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Abstract—Data clustering is a core problem in many fields
of science and engineering. Community recovery in graphs is
one popular approach to data clustering, and it has received
significant attention due to its wide applicability to social network
applications, protein complex detection, shape matching, image
segmentation, etc. While the community recovery in graphs
has been extensively studied in the literature, the problem
of community recovery in hypergraphs has not been studied
much. In this paper, we study the generalized Censored Block
Model (CBM), where observations consist of randomly chosen
hyperedges of size d, each of which is associated with the modulo-
2 sum of the values of the nodes in the hyperedge, corrupted by
Bernoulli noise. We characterize the information-theoretic limit
of the community recovery in hypergraphs. Our results are for
the general cases of arbitrarily scaling d.

I. INTRODUCTION

Clustering of data is one of the central problems that
arises in many fields of science and engineering. Among
many related setups, community recovery [1], [2] has received
significant attention due to its wide applicability to social
network applications, protein complex detection [3], shape
matching [4], image segmentation [5], etc. The goal of the
community recovery problem is to cluster data points into
different communities based on whether two data points
belong to the same community or not.

There have been a proliferation of works on various models
of the community recovery problem, and the Censored Block
Model (CBM) is one of the most popular models in the
literature [6]–[8]. We illustrate the generalized CBM for the
problem of community recovery in hypergraphs. In this model,
the n individuals, each of which belongs to either group 0 or
group 1, are modeled as nodes of a hypergraph. The goal is
to cluster the n nodes (or find the hidden communities) using
noisy parity measurements obtained from a random d-uniform
hypergraph [9]. More specifically, a random hypergraph (of
hyperedge size d) with the n nodes is given as observation, in
which each hyperedge exists with probability p. Further, each
observed hyperedge is associated with the modulo-2 sum of
the nodes of the hyperedge, i.e., the parity of the hyperedge.
Further, such parity measurements are noisy in a way that each
edge value is flipped with probability θ. For instance, when
d = 3, if each of the three nodes of a hyperedge belongs to
group-1,0,0, respectively, the value of the hyperedge is 1 with
probability 1 − θ, and 0 with probability θ. See Fig. 1 for
illustrations.

For the special case of d = 2, the information-theoretic lim-
its as well as matching computation limits are characterized
in [7], [8]. The prior works reveal that the minimum number

Fig. 1: Community recovery in hypergraphs. We illustrate the community
recovery problem in hypergraphs under the generalized Censored Block
Model (CBM). Shown on the left hand side is the group of n nodes belonging
to group-0 (dotted circles) or group-1 (solid circles). The goal of the problem
is to cluster nodes into two groups from an observed hypergraph. Under
the generalized CBM, an observed hypergraph consists of randomly chosen
hyperedges of size d. Each observed hyperedge is associated with the modulo-
2 sum of the values of the nodes in the hyperedge, corrupted by Bernoulli
noise. For instance, the second hyperedge E2 connects two group-0 nodes
(X2, X3) and one group-1 node (X4), and hence the corresponding parity
is 1, but it is corrupted by noise, making the actual observed value 0. Our
goal is to characterize when the exact community recovery in hypergraphs
is feasible in terms of p, θ, n, and d. Further, as illustrated in the middle of
the figure, we note that the community recovery problem can be seen as a
certain channel coding problem with a fixed encoding scheme.

of samples required for reliable community recovery is about
p
(
n
2

)
' n logn

2(
√
1−θ−

√
θ)

2 . However, for the case of general d,

such characterization has been unknown in the literature, and
this precisely sets the goal of our paper. More precisely,
we seek to characterize the information-theoretic limit of
the minimum number of samples (hyperedges) required for
reliable community recovery.

A summary of important findings in this paper is as follows.
• if d grows asymptotically slower than log n, the mini-

mum number of samples required for reliable community
recovery is p

(
n
d

)
' β n logn

d ; and
• if d grows asymptotically faster than or equal to log n,

the minimum number of samples required for reliable
community recovery is p

(
n
d

)
' γn,

where β and γ are some unknown constants, which can be
bounded below and above. Thus, to make reliable community
recovery with a linear number of samples possible, the size
of hyperedges needs to scale at least as fast as log n.
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The rest of the paper is organized as follows. In the rest
of this section, we relate our problem to a d-right-degree
linear code, and then discuss related works; Sec. II introduces
the problem formulation; in Sec. III, our main theorem is
presented, along with some implications and remarks; in
Sec. IV, we prove the achievability statement as well as the
converse statement; Sec. V presents numerical simulation re-
sults that corroborate our theoretical findings; and in Sec. VI,
we conclude the paper. The proofs of technical lemmas are
presented in the full version of this paper [10]

A. Connection with channel coding

The community recovery problem has an inherent connec-
tion with channel coding problems [7]. In order to see such
connection, consider the following point-to-point communica-
tion setup. The encoder employs the following random linear
code. It first draws a random d-uniform hypergraph with n
nodes, where each hyperedge exists with probability p. Given
the input sequence of n bits, the parity bits corresponding to
all the existing hyperedges are concatenated, forming a code-
word. Note that the expected rate of this random code is n

p(nd)
.

A codeword chosen from this code is transmitted through a
Binary Symmetric Channel (BSC) with error probability θ,
whose capacity is 1−H(θ) [11]. Given the received symbols,
the decoder wishes to infer the n input bits. By associating
0, 1 symbols with labels of the observed hyperedges, one can
see that recovering communities in hypergraphs is equivalent
to the above channel coding problem. See Fig. 1.

A natural channel coding question arises: “How far is
the rate of the random code from the capacity of the BSC
channel”. Due to the equivalence, the information-theoretic
limits of community recovery in hypergraphs can help im-
mediately answer the above question. For instance, when
d = 2, as mentioned earlier in this section, it is shown
in [7], [8] that the exact community recovery is possible if
p
(
n
2

)
& n logn

2(
√
1−θ−

√
θ)

2 , implying that the following expected

code rate can be achieved:

n

p
(
n
2

) .
2(
√

1− θ −
√
θ)2

log n
.

That is, while the capacity of a BSC channel is a fixed constant
1 − H(θ), the rate of the hypergraph-based random code
vanishes as n→∞.

One natural question is whether one can achieve a non-
vanishing code rate by increasing d. Our results on the
information-theoretic limits of community recovery in hyper-
graphs answer this coding-theoretic question: when d scales
as fast as log n, the random-hypergraph-based linear code can
achieve a constant rate.

B. Related Work

Community recovery in standard graphs has been exten-
sively studied in the literature. Under the Stochastic Block
Model (SBM) [12], [13], the probability of an edge appearing
in the observed graph is assumed to depend on whether the
edge is connecting the nodes in the same group or not. For
instance, the SBM can capture the case where random graphs
have statistically more edges between nodes within the same

community than between nodes across two different commu-
nities. The information-theoretic limits as well as matching
computation limits are characterized for the SBM [14]–[17].
Under the Censored Block Model (CBM) [6], [7], each edge
is associated with a random label, whose distribution depends
on whether the edge is connecting the nodes in the same
group or not. The information-theoretic limits as well as
matching computation limits are characterized in [7], [8].
Abbe et al. [7] show that the exact community recovery
is impossible if p

(
n
2

)
< (1−ε)n logn

2(
√
1−θ−

√
θ)

2 for ε > 0. Hajek et

al. show that the exact community recovery is possible via
an efficient algorithm is possible if p

(
n
2

)
> (1+ε)n logn

2(
√
1−θ−

√
θ)

2

in [8]. In [18], the labeled stochastic block model is proposed
as a general observation model that includes both SBM and
CBM as special cases. We focus on the generalized CBM for
community recovery in hypergraphs, and to the best of our
knowledge, we are the first to characterize the information-
theoretic limits for one of such generalized models.

The community recovery problem in graphs or hypergraphs
is closely related to MLS-dLIN problems [19], [20], of which
the goal is to find a binary vector x that is maximally
consistent with a given set of parities of d variables. Under this
context, the case of d = 3 has been well-studied. For d = 3, it
is shown that the maximum likelihood decoder can succeed if
p ≥ 12 logn

(0.5−θ)2n2 [20]. Unlike the prior result, our upper bounds
on p, to be formally stated in Corollary 1, are for arbitrary
constant d. Further, we provide the matching lower bounds
as well. Among a few efficient algorithms for the MLS-3LIN
problem, one proposed in [21], based on an efficient low-rank
tensor factorization algorithm, is shown to find the optimal
solution if p = Ω( log4 n

n1.5 ).

C. Notations

For any two sequences f(n) and g(n): f(n) = Ω(g(n))
if there exists a positive constant c such that f(n) ≥ cg(n);
f(n) = O(g(n)) if there exists a positive constant c such
that f(n) ≤ cg(n); f(n) = ω(g(n)) if limn→∞

f(n)
g(n) = ∞;

f(n) = o(g(n)) if limn→∞
f(n)
g(n) = 0; and f(n) � g(n) or

f(n) = Θ(g(n)) if there exist positive constants c1 and c2
such that c1g(n) ≤ f(n) ≤ c2g(n). For a set A and an
integer m ≤ |A|, we denote

(
A
m

) def
= {B ⊂ A | |B| = m}.

Let [n] denotes {1, · · · , n}. Let ei be the ith standard unit
vector. Let 0 be the all-zero-vector and 1 be the all-one-
vector. Let D(0.5‖θ) be the Kullback-Liebler (KL) divergence
between Bernoulli(0.5) and Bernoulli(θ), i.e., D(0.5‖θ) def

=
0.5 log(0.5

θ )+0.5 log( 0.5
1−θ ). We shall use log(·) to indicate the

natrual logarithm. We use H(·) to denote the binary entropy
function.

II. PROBLEM FORMULATION

A. Sampling Model: the Generalized CBM

Consider a collection of n vertices V = [n], each repre-
sented by a binary variable Xi ∈ {0, 1}, 1 ≤ i ≤ n. Let
X

def
= [Xi]1≤i≤n be the ground truth vector. Suppose that d is

given as a monotone function of n satisfying 2 ≤ d ≤ n/2;
for instance, we may choose d to be constants or be functions
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that scale with n such as d = d
√
n+ 1e. Samples are obtained

according to a measurement hypergraph H = (V, E) where
E ⊂

(
[n]
d

)
. We assume H ∼ Hdn,p, i.e., each element in

(
[n]
d

)
belongs to E with probability p ∈ [0, 1].

Fix a hypergraph H = (V, E) and a ground truth vector X.
For each edge E ∈ E , a noisy binary observation is given by

YE =

[⊕
i∈E

Xi

]
⊕ ZE ,

where ⊕ denotes modulo-2 addition, and ZE ∼ Bernoulli(θ)
for 0 ≤ θ < 1

2 . We assume that {ZE}E∈E is a collection
of mutually independent random variables. We define the
observation vector Y as follows:

Y
def
= [YE ]E∈E .

Note that when d = 2, this setup is reduced to the well-known
community detection problem.

Note that when d is even and the measurement hypergraph
is fixed, the conditional distribution of Y|X is equal to that
of Y|X ⊕ 1, implying that decoding X is possible only up
to a global shift. In the rest of the paper, we assume that d
is odd for ease of presentation. The even case can be readily
dealt with by allowing for the global shift error.

B. Our Goals

This paper concerns the exact recovery, that is, to recon-
struct the ground truth X given observation vector Y. More
precisely, for any recovery procedure, or decoder, ψ the error
probability is defined as follows.

Definition 1 (Error probability and admissibility).

Pe(ψ) = min
ψ

max
X∈{0,1}n

Pr[ψ(Y) 6= X].

Moreover, we say that p is admissible if limn→∞ Pe = 0.

The goal is to characterize necessary or sufficient conditions
on (n, p, d, θ) for reliable recovery. In particular, we will
often rewrite the conditions using sample complexity p

(
n
d

)
,

which represents the expected number of hyperedges in the
measurement random hypergraph.

III. MAIN RESULTS

We begin with the main theorem of the paper, which
characterizes sufficient and necessary conditions for reliable
recovery.

Theorem 1. Suppose that H ∼ Hdn,p for 2 ≤ d ≤ n
2 . For a

fixed ε > 0,
Pe = O(n−ε) if p ≥ 5/2(1+ε)

(
√
1−θ−

√
θ)2

n logn

d(nd)
·max

{
1, 2d log 2

logn

}
,

Pe 6→ 0
if p ≤ (1− ε) max

{
1

(
√
1−θ−

√
θ)2

n logn

d(nd)
,

1
(1−H(θ))

n

(nd)

} .

We refer the readers to Sec. IV for the proof.
Let us interpret our main theorem for the following two

cases: d = Ω(log n) and d = o(log n). Note that when d =
Ω(log n), Pe → 0 if p > β1

n

(nd)
and Pe 6→ 0 if p < β2

n

(nd)
,

where β1 = max
{

5/2 logn

(
√
1−θ−

√
θ)2d

, 5 log 2

(
√
1−θ−

√
θ)2

}
� 1, β2 =

max
{

logn

d(
√
1−θ−

√
θ)2
, 1

(1−H(θ))

}
� 1, for a fixed θ. Hence,

Theorem 1 provides an order-wise tight characterization of the
admissible region. Next, when d = o(log n), Pe → 0 if p >

5/2

(
√
1−θ−

√
θ)2

n logn

d(nd)
, and Pe 6→ 0 if p < 1

(
√
1−θ−

√
θ)2

n logn

d(nd)
.

Thus, the theorem offers a tighter characterization relative
to the case d = Ω(log n). Notice that the multiplicative gap
between the lower and upper bounds is a small constant 5/2
regardless of θ. Especially, when is d is a constant order, the
result is even more enhanced, formally stated in the following
corollary.

Corollary 1. Suppose that d � 1 and H ∼ Hdn,p. For a fixed
ε > 0,

Pe → 0 if p ≥ 1+ε
(
√
1−θ−

√
θ)2

n logn

d(nd)
,

Pe 6→ 0 if p ≤ 1−ε
(
√
1−θ−

√
θ)2

n logn

d(nd)
.

The proof can be readily deduced from the proof of
Theorem 1, hence we omit the proof. Corollary 1 characterizes
the sharp threshold on the admissible region for constant d.
Note that this result recovers that in [8] as a special case.

Finally, we reinterpret our main theorem using sample
complexity. When d = o(log n), reliable recovery is possible
only if sample complexity is superlinear. However, when
d = Ω(log n), we see that reliable recovery can be done with
linear sample complexity Θ(n). Hence, we can answer the
question on how large d is needed to be to make reliable
recovery with linear sample complexity possible.

Corollary 2. For d = o(log n), reliable recovery is impos-
sible with linear sample complexity, while it is possible for
d = Ω(log n): if d = k log n for some constant k > 0,
there exists a constant ck > 0 such that reliable recovery
is feasible whenever sample complexity is larger than ckn; If
d = ω(log n), there exists an absolute constant c > 0 such
that reliable recovery is feasible whenever sample complexity
is larger than cn.

IV. PROOF OF THE MAIN THEOREM

We consider the noisy case (θ 6= 0) only for conciseness.
We remark that the proof of the noiseless case can be done
analogously, and hence we omit the proof.

For both achievability and converse proofs, we use the
optimal maximum likelihood (ML) decoder, where ties are
randomly broken. One can easily verify that the ML decoder
reduces to:

X̂ML = arg min
A=[Ai]i∈[n]

d(A),

where d(A)
def
= dH

(
Y,
[⊕

i∈E Ai
]
E∈E

)
and dH(·, ·) is the

Hamming distance between two binary vectors.
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A. Achievability

We first give an upper bound on the error probability:

Pe = max
X∈{0,1}n

Pr[X̂ML 6= X]

= Pr(X̂ML 6= 0|X = 0) (1)

≤ Pr

 ⋃
A 6=0

[d(A) ≤ d(0)]

∣∣∣∣X = 0

 (2)

= Pr

 n⋃
k=1

⋃
‖A‖1=k

[d(A) ≤ d(0)]

∣∣∣∣X = 0


≤

n∑
k=1

∑
‖A‖1=k

Pr
(
d(A) ≤ d(0)

∣∣X = 0
)

≤
n∑
k=1

(
n

k

)
Pr

(
d

(
k∑
i=1

ei

)
≤ d(0)

∣∣∣∣X = 0

)
, (3)

where (1) follows by symmetry; (2) follows by the fact that
the ML decoder fails only if there exists one or more than one
non-zero vectors whose likelihood is greater than or equal to
that of the zero vector; and (3) follows by symmetry.

We now find an upper bound to

Pr

(
d

(
k∑
i=1

ei

)
≤ d(0)

∣∣∣∣X = 0

)
,

for 1 ≤ k ≤ n.
Let Ok ⊂ E be the collection of hyperedges that contain

an odd number of nodes among [k]. Observe that E /∈ Ok
contributes eqaully to d

(∑k
i=1 ei

)
and d(0). Hence, in order

for
∑k
i=1 ei to have higher likelihood than that of the zero

vector, the number of bit flips among Ok has to be ≥ |Ok|2 .
We define by Nk the size of the subset of

(
[n]
d

)
such that each

element contains an odd number of elements in [k]: Nk =∑
i≤d
i is odd

(
k
i

)
·
(
n−k
d−i
)
. Using Ok and Nk notations, we can then

get:

Pr

(
d

(
k∑
i=1

ei

)
≤ d(0)

∣∣∣∣X = 0

)

≤
Nk∑
m=1

Pr(|Ok| = m)

· Pr

(
d

(
k∑
i=1

ei

)
≤ d(0)

∣∣∣∣ X = 0, |Ok| = m

)

≤
Nk∑
m=0

(
Nk
m

)
pm(1− p)Nk−m

· Pr

( ∑
E∈Ok

ZE ≥
|Ok|

2

∣∣∣∣ |Ok| = m

)

≤
Nk∑
m=0

(
Nk
m

)
pm(1− p)Nk−me−mD(0.5‖θ)

=
(

1− p(1− e−D(0.5‖θ))
)Nk def

= (1− p′)Nk ,

where the last inequality is due to the Chernoff bound [22].
This together with (3) gives

Pe ≤
n−1∑
k=1

(
n

k

)
(1− p′)Nk .

Now, we are left with estimating Nk to complete the
proof. For d � 1, Nk can be easily estimated using the fact
that

(
n
d

)
≈ nd

d! . However, in the general case where d can
scale with n, the estimation is no longer valid. On the other
hand, the following lemma, which is one of the key technical
contributions in this paper, provides a clever lower bound:

Lemma 1. Let β = dmax{n−d+1
2d+1 ,

d+1
2(n−d)+1}e and α =

max{n−d+1
d , d+1

n−d}. Then

∑
i≤d
i is odd

(
k

i

)(
n− k
d− i

)
≥



2k
5α

(
n
d

)
, k < β,

1
5

(
n
d

)
, β ≤ k ≤ n− β,

2(n−k)
5α

(
n
d

)
, n− β < k.

We present the proof in the full version [10]. Employing
Lemma 1, we get:

Pe ≤
β−1∑
k=1

(
n

k

)
(1− p′)Nk +

n−β∑
k=β

(
n

k

)
(1− p′)Nk

+
n−1∑

k=n−β+1

(
n

k

)
(1− p′)Nk + (1− p′)(

n
d)

≤2

β−1∑
k=1

(
n

k

)
(1− p′)

2k
5α (nd) +

n−β∑
k=β

(
n

k

)
(1− p′)

1
5 (nd)

+ (1− p′)(
n
d)

≤2

β−1∑
k=1

nke−p
′ 2k
5α (nd) + 2ne−

1
5p
′(nd) + e−p

′(nd)

≤2

β−1∑
k=1

exp

{
k

(
log n−

2p′
(
n
d

)
5α

)}
(4)

+ exp

{
n log 2− 1

5
p′
(
n

d

)}
+ e−p

′(nd). (5)

Note that (5) vanishes since p′ = p(1 − e−D(0.5‖θ)) ≥ (1 +
ε)n·5 log 2

(nd)
. We now show that (4) also vanishes by considering

two cases: d = o(n) and d � n. First, consider the case of
d = o(n). Note that α = max

{
n−d+1

d , d+1
n−d

}
≤ n

d , β =⌈
max

{
n−d+1
2d+1 ,

d+1
2(n−d)+1

}⌉
=
⌈
n−d+1
2d+1

⌉
→ ∞, and γ

def
=

log n− 2dp′(nd)
5n → −∞. Thus,

(4) ≤ 2

β−1∑
k=1

exp {kγ} = 2
exp {γ} − exp {βγ}

1− exp {γ}
→ 0.

When d � n, β = dmax{n−d+1
2d+1 ,

d+1
2(n−d)+1}e � 1 and α =

max{n−d+1
d , d+1

n−d} � 1. Also, δ def
= log n − 2p′(nd)

5α → −∞.
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Thus,

(4) = 2
exp {δ} − exp {βδ}

1− exp {δ}
→ 0.

Therefore, Pe → 0. Carefully following the arguments above,
we can see that Pe = O(n−ε).

B. Converse

First, it is obvious that Pe 6→ 0 for p ≤ n

(1−H(θ))(nd)
. Hence,

it suffices to consider the case d = O(log n) and
(
n
d

)
p �

n logn
d . Let S be the event that the ground truth vector is the

unique candidate for arg minA d(A). As Pr(S)→ 0 implies
lim infn→∞ Pe ≥ 1/2, we will show that Pr(S) → 0 when
p ≤ (1− ε)Cθ n logn

d(nd)
. First, observe

Pr(S) = Pr(S |X = 0)

≤ Pr

 ⋂
A 6=0

[d(A) > d(0)]

∣∣∣∣X = 0


≤ Pr

(
n⋂
i=1

[d(ei) > d(0)]

∣∣∣∣X = 0

)
.

We find an upper bound to the above quantity by finding
a large enough subset of [n] such that the corresponding
collection of events of form [d(e·) > d(0)] are mutually
independent. To this end, we first propose a crude construction
of a subset of [n] whose nodes do not share hyperedges. First,
choose a big subset Rbig =

{
1, 2, · · · , d2c n

log6 n
e
}

for some
absolute constant c > 0. Then erase every node in Rbig which
shares hyperedges with other nodes in Rbig to obtain Rres.
Formally,

Rres = Rbig −
d⋃
k=2

R(k)
share,

where

R(k)
share =

⋃
E∈F(k)

share

E ∩Rbig,

and F (k)
share is the collection of edges that meets Rbig at

exactly k nodes. The following lemma guarantees that Rres
has comparable size with Rbig.

Lemma 2. Suppose d = O(log n). Then with probability
approaching 1,

|Rres| ≥ c
n

log6 n

for some absolute constant c > 0.

The proof can be found in the full version [10]. Let Etyp =
[|Rres| ≥ c n

log6 n
]. Conditioned on Etyp, the collection [d(ei) >

d(0)]i∈Rres is statistically independent. Hence,

Pr(S) . Pr

( ⋂
i∈Rres

[d(ei) > d(0)]

∣∣∣∣X = 0, Etyp

)
=
∏
i∈Rres

Pr
(
d(ei) > d(0)

∣∣X = 0, Etyp
)
,

which leaves us to seek an upper bound of

Pr
(
d(ei) > d(0)

∣∣X = 0, Etyp
)

or a lower bound of

Pr
(
d(ei) ≤ d(0)

∣∣X = 0, Etyp
)

for i ∈ Rres. We denote by Fi ⊂ E the collection of
hyperedges that contain i, for i ∈ Rres. Due to the con-
struction, edges in Fi must meet Rbig only at i. Hence,
|Fi| ≤

(
n−|Rbig|
d−1

)
=: N . Observe that d(ei) ≤ d(0) when∑

E∈Fi ZE ≥ |Fi|/2. Thus,

Pr
(
d(ei) ≤ d(0)

∣∣X = 0, Etyp
)

=
N∑
m=1

Pr(|Fi| = m) Pr
(
d(ei) ≤ d(0)

∣∣ X = 0, |Fi| = m
)

≥
N∑
m=1

(
N

m

)
pm(1− p)N−m

· Pr

(∑
E∈Fi

ZE ≥
|Fi|
2

∣∣∣∣ |Fi| = m

)
.

Applying the reverse Chernoff bound [22] with a fixed δ > 0,
there exists nδ > 0 such that

Pr

(∑
E∈Fi

ZE ≥
|Fi|
2

∣∣∣∣ |Fi| = m

)
≥ e−(1+δ)mD(0.5‖θ)

for all m ≥ nδ . Let gn be a sequence (to be determined) that
diverges to ∞ as n→∞. Then for sufficiently large n,

N∑
m=1

(
N

m

)
pm(1− p)N−m Pr

(∑
E∈Fi

ZE ≥
|Fi|
2

∣∣∣∣ |Fi| = m

)

≥
N∑
m=1

(
N

m

)
pm(1− p)N−me−(1+δ)mD(0.5‖θ) (6)

−
gn−1∑
m=1

(
N

m

)
pm(1− p)N−me−(1+δ)mD(0.5‖θ). (7)

We shall show that (7) is negligible compared to (6). Note
that

(7)

(6)
≤

(1− p)N
∑gn−1
m=1

(
N pe−(1+δ)D(0.5‖θ)

1−p

)m
(1− p)N

∑N
m=1

(
N
m

) (
p

1−pe
−(1+δ)D(0.5‖θ)

)m
≤

∑gn−1
m=1

(
N pe−(1+δ)D(0.5‖θ)

1−p

)m
(

1 + p
1−pe

−(1+δ)D(0.5‖θ)
)N

≈

∑gn−1
m=1

(
N pe−(1+δ)D(0.5‖θ)

1−p

)m
exp

{
N pe−(1+δ)D(0.5‖θ)

1−p

} . (8)

As |Rbig| = Θ( n
log6 n

) and d = O(log n), simple algebra
yields

(n− j)
(

1− 1

log2 n

)
≤ (n− j − |Rbig|)
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Fig. 2: We run the Monte Carlo simulations to estimate the probability of
success for n = 1000, varying d, and θ = 0. For each d, we normalize the
number of samples by max(n, n logn/d). Observe that the probability of
success quickly approaches 1 as the normalized sample complexity crosses
1.

for 0 ≤ j ≤ d− 2, which in turn gives(
n−|Rbig|
d−1

)(
n−1
d−1
) ≥

(
1− 1

log2 n

)d−1
≈ exp

{
− d− 1

log2 n

}
→ 1.

Thus, we obtain N pe−(1+δ)D(0.5‖θ)

1−p �
(
n−1
d−1
)
p � log n, and

by taking gn =
⌈
log
(
N pe−(1+δ)D(0.5‖θ)

1−p

)⌉
, we get (8)→ 0.

Hence,

Pr
(
d(ei) > d(0)

∣∣X = 0, Etyp
)

. 1−
N∑
m=1

(
N

m

)
pm(1− p)N−me−(1+δ)mD(0.5‖θ)

= 1− (1− p(1− e−(1+δ)D(0.5‖θ)))N

≈ exp
[
− exp

{
−Np(1− e−(1+δ)D(0.5‖θ))

}]
≤ exp

[
− exp

{
−
(
n− 1

d− 1

)
p(1− e−(1+δ)D(0.5‖θ))

}]
≤ exp

[
− exp

{
−(1− ε) (1− e−(1+δ)D(0.5‖θ))

(1− e−D(0.5‖θ))
log n

}]
≤ exp

[
− exp

{
−
(

1− ε

2

)
log n

}]
,

since δ > 0 can be arbitrarily chosen. Thus, we conclude∏
i∈Rres

Pr
(
d(ei) > d(0)

∣∣X = 0, Etyp
)

≤ exp
[
− exp

{
−
(

1− ε

2

)
log n

}]|Rres|

≤ exp

[
−c n

log6 n
exp

{
−
(

1− ε

2

)
log n

}]
→ 0.

V. EXPERIMENTAL RESULTS

In this section, we provide Monte Carlo simulation results
which corroborate our theoretical findings. Each point plotted
in Fig. 2 and Fig. 3 is an empirical success rate. All results
are obtained with 50 Monte Carlo trials. In Fig. 2, we plot the
probability of successful recovery for n = 1000, varying d,
and θ = 0. For each d, we normalize the number of samples
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Fig. 3: We run the Monte Carlo simulations to estimate the probability of
success for varying n, varying d, θ = 0, and p = 1.1n/

(n
d

)
. Note that when

n increases by a multiplicative factor of 4, the curve shifts rightward about
the same amount, supporting our result in Corollary 2

by max(n, n log n/d). One can observe that the probability
of success quickly approaches 1 as the normalized sample
complexity crosses 1.

Plotted in Fig. 3 are the simulation results for varying n,
varying d, θ = 0, and p = 1.1n/

(
n
d

)
. We note that when

n increases by a multiplicative factor of 4, the curve shifts
rightward about the same amount, supporting our result in
Corollary 2.

VI. CONCLUSION

In this paper, we study the problem of community recovery
in hypergraphs for the generalized Censored Block Model
(CBM), and characterize the information-theoretic limits of
the problem as a function of the number of nodes n, the size of
hyperedges d, the noise probability θ, and the edge observation
probability p. We also corroborate our theoretical results via
Monte Carlo simulations. Our characterizations imply that the
community recovery in hypergraphs with a linear number of
measurements becomes possible when d is on the order of
log n.
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the labelled stochastic block model,” arXiv preprint arXiv:1209.2910,
2012.

[19] O. Watanabe and M. Yamamoto, “Average-case analysis for
the max-2sat problem,” Theoretical Computer Science, vol.
411, no. 16, pp. 1685 – 1697, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397510000022

[20] O. Watanabe, “Message passing algorithms for mls-3lin problem,”
Algorithmica, vol. 66, no. 4, pp. 848–868, 2013.

[21] P. Jain and S. Oh, “Provable tensor factorization with missing data,” in
Advances in Neural Information Processing Systems, 2014, pp. 1431–
1439.

[22] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American statistical association, vol. 58, no.
301, pp. 13–30, 1963.

663



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     7
     6
     7
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     7
     6
     7
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     7
     6
     7
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     7
     6
     7
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     7
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     7
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     7
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     7
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     7
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



