliferation of fair classifiers [12, 7} 15, [1} 28] 43} 17, 23]. One challenge that
arises in the prior algorithms is that they suffer from obtaining an explicit and possibly differentiable
fairness measure w.r.t. model parameters and the non-differentiability often prevents the use of popular
algorithms such as gradient descent. This naturally leads to a common approach: Incorporating an
expressible fairness proxy as a regularization term in an interested optimization. One pioneering
work along this direction [42] employs as a fairness proxy a covariance function between a sensitive
attribute and a prediction. However, such a proxy-based approach may not well respect fairness
constraints when it serves as a weak constraint as in [42]. A small covariance does not ensure
statistical independence although the reverse is always the case. Hence, any theoretical performance
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is not guaranteed for a wide range of real datasets in which the low correlation may not necessarily
ensure independence.

Contribution: To address the issue, we take a distinct approach that allows us to directly quantify
fairness measures without relying on such proxy. Our methodology is based on kernel density
estimation (KDE) [4]] that serves to estimate a probability distribution. We emphasize three notable
aspects of our KDE-based framework. The first is that it enables a direct computation of an interested
fairness measure without introducing any proxy. Second, it yields high accuracy on the distribution
estimate. In the binary classifier of our consideration, a moderate sample size ensures a reasonably
precise estimate, in stark contrast to high-dimensional settings [34} [32} [14]; see Remark [T|for details.
Lastly, the fairness measure computed based on KDE can be expressed as a differentiable function
w.r.t. model parameters, thereby enabling the use of standard gradient descent to easily solve a
constrained optimization problem taking the fairness measure as a regularization term. Our extensive
experiments conducted both on synthetic and benchmark real datasets (Law School Admissions [36],
Adult Census [6], Credit Card Default [6} 39], and COMPAS [2]) demonstrate that our algorithm
achieves higher accuracy-fairness tradeoff relative to the states of the arts [42} 41} 44, |1} 25/ [12], both
w.r.t. demographic parity and equalized odds. It also exhibits an enhanced performance in training
stability, compared to adversarial learning based frameworks [44} [11]].

Related works: Fair classifiers are categorized broadly into the following three types: (1) pre-
processing; (2) post-processing; (3) in-processing. Pre-processing intends to correct biased and/or
possibly poisoned data (if any) for mitigating discrimination [[16} 43} 8}, 138]] while post-processing
perturbs classifier’s output at test time while freezing the model [12} 28]. In-processing handles
a fairness constraint in the process of model training. Below we provide a list of in-processing
techniques most relevant to ours.

One common in-processing approach is to address a constrained optimization that incorporates
a fairness measure as a regularization term. Zafar et al. [42] takes this approach, yet utilizing
a covariance fairness proxy w.r.t. a prediction and a sensitive attribute. While such covariance
proxy yields convex optimization under the logistic regression and SVM frameworks to achieve the
optimality via gradient descent, it comes at a cost in enforcing a fairness constraint, as it serves only
as a weak constraint. Other approaches based on linear regression and SVM include [17, [5]].

Another line of in-processing algorithms which yet take different approaches are [44, |1} 25| [29]].
Zhang et al. [44]] build upon an adversarial learning framework [[11] to design a classifier and a
discriminator so that the discriminator cannot identify a sensitive attribute from a prediction. While it
may enjoy promising accuracy-fairness tradeoff with careful design, it suffers from a stability issue
in training as it is based on min-max optimization [11}31]]. See Section 4 for a relevant in-depth
discussion.

2 Problem Formulation

A fair classifier setting includes two types of data: (i) normal (and possibly objective) data; (ii)
sensitive data (or called sensitive attributes). We denote the normal data by = € R?. In the case
of recidivism score prediction [2]], such x may refer to a collection of the number of prior criminal
records and a criminal type, e.g., misdemeanor or felony. For sensitive data, we employ a different
notation, say z. In the above example, z may indicate a race type among white (z = 1) and black
(z = 0). In general, the alphabet size of z is arbitrary. There are many race types such as Black, White,
Asian, Hispanic, to name a few. Also, there could be multiple sensitive attributes like gender and
race (e.g., White male, White female, Black male, Black female). In order to reflect such scenarios,
we consider discrete-valued z € Z with an arbitrary alphabet size | Z|. Let § be the classifier output
which aims to represent the ground-truth conditional distribution p(y|z, z). Here y € ) denotes the
ground-truth label. In the recidivism score prediction, y = 1 means reoffending in the near future, say
within two years (y = 0 otherwise), while ¢ indicates the probability of such event occurring. We are
given m example triplets: {(2(?), 2(?) y(¥)}™  We assume that both z and 2 are fed as the input,
although z may not be part of the input in an effort to automatically respect disparate treatment [42]],
another fairness notion that captures an unequal treatment. For a clearer explanation, we first focus a
binary classification setting where )V = {0, 1} and then discuss on a multiclass setting as presented
in Section



This work focuses on two group fairness notions: demographic parity and equalized odds [8} 142} [12].
Their formal definitions rely on a few notations. Let Z € Z be a random variable that indicates a
sensitive attribute. Let Y € Y be a hard-decision value of the prediction Y at a certain threshold:
Y := 1{Y > 7} where 7 € [0, 1].

lzeﬁnition 1 (Demographic Parity) A classifier is said to satisfy demographic parity if its prediction
Y is independent of the sensitive attribute Z: Pr(Y =1|Z = 2z) =Pr(Y =1),Vz € Z.

One popular measure that captures the degree of violating demographic parity is the difference
between the conditional probability and its marginal. Similar to the namings in [5,[15], we call it the
difference w.r.t. demographic parity (DDP):

DDP :=) "|Pr(Y = 1|Z = z) — Pr(Y = 1)| (1)
z€Z

where DDP > 0 and the equality holds when a classifier fully respects demographic parity. One may
consider another measure which takes “max” operation instead of “>_” in (), or a different measure,
called disparate impact, which captures the degree of the statistical independence via the ratio of
probabilities of positive events among distinct sensitive attributes [1,[8] [42]. We focus on DDP in
for tractability of an associated optimization problem that we will detail later.

Definition 2 (Equalized Odds) A classifier is said to satisfy equalized odds if its prediction is

conditionally independent of the sensitive attribute Z given the label Y: Pr(Y = 1|Z = 2,Y =

y)=Pr(Y =1|Y =y),Vz € Zandy € {0,1}.
Similarly we define the difference of the two probability quantities w.r.t. equalized odds (DEO) as:
DEO:= Y > |Pr(Y=1[Z=2Y=y) - Pr(Y =1[Y =y)] )
ye{0,1}z€2
where DEO > 0 and the equality holds when a classifier respects equalized odds.

One natural approach to decrease DDP or DEO is to incorporate the fairness-related constraint as a
regularization term into the conventional optimization which is often of the following form:

1 & N
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where (ce(y, §) == — Zj y; log J; indicates cross entropy loss [10], and w denotes weights of a
classifier. Taking into account DDP or DEO, we then obtain:
e fj lee(™,5%) + M )
w m ) alr

i=1

where the fairness-associated regularization term Ly, takes DDP or DEO, and A € [0, 1] denotes a
normalized regularization factor that balances predication accuracy against the fairness constraint.
Here one challenge that arises is that expressing DDP and DEO in terms of w is not that straightfor-
ward. One effort was made by [42] which introduced a surrogate yet expressible fairness measure.
Specifically they employ a covariance function between Y and Z as a fairness proxy. However, this
covariance proxy serves only as a weak constraint and therefore it may not fully respect the fairness
constraint.

To overcome the challenge, we take a kernel density estimation (KDE) [4] trick which allows us
to faithfully quantify fairness measures. Our approach also enables the computed measures to be
differentiable w.r.t. w, thus enjoying a variety of gradient-based optimizers [10} [19].

3 Proposed Approach

The computations of DDP and DEO require the knowledge of Py, and P35 y» respectively. So the

question of interest boils down to: How to express Pf,‘ 5 and Pf’l 7y in terms of w? To this end, we



employ the KDE methodology that serves to estimate the pdf of Y via samples. Since Y is a function

of Y the pmf of Y can be represented also via the samples. A notable aspect of the KDE approach
(to be detailed in the sequel) is that it enables Py, and Py, - to be expressed as differentiable

functions w.r.t. w. Let us start by reviewing the KDE.

Definition 3 (Kernel Density Estimator (KDE) [4]) Let (5", ..., 3™)) be i.i.d. examples drawn
from a distribution with an unknown density f. Its KDE is defined as:

g — g
o= S50 (1)

where fy, is a kernel function (see Definition[d) and h > 0 is a smoothing parameter called bandwidth.

Definition 4 (A kernel function) A kernel function is a non-negative real-valued integrable function
fx () that satisfies two requirements: normalization and symmetry.

Here we employ a prominent Gaussian kernel function:

@) = = ex0 (3’2) | ©

To ease the computation of the cdf of fi(7), we approximate the QQ-function as per [21]]:

Fi(9) ;:/ Frly)dy = Q() ~s e—a9" ~bi—c o
Y
where (a, b, c) = (0.4920,0.2887,1.1893).

3.1 Demographic Parity

We first estimate [, (1]2) using the KDE:

_ Q_A()
_mzhz ( ) ®

where I, := {i: 2() = z} and m. := |I.|. This together with ¥ := 1{? > T} gives:

1 7 — 9@
o ()

i€l

fY|Z

where Fy,( f frly

Proposition 1 Since f(§) is continuous and each 99 is a differentiable function w.r.t. w, P vz is
also differentiable. Using the chain rule, one can then compute its gradient as:
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Now let us consider the DDP constrained optimization:

Z&E )+ \-DDP (10)

mln

where

DDP ~ Y~ [Py ,(112) = Py(1)] and Py (1) =

zEZ z2€Z

—Z Py, (12). an



For tractability of the non-differentiable absolute function | - |, we employ the Huber loss [13]]:

- 12 for |z| < J;
DDP ~ ZH‘S < Pyiz(112) = Pf’(l)) where Hs(z) = { g(\m| — 36) otherwise.

z2€EZ

This together with (O) and (TT)) yields an approximation of the gradient of DDP:
VuDDP & 37 Hj (P, (1) — Py(1)) -V (Pyp,(112) - Pp() . (12)
z2€EZ

We employ a neural network (NN) for w and gradient descent for training the fair classifier (T0).
For a linear classifier, we can indeed compute the gradient explicitly, so we provide the closed-form
of the gradient in the supplementary. For general multi-layer NNs, on the other hand, an explicit
formula is rather messy to express, while it can readily be implemented with autograd under machine
learning frameworks. Hence, we do not leave the detailed formula for general NNs.

3.2 Equalized Odds

Taking the KDE approach, similarly we obtain:

—§®
N T y
Py v (U2y) = > F ( - ) (13)
Y el
where I, := {i : 20 = 2,y) = y} and m,,, := |, |. We can then compute the gradient w.r.t. w:
— @
T N7
v PY|Z Y<1|Z Y) h ( Y > 'va(z)- (14)
i€,y

Now consider the DEO constrained optimization problem:

ngn ZKCE )+ A - DEO. (15)

Again using the KDE together with the Huber loss, we approximate:

DEO~ } ZHé( vizy 1z y) — ?\y(1|y)) (16)

ye{0,1}z€2

where P?‘Y(Hy) = ) T P}~,‘Z v(1lz,y) and my, := |{i : y = y}|. This then yields:
zEZ

V.,DEO =~ E § H& ( Y|ZY 1|Z y) ?\y(”y)) Vi (Py‘z,y(llz,y) - P?|y(1|y)) .
ye{0,1} z€Z
(17)

Again we employ an NN for w and provide the explicit gradient formula for a linear classifier in the
supplementary, while omitting complicated gradient expressions for general NNs. We use gradient
descent for training the fair classifier (I3).

Remark 1 (Estimate accuracy of the KDE approach) In general, the KDE approach yields an
inaccurate distribution estimate under high-dimensional settings with a moderate amount of samples,
as the sample size required for a reasonably good estimate should scale exponentially with the
dimension [34, 32| [I4]. However, this is not the case in our setting that emphasizes the binary
classifier. In our binary classifier setting § € R, the required sample size is not prohibitively large
even for a highly accurate estimate. B

Remark 2 (On the choice of the bandwidth h) While it is crucial to make a careful choice on h
for an accurate pdf estimate of Y, it is not the case in our setting which targets only a “pmf” estimate
of a hard-decision value Y . In fact, we find via experiments that a rough choice on h suffices to yield



a good/\enough estimate of the pmf. The left plot in Fig. 1 shows a high sensitivity of the estimated
pdf of Y w.r.t. different h’s, while the right table demonstrates the robustness of the estimated pmf of
Y (:= 1{Y > 0.5}) against various h’s. Nevertheless, a more accurate “pdf” estimate based on an
in-depth analysis revealing the bias-variance tradeoff [34} 35]] would definitely yield a better pmf
estimate, thereby leading to enhanced performance. Hence, we conduct such theoretical analysis and
provide an in-depth discussion on the choice of h in the supplementary. B

True value
Pr(Y =1) =05
Estimated values
h Pr(Y =1)
0.1 0.5055
0.01  0.5083
0.001  0.5091

Figure 1: (Left) The pdf estimates of Y via KDE using 10,000 examples from the normal distribution
N(0.5,1) for different bandwidths h € {0.1,0.01,0.001}; (Right) The pmf estimates of Y (:=
1{Y > 0.5}) via KDE for different /’s; (Implication) Relative to the pdf estimate of Y, the pmf

estimate of Y is much more robust to a choice of h.

Remark 3 (Faithful implementation of fairness measures & beneficial consequences) One key
benefit of our approach is that it enables direct computation of interested fairness measures without
relying on any fairness proxies such as covariance function [42)]. Hence, we can ease training with
standard gradient-based optimizers such as stochastic gradient descent (SGD) and Adam optimizer.
We conduct extensive experiments on synthetic and benchmark real datasets to demonstrate that: (1)
our algorithm outperforms prior fair classifiers in tradeoff performance both w.r.t. DDP and DEQ;
(2) it ensures stability in training unlike adversarial learning approaches; (3) the performance of our
algorithm is robust to a choice of hyperparameters employed in the approach. B

4 Experiments

We provide experimental results conducted on synthetic and four benchmark real datasets (COM-
PAS [2l], Adult Census [6]], Law School Admissions [36], and Credit Card Default [6, [39]). We
implement our algorithm in PyTorch [26], and all experiments are performed on a server with GeForce
GTX 1080 Ti GPUs. All of our results are on a separate test set.

4.1 Synthetic Dataset

We employ a simple yet non-trivial dataset (called the Moon dataset [27]]) in which data are not
linearly separable. See the left figure in Fig.|2| We consider a setting in which 2 has two non-sensitive
attributes (say x; and x3), z is ternary, and y is binary (say ¥y = 1 for a positive outcome; y = 0
otherwise). We leave a more detailed explanation of synthetic data generation in the supplementary.
The dataset includes 15,000 examples, which are then split into two subsets: 80% train set (Mmyajn =
12,000) and 20% test set (Mtest = 3, 000). We train fair classifiers with a 2-layer NN with 16 hidden
nodes. For our approach, we set hyperparameters J (of the Huber function) and A to be 1 and 0.1,
respectively. A theoretical insight on the choice of h is provided in the supplementary. We use the
batch size of 512. We use Adam optimizer and its default parameters (51, 82) = (0.9,0.999) with
the learning rate of 102,

Fig. 2] demonstrates accuracy-fairness tradeoff w.r.t. DDP, evaluated on the synthetic test set. In our
approach, we sweep the tuning knob A from 0 and 1. Here each point corresponds to a particular A
and it represents an average value over 5 trials with different seeds in training. We observe that our
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Figure 2: (Left) Visualization of our synthetic dataset; (Middle) Accuracy-fairness tradeoff w.r.t.
demographic parity on the synthetic dataset; (Right) Accuracy-fairness tradeoff w.r.t. equalized odds
on the synthetic dataset

algorithm outperforms by respectful margins the other baselines: (i) Zafar et al. [42] (a covariance-
fairness-proxy-based classifier); (ii) Zhang et al. [44] (a GAN-based fair classifier). We also see that
a covariance-based algorithm cannot achieve DDP performance below a certain level. We expect this
may be because a small covariance does not necessarily guarantee statistical independence.

The right figure of Fig. 2] exhibits training stability. We compare ours to a state-of-the-art adversarial
learning approach [44]. Here each point represents a performance evaluated only on a particular seed
in training. So the variability of different points captures the degree of stability in training; the more
dispersed, the more unstable. We see that [44]] yields more spread points, relative to ours, meaning
that our algorithm is more stable.

4.2 Real Datasets

We employ four benchmark real datasets: COMPAS [2], Adult Census [6], Law School Admis-
sions [36]], and Credit Card Default [6, [39]:

* COMPAS: The associated task is to predict the recidivism of criminals. We use 3,536 train
examples and 1,742 test exampleﬂ We construct z with 8 normal features (age, criminal
history, and more) and choose “race” (white vs. non-white) and “sex” for z.

* Adult Census: The associated task is to predict whether the annual income of an individual
is above $50,000. This dataset provides Mirain = 32, 561 and myes; = 12,661 examples [6].
We pre-process the data in the same way as done in [22E| with “white-vs-non-white race”
and “gender” as sensitive attributes.

* Law School Admissions: The task of interest is to predict whether an applicant gets an
admission from a law school. Normal features include LSAT score, undergraduate GPA,
gender and more, while the sensitive attribute is “white-vs-non-white race” [36]. We split
the data into two subsets with myain = 77, 267 and myesr = 19, 317.

* Credit Card Default: The target task is to predict whether a credit card user declares a
default in the coming month. Age, education, marriage, and prior payment records are
included in z, while z refers to gender. We use 20% (mi.st = 6,000) as a test set out of
total m = 30, 000 examples.

Note that we consider multiple sensitive attributes (|Z| = 4) on COMPAS and Adult Census, while
we use only one sensitive attribute for the others. For comparison, we consider five baselines: (i) Zafar
et al. [42]; (i1) Zhang et al. [44]; (iii) Agarwal et al. [[L]; (iv) Hardt et al. [[12]; (v) Narasimhan [25]].
We employ a 2-layer NN with 16 hidden nodes for all the baselines except for Zafar et al. [42] and
Narasimhan [235]], as the algorithms in [42] and [25] rely on convex optimization. More specifically,
we use a kernel SVM for [42] and logistic regression for [25]. For a discriminator in Zhang et al. [44]],
we use a 2-layer NN (with 16 hidden nodes) on datasets with multiple sensitive attributes (COMPAS

"https://github.com/microsoft/tempeh
*https://github.com/slundberg/shap



0.6 Agarwal et al. [1]
A
@® Proposed o A
0.5 Zafar et al. [42] “EN
B (Kernel SVM) .. A AA
0.4] A Zhangetal. [44] AA.‘
a A
8 A g
0.3
AA.
0.2 : °
0.1 oo ® ¢
o ® ©°
0.655 0.660 0.665 0.670 0.675 0.680

Accuracy

1.0
0.9
0.8

o 0.7

L

0 0.6
0.5
0.4
0.3

Agarwal et al. [1]

Proposed e
Zafar et al. [41] |
(Kernel SVM) = A A
Zhangetal.[44] A4 A‘f‘
™ A
[ ]
&
>
®e

0.650 0.655 0.660 0.665 0.670 0.675 0.680 0.685

Accuracy

Figure 3: (Left) Accuracy-fairness tradeoff w.r.t. Demographic Parity evaluated on the COMPAS
dataset; (Right) Equalized Odds counterpart.
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Figure 4: (Left) Accuracy-fairness tradeoff w.r.t. Demographic Parity evaluated on the Adult Census
Income dataset; (Right) Equalized Odds counterpart.

and Adult Census) and linear on the other datasets. The left plot in Fig. [3]shows accuracy-fairness
tradeoff w.r.t. DDP evaluated on COMPAS. Each point corresponds to a particular tuning knob
and it represents an average value over 5 trials with different random seeds. Off-the-scale curves
for low-performance baselines are not shown. We observe in the plot that the proposed algorithm
achieves the best tradeoff. We also obtain similar results w.r.t. equalized odds as in the right plot
of Fig.[3] except that the baseline [42] is replaced by [41]. We obtain the result that the proposed
algorithm achieves near best tradeoff while being comparable to Agarwal et al. [[1] on Adult Census.
Another aspect, not reflected here in the plot, yet which we wish to emphasize, is computational
complexity. Since Agarwal et al. 1] require multiple rounds of training, their algorithm exhibits
significant computational time, which is much higher relative to ours. Explicit running times are
reported in the supplementary. We also obtain similar results on the other two datasets: Law Shcool
Admissions and Credit Card Default which leave in the supplementary.

5 Extension to multiclass classification

We now present a simple extension to multiclass setting where each element }AQ of the softmax
output Y € RIYI can be interpreted as Pr(Y = i|X = x,Z = z). A hard decision value of the

prediction is determined by: Y = arg max; Y;. A multiclass classifier satisfies demographic parity if

Py (y) = Pf,lZ(y\z), Yy € Y and Vz € Z. This naturally leads to the following form of DDP:

DDP := > S [Pr(Y =y|Z = 2) - Pr(Y =y)|. (18)
Y z



By using the fact that

17]' > 0.5 = argmaxl?i =7, 19)

we estimate Pr(Y = y|Z = z) and Pr(Y = y) as a differentiable function of w:

B 3 <. 1 T—Q<i)
Pf,lZ(y\z)zPr(Yj>0.5|Z:z):/ [RUBTTE Y N A e
0.5

? el

Then similarly with the binary case in (12)), we can obtain the gradient V,,DDP. We provide
experimental results of such extension on a synthetic dataset with three classes. We leave a more
detailed explanation of this dataset in the supplementary. We train fair classifiers with a 2-layer NN
with 16 hidden nodes. We observe that our simple extension offers respectful margins especially
in the perfect fairness regime. For comparison, we consider the One-vs-all extension of (i) Zafar et
al. [42] w/ Kernel SVMs and (ii) Zhang et al. [44] that naturally extends to the multiclass setting.

2 1.2
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Figure 5: (Left) Visualization of 3-way Gaussian synthetic dataset; (Right) Accuracy-fairness trade-off
w.r.t demographic parity with a 2-layer NN.

6 Conclusion

We proposed a computationally efficient KDE-based fair classifier under a binary classification
setting that achieves the best accuracy-fairness tradeoff while enjoying the standard gradient-based
optimizers via obtaining a differentiable cost function. The proposed algorithm also yields an
improved performance in training stability that GAN-based fair classifiers suffer from. The beneficial
aspects of our algorithm are well presented via a variety of synthetic and real-data experiments w.r.t.
two major group fairness measures: demographic parity and equalized odds. One future work of
interest is to extend to other fairness notions such as individual fairness and causality-based fairness.



Broader Impact

The optimality-efficiency-stability aspects of our algorithm will offer an opportunity to replace the
current fair classifiers which either are far from optimality, entail high complexity, and/or suffer from
the stability issue. In particular, our optimization framework will play a role in stabilizing the training,
which many of the GAN-based fair classifiers suffer from. Hence, it can give significant impacts
upon a widening array of machine learning systems that have relied upon GAN-based architectures,
being powerful in a wide variety of applications.

The current KDE approach is tailored for the binary classifier setting. Hence, a naive extension
to general multiclass classifiers (high-dimensional settings) might incur an inaccurate estimate of
an interested distribution, thus potentially exhibiting a poor accuracy-fairness tradeoff. Another
flip side lies in its robustness against adversarial attacks. It was recently reported in [29] that
existing fair classifiers are vulnerable to biased and/or poisoned data. An initial effort has also been
made in the same paper to address both fairness and robustness issues. Hence, one future work of
great potential might be to gracefully merge the idea in [29] with ours, potentially together with a
non-straightforward extension to multiclass classifier settings.
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