
Matrix Sparsification
for Coded Matrix Multiplication

Geewon Suh
School of EE, KAIST

gwsuh91@kaist.ac.kr

Kangwook Lee
School of EE, KAIST

kw1jjang@kaist.ac.kr

Changho Suh
School of EE, KAIST

chsuh@kaist.ac.kr

Abstract—Coded computation is a framework for providing
redundancy in distributed computing systems to make them
robust to slower nodes, or stragglers. In a recent work of Lee
et al., the authors propose a coded computation scheme for
distributedly computing A × x in the presence of stragglers.
The proposed algorithm first encodes the data matrix A to
obtain an encoded matrix F . It then computes F × x using
distributed processors, waits for some subset of the processors
to finish their computations, and decodes A×x from the partial
computation results. In another recent work, Dutta et al. explore
a new tradeoff between the sparsity of the encoded matrix F
and the number of processors to wait to compute A × x. They
show that one can introduce a large number of zeros into F
to reduce the computational overheads while maintaining the
number of processors to wait relatively low. Hence, one can
potentially further speed up the distributed computation. In
this work, motivated by this observation, we study the sparsity
of the encoded matrix for coded computation. Our goal is to
characterize the fundamental limits on the sparsity level. We
first show that the Short-Dot scheme is optimal if an Maximum
Distance Separable (MDS) matrix is fixed. Further, by also
designing this MDS matrix, we propose a new encoding scheme
that can achieve a strictly larger sparsity than the existing
schemes. We also provide an information-theoretic upper bound
on the sparsity.

I. INTRODUCTION

Efficient parallel and distributed algorithms play a key role

in fueling large-scale applications in a wide variety of domains

such as machine learning and big data analysis. One critical

challenge in developing efficient distributed algorithms is the
straggler problem since the classical approaches [1], [2] are

extremely vulnerable to stragglers. This is because all the

computation results have to be collected by the master node

(or the fusion processor), and hence one needs to wait until

the “slowest” node finishes its task.

Several approaches have been proposed to mitigate the

straggler effect in a distributed computing system. One promi-

nent approach is based on online detection of the stragglers

using various kinds of probing mechanisms. When some

stragglers are detected, one may redistribute the jobs assigned

to the identified stragglers to the other nodes or new nodes,

if available. This kind of reactive policies are widely adopted

in many practical systems such as Hadoop [3]. While this

conservative approach can effectively react to the stragglers

at a low resource overhead, sometimes it is not feasible at all

to implement such frequent probing mechanisms. Moreover,

the size of distributed tasks can be so small that such reactive

policies are not effective.

Fig. 1: The key idea of the MDS computation scheme [6]

Another interesting class of approaches is based on task

replication [4], [5]. The key idea is very simple: one can allot

the same task to multiple workers and collect the output of

the fastest workers. These approaches can be easily deployed

to the existing systems since they do require minimal mod-

ifications. Further, these proactive strategies can easily react

to the stragglers at any time scale, though at relatively high

resource overheads.

Recently, a new technique based on coding-theoretic ideas,

called coded computation, has been proposed to speed up

the distributed computation in the presence of stragglers [6].

Coded computation is a systematic framework of designing

redundancy in distributed computation tasks using efficient

codes. In a nutshell, a coded computation scheme encodes the

computation tasks across distributed processors and decodes
the desired computation result from the task results from some

subset of the processors. The authors of [6] consider the linear

computation task, i.e., a matrix-vector multiplication Aᵀx, and

show that a coded computation scheme based on Maximum

Distance Separable (MDS) codes [7] can achieve an order-

wise improvement in terms of expected computational time

over the other existing schemes that do not employ coding-

theoretic ideas.

The key idea of the basic coded computation scheme is

illustrated in Fig. 1. Given the original data matrix A, the

scheme first generates an encoded data matrix F , and then

distributedly computes F ᵀx. Note that by applying an (p,m)-
MDS code to the m columns of the matrix A, the scheme can

generate p coded columns. It is clear that the fusion processor

is able to decode Aᵀx as soon as m different computation

results are collected.

978-1-5386-3266-6/17/$31.00 ©2017 IEEE 1271

Fifty-Fifth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
October 3-6, 2017

Fig. 2: The key idea of Short-Dot [8]

In [8], the authors show that there exists an interesting

tradeoff between how sparse the coded matrix F can be and

how flexible the computation scheme can be. Introducing a

new design parameter k, m ≤ k ≤ p, which denotes the

number of computation results required to decode the original

computation task, the authors study the tradeoff between the

number of nonzero elements in F and the flexibility parameter

k. The authors propose a new coded computation scheme

called Short-Dot, illustrated in Fig. 2. The key idea is to

append k − m dummy columns to A before applying the

MDS code. By doing so, their scheme can reduce the size of

distributed tasks at the cost of increased flexibility compared

to the basic coded computation scheme. They also show that

by appropriately choosing the size of tasks and the flexibility,

the overall computational time can be reduced.

The goal of this work is to answer the following natu-

ral question: what is the fundamental tradeoff between the

number of zeros in F , that we call the sparsity1 of F , and

the flexibility parameter k? In order to answer this question,

we first introduce the matrix sparsification problem, which

captures the essence of this tradeoff.

Our main findings on the matrix sparsification problem can

be summarized as follows.

• (An MDS code is fixed, k ≥ m) We first show that the

tradeoff achieved by the Short-Dot scheme is optimal

when the MDS code matrix is fixed. That is, the optimal

sparsity is n(k −m) where n is the number of rows in

A.

• (An MDS code can be designed, k = m) We also

characterize the fundamental tradeoff when k is fixed

as m, and the only design parameter is the MDS code

matrix. More specifically, we show that the optimal

sparsity is (k − 1)p.

• (An MDS code can be designed, k > m) We propose

a new matrix sparsification algorithm that can achieve

a strictly better tradeoff under this general setup: our

scheme can achieve the additional sparsity. Further, we

provide an outer bound on the tradeoff.

1In this work, we define the sparsity of a matrix as the number of zeros
in the matrix. Note the difference in the definitions of the sparsity between
our work and [8].

A. Related Works on Coded Computation

In this section, we provide a brief overview of the related

works on coded computation. Coded computation is a scheme

that employs coding-theoretic ideas for encoding input data

and/or output results and running distributed algorithms with

those encoded input and output data [6]. The goal is to im-

prove various performances of distributed algorithms such as

average/tail computation latency in the presence of stragglers

[6], [8], the probability of successful task completion under

a deadline [9], approximation quality under a deadline [10],

[11], communication overheads required for exchanging com-

putation results [12], [13], security [14], optimization perfor-

mance in the presence of data loss [15], etc.

Lee et al. propose a simple coded computation scheme

based on MDS codes [6]. They also show via real-world

experiments that the coded computation can significantly

speed up certain computation tasks in practice. Dutta et al.

show that by considering a more general encoding process,

one may further speed up distributed computations.

The authors of [9] show that coded computation schemes

can also significantly improve the probability of meeting

computation deadline compared with uncoded computation

schemes. In [10], [11], the authors show that the coded

computation scheme can achieve a superior approximation

quality at any time compared to the other schemes.

Another interesting metric is the communication cost be-

tween the distributed processors. Tandon et al. [12] propose a

coded computation scheme for distributedly computing gradi-

ent descents. The authors of [13] propose a coded computation

scheme that can achieve a significant speedup when a general

function is computed with multicore setups.

B. Notations

Let [n] denote the integer set {1, 2, · · · , n} and [n1 : n2]
denote [n2]\[n1−1]. For a set A and k ≤ |A|, we define

(
A
k

)
to

be all possible size-k subsets of A, i.e., {X ⊆ A : |X| = k}.
For two matrices A1 and A2, [A1 A2] indicates the concate-

nation of A1 and A2.

We say that a matrix B ∈ R
k×p satisfies the Maximum-

Distance Separable (MDS) property, or B is an MDS

code/matrix if any k columns of B are linearly independent.

II. THE MATRIX SPARSIFICATION PROBLEM

We begin with providing a formal definition of the matrix
sparsification problem.

A. Problem Formulation

A matrix sparsification algorithm encodes an input matrix

A ∈ R
n×m into a coded matrix F ∈ R

n×p such that for some

fixed k, m ≤ k ≤ p, any k columns of F span all the columns

of A. Here, k denotes the resilience parameter to stragglers.

More details are provided in Sec. II-B.

In this work, we focus on the following two-step encoding

algorithm, inspired by the formulation of [8]. The first step

of the two-step encoding algorithm appends k − m dummy

columns to A. Then, in the second step of the algorithm,

it right-multiplies an MDS matrix B to Ã = [A Ā]. More

1272

Achievable schemes Upper bounds

Short-Dot [8] s = n(k −m) for P1 s ≤ n(k −m) +m2
(

p
k−m+1

)
for P3

P1

(Fixed B)

(Sec. III-B)

N/A s ≤ n(k −m)

This work

P2

(No dummy columns)

(Sec. III-C)

s = (k − 1)p s ≤ (k − 1)p

P3

(Full flexibility)

(Sec. III-D)

If k ≥ (n+p)2

(n+p)2−n2m,

s ≈ n(k −m) + p
(√

k −√k −m
)2

.

If k < (n+p)2

(n+p)2−n2m,

s ≈ nkp
n+p .

s ≤ n(k −m) + kp

TABLE I: Summary of our main results and the results in [8].

Fig. 3: The block diagram of the two-step encoding process. It first appends (k−m) dummy columns to A, and right-multiplies

the MDS matrix B to construct F .

formally, the two-step encoding algorithm of our interest can

be described as

F = [A Ā]B ∈ R
n×p,

where Ā ∈ R
n×(k−m) is a matrix consisting of k−m dummy

columns, and B ∈ R
k×p is an MDS matrix. See Fig. 3 for

the two-step encoding process.

The goal of the matrix sparsification problem is to max-

imize the sparsity of F by judiciously designing Ā and B,

where the sparsity is defined as follows.

Definition 1. Sparsity s(F) of a real matrix F is defined as

the number of zero entries in F .

An encoding scheme can be fully characterized by speci-

fying the pair of Ā(A) and B(A) (or simply Ā and B). If

an encoding scheme φ can achieve s(F) ≥ θ for almost all

matrices A, we say that the encoding scheme achieves the

sparsity of θ, i.e., s(φ) = θ. And we say that s� is an optimal

sparsity if s� = maxφ s(φ), i.e., s� is the maximum sparsity

among all encoding schemes.

In this paper, we will simply use s instead of s(F) if F is

clear in the context. Further, let Ai, Āi, Ãi denote the i-th row

of A, Ā, Ã, respectively. Let Bj denote the j-th column of B.

For J ∈ [p], BJ denotes the k× |J | sub-matrix of B ∈ R
k×p

by taking columns {Bj}j∈J of B.

Depending on the assumptions on Ā and B, one can

consider the following three variations of the general matrix

sparsification problem.

• (Problem 1: Fixed B [8]) What is the optimal design of

dummy columns Ā when a fixed MDS code B is given?

• (Problem 2: No dummy columns [6]) What is the optimal

choice of the MDS code B when Ā = ∅?
• (Problem 3: Full flexibility) What is the optimal design

of dummy columns Ā and MDS code B?

Note that Problem 1 where the MDS code B is assumed to

be fixed, the general matrix sparsification problem reduces to

the problem formulation in [8]. Further, Problem 2 is another

extreme instance where no additional dummy columns are

appended, and only B is used, i.e., k = m and Ā = ∅.
The scheme proposed in [6] can be viewed as an achievable

scheme for this regime. Finally, Problem 3 is the most general

case where there are no restrictions on both Ā and B, and one

has full flexibility in designing them.

B. Connection to Coded Matrix Multiplication

In this section, we briefly explain the connection between

the matrix sparsification problem and coded matrix multipli-

cation schemes. Consider the task of distributedly computing

the product of a matrix Aᵀ ∈ R
m×n and a vector x ∈ R

n×1

using p processors. For simplicity, assume that the number of

processors p is no less than m, i.e., p ≥ m.

Assume that there exists a matrix F ∈ R
n×p of sparsity s

such that any k columns of F can recover any columns of

A, where m ≤ k ≤ p. Then, denoting the i-th column of F
by Fi, it is clear that the task results {F ᵀ

i x}’s from any k
processors suffice to recover {Aᵀ

i x}, and hence Aᵀx.

Note that the amount of computation per processor de-

creases if the sparsity s increases. On the other hand, due

to the fundamental tradeoff, one must wait for an increased

number of processors’ results compared to the original coded

1273

matrix multiplication scheme, i.e., k > m. Hence, it is not

clear how one should pick an operation point to optimize a

certain metric of interest. The authors of [8] show that under

some experimental circumstances, the Short-Dot scheme can

further speed up the distributed matrix-vector multiplication

by striking a critical balance between the sparsity and the flex-

ibility of the code. In Sec. IV, we will revisit this connection

and show how our results on the matrix sparsification problem

can be applied to the coded computation problem.

C. Overview of the Existing Results

We now review the existing results on the matrix sparsifi-

cation problem.

Lee et al. [6] propose the following algorithm for distributed

matrix multiplication, called coded matrix-vector multiplica-
tion. Given a matrix A, they first construct the coded matrix

F = AB where B is an MDS matrix. Then, they assign

the task of computing F ᵀ
i x to the i-th processor. Due to the

property of MDS matrices, this algorithm can successfully

compute the matrix-vector product Aᵀx as soon as any m
processors finish their computations.

We illustrate this approach via the following example. Con-

sider the distributed computing system with p = 3 processors.

Given a matrix A ∈ R
n×2 and an MDS matrix

B =

(
1 0 1
0 1 1

)
,

we first obtain the following encoded matrix:

F =AB =
(
A1 A2

)(1 0 1
0 1 1

)
=
(
A1 A2 A1 +A2

)
=
(
F1 F2 F3

)
.

It is clear that one can always recover A from any k = 2
of Fi’s. For instance, we can recover A from F2 and F3 since

A =
(
(F3 − F2) F2

)
. Thus, one can successfully compute

Aᵀx from the outputs of the two fast processors, ignoring the

slowest one. In general, this algorithm is able to compute Aᵀx
from the k = m fastest processors, ignoring the p−k = p−m
slowest processors.

While the goal of [6] is not maximizing the sparsity of F ,

one can still view their scheme as an achievable scheme for the

matrix sparsification problem. More precisely, their scheme

can be interpreted as an achievable scheme for Problem 2

with s = 0 since they do not append any additional columns

to A.

Improving upon this basic coded computation strategy,

Dutta et al. [8] propose a new technique called Short-Dot. The

Short-Dot scheme first fixes B as an arbitrary MDS matrix,

and then carefully designs the dummy columns Ā. The authors

show that the dummy columns Ā can be chosen such that the

sparsity of each column Fi is at least
n(k−m)

p . That is, the

Short-Dot scheme achieves s = n(k −m).

III. MAIN RESULTS

A. Our Approach

We now describe our approach to the matrix sparsification

problem. The key idea is to view the matrix sparsification

process as an inference problem as follows. We first view the

input matrix A as a message and F as an encoded symbol.

Recall that the matrix F has to satisfy the condition that

any k columns of it has to span all the columns of A.

This requirement can be viewed as the successful decoding

condition. More precisely, consider an erasure channel that

erases p − k columns of F and outputs the remaining k
columns as F̂ ∈ R

n×k. Upon receiving F̂ , the decoder

recovers Â ∈ R
n×k. We say that the message matrix A is

successfully recovered if Â = A. In Fig. 4, we provide a

block diagram of the inference problem, which is equivalent

to the matrix sparsification.

Leveraging this interpretation, we obtain achievable

schemes and lower bounds for different instances of the matrix

sparsification problem. Our findings can be summarized as

follows.

• (Problem 1: Fixed B [8]) We show that the Short-Dot

scheme indeed achieves the optimal sparsity when the

MDS matrix B is fixed. That is, s� = n(k −m).
• (Problem 2: No dummy columns [6]) We show that even

without adding any dummy columns to A, it is possible to

achieve s = (k−1)p. Further, we show that the optimality

of our scheme, i.e., s� = (k − 1)p.

• (Problem 3: Full flexibility) We first propose an achiev-

able scheme that jointly designs both Ā and B to

achieve a strictly larger sparsity than those of the existing

schemes. Moreover, we provide an upper bound on the

optimal sparsity.

We also summarize our findings in Table I.

B. Problem 1: Fixed B

In this subsection, we characterize the optimal sparsity of

F when we design Ā with fixed MDS matrix B. That is, we

only consider the first step of the two-step encoding process.

The following theorem characterizes the fundamental limit on

sparsity of F .

Theorem 1. Fix an MDS matrix B. For any coding scheme
Ā, minA s(F) ≤ n(k −m).

Proof. As mentioned in Sec. III-A, we view the computation

process as an inference problem, considering A as a message.

For simplicity, assume that the entries of A are in the finite

field of size q.2 We can easily check that Ã–F–F̂– ˆ̃A forms a

Markov chain. Then,

nm log2 q = H(A) ≤ H(Ã)

= H(Ã| ˆ̃A) + I(Ã; ˆ̃A)

(1)

≤ H(Ã| ˆ̃A) + I(F ; F̂)

= H(Ã| ˆ̃A) +H(F)−H(F |F̂)

(2)

≤ H(F)

(3)

≤ (nk −min
A

s(F)) log2 q,

2The proof can be immediately generalized to the case of real numbers
using either differential entropy or linear algebra.

1274

Fig. 4: The matrix sparsification problem viewed as an inference problem. By viewing A as a message and stragglers as

erasures, we can view the matrix sparsification problem as an inference problem (a channel coding problem).

which gives the upper bound on minA s(F). Here, (1) holds

by the data processing inequality, (2) holds from H(Ã| ˆ̃A) = 0,

i.e., Fano’s inequality with successful recovery. Note that

every row of F is a linear combination of k rows of B.

Thus, the entropy of each row of F is at most k log2 q.

Considering the minimum sparsity of F , we have H(F) ≤
(nk −minA s(F)) log2 q, hence inequality (3) holds.

Remark that Short-Dot [8] achieves s = n(k−m). Thm. 1

gives the converse proof and thus implies that the Short-Dot

scheme is optimal in the matrix sparsification problem when

MDS matrix is fixed.

C. Problem 2: No Dummy Columns
In this subsection, we characterize the optimal sparsity

of matrix sparsification problem when there are no dummy

columns, i.e., k = m.

Definition 2. A matrix A ∈ R
n×k satisfies Condition 1 if

there does not exist a nonzero vector v ∈ R
k and I ∈ (

[p]
k

)
such that v ∈ Vi = span{Ai, · · · , Ai+k−2} for all i ∈ I .

Clearly, Condition 1 is not satisfied only within a measure

0 set, i.e., almost all A satisfies Condition 1. We now present

our main theorem for Problem 2.

Theorem 2. Suppose n ≥ p. For all matrices A satisfying
Condition 1, we can design an MDS matrix B such that s ≥
(k−1)p. If every set of k rows of A are linearly independent,
this sparsity is optimal.

Proof. We first show the achievability. For i ∈ [p], Let Bi be

a vector orthogonal to Ai, · · · , Ai+k−2 (Al = Al−n if l > n).

Since Bi is orthogonal to at least k−1 rows of A, s = (k−1)p
is achievable.

Now we show that B satisfies the MDS property for

almost all A. Note that Bi is unique up to constant mul-

tiplication if Ai, · · · , Ai+k−2 are linearly independent. Let

Vi = span{Ai, · · · , Ai+k−2}. Then, Bi ∈ V ⊥
i , the nullspace

of Vi.
Suppose that there exist linearly dependent k columns

{Bi}i∈I of B, where I ∈ (
[p]
k

)
. This implies that

dim
(∑

i∈I V
⊥
i

)
< k. Here, the sum of linear vector

spaces W1 + W2 is defined to be {w : w = a1w1 +
a2w2 for some a1, a2 ∈ R, w1 ∈W1, w2 ∈W2}.

By an analog of De Morgan’s law for linear spaces, we

have dim
(⋂

i∈I Vi

)⊥
< k, i.e., dim

(⋂
i∈I Vi

) ≥ 1. This

implies that there exists a nonzero vector v ∈ R
k such that

v ∈ Vi = span{Ai, · · · , Ai+k−2} for all i ∈ I . Therefore, by

contrapositive proposition, we can design an MDS matrix B
with s ≥ (k − 1)p since A satisfies Condition 1.

We now prove the converse statement. If every set of k rows

of A are linearly independent, each column of B is orthogonal

to at most k − 1 rows of A. Thus, any column of F cannot

have more than k− 1 zeros, meaning that s = (k− 1)p is the

optimal sparsity.

That is, the optimal sparsity for the matrix sparsification

problem with no dummy columns equals to (k − 1)p.

D. Problem 3: Full Flexibility

We now propose a new scheme that uses both coding

stages, i.e., designs both Ā and B. Our scheme, explained

in Algorithm 1, randomly designs some part of Ā, designs

MDS code B as a function of A and the designed part of Ā,

and then designs the rest of Ā as in Short-Dot [8]. Our scheme

is illustrated in Fig. 5, and the sparsity pattern is illustrated

in Fig. 6.

Let t ≤ m be a constant, which will be fixed later. Let p′ :=⌊
min

(
p

k−t ,
n
t

)⌋
denote the maximum number of t× (k− t)

blocks we can choose in F diagonally.

Definition 3. Fix an integer t, 0 < t ≤ m. Let Vi :=
span(A(i−1)t+1, · · · , Ait). A matrix A ∈ R

n×m satisfies

Condition 2 if it satisfies one of the following conditions for

any I ∈ ([p′]
	 k

k−t

)
:

1) rank(A[(i−1)t+1,it]) > t− (k −m− 1) for all i ∈ I , or

2) rank(A[(i−1)t+1,it]) > t− (k−m) for all i ∈ I and there

is no nonzero v ∈ R
k−m such that v ∈ ⋂

i∈I Vi.

It is straightforward to show that Condition 2 is satisfied

if {Ai}i∈[(j−1)t+1,jt] is independent for all j ∈ [p′], which is

not satisfied only within a measure 0 set. Hence, Condition

2 holds for almost all matrices A. We now characterize the

achievable sparsity of our scheme.

Theorem 3. Fix an integer t, 0 < t ≤ m. For all matrices A
satisfying Condition 2, we can design Ā and B such that

s ≥ n(k −m) + t(m− t)

⌊
min

(
p

k − t
,
n

t

)⌋
.

Proof. First, we randomly choose Ā1, · · · , Ātp′ with i.i.d.

Gaussian entries. Next, for any 1 ≤ j ≤ p′, we choose

{B(j−1)(k−t)+1, · · · , Bj(k−t)} to be a random basis of

null(Ã(j−i)t+1, · · · , Ãjt). By the argument in Appendix A,

we can design B satisfying the MDS property.

With B designed above, Fi = ÃiB, the i-th row of F ,

contains at least (k − t) zeros for 1 ≤ i ≤ tp′ since Ãi

is orthogonal to {Bi}[i′(k−t)+1,i′(k−t)] where i′ =
⌊
i
t

⌋
. For

the remaining entries of Ã, we follow Short-Dot [8], which

guarantees at least k −m zeros for each row of F .

As a result, the first tp′ rows of F have at least k− t zeros

and the remaining rows have at least k − m zeros, which

means that s ≥ n(k −m) + t(m− t)p′.

1275

Fig. 5: Illustration of our achievable scheme in Sec. III-D. The first row illustrates our achievable scheme. It first chooses t
rows of Ā at random and design first k− t columns of B to be null vectors of Ã[t]. We repeat this procedure until we choose

all Ā or all B. Remaining Ā is designed by the Short-Dot scheme.

Algorithm 1 Our Scheme

Given: A, k, Ā1, · · · , Ātp′

1: for j = 1 to p′ do
2: B(j−1)(k−t)+1, · · · , Bj(k−t) ←
3: null(Ã(j−1)t+1, · · · , Ãjt)
4: end for

5: for j = tp′ + 1 to n do
6: U ← {(j − 1), · · · , (j + k −m− 1)} mod p
7: BU ← Columns of B indexed by U
8: Āj ← −AjB

1:m
U (Bm+1:k

U)−1

9: end for

Now it remains to find the maximum value of the function

f(t) = t(m − t)
⌊
min

(
p

k−t ,
n
t

)⌋
. Let g(t) := pt(m−t)

k−t and

h(t) := n(m − t). Since g(t) ≤ h(t) if and only if pt ≤
n(k−t), i.e., t ≤ t1 := nk

n+p , we get f(t) ≈ min(g(t), h(t)) =
g(t)1{t ≤ t1}+ h(t)1{t > t1}.

One can show that g(t) attains its maximum when t =
t2 := k −√k2 − km < m, and h(t) is a decreasing function

with respect to t. So if t1 ≥ t2, f(t) has a maximum value

g(t2) when t = t2. If t1 ≤ t2, f(t) has a maximum value

h(t1) when t = t1.

From the previous observations, f attains its maximum

value when t∗ ≈ min(t1, t2) = min(k− pk
n+p , k−

√
k2 − km).

Since t1 ≥ t2 if and only if

√
k2 − km ≥ pk

n+ p
⇐⇒ k ≥ (n+ p)2

(n+ p)2 − n2
m,

we get the following theorem:

Fig. 6: Comparison of the sparsity patterns of F between

Short-Dot [8] and our new scheme, proposed in Sec. III-D.

Observe the additional zeros in the first tp′ rows.

Theorem 4. For all matrices A satisfying Condition 2, we
can design Ã, B such that

s ≈
⎧⎨
⎩n(k −m) + p

(√
k −√k −m

)2

, if k ≤ (n+p)2

(n+p)2−n2m,
nkp
n+p , otherwise.

In the argument above, we use the approximation symbol

‘≈’ since we do not take the integer effect from the floor func-

tion into account, which is negligible unless the parameters

are very small integers.

Comparing with Short-Dot [8], our scheme achives extra

p(
√
k−√k −m)2 sparsity in F when k ≤ (n+p)2

(n+p)2−n2m, and

1276

n
n+p (nm+mp− nk) otherwise. Note that n

n+p (nm+mp−
nk) = h(t1) > h(t2) > h(m) = 0 when t1 < t2 since h is a

decreasing function.

While our new achievable scheme strictly improves the

sparsity achieved by Short-Dot scheme, we acknowledge that

the improvement is marginal when n � p. This is because

the extra sparsity obtained in Thm. 4 compared to Short-Dot

does not scale with n.

We next give an upper bound on the optimal sparsity.

Theorem 5. For any coding scheme (Ā, B), minA s(F) ≤
n(k −m) + kp.

Proof. For simplicity, assume that the entries of A are in the

finite field of size q.3

For given B, we can easily check that Ã–F–F̂– ˆ̃A forms a

Markov chain. Then,

nm log2 q = H(A) = H(A, Ā, B)−H(Ā, B|A)

= H(Ã, B)−H(Ā, B|A)

≤ H(B) +H(Ã|B)

= H(B) +H(Ã| ˆ̃A,B) + I(Ã; ˆ̃A|B)

(1)

≤ H(B) +H(Ã| ˆ̃A,B) + I(F ; F̂ |B)

= H(B) +H(Ã| ˆ̃A,B) +H(F |B)

−H(F |F̂ , B)

(2)

≤ kp log2 q +H(F |B)

(3)

≤ (kp+ nk −min
A

s(F)) log2 q,

which gives the upper bound on minA s(F). Here, (1) holds

by the data processing inequality, (2) holds from inequalities

that H(B) ≤ |B| log2 q = kp log2 q, H(Ã| ˆ̃A,B) = 0
by Fano’s inequality with successful recovery. When B is

given, every row of F is a linear combination of k rows

of B. Thus, the entropy of each row of F is at most

k log2 q. Considering the minimum sparsity of F , we have

H(F |B) ≤ (nk −minA s(F)) log2 q which implies (3).

This bound exactly coincides with the number of free

variables, i.e., |Ā| + |B|. The authors in [8] give an upper

bound of sparsity by showing that there exists a matrix A
with s ≤ n(k−m)+m2

(
p

k−m+1

)
under general construction

of encoded matrix F . Thm. 5 gives a new tighter upper bound.

We remark that our upper bound is close to the achievable

sparsity of our scheme when m is close to p. However, the gap

between the upper bound and the achievable sparsity increases

as m becomes smaller. See Fig. 7 for a numerical comparison.

IV. LATENCY ANALYSIS

In this section, we compare the expected computation time

of our algorithm to those of the existing algorithms. Based on

the model proposed in [6], we assume that the time Tn for

3The proof can be immediately generalized to the case of real numbers
using either differential entropy or linear algebra.

400 500 600 700 800 900 1000
0.5

1

1.5

2

2.5

3

3.5

4
104

Repetition
Uncoded
MDS
Short-Dot
Our Scheme
Upper Bound

Fig. 7: Comparison of expected computational times. In the

first figure, we compare the expected computational times of

the existing computation schemes and our new scheme. In the

second figure, we compare the computational time obtained

by the upper bound of optimal sparsity with our scheme. (μ =
5, p = 1000, n = 15000)

computing a dot product of length n is given by the cumulative

distribution function

P (Tn ≤ t) = (1− e−μ(t
n−1))1{t ≥ n}.

Here, μ is the “straggling parameter”, which determines the

size of tail in the model. Intuitively, the computation time is

proportional to n, and it takes at least n unit times to finish

the task. The distribution of unpredictable latency is described

as an exponential tail with parameter μ.

With sparsity s, the average length of the dot product each

worker computes is equal to n− s
p . Then, the overall expected

computation time is given by the k-th order statistic of Tn− s
p

.

The authors of [6] prove that the expectation of the k-th order

statistic of Tn is given by n

(
1 +

log(p
p−k)
μ

)
. We optimize

the expected computation time by choosing an appropriate

resilience parameter k, which is equal to:

E(T) = min
m≤k<p

(
n− s

p

)(
1 +

log(p
p−k)

μ

)
,

where s in our scheme is obtained by Thm. 4.

Based on this model, we compare the expected computa-

tional times of our algorithm with those of the existing algo-

rithms. Fig. 7 shows that as m gets closer to p, the expected

computational time approaches the fundamental limit, and the

gap compared with previous works increases.

V. DISCUSSION: DECODING OVERHEAD

In the previous approaches [6], [8], the authors make use of

the MDS codes for which efficient decoding algorithms are

known. For instance, by applying an efficient algorithm for

polynomial interpolation or Reed-Solomon decoding, one can

1277

show that the decoding time complexity of their algorithms is

O(nk log2 k log log k).
On the other hand, our achievable scheme designs the MDS

matrix as a function of the given matrix A, and hence it

is not guaranteed to have an efficient decoding algorithm.

That is, one has to invert the MDS matrix B and decode the

computation results via a matrix-matrix multiplication, i.e.,

the decoding complexity is O(nk2 + k3). Therefore, when

the decoding overhead is considered, it is not clear which

scheme will be the fastest one in practice. The study of the

fundamental tradeoff between the sparsity of F , the flexibility

of the code k, and the decoding overhead is an interesting open

direction. For instance, a new latency model proposed in a

recent work [16], which can capture the decoding complexity,

might be useful to study this tradeoff.

VI. CONCLUSION

In this work, we study the matrix sparsification problem

with three variations: fixed MDS code, no dummy columns,

and with full flexibility. When the MDS code is fixed, we

prove that Short-Dot [8] is an optimal scheme by showing the

converse proof. When there are no dummy columns, we find

an achievable scheme and show that it achieves the optimal

sparsity. With full flexibility, we propose a new scheme that

achieves a larger sparsity by jointly designing both Ā and B.

Also, we provide a new upper bound of the optimal sparsity.

ACKNOWLEDGEMENT

This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded

by the Korea government(MSIT) (2017-0-00694, Coding for

High-Speed Distributed Networks).

REFERENCES

[1] V. Kumar, A. Grama, G. Anshul, and G. Karypis, “Introduction to
parallel computing: Design and analysis of algorithms,” The Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, pp. 81–84,
1994.

[2] G. Fox, S. Otto, and A. Hey, “Matrix algorithms on a hypercube I:
Matrix multiplication,” Parallel Computing, vol. 4, no. 1, pp. 17 – 31,
1987.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), May 2010.

[4] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Presented as part of
the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), 2013.

[5] K. Lee, R. Pedarsani, and K. Ramchandran, “On scheduling redundant
requests with cancellation overheads,” in 2015 53rd Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
Sept 2015.

[6] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Transactions on Information Theory, vol. PP, no. 99, pp. 1–1, 2017.

[7] R. Singleton, “Maximum distance q-nary codes,” IEEE Transactions on
Information Theory, vol. 10, no. 2, pp. 116–118, April 1964.

[8] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing large
linear transforms distributedly using coded short dot products,” in
Advances In Neural Information Processing Systems, 2016.

[9] S. Dutta, V. R. Cadambe, and P. Grover, “Coded convolution for
parallel and distributed computing within a deadline,” CoRR, vol.
abs/1705.03875, 2017.

[10] N. S. Ferdinand and S. C. Draper, “Anytime coding for distributed com-
putation,” in 2016 54th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), Sept 2016.

[11] Y. Yang, P. Grover, and S. Kar, “Coding Method for Parallel Iterative
Linear Solver,” arXiv preprint arXiv:1706.00163, June 2017.

[12] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proceedings
of the 34th International Conference on Machine Learning, vol. 70,
06–11 Aug 2017.

[13] K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Coded
computation for multicore setups,” in 2017 IEEE International Sympo-
sium on Information Theory (ISIT), June 2017.

[14] R. Bitar, P. Parag, and S. E. Rouayheb, “Minimizing latency for secure
distributed computing,” in 2017 IEEE International Symposium on
Information Theory (ISIT), June 2017.

[15] C. Karakus, Y. Sun, and S. Diggavi, “Encoded distributed optimization,”
in 2017 IEEE International Symposium on Information Theory (ISIT),
June 2017.

[16] W. Halbawi, N. Azizan-Ruhi, F. Salehi, and B. Hassibi, “Improving
distributed gradient descent using Reed-Solomon codes,” arXiv preprint
arXiv:1706.05436, June 2017.

APPENDIX

A. Independency Condition in Thm. 3

Given A1, · · · , Atp′ ∈ R
m, we construct Ã1, · · · , Ãtp′ ∈

R
k by appending (k − m) iid Gaussian entries for each

Ai’s. Let Ṽj := span(Ã(j−1)t+1, · · · , Ãjt), (t < m) and

let B(j−1)(k−t)+1, · · · , Bj(k−t) ∈ R
k be a random basis of

null(Ṽj) = Ṽ ⊥
j . We can choose random basis by multiplying

random matrix to a fixed basis of nullspace.

Suppose that for any random choice of B, we can find k lin-

early dependent column vectors of B. This implies that there

exists I such that (k−t)|I| ≥ k and dim
(∑

i∈I Ṽ
⊥
i

)
< k. By

an analog of De Morgan’s law for linear spaces,
∑

i∈I Ṽ
⊥
i =(⋂

i∈I Ṽi

)⊥
. From this equality, we have dim

(⋂
i∈I Ṽi

)
≥ 1.

Let Vj := span(A(j−1)t+1, · · · , Ajt). For randomly chosen

Ā, the inequality always holds only if for any i ∈ I , Ṽi

contains {[v v2] ∈ R
k : v2 ∈ R

k−m} for some v ∈ R
m.

Therefore, if dim
(⋂

i∈I Ṽi

)
≥ 1, {Vi} satisfies either

1) t − dimVi ≥ k −m − 1 and v ∈ Vi for all i ∈ I , for

some nonzero v ∈ R
m,

2) t− dimVi ≥ k −m. (case when v = 0) for all i ∈ I .

Here, t−dimVi is equal to the number of rows of the form

[0m v2] in the reduced row echelon form of Ã[(i−1)p′+1,ip′].

If Vi’s have a common vector v, we only need k −m− 1 of

the form [0mv2] to span {[v v2] ∈ R
k : v2 ∈ R

k−m}. Else,

we need k −m rows of such form.

Note that dimVi = rank(A[(i−1)t+1,it]). Hence, by con-

trapositive proposition, B satisfies the MDS property if A
satisfies Condition 2. For example, if we can find p′ subsets

of size t in the rows of A such that each subset has rank at

least t−k+m+2, we can find an MDS code B with sparsity

in Thm. 4.

1278

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

