
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 5, OCTOBER 2018 959

Hypergraph Spectral Clustering in the Weighted
Stochastic Block Model

Kwangjun Ahn , Kangwook Lee , and Changho Suh , Member, IEEE

Abstract—Spectral clustering is a celebrated algorithm that par-
titions the objects based on pairwise similarity information. While
this approach has been successfully applied to a variety of do-
mains, it comes with limitations. The reason is that there are many
other applications in which only multiway similarity measures are
available. This motivates us to explore the multiway measurement
setting. In this paper, we develop two algorithms intended for such
setting: hypergraph spectral clustering (HSC) and hypergraph
spectral clustering with local refinement (HSCLR). Our main con-
tribution lies in performance analysis of the polytime algorithms
under a random hypergraph model, which we name the weighted
stochastic block model, in which objects and multiway measures
are modeled as nodes and weights of hyperedges, respectively. De-
noting by n the number of nodes, our analysis reveals the following:
1) HSC outputs a partition which is better than a random guess if
the sum of edge weights (to be explained later) is Ω(n); 2) HSC out-
puts a partition which coincides with the hidden partition except
for a vanishing fraction of nodes if the sum of edge weights is ω(n);
and 3) HSCLR exactly recovers the hidden partition if the sum of
edge weights is on the order of n log n. Our results improve upon
the state of the arts recently established under the model and they
first settle the orderwise optimal results for the binary edge weight
case. Moreover, we show that our results lead to efficient sketching
algorithms for subspace clustering, a computer vision application.
Finally, we show that HSCLR achieves the information-theoretic
limits for a special yet practically relevant model, thereby showing
no computational barrier for the case.

Index Terms—Clustering, hypergraph clustering, information-
theoretic limits, stochastic block model, subspace clustering.

I. INTRODUCTION

THE problem of clustering is prevalent in a variety of
applications such as social network analysis, computer

vision, and computational biology. Among many clustering
algorithms, spectral clustering is one of the most prominent
algorithms proposed by [2] in the context of image segmen-
tation, viewing an image as a graph of pixel nodes, connected

Manuscript received December 8, 2017; revised March 27, 2018; accepted
May 2, 2018. Date of publication May 17, 2018; date of current version
September 27, 2018. This work was supported by the National Research
Foundation of Korea funded by the Korea Government (MSIT) under Grant
2015R1C1A1A02036561. This paper was presented in part at the 2017 IEEE
International Symposium on Information Theory, Aachen, Germany, Jun. 25–
30. The guest editor coordinating the review of this paper and approving it for
publication was Dr. Miguel Rodrigues. (Corresponding author: Changho Suh.)

K. Ahn is with the Department of Mathematical Sciences, KAIST, Daejeon
34141, South Korea (e-mail:,kjahnkorea@kaist.ac.kr).

K. Lee and C. Suh are with the School of Electrical Engineering, KAIST, Dae-
jeon 34141, South Korea (e-mail:,kw1jjang@kaist.ac.kr; chsuh@kaist.ac.kr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTSP.2018.2837638

by weighted edges representing visual similarities between
two adjacent pixel nodes. This approach has become popular,
showing its wide applicability in numerous applications, and
has been extensively analyzed under various models [3]–[5].

While the standard spectral clustering relies upon interactions
between pairs of two nodes, there are many applications where
interaction occurs across more than two nodes. One such appli-
cation includes a social network with online social communities,
called folksonomies, in which users attach tags to resources. In
the example, a three-way interaction occurs across users, re-
sources and annotations [6]. Another application is molecular
biology, in which multi-way interactions between distinct sys-
tems capture molecular interactions [7]. See [8] and the list
of applications therein. Hence, one natural follow-up research
direction is to extend the celebrated framework of graph spec-
tral clustering into a hypergraph setting in which edges reflect
multi-way interactions.

As an effort, in this work, we consider a random weighted
uniform hypergraph model which we call the weighted stochas-
tic block model, which is a special case of that considered in [8].
An edge of size d is homogeneous if it consists of nodes from the
same group, and is heterogeneous otherwise.1 Given a hidden
partition of n nodes into k groups, a weight is independently
assigned to each edge of size d such that homogeneous edges
tend to have higher weights than heterogeneous edges. More
precisely, for some constants p > q, the expectation of homoge-
neous edges’ weights is pαn and that of heterogeneous edges’
weights is qαn .2 Here, αn captures the sparsity level of the
weights, which may decay in n. The task here is to recover
the hidden partition from the weighted hypergraph. In particu-
lar, we aim to develop computationally efficient algorithms that
provably find the hidden partition.

Our contributions: By generalizing the spectral clustering al-
gorithms proposed for the graph clustering, we first propose
two poly-time algorithms which we name Hypergraph Spectral
Clustering (HSC) and Hypergraph Spectral Clustering with Lo-
cal Refinement (HSCLR). We then analyze their performances,
assuming that the size of hyperedges is d, the number of clusters
k is constant, and the size of each group is linear in n. Our main
results can be summarized as follows. For some constants c and
c′, which depend only on p, q, and k, the following statements
hold with high probability:

� Detection: If
(
n
d

)
αn ≥ c · n, the output of HSC is more

consistent with the hidden partition than a random guess;

1While edges of a graph are pairs of nodes, edges of a hypergraph (or hyper-
edges) are arbitrary sets of nodes. Further, the size of an edge is the number of
nodes contained in the edge.

2For illustrative purpose, we focus on a symmetric setting. In Section V, we
will extend our results (to be described later) to a more general setting.

1932-4553 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5516-5775
https://orcid.org/0000-0002-3360-9678
https://orcid.org/0000-0002-3101-4291
mailto:kjahnkorea@kaist.ac.kr
mailto:kw1jjang@kaist.ac.kr
mailto:chsuh@kaist.ac.kr

960 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 5, OCTOBER 2018

� Weak consistency: If
(
n
d

)
αn = ω(n), HSC outputs a parti-

tion which coincides with the hidden partition except o(n)
number of nodes; and

� Strong consistency: If
(
n
d

)
αn ≥ c′ · n log n, HSCLR ex-

actly recovers the hidden partition.
We remark that our main results are the first order-wise opti-

mal results for the binary edge weight case (see Proposition 1).

A. Related Work

1) Graph Clustering: The problem of standard graph clus-
tering, i.e., d = 2, has been studied in great generality. Here, we
summarize some major developments, referring the readers to a
recent survey by Abbe [13] for details. The detection problem,
whose goal is to find a partition that is more consistent with
the hidden partition than a random guess, has received a wide
attention. A notable work by Decelle et al. [14] firstly observes
phase transition and conjectures the transition limit. Further,
they also conjecture that the computational gap exists for the
case of k ≥ 4. For the case of k = 2, the phase transition limit
is fully settled jointly by [15] and [16], [17]: The impossibility
of the detection below the conjectured threshold is established
in [15], and it is proved that the conjectured threshold can be
achieved via some efficient algorithms in [16], [17]. The limits
for the case k ≥ 3 have been studied in [18]–[21], and are settled
in [22].

The weak/strong consistency problem aims at finding a cluster
that is correct except a vanishing or zero fraction. The neces-
sary and sufficient conditions for weak consistency have been
studied in [23]–[27], and those for strong consistency in [25],
[27]–[29]. In particular for strong consistency, both the fun-
damental limits and computationally efficient algorithms are
investigated initially for k = 2 [25], [28], [29], and recently for
general k [27]. While most of the works assume that the graph
parameters such as p, q, k, and the size of clusters are fixed, one
can also study the minimax scenario where the graph param-
eters are adversarially chosen against the clustering algorithm.
In [30], the authors characterize the minimax-optimal rate. Fur-
ther, [24] shows that the minimax-optimal rate can be achieved
by an efficient algorithm.

2) Hypergraph Clustering: Compared to graph clustering,
the study of hypergraph clustering is still in its infancy. In
this section, we briefly summarize recent developments. For
detection, analogous to the work by Decelle et al. [14],
Angelini et al. [31] firstly conjecture phase transition thresh-
olds. These conjectures have not been settled yet unlike the
graph case. In [8], the authors study a specific spectral cluster-
ing algorithm, which can be shown to detect the hidden cluster
if
(
n
d

)
αn = Ω(n(log n)2), while the conjectured threshold for

detection is
(
n
d

)
αn = c�n for some constant c� . Actually, this

gap is due to the technical challenge that is specific to the hy-
pergraph clustering problem: See Remark 7 for details. In [12],
the authors study the bipartite stochastic block model, and as
a byproduct of their results, they show that detection is pos-
sible under some specific model if

(
n
d

)
αn = Ω(n). While this

guarantee is order-wise optimal, it holds only when edge weights
are binary-valued and the size of two clusters are equal. Our de-
tection guarantee, obtained by delicately resolving the technical
challenges specific to hypergraphs, is also order-wise optimal
but does not require such assumptions.

While several consistency results under various models are
shown in [8]–[12], to the best of our knowledge, our con-

TABLE I
COMPARISON TO THE STATE OF THE ARTS: “WEAK” AND “STRONG” ARE FOR

CONSISTENCY RESULTS

sistency guarantees are the first order-wise optimal ones. We
briefly overview the existing results below. In [9], [10], the au-
thors derive consistency results for the case in which αn = 1
and weights are binary-valued. In [8], the authors investigate
consistency results of a certain spectral clustering algorithm
under a fairly general random hypergraph model, called the
planted partition model in hypergraphs. Indeed, our hypergraph
model is a special case of the planted partition model, and hence
the algorithm proposed in [8] can be applied to our model as
well. One can show that their algorithm is weakly consistent
if
(
n
d

)
αn = Ω(n(log n)2) under our model. The case of non-

uniform hypergraphs, in which the size of edges may vary, is
studied in [11]. See Table I for a summary.

While most of the existing works focus on analyzing the
performance of certain clustering algorithms, some study the
fundamental limits. In [1], [32], the information-theoretic limits
are characterized for specific hypergraph models. In [33], the
minimax optimal rates of error fraction are derived for the binary
weighted edge case. However, it has not been clear whether or
not a computationally efficient algorithm can achieve such lim-
its. In this work, we show that HSCLR achieves the fundamental
limit for the model considered in [1].

3) Main Innovation Relative to [1]: The new algorithms pro-
posed in this work can be viewed as strict improvements over
the algorithm proposed in our previous work [1]. First, the al-
gorithm of [1] cannot handle the sparse-weight regime, i.e.,(
n
d

)
αn = Θ(n). In order to address this, we employ a prepro-

cessing step prior to the spectral clustering step. It turns out this
can handle the sparse regime; see Lemma 2 for details.

Another limitation of the original algorithm is related to its
refinement step (to be detailed later). The original refinement
step is tailored for a specific model, which assumes binary-
valued weights and two clusters (see Definition 7). On the other
hand, our new refinement step can be applied to the general
case with weighted edges and k clusters. Further, the original
refinement step involves iterative updates, and this is solely
because our old proof holds only with such iterations. However,
we observe via experiments that a single refinement step is
always sufficient. By integrating a well-known sample splitting
technique into our algorithm, we are able to prove that a single
refinement step is indeed sufficient.

Apart from the improvements above, we also propose a
sketching algorithm for subspace clustering based on our new
algorithm, and we show that it outperforms existing schemes in
terms of sample complexity as well as time complexity.

4) Computer Vision Applications: The weighted stochastic
block model that we consider herein is well-fitted into computer
vision applications such as geometric grouping and subspace
clustering [34]–[36]. The goal of such problems is to cluster a

AHN et al.: HSC IN THE WEIGHTED STOCHASTIC BLOCK MODEL 961

union of groups of data points where points in the same group
lie on a common low-dimensional affine space. In these applica-
tions, similarity between a fixed number of data points reflects
how well the points can be approximated by a low-dimensional
flat. By viewing these similarities as the weights of edges in a
hypergraph, one can relate it to our model. Note that edges con-
necting the data points from the same low-dimensional affine
space have larger weights than other edges: See Section VI for
detailed discussion.

5) Connection With Low-Rank Tensor Completion: Our
model bears strong resemblance to the low-rank tensor com-
pletion. To see this, consider the following model: for each
e = {i1 , i2 , i3} ∈ E , edge weight of e is generated as We = pXe

(where Xe ∼ Bern(αn)) if (i1 , i2 , i3) are from the same clus-
ter; We = qXe otherwise. This model generates a weighted
hypergraph, whose weights are either p, q, or 0. Now, view
each weight as an observation of an entry of a hidden tensor
T, whose entries Ti1 i2 i3 = p if (i1 , i2 , i3) are from the same
cluster; Ti1 i2 i3 = q otherwise. Here, 0 weight indicates that the
entry is “unobserved”. Then, the knowledge of hidden partition
will directly lead to “completion” of unobserved entries. This
way, one can draw a parallel between hypergraph clustering and
the low-rank tensor completion.3 This connection allows us to
compare our results with the guarantee in the tensor completion
literature. For instance, the sufficient condition for vanishing
estimation error, i.e., weak consistency, derived in [38] reads(
n
d

)
αn = ω(n3/2 log4 n), while ours reads

(
n
d

)
αn = ω(n). This

favors our approach. Moreover, a more interesting implication
arises in computational aspects. Notice that a naı̈ve lower bound
for tensor completion is4

(
n
d

)
αn = Ω(n), and the tensor com-

pletion guarantee comes with an additional Ω(n1/2) factor to the
lower bound. Actually this gap has not been closed in the liter-
ature, raising a question whether this information-computation
gap is fundamental. Interestingly, this gap does not appear in our
result, hence hypergraph clustering can shed new light on the
computational aspects of tensor completion. Recently, a similar
observation has been made independently in [39] for spike-
tensor-related models (see Section 4.3. therein).

B. Paper Organization

Section II introduces the considered model; in Section III,
our main results are presented along with some implications;
in Section IV, we provide the proofs of the main theorems; in
Section V, we discuss as to how our results can be extended
and adapted to other models; Section VI is devoted to practical
applications relevant to our model, and presents the empirical
performances of the proposed algorithms; and in Section VII,
we conclude the paper with some future research directions.

C. Notations

Let Mi∗ (M∗j) be the ith row (the jth column) of matrix
M. For a positive integer n, [n] := {1, 2, . . . , n}. For a set A

and an integer m,
(

A
m

)
:= {B ⊂ A : |B| = m}. Let log(·) de-

note the natural logarithm. Let I{·} denote the indicator func-

3Here, T is of rank at most k since it admits a CP-decomposition [37]

T = q1⊗3 +
∑k

i=1 (p − q)(Z∗i)⊗3 .
4The number of free parameters defining a rank k, d-th order, n-dimensional

tensor is ndk, which scales like Θ(n) when d and k are fixed.

tion. For a function F : A → B and b ∈ B, F−1(b) := {i ∈ A :
F (i) = b}.

II. THE WEIGHTED STOCHASTIC BLOCK MODEL

We first remark that our definition of the weighted SBM is a
generalization of the original model for graphs [40], [41] to a
hypergraph setting. For simplicity, we will focus on the follow-
ing symmetric assortative model. In Section V, we generalized
our results to a broader class of graph models.

A. Model

Let V = [n] be the indices of n nodes, and E :=
([n]

d

)
be the

set of all possible edges of size d for a fixed integer d ≥ 2. Let
Ψ : V → [k] be the hidden partition function that maps n nodes
into k groups for a fixed integer k. Equivalently, the membership
function can be represented in a matrix form Z ∈ {0, 1}n×k ,
which we call the membership matrix, whose (i, j)th entry takes
1 if j = Ψ(i) and 0 otherwise. We denote by ni the size of the
jth group for j = 1, 2, . . . , k, i.e., nj := |Ψ−1(j)|. Let nmin :=
minj nj and nmax := maxj nj . An edge e = {i1 , . . . , id} is ho-
mogeneous if Ψ(i1) = Ψ(i2) = · · · = Ψ(id) and heterogeneous
otherwise. We now formally define the weighted SBM.

Definition 1 (The weighted SBM(p, q, αn)): A random wei-
ght We ∈ [0, 1] is assigned to each edge e independently5:
for homogeneous edges, E[We] = pαn ; and for heterogeneous
edges, E[We] = qαn .

Note that the weighted SBM does not assume a specific edge
weight distribution but only specifies the expected values. For
instance, it can capture the case with a single location family
distribution with different parameters as well as the case with
two completely different weight distributions.

Example 1 (The unweighted hypergraph case): For homo-
geneous edges, We ∼ Bern(pαn); and for heterogeneous
edges, We ∼ Bern(qαn). This is an instance of the weighted
SBM(p, q, αn). When d = 2, it captures the standard models
such as planted multisection [3] and the SBM [42].

Example 2 (The weighted hypergraph case): For homoge-
neous edges, We ∼ Bern(0.75); and for heterogeneous edges,
We ∼ Unif[0, 1], a uniform distribution on [0, 1]. This model
can be seen as an instance of the weighted SBM(0.75, 0.5, 1).

B. Performance Metric

Given {We}e∈E and the number of clusters k, we intend to
recover a hidden partition Ψ up to a permutation. Formally,
for any estimator Φ : [n]→ [k], we define the error fraction as
err(Φ) := 1

n minΠ∈P |{i : Ψ(i)
= Π(Φ(i))}|, where P is the
collection of all permutations of [k]. We study three types of
consistency guarantees [13], [43].

Definition 2 (Recovery types): An estimator Φ is
� strongly consistent if limn→∞ Pr(err(Φ) = 0) = 1;
� weakly consistent if limn→∞ err(Φ) = 0 in prob.; and
� is solving detection if it outputs a partition which is more

consistent relative to a random guess.6

5Our results hold as long as the weights are upper bounded by any fixed
positive constant since one can always normalize the edge weights such that
they are within [0, 1]. The global upper bound on the edge weights are required
for deriving our large deviation results (Lemmas 3 and 5) in the proof.

6Here we provide an informal definition for simplicity. See Definition 7 in [13]
for the formal definition.

962 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 5, OCTOBER 2018

Algorithm 1: HSC.

1: Input: A weighted hypergraphH = ([n], {We}e∈E),
the number of clusters k.

2: Compute the processed similarity matrix A0 :
Compute the similarity matrix A where Aij =∑

e: {i,j}⊂e We if i
= j; and Aij = 0 otherwise. Then,
obtain A0 by zeroing-out row i (and the corresponding
column) if

∑
j Aij > cthr

1
n

∑
i,j Aij , where cthr > 0 is

a constant depending only on d (e.g., cthr = 6 when
d = 2).

3: Apply spectral clustering to A0 : Find k largest
eigenvectors of A0 , stack them side by side to obtain
U0 ∈ Rn×k , and cluster the rows of U0 using the
approximate geometric k-clustering [48] with an
approximation rate ε > 0.

4: Output: ΦHSC(i) = cluster index of the ith row.

III. MAIN RESULTS

A. Hypergraph Spectral Clustering

Hypergraph Spectral Clustering (HSC) is built upon the spec-
tral relaxation technique [10] and the spectral algorithms [5],
[24], [26], [44]–[47]. The first step of the algorithm is to com-
pute the processed similarity matrix whose entries represent
similarities between pairs. To this end, we first compute the simi-
larity matrix A, where Aij =

∑
e: {i,j}⊂e We if i
= j; Aij = 0

if i = j. This is inspired by the spectral relaxation technique
in [10]. Next, we zero-out every row and column whose sum is
larger than a certain threshold, constructing an output A0 , which
we call the processed similarity matrix. We then apply spectral
clustering to the processed similarity matrix. That is, we first
find the k largest eigenvectors U0 ∈ Rn×k of A0 , and cluster n
rows of U0 using the approximate geometric k-clustering [48].
Note that HSC is non-parametric, i.e., it does not require the
knowledge of model parameters. See Algorithm 1 for the de-
tailed procedure.

Remark 1: The zeroing-out procedure, proposed in [44] (see
Section 3 therein), is used to remove outlier rows whose sums
are much larger than the average. This is necessary since if such
outliers exist, the eigenvector estimate will be biased, and hence
the spectral clustering will also fail. Note that this technique
is widely adopted in various graph clustering algorithms [26],
[45], [49].

The time complexity of HSC is O
(
nd
)
. As each edge appears

2
(
d
2

)
times during the construction of the similarity matrix, this

step requires 2
(
d
2

)|E| = O
(
nd
)

time. The first k eigenvectors
can be computed via power iterations, which can be done within
O(kn2 log n) time [50]. Geometric k-clustering can be done in
time O(n(log n)k) [48].

B. Hypergraph Spectral Clustering With Local Refinement

Our second algorithm consists of two stages: HSC and lo-
cal refinement. The HSCLR algorithm is inspired by a similar
refinement procedure, which has been proposed for the graph
case [27], [28]. The algorithm begins with randomly splitting
edges into two sets E1 and E2 . For small β > 0, we assign each
edge to E1 independently with probability β. E2 is the com-
plement of E1 . Then, we run HSC on H1 = ([n], {We}e∈E1).

Algorithm 2: HSCLR.

1: Input: A weighted hypergraph H = ([n], {We}e∈E),
the number of clusters k, and sample splitting rate
β > 0.

2: Randomly split E : for small enough β > 0, include each
edge of E in E1 independently with probability β.
Denote by E2 the complement of E1 .

3: Apply Hypergraph Spectral Clustering toH1 = ([n],
{We}e∈E1) to yield an estimate ΦHSC.

4: Local refinement: for i = 1, 2, . . . , n, ΦHSCLR(i) =
arg maxj∈[k]

1
|E (i) (j)|

∑
e∈E (i) (j) We .

5: Output: ΦHSCLR.

Next, we do local refinement with E2 . For i ∈ [n] and j ∈
[k], define E (i)(j) to be the set of edges (∈ E2) which con-
nect node i with d− 1 nodes from Φ−1

HSC(j), i.e., E (i)(j) :={
e ∈ E2 : i ∈ e, (e \ {i}) ⊂ Φ−1

HSC(j)
}

. Then, for each i ∈ [n],
we update ΦHSC(i) with

arg max
j∈[k]

1
|E (i)(j)|

∑

e∈E (i) (j)

We. (1)

That is, the refinement step first measures the fitness of each
node with respect to different clusters, and updates the cluster
assignment of each node accordingly. Note that HSCLR is also
non-parametric. See Algorithm 2 for the detailed procedure.

The time complexity of HSCLR is O
(
nd
)
. For each node

i, the local refinement requires
∑k

j=1 |E (i)(j)| flops, which is
bounded by k|Ei |, where |Ei | is the number of edges containing
node i. As

∑
i |Ei | = d|E|, the local refinement step can be done

within O (|E|) time.
Remark 2: HSCLR is inspired by the recent paradigm of

solving non-convex problems, which first approximately esti-
mates the solution, followed by some local refinement. This
two-stage approach has been applied to a variety of contexts,
including matrix completion [51], [52], phase retrieval [53],
[54], robust PCA [55], community recovery [28], [56], EM-
algorithm [57], and rank aggregation [58].

C. Theoretical Guarantees

Theorem 1: Let ΦHSC be the output of HSC. Suppose that
nm a x
nm in

= O(1). Then, there exist constants c0 , c1 > 0 (where c1

depends on p and q) such that if
(
n
d

)
αn ≥ c0n, then,

err(ΦHSC) ≤ c1k
n3

d(d− 1)n2
min

(
n
d

)
αn

(2)

w.p. 1−O(n−1), provided that c1k
n3

d(d−1)n2
m in (n

d)αn
< 1.

Proof: See Section IV-A. �
Note that when d = 2, Theorem 1 recovers [24, Th. 6].
Remark 3: We remark a technical challenge that arises in

proving Theorem 1 relative to the graph case. Actually, the key
step in the proof is to derive the sharp concentration bound on
a certain matrix spectral norm (to be detailed later). But the
bounding technique employed in the graph case does not carry
over to the hypergraph case, as the matrix has strong dependen-
cies across entries. We address this challenge by developing a
delicate analysis that carefully handles such dependencies. See
Remark 7 in Section IV for details.

AHN et al.: HSC IN THE WEIGHTED STOCHASTIC BLOCK MODEL 963

Corollary 1 (Detection): Suppose that nm a x
nm in

= O(1). There
exists a constant c2 depending on p, q and k such that HSC
solves detection if

(
n
d

)
αn ≥ c2 · n.

Proof: In Theorem 1, err(ΦHSC) = O(1/c) when αn satis-
fies

(
n
d

)
αn ≥ cn for sufficiently large c > 0.

Remark 4: We compare our algorithm to the one proposed
in [31]. To compare, we first note that in the graph case, the
threshold for detection [14] is achieved by new methods based
on the non-backtracking operator [17], [22], [59]. In [59], the
spectral analysis based on a plain adjacency matrix is shown
to fail, while the one based on the non-backtracking operator
succeeds. Recently, it is shown that the non-backtracking based
approach can be extended to the hypergraph case, and it is
empirically observed to outperform a spectral method that is
similar to HSC except the preprocessing step [31].

Corollary 2 (Weak consistency): Suppose that nm a x
nm in

=O(1).
HSC is weakly consistent if

(
n
d

)
αn = ω(n).

Proof: By (2),
(
n
d

)
αn = ω(n)⇒ err(ΦHSC) = o(1). �

Remark 5: When specialized to weighted stochastic block
model, the weak consistency guarantee of [8] becomes

(
n
d

)
αn =

Ω(n(log n)2), which comes with an extra poly-logarithmic fac-
tor gap to ours.

The following theorem provides the theoretical guarantee of
HSCLR. See Section IV-B for the proof.

Theorem 2 (Strong consistency): Suppose that nm a x
nm in

=O(1).
Then, HSCLR with sampling rate7 β = log log n

log n is strongly con-
sistent provided that for any ε > 0,

(p− q)2

p

(
n

d

)
αn ≥ (8 + ε)

(n/nmin)d−1

d
n log n . (3)

Remark 6: We remark that Theorem 2 characterizes the per-
formance of our non-parametric algorithm for any hypergraphs
with (bounded) real-valued weights. Hence, one may obtain a
tighter threshold and a parametric algorithm by focusing on a
more specific hypergraph model. For instance, in [60], Chien
et al. derive a tighter bound for the binary weight case. As
a concrete example, when d = 3 and k = 2 with two equal-
sized clusters, the sufficient condition of [60, Th 4.1] reads
(
√

p−√q)2
(
n
3

)
αn ≥ 1

12 n log n, while that of Theorem 2 reads
(p−q)2

p

(
n
3

)
αn ≥ 32

3 n log n.
Indeed, by leveraging recent works on phase transition of

random hypergraphs [61], [62], we can prove the order-wise
optimality of our algorithms for the binary-valued edge case.

Proposition 1: For the binary-valued edge case, there is no
estimator which

� solves detection when
(
n
d

)
αn = o(n)

� is weakly consistent when
(
n
d

)
αn = O(n); and

� is strongly consistent when
(
n
d

)
αn = o(n log n).

Proof: If
(
n
d

)
αn = o(n), the fraction of isolated nodes ap-

proaches 1, hence detection is infeasible. In [61], the authors
show that if

(
n
d

)
αn = Θ(n), there is no connected component

of size (1− o(1))n, implying that weak consistency is infeasi-
ble. Lastly, [62] shows that

(
n
d

)
αn > c · n log n for some con-

stant c > 0 is required for connectivity, a necessary condition
for strong consistency.

7We note that β can be chosen arbitrarily as long as β = o(1) and β =
ω(1/ log n). See Section IV-B for detail.

IV. PROOFS

A. Proof of Theorem 1

We first outline the proof. Proposition 2 asserts that spectral
clustering finds the exact clustering if E[A] is available instead
of A0 . We then make use of Lemma 1 to bound the error fraction
in terms of ‖A0 − E[A]‖. Finally, we derive a new concentra-
tion bound for the above spectral norm, and combine it with
Lemma 1 to prove the theorem.

Consider two off-diagonal entries Ai,j and Ai ′,j ′ such that
Ψ(i) = Ψ(i′) and Ψ(j) = Ψ(j′). One can see from the defi-
nition that Ai,j is statistically identical to Ai ′j ′ , so E[Aij] =
E[Ai ′j ′]. Hence, by defining a k × k matrix B such that B�,m =
E[Aij], where i ∈ Ψ−1(�), j ∈ Ψ−1(m), for some i
= j, one
can verify that P := ZBZT coincides with E[A] except for the
diagonal entries. Our model implies that the diagonal entries of
B are strictly larger than its off-diagonal entries, so B is of full
rank.

Proposition 2: ([5, Lemma 2.1]) Consider B ∈ Rk×k of
full rank and the membership matrix Z ∈ {0, 1}n×k . Let P =
ZBZT . Then the matrix U ∈ Rn×k whose columns are the
first k eigenvectors of P satisfies:Ui∗ = Uj∗ whenever Ψ(i) =
Ψ(j); Ui∗ and Uj∗ are orthogonal whenever Ψ(i)
= Ψ(j). In
particular, a clustering algorithm on the rows of U will exactly
output the hidden partition.

Proposition 2 suggests that spectral clustering successfully
finds Ψ if P is available. We now turn to the case where A0 is
available instead of P. It is developed in [5] a general scheme
to prove error bounds for spectral clustering under an assump-
tion that k-clustering step outputs a “good” solution. To clarify
the meaning of “goodness”, we formally describe the k-means
clustering problem.

Definition 3 (k-means clustering problem): The goal is to
cluster the rows of an n× k matrix U. Define the cost function
of a partition Φ : [n]→ [k] as cost(Φ) =

∑k
j=1 Var(Φ−1(j)),

where Var(A) =
∑

i∈A ‖Ui∗ − 1
|A|

∑
�∈AU�‖2 . We say Φ is

(1+ε)-approximate if cost(Φ)≤(1 + ε)minΦ ′:[n]→[k] cost(Φ′) .
We now introduce the general scheme to prove error bounds,

formally stated in the following lemma.
Lemma 1: Assume that P is defined as in Proposition 2

and σmin(P) is the smallest non-zero singular value of P. Let
M be any symmetric matrix and U ∈ Rn×k be the k largest
eigenvectors of M. Suppose a (1 + ε)-approximate solution
Φ for a constant ε > 0. Then, for some c3 > 0, err(Φ) ≤
c3k(1 + ε) ‖M−P‖2

σm in (P)2 , provided that c3k(1 + ε) ‖M−P‖2
σm in (P)2 ≤ 1.

Proof: We refer to [5] for the proof. �
Theorem 1.2. in [48] implies that a (1 + ε)-approximate

solution can be found using the approximate geometric k-
clustering.8 Hence, the above lemma implies that one needs
to bound ‖A0 −P‖ in order to analyze the error fraction of
the spectral clustering. Our technical contribution lies mainly in
deriving such concentration bound, formally stated below.

Lemma 2: There exist constants cthr (depending only on
d), c4 , c5 > 0 such that the processed similarity matrix A0

with constant cthr (see Algorithm 1) satisfies ‖A0 −P‖ ≤
c4

√
n
(
n−2
d−2

)
αn with probability exceeding 1−O(n−1), pro-

vided that n
(
n−2
d−2

)
pαn ≥ c5 .

8Note that this result holds only for a fixed k [48].

964 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 5, OCTOBER 2018

Proof: See Appendix A. �
Note that this lemma holds for a fixed d. We now conclude the

proof with these lemmas. Let μ :=
(
n−2
d−2

)
αn . We first estimate

σmin(P).
Claim 1: σmin(P) ≤ c6nminμ for some constant c6 > 0.
Proof: By definition, P = (ZΔ−1)ΔBΔT (ZΔ−1)T , where

Δ = diag(
√

n1 ,
√

n2 , . . . ,
√

nk). Since the columns of ZΔ−1

are orthonormal, σmin(P) = σmin(ΔBΔT). One can show
that σmin(ΔBΔT) ≥ σmin(Δ)2σmin(B). Hence, σmin(P) ≥
σmin(Δ)2σmin(B) = nminσmin(B). Hence, we calculate
σmin(B). By the definition of B,

B�m =

{
pαn

(
n�−2
d−2

)
+ qαn

[(
n−2
d−2

)− (
n�−2
d−2

)]
if � = m,

qαn

(
n−2
d−2

)
if �
= m

= μ ·
{ (n � −2

d−2)
(n −2

d−2)
(p− q) + q if � = m,

q if �
= m.

Thus, B = μ · q11T + μ · diag(f1 , f2 , . . . , f�), where f� :=
(n � −2

d−2)
(n −2

d−2)
(p− q). As nmax/nmin = O(1), each f� converges to a

positive constant, implying that σmin(B) = Θ(μ). �
By Lemma 2 and the above claim, c3k(1 + ε) ‖A

0−P‖2
σm in (P)2 ≤

c3 k(1+ε)c2
4

c2
6

n
n2

m in μ
holds w.p. 1−O(n−1) for nμ ≥ c5 . Choosing

c0 = c5
d(d−1) , c1 = c3 k(1+ε)c2

4
c2

6
completes the proof.

Remark 7: (Technical novelty relative to the graph case):
Indeed, proving the sharp concentration of a spectral norm has
been a key challenge in the spectral analysis [44], [63]. While
most bounds developed hinge upon the independence between
entries9, the matrix A in HSC has strong dependencies across
entries due to its construction. For instance, the entries A12
and A13 both have a term We for any edge e of the form
{1, 2, 3, j4 , j5 , . . . , jd}, hence sharing

(
n−3
d−3

)
many terms.

One approach to handle this dependency is to use matrix Bern-
stein inequality [65] on the decomposition A =

∑
e∈E WeSe ,

where Se :=
∑

i,j∈e
i
=j

eieT
j . See [8], [11]. However, this approach

provides a bound which comes with an extra
√

log n factor rel-
ative to the bound in Lemma 2, resulting in a suboptimal con-
sistency guarantee as described in Section I-A.

Another approach is a combinatorial method [63], which
counts the number of edges between subsets. The rationale be-
hind this method is as follows. From the definition of the spectral
norm, one needs to bound the quantity xT (A0 −P)x for any
vector x. It turns out that this quantity has a close connection to
the number of (hyper)edges between two subsets in a random
(hyper)graph. For instance, 1T

AA1B is precisely the number of
edges between A and B.

Indeed, a technique for estimating the number of hyperedges
between two arbitrary subsets is developed in [66]. Using this
method, however, one may only obtain a suboptimal guarantee,
which is

(
n
d

)
αn = Ω(n1.5). On the other hand, we show via our

analysis that the order-optimal guarantee can be obtained by
improving the standard combinatorial method. See Appendix A.

9For instance, the most studied model, called the Wigner matrix, assumes
independence among entries. See [64] for more details.

B. Proof of Theorem 2

We first outline the proof. Using the union bound, we show
that it is sufficient to prove Pr(ΦHSCLR(i) = j) = o(n−1) for all
1 ≤ i ≤ n and j
= Ψ(i). We then consider the following events
to bound this error probability. The first event is that the average
edge weight of the edges between the true community Ψ(i)
and node i is less than a certain threshold, and the other one is
that the average edge weight of the edges between the wrong
community j and node i is greater than the certain threshold.
We will first show that if the misclassification event occurs, at
least one of these two events must occur. Thus, we bound the
error probability by bounding those of these two events using
Lemma 3 and Lemma 4, respectively.

We consider the boundary case
(

n
d

)
αn = Θ(n log n). As β

(
n
d

)

αn = Θ(n log log n) = ω(n), Corollary 2 guarantees that ΦHSC
is weakly consistent. Without loss of generality, assume that
the identity permutation is equal to arg minΠ∈P |{i : Ψ(i)
= Π
(ΦHSC(i))}|. Then, |Φ

−1
HSC(j)∩Ψ−1 (j)|
|Φ−1

HSC(j)| > 1− γ, i.e., at least 1−
γ fraction of the nodes that are classified as in community j
are correctly classified. The second stage of HSCLR refines
the output of the first stage ΦHSC, resulting in ΦHSCLR. By the
union bound, we have Pr(err(ΦHSCLR)
= 0) ≤∑n

i=1
∑

j
=Ψ(i)
Pr(ΦHSCLR(i) = j). Since the total number of summands is
Θ(n), if Pr(ΦHSCLR(i) = j) = o(n−1) for all 1 ≤ i ≤ n and
j
= Ψ(i), then Pr(err(ΦHSCLR)
= 0) = o(1).

By the refinement rule (1), Pr(ΦHSCLR(i) = j) ≤ Pr

(
∑

e ∈E(i) (Ψ (i))
We

|E (i) (Ψ(i))| <

∑
e ∈E(i) (j)

We

|E (i) (j)|). For any real numbers (a, b,

t), [a ≥ b] ⊃ [a ≥ t] ∩ [t ≥ b] holds. By taking complements of
both sides, we have [a < b] ⊂ [a < t] ∪ [t < b]. Therefore, by
the union bound, P (a < b) ≤ P (a < t) + P (t < b) holds for
any (a, b, t). Applying this bound, we have

Pr

(∑
e∈E (i) (Ψ(i)) We

|E (i)(Ψ(i))| <

∑
e∈E (i) (j) We

|E (i)(j)|

)

(4)

≤ Pr

(∑
e∈E (i) (Ψ(i)) We

|E (i)(Ψ(i))| <
p + q

2
αn

)

︸ ︷︷ ︸
R1

(5)

+ Pr

(
p + q

2
αn <

∑
e∈E (i) (j) We

|E (i)(j)|

)

︸ ︷︷ ︸
R2

. (6)

We first interpret R1 and R2 . For illustration, assume that
ΦHSCLR coincides with Ψ. Under this assumption, observe that∑

e ∈E(i) (Ψ (i))
We

|E (i) (Ψ(i))| is equal to the average edge weight of the ho-

mogeneous edges within community Ψ(i). Since the expected
value of this term is p

2 αn , one can show that the term R1 van-

ishes. Similarly,
∑

e ∈E(i) (j)
We

|E (i) (j)| is the average weight of the edges
connecting i and the other nodes in community j. Since these
edges are heterogeneous, R2 also vanishes.

Indeed, as err(ΦHSC) is not exactly zero, but an arbitrarily
small constant, the above interpretation is not precise. In what
follows, we show that R1 and R2 vanish as well for the case.

We begin with bounding R1 . Denote by Eh the set of
all homogeneous edges. Recall that edges in E (i)(Ψ(i)), ex-
cept O(γ) fraction, are homogeneous, so |E (i)(Ψ(i)) ∩ Eh | =

AHN et al.: HSC IN THE WEIGHTED STOCHASTIC BLOCK MODEL 965

(1−O(γ))|E (i)(Ψ(i))|. By restricting the range of sum-
mation, R1 ≤ Pr(

∑
e∈E (i) (Ψ(i))∩Eh We < p+q

2 αn |E (i)(Ψ(i))|).
Note that We ’s are not restricted to Bernoulli random vari-
ables. By tweaking the proof of conventional large deviation
results [67] for Bernoulli variables, we obtain the following:

Lemma 3: Let S be the sum of m mutually indepen-
dent random variables taking values in [0, 1]. For any δ > 0,
we have Pr(S > (1 + δ)E[S]) ≤ exp(− δ 2

2+δ E[S]) and Pr(S <

(1− δ)E[S]) ≤ exp(− δ 2

2 E[S]).
Proof: See Appendix D-F. �
As E[

∑
e∈E (i) (Ψ(i))∩Eh We] = (1−O(γ))pαn |E (i)(Ψ(i))|,

p+q
2 αn |E (i)(Ψ(i))|

E[
∑

e∈E (i) (Ψ(i))∩Eh We]
− 1 = (1 + O(γ))

q − p

2p
,

so Lemma 3−2) with δ = (1 + O(γ)) p−q
2p gives

R1 ≤ exp
(
− (p− q)2

8p
αn (1 + O(γ))|E (i)(Ψ(i))|

)
. (7)

Next we consider R2 . Again, edges in E (i)(j), except O(γ)
fraction, are heterogeneous, so |E (i)(j) ∩ Ec

h | = (1−O(γ))|
E (i)(j)|. The following lemma says that the contribution due
to the O(γ) fraction of edges is marginal:

Lemma 4: For sufficiently small γ > 0,

Pr

⎛

⎝
∑

e∈E (i) (j)∩Eh
We >

pαn |E (i)(j)|
√

log(1/γ)

⎞

⎠ = o(n−1) . (8)

Proof: See Appendix D-B. �
Hence, we focus on heterogeneous edges only. Making a

similar argument as above, the bound in Lemma 3 becomes

R2 ≤ exp

⎛

⎝−
(p−q)2

4q 2

2 + p−q
2q

qαn (1 + O(γ))|E (i)(j)|
⎞

⎠ (9)

(a)
≤ exp

(
−1

8
(p− q)2

p
αn (1 + O(γ))|E (i)(j)|

)
, (10)

where (a) follows since 1
2+ p −q

2 q

= 1
3
2 + p

2 q

= 1
(3

2
q
p + 1

2) p
q

≥ 1
2 p

q
.

Since (p−q)2

p

(
n
d

)
αn ≥ (8 + ε) (n/nm in)d−1

d n log n, a straight-

forward calculation yields 1
8

(p−q)2

p αn (1 + O(γ))
(
nm in−1

d−1

) ≥
(
1 + 1

16 ε
)
log n, for sufficiently large n. Thus, R1 and R2 are

both o(n−1) from (7) and (10).

V. DISCUSSION

We have shown that our algorithms can achieve the order-
optimal sample complexity for all different recovery guarantees
under a symmetric block model. In this section, we show that our
main results indeed hold for a broader class of block models. We
also show that HSCLR can achieve the sharp recovery threshold
for a certain SBM model.

A. Extensions

For the graph case [13], a fairly general model, which sub-
sumes as a special case the asymmetric SBM, has been investi-
gated. Here we extend our model to one such model but in the
context of hypergraphs. Specifically, we consider the following
asymmetric weighted SBM.

Definition 4 (The asymmetric weighted SBM): Let {pe}e∈E
be constants such that pe > pe holds for any homogeneous
edge e and heterogeneous edge e. A random weight is assigned
to each edge independently as follows: For each edge e ∈ E ,
E[We] = peαn . Notice that this reduces to the condition of
p > q in the symmetric setting.

We find that our main results stated in Theorems 1 and 2 read-
ily carry over the above asymmetric setting. The key rationale
behind this is that our spectral clustering guarantee hinges only
upon the full-rank condition on B (see Section III-A for the
definition). Here, what one can easily verify is that the condi-
tion above implies the full-rank condition, and hence our results
hold even for the asymmetric setting. The only distinction here
is that the constants that appear in the theorems depend now on
pe ’s. Similarly, our technique can cover disassortative SBM in
which heterogeneous edges have larger weights than homoge-
neous edges.

Definition 5 (The symmetric disassortative weighted SBM):
In Definition 1, we assume instead that 0 < p < q < 1.

Another prominent instance is the planted clique model.
Definition 6 (The planted clique model): Fix s-subset of no-

des C (s ≤ n). Consider a random hypergraph in which every
d-regular edge e = {i1 , i2 , . . . , id} appears with probability 1 if
e ⊆ C or 1

2 otherwise.
In this model, one wishes to detect the hidden subset C,

which is called the clique. Following a similar analysis with a
different notion of error fraction, one can show that the clique
can be detected if s ≥ c∗ · √n for some constant c∗, which is
consistent with the well-known result for d = 2 [68].

B. Sharpness

Recently, sharp thresholds on the fundamental limits are char-
acterized in the graph case [22], [24], [27], [28], [30]. In contrast,
such a tight result has been widely open in the hypergraph case.
A notable exception is our companion paper [32] which stud-
ies a special case of the weighted SBM (considered herein), in
which weights are binary-valued.

Definition 7 (Generalized Censored Block Model with Homo-
geneity Measurements [32]): Let θ ∈ (0, 1/2) be a fixed con-
stant. Assume that k = 2 and denote erasure by x. If the edge
e is homogeneous, We = 1 w.p. αn (1− θ), We = 0 w.p. αnθ,
and We = x w.p. 1− αn . Otherwise, We = 1 w.p. αnθ, We = 0
w.p. αn (1− θ), and We = x w.p. 1− αn .

The information-theoretic limit for strong consistency has
been characterized under this model, formally stated below.

Proposition 3: ([32, Th. 1]) Under the model in Defini-
tion 7, the maximum likelihood estimator is strongly con-
sistent for any given hidden partition Ψ if

(
n
d

)
αn ≥ (1 +

ε) 2d−2

d
n log n

(
√

1−θ−√θ)2 for any constant ε > 0. Conversely, if
(
n
d

)

αn ≤ (1− ε) 2d−2

d
n log n

(
√

1−θ−√θ)2 , no algorithm can be strongly

consistent for any given hidden partition Ψ.
Using our results, we can show that there is no computational

barrier under this model. We now state the theorem, deferring
the proof to Appendix B.

Theorem 3: HSCLR10 achieves the information-theoretic
limits characterized in Proposition 3.

10Indeed, there should be some minor tweaks to make HSCLR better adapted
to this model. See Appendix B for details.

966 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 5, OCTOBER 2018

VI. APPLICATION

In this section, based on our algorithms, we design a sketching
algorithm for subspace clustering.

A. Subspace Clustering

It is well known that hypergraph clustering is closely re-
lated to computer vision applications such as subspace cluster-
ing [35]. In the subspace clustering problem, one is given with
n data points x1 ,x2 , . . . ,xn ∈ R� in a high dimensional ambi-
ent space. The n data points are partitioned into k groups, and
data points in the same group approximately lie on the same
subspace, each of dimension at most m < �. The goal is to
recover the hidden partition of the n data points based on cer-
tain measurements. Among various approaches, tensor-based
algorithms measure similarities between the data points to re-
cover the cluster [34]–[36]. More specifically, they construct a
weighted d-uniform (d ≥ m + 2) hypergraph ([n], {We}e∈E),
in which each edge weight represents the similarity of the
corresponding d points. One typical approach to measure the
similarity between d data points is based on the hyperplane
fitting. More specifically, denoting by fit(·) the error of fit-
ting an m-dimensional affine subspace to d data points, one
may set We = exp (−fit(xi1 , . . . ,xid

)) for e = {i1 , i2 , . . . , id}.
Note that We � 1 if the d data points are approximately on the
same subspace, and We � 0 if the data points cannot be fit on a
single subspace.

Consider a set of d data points of the same cluster, which
approximately lie on the same subspace by definition. The edge
weight corresponding to these d data points will be approxi-
mately 1, and one may model the edge weight as a random
value whose expected value is close to 1. Similarly, one may
model the edge weights of heterogeneous edges by a random
variable whose expected value is close to 0.11

Clearly, our weighted SBM can precisely capture the above
hypergraph model since our model only assumes that the av-
erage weights of homogeneous edges are larger than those of
heterogeneous edges. We verify this claim using a real data set.
Hopkins 155 is the most widely used dataset for the subspace
clustering problem [69]. We first set d = 8 and m = 3, and then
randomly sample 10000 homogeneous edges and 10000 het-
erogeneous edges. The empirical distributions of edge weights
are shown in Fig. 1(a). We can see that the homogeneous edges
have larger weights on average than the heterogeneous edges,
well respecting the weighted SBM.

B. Sketching Algorithms for Subspace Clustering

Modern subspace clustering algorithms involve a large num-
ber of data points lying on a high-dimensional space, i.e., n
and � are very large. Hence, storing the entire raw data points
is prohibitive, and one may have to resort to the sketch of the
data set. A sketch can be viewed as a summary of the dataset,
containing sufficient information of the data set.

As evidenced by the preceding section, we assume that the
weighted hypergraph constructed from the data points follows

11Indeed, the edge weight of a heterogeneous edge can be very close to 1, i.e.,
the fitting error can be close to 0. This may happen when d data points, which
are from different subspaces, are well aligned with another single subspace.
Such a coincidence, however, happens with very low probability, and hence we
simply treat these atypical events as statistical noise.

the model in Section II. Under this assumption, subspace clus-
tering can be done by clustering nodes of the weighted hy-
pergraph. The following corollary asserts that one can exactly
solve the subspace clustering problem with a sketch consisting
of the weights of randomly chosen hyperedges.12 We now state
a corollary, a consequence of Theorems 1 and 2.

Corollary 3: Suppose that nmax/nmin = O(1) and αn = 1.
Then, HSC is weakly consistent if

(
n
d

)
sn = ω(n), and HSCLR

is strongly consistent if
(
n
d

)
sn ≥ c8 · n log n for some con-

stant c8 > 0. Moreover, the computational complexities of HSC,
HSCLR reduce to max{(n

d

)
sn , n(log n)k}.

Remark 8: One can sketch data more aggressively if the sub-
spaces are not similar to each other [70]. This is also captured
in Corollary 3 as follows. As a concrete example, consider two
subspaces of dimension m and a heterogeneous edge e. When
the two subspaces are moving farther away from each other,
the fitting error of e increases. Thus, We approaches 0, and
hence p− q increases. Since the sample complexity is inversely
proportional to p− q,13 one can sketch more aggressively.

Corollary 3 implies that our sketching method can reduce the
storage overhead from O(n�) to O(n log n). We now evaluate
our sketching algorithm. The relevant parameters are n, k, �,
m, d, and sn : in an ambient dimension of � = 50, we randomly
generate k subspaces each being of dimension of m = 3; for
each subspace, we randomly sample n/k points and perturb
every point with Gaussian noise of variance σ2 ; we set edge
size d = 5 and sampling probability sn . We first implement
HSCLR in MATLAB14. We then compare HSCLR with other
prior algorithm15, adopting the experimental setups from [75]
and [8].

We first measures the performance of various algorithms. We
set k = 3 and

(
n
d

)
sn = 5kd−1n log n/d, and report the average

fractional errors of each algorithm over 20 trials for (n/k, σ) ∈
{300, 400, 500, 600} × {0, 0.05, 0.1, 0.15} in Fig. 1(b). Ob-
serve that our algorithm matches the state-of-the-art perfor-
mance. We also measures the run time of the algorithms. We
set k = 2, σ = 0.025, n ∈ {750, 1500, 3000, 6000}, (n

d

)
sn =

5kd−1n log n/d, and report the average run time over 10 tri-
als. Fig. 1(c) shows that the runtime of our proposed algorithm
scales nearly linearly in n.

C. Other Applications

Apart from subspace clustering, there are many applications
in which d-wise similarities can carry more information than
pairwise ones. Those include other computer vision applications
(such as geometric grouping [34], [36] and high-order match-
ing [77]), tagged social networks [6], biological networks [7]

12We note that one may carefully choose similarity entries in order to achieve
a more informative sketch than our random one, at the cost of increased com-
putational complexity for sketch construction.

13The sufficient condition in Theorem 2 reads (p−q)2

p

(
n
d

)
sn ≥ C for some

quantity C .
14We observe a large constant in the computational complexity of the geo-

metric k-clustering, and hence we implement HSCLR with an efficient k-means
algorithms for the experiments.

15Sparse subspace clustering (SSC) [71], a variant of SSC using OMP (SSC-
OMP) [72], subspace clustering using low-rank representation (LRR) [73],
thresholding-based subspace clustering (TSC) [74], subspace clustering using
nearest neighborhood search (NSN+Spec) [75], and tensor trace maximization
(TTM) [8]. Note that SCC [36], SGC [76], and Tetris [8]) are not applicable to
the sketching scenario due to their iterative natures.

AHN et al.: HSC IN THE WEIGHTED STOCHASTIC BLOCK MODEL 967

Fig. 1. (a) Distribution of edge weights for the Hopkins 155 data set. Notice that homogeneous edges have larger weights on average. This implies that the
hypergraph constructed from tensor-based approaches respects our model. (b) Fractional error of various algorithms. We report the fractional error of each algorithm
for varying n/k and σ (a lighter color implies a lower error fraction). Note that we include iterative algorithms (SCC, SGC, Tetris) although they cannot be utilized
in the sketching scenario. We can see that our approach has a comparable performance to the state of the arts. (c) Average run time comparison with prior subspace
clustering algorithms. We can observe that our proposed algorithm scales nearly linearly in n while others do not.

and co-authorship networks [78]. We remark that while our
model assumes equal-sized hyperedges, the HSCLR algorithm
is applicable even when the size of hyperedges vary, which is
the case for some of these applications. However, the success
of the refinement step is contingent upon whether or not the
average weight of homogeneous edges is larger than that of het-
erogeneous edges. While this assumption is shown to hold for
the subspace clustering problem, whether or not this assumption
holds for the other applications is an interesting future direction.

VII. CONCLUSION

In this paper, we develop two hypergraph clustering algo-
rithms: HSC and HSCLR. Our main contribution lies in perfor-
mance analysis of them under a new hypergraph model, which
we call the weighted SBM. Our results improve upon the state of
the arts, and firstly settle the order-optimal results. Further, we
show that HSCLR achieves the information-theoretic limits of
a certain hypergraph model. We also develop a sketching algo-
rithm for subspace clustering based on HSCLR, and empirically
show that the new algorithm outperforms the existing ones.

We conclude our paper with future research directions.
� Detection threshold: In [31], a sharp threshold for detection

is conjectured. Further, the non-backtracking method is
conjectured to be optimal. Proving these conjectures still
remains open. The optimality of HSC is also open.

� Consistency threshold: The fundamental limits for
weak/strong consistency under the general weighted SBM
are unknown. An important open problem is to charac-
terize the general limits in terms of the model parameters
(n, d, k, p, q, αn).

APPENDIX A

We first note that the overall structure of the proof resembles
the ones in [44], [63], except that the entries of A are not inde-
pendent. This is because each hyperedge’s weight is added to
more than one entries of A0 in our case, resulting in dependency
structure between all elements of the matrix. See Remark 7 for
more details.

We begin with some preliminaries: Let ν :=
(
n−2
d−2

)
pαn ≥

maxi,j E[Ai,j]; let B := {x ∈ Rn : ‖x‖2 ≤ 1}; let Dδ :=

{x = (x1 , x2 , . . . , xn) ∈ B :
√

nxi

δ ∈ Z}; for a matrix C,
denC (A,B) :=

∑
i∈A

∑
j∈BCi,j ; and for a matrix C and a

subset I , let CI be the matrix obtained from C by zeroing out
all rows and columns in subset I . The following large deviation
results will be frequently used throughout the proof:

Lemma 5: Let S =
∑n

i=1 Xi , where 0 ≤ Xi ≤ b for each i
for b > 0. There exist constants c7 > 0 depending only on b
such that the following holds for any a ≥ E[S] and k ≥ c7 :

Pr(S > k · a) ≤ exp
(
− 1

2b
k log k · a

)
.

�
Proof: See Appendix D-A.
We consider the most challenging case where

(
n
d

)
αn = Θ(n),

i.e., ν = Θ(1/n). First, note that P− E[A] is a diagonal matrix
whose entries are O(ν). Hence, ‖P− E[A]‖ = O(

√
nν). Thus,

it suffices to show that
∥
∥A0 − E[A]

∥
∥ = O(

√
nν) . (11)

Lemma 6: Let C be a n× n matrix. For 0 < δ < 1,

‖C‖ ≤ (1− 3δ)−1 max
x∈Dδ

∣
∣xT Cx

∣
∣ .

Proof: See Appendix D-C. �
Due to Lemma 6, one can replace (11) with a more

tractable statement at the cost of the constant: supx∈Dδ
|xT (A0

− E[A])x| = O(
√

nν). For a vector x = (x1 , x2 , . . . , xn) ∈
Dδ , define Sδ (x) :=

{
(i, j) : |xixj | < δ2√ ν

n

}
for 0 < δ < 1.

Then, one has:

sup
x∈B

∣
∣xT

(
A0 − E[A]

)
x
∣
∣ = sup

x∈B

∣
∣
∣
∣
∑

(i,j)

[
A0

i,j xixj

]− xT E[A]x
∣
∣
∣
∣.

Let (T1) = supx∈B |
∑

(i,j)∈Sδ (x) [A
0
i,j xixj]− xT E[A]x|

and (T2) = supx∈B |
∑

(i,j)∈Sδ (x)c [A0
i,j xixj]|. Then, the

above quantity is bounded above by (T1) + (T2). We now show
that each of (T1) and (T2) is O(

√
nν).

A. Proof of (T1)

We denote by J the random subset of [n] that corresponds to
the removed rows and columns during the processing step (see

968 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 5, OCTOBER 2018

step 2 of Algorithm 1). For a sufficiently large constant c12 > 0
(to be chosen later) and I ⊂ [n], define the event

EI =
{

sup
x∈Dδ

∣
∣
∣
∣

∑

(i,j)∈Sδ (x)

[
AI

i,j xixj

]− xT E[A]x
∣
∣
∣
∣> c12 ·

√
nν

}
.

Then, it is sufficient to show that Pr(EJ)→ 0. Note that the
following upper bound holds for:

Pr(EJ) =
∑

I⊂[n]

[Pr(EJ , J = I)]

≤
∑

|I |≤(nν)−3 n

[Pr(EI , J = I)]

+
∑

|I |≥(nν)−3 n

[Pr(EI , J = I)]

≤
∑

|I |≤(nν)−3 n

[Pr(EI)] +
∑

|I |≥(nν)−3 n

Pr(J = I)

=
∑

|I |≤(nν)−3 n

[Pr(EI)] + Pr
(|J | ≥ (nν)−3n

)
.

The following lemma bounds the number of removed rows
(and columns).

Lemma 7: For some cthr > 0 (depending only on d), there
exists a constant c8 > 0 such that if nν ≥ c8 , then w.p. 1−
exp(−Ω(n)), |{i : denA (i, [n]) ≥ cthr · nν}| ≤ (nν)−3n.

Proof: See Appendix D-D. �
By Lemma 7, for nν ≥ c8 , Pr

(|J | ≥ (nν)−3n
) ≤ e−Ω(n) .

As there are at most 2n = en log 2 many subsets of [n],
due to the union bound, the proof for (T1) will be com-
pleted after showing that for a fixed |I| ≤ (nν)−3n, Pr(EI) ≤
O
(
e−2 log 2n

)
. Observe that

∣
∣
∣
∣

∑

(i,j)∈Sδ (x)

[
AI

i,j xixj

]− xT E[A]x
∣
∣
∣
∣

≤
∣
∣
∣
∣x

T
(
E[AI]− E[A]

)
x
∣
∣
∣
∣

︸ ︷︷ ︸
(E 1)

+
∣
∣
∣
∣
∑

(i,j)∈Sδ (x)c

[
E[AI

i,j]xixj

]
∣
∣
∣
∣

︸ ︷︷ ︸
(E 2)

+
∣
∣
∣
∣
∑

(i,j)∈Sδ (x)

[
(
AI

i,j − E[AI
i,j]

)
xixj

]∣∣
∣
∣

︸ ︷︷ ︸
(E 3)

,

and hence we will show that there exist c13 , c14 , c15 > 0 such
that supx∈Dδ

(E1) ≤ c13
√

nν, supx∈Dδ
(E2) ≤ c14

√
nν, and

supx∈Dδ
(E3) ≤ c15

√
nν with probability 1−O(e−2n log 2),

respectively. Having shown these, the proof for (T1) is com-
pleted by taking c12 := c13 + c14 + c15 .

i) (E1): As |I| ≤ (nν)−3n,
∣
∣xT

(
E[AI]− E[A]

)
x
∣
∣ ≤ ∥

∥E[AI]− E[A]
∥
∥

≤ ∥
∥E[AI]− E[A]

∥
∥

F
≤
√

2(nν)−3n2 · ν2 =
√

2(nν)−1/2 .

Hence, by taking c13 =
√

2, supx∈Dδ
(E1) ≤ c13

√
nν

holds with probability 1 for nν ≥ 1.

ii) (E2): As ν ≥ maxi,j E [Ai,j],
∣
∣
∣
∣

∑

(i,j)∈S c
δ

[
E[AI

i,j]xixj

]
∣
∣
∣
∣ ≤ ν

∑

(i,j)∈Sδ (x)c

i
=j

|xixj |

= ν
∑

(i,j)∈Sδ (x)c

i
=j

x2
i x

2
j

|xixj |
(a)
≤ 1

δ2

√
nν

∑

(i,j)∈Sδ (x)c

i
=j

x2
i x

2
j

(b)
≤ 1

δ2

√
nν ,

where (a) is due to the definition of Sδ (x), and (b)
follows since ‖x‖ ≤ 1. Hence, by taking c14 = 1

δ 2 ,
supx∈Dδ

(E2) ≤ c14
√

nν holds with probability 1.
iii) (E3): Let x = (x1 , x2 , . . . , xn) ∈ Dδ be fixed. We have
∑

(i,j)∈Sδ (x)

[(
AI

i,j − E[AI
i,j]

)
xixj

]

=
∑

(i,j)∈Sδ (x)
i
=j

[
xixj I{i /∈ I, j /∈ I}

∑

e∈E
{i,j}⊂e

[We − E[We]]
]

=
∑

e∈E

[
(We − E[We])

∑
(i,j)∈Sδ (x)
i
=j, {i,j}⊂e

[xixj I{i /∈ I, j /∈ I}]
]

︸ ︷︷ ︸
=:Ye

.

Note that {Ye}e∈E is a collection of independent random
variables. To apply Bernstein inequality to

∑
e∈E Ye , we

do some preliminary calculations. First, it easily follows
from the definition of Sδ that

|Ye | ≤
∣
∣
∣
∣ (We − E[We])

∑

(i,j)∈Sδ (x)
i
=j, {i,j}⊂e

[xixj I{i /∈ I, j /∈ I}]
∣
∣
∣
∣

≤
∑

(i,j)∈Sδ (x)
i
=j, {i,j}⊂e

|xixj | ≤ δ2
√

ν

n
· 2
(

d

2

)
≤ d2δ2

√
ν

n
.

Next, we compute a bound on the sum of variances:
∑

e∈E
E[Y 2

e]

(a)
≤

∑

e∈E

[
d2E[W 2

e]
∑

(i,j)∈Sδ (x)
i
=j, {i,j}⊂e

[
x2

i x
2
j I{i /∈ I, j /∈ I}]

]

(b)
≤ d2

∑

e∈E

[
E[We]

∑

(i,j)
i
=j,{i,j}⊂e

[
x2

i x
2
j

]
]

= d2
∑

(i,j)
i
=j

[
x2

i x
2
j E[Ai,j]

]
≤ d2ν

∑

(i,j)
i
=j

x2
i x

2
j

(c)
≤ d2ν ,

where (a) is due to (
∑k

i=1 ai)2 ≤ k
∑k

i=1 a2
i ; (b) follows

since We ∈ [0, 1]; (c) follows since ‖x‖ ≤ 1.

AHN et al.: HSC IN THE WEIGHTED STOCHASTIC BLOCK MODEL 969

Thus, Bernstein inequality yields: Pr
(∣∣∑

e∈E Ye

∣
∣ ≥

t
) ≤ 2 exp

(− t2 /2
d2 ν+ 1

3 d2 δ 2
√

ν
n t

)
, we have

Pr
(∣∣
∣
∣
∑

e∈E

Ye

∣
∣
∣
∣ ≥ c15

√
nν

)

≤ 2 exp
(
− c2

15

2d2 + 2
3 d2δ2c15

n

)
.

As |Dδ | = eΘ(n) , the union bound yields

Pr
(

sup
x∈Dδ

∣
∣
∣
∣
∑

e∈E

Ye

∣
∣
∣
∣ ≥ c15

√
nν

)

≤ eΘ(n) Pr
(∣∣
∣
∣
∑

e∈E

Ye

∣
∣
∣
∣ ≥ c15

√
nν

)

≤ 2eΘ(n) exp
(
− c2

15

2d2 + 2
3 d2δ2c15

n

)
,

and hence by choosing c15 sufficiently large, one
can ensure that supx∈Dδ

(E3) ≤ c15
√

nν w.p. 1−
O(e−2n log 2).

Since nν ≥ c8 and nν ≥ 1, nν should be greater than or equal
to max{c8 , 1}, so one can take c5 = max{c8 , 1}.

B. Proof of (T2)

This case immediately follows from a celebrated combinato-
rial technique proposed in [63]. We summarize their results.

Definition 8: We say the bounded density property holds
with constants α, β, γ > 0 if the following two hold:

1) For each node u, denA0 (u, [n]) ≤ α · nν.
2) For any two subsets A,B, either denA0 (A,B) ≤ β · ν
|A||B| or denA0 (A,B) log denA 0 (A,B)

ν |A||B| ≤ γ ·max{|A|,
|B|} log n

max{|A|,|B|} .
Proposition 4 ([44], [63]): If the bounded density property

holds with some constant α, β, γ, then (T2) = O(
√

nν).
Therefore, one only needs to show that the bounded density

property holds with high probability to finish the proof.
Lemma 8: With probability 1−O(n−1), the bounded den-

sity property holds with some constants c9 , c10 , c11 .
Proof: See Appendix D-E. �

APPENDIX B

For notational simplicity, as k = 2, we represent partition
functions ΦHSC,Ψ by binary vectors X,Z ∈ {0, 1}n . We de-
fine some notations: Let W = [We]e∈E ; for a vector V =
[Vi]1≤i≤n ∈ {0, 1}n and e = {i1 , i2 , . . . , id} ∈

([n]
d

)
, let fe(V)

= I{Vi1 = Vi2 = . . . Vid
}; let F(V) = [fe(V)]e∈E .

A straightforward calculation yields for any two binary vec-
tors X and Y, the likelihood of X is greater than that of Y if
and only if d(W,F(X)) < d(W,F(Y)), where d(X,Y) :=
|{i ∈ [n] : Xi
= Yi}| for any X and Y.

To make HSCLR better adapted to the model, we modify the
algorithm as follows:

1) We apply HSC to ([n],W′), where W′ is obtained from
W by replacing the erasure weights x’s with 0’s.

2) We then employ a likelihood-based refinement rule:

Xi ←
{

Xi if d(W,F(X)) < d(W,F(X⊕ ei));
Xi ⊕ 1 otherwise.

Remark 9: Notice that one can employ such a likelihood-
based estimator only when edge distributions are fully specified.

We now begin the main proof. We consider the most chal-
lenging regime where

(
n
d

)
p = Θ(n log n), and suppose

(
n

d

)
αn ≥ (1 + ε)

2d−2

d

n log n

(
√

1− θ −√θ)2
(12)

for a fixed ε > 0. For simplicity, we assume that n is even, and
fix the ground truth to be A = (1, . . . , 1

︸ ︷︷ ︸
n/2

, 0, . . . , 0
︸ ︷︷ ︸

n/2

); for other

cases, the proof follows similarly.
Let X be the output of the first stage. By Theorem 1, one can

see that X is weakly consistent. Without loss of generality, we
assume for an arbitrarily small η > 0 that

X = (0, . . . , 0
︸ ︷︷ ︸

ηn

, 1, 1, 1, . . . , 1, 1, 1
︸ ︷︷ ︸

n/2−ηn

, 1, . . . , 1
︸ ︷︷ ︸

ηn

, 0, 0, 0, . . . , 0, 0, 0
︸ ︷︷ ︸

n/2−ηn

) .

Indeed, X needs not have the same number of 0’s and 1’s
but the other cases can be handled similarly using the same
arguments.

As in the proof of Theorem 2 (see Section IV-B), due to the
union bound, it is enough to show that the probability of having
node 1’s affiliation incorrect after refinement is o(n−1), i.e.,

Pr (node 1 is incorrect after refinement) = o(n−1) .

By the new refinement rule,

Pr (node 1 is incorrect after refinement)

= Pr
(

0 < d(W,F(X⊕ e1))− d(W,F(X))
)

.

The following lemma states that the difference of hamming
distances can be viewed as the sum of random variables.

Lemma 9: Pi, P
′
i

i.i.d.∼ Bern(αn) and Θi ,Θ′i
i.i.d.∼ Bern(θ).

Then,

d(W,F(X⊕ e1))− d(W,F(X))

=
2(n / 2−η n

d−1)∑

i=1

Pi(2Θi − 1)) +
2(n / 2

d−1)−2(n / 2−η n
d−1)∑

i=1

P ′i (1− 2Θ′i) .

Proof: See Appendix D-F. �
Let V1 =

(
n/2
d−1

)
and V2 =

(
n/2−ηn

d−1

)
. By Lemma 9,

Pr
(

0 < d(W,F(X⊕ e1))− d(W,F(X))
)

= Pr

(

−
2V1−2V2∑

i=1

P ′i (1− 2Θ′i) <

2V2∑

i=1

Pi(2Θi − 1))

)

(a)
≤ Pr

(

−
2V1−2V2∑

i=1

P ′i <

2V2∑

i=1

Pi(2Θi − 1))

)

(b)
= Pr

⎛

⎝−
O (η)V1∑

i=1

P ′i <

2V2∑

i=1

Pi(2Θi − 1))

⎞

⎠ . (13)

970 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 5, OCTOBER 2018

where (a) is due to |1− 2Θ′i | ≤ 1; (b) is due to 2V1 − 2V2 =
O(η)V1 .

In view of Lemma 4, one can similarly show that

Pr

⎛

⎝
O (η)V1∑

i=1

P ′i >
V1αn√
log(1/η)

⎞

⎠ = o(n−1) , (14)

provided that η is sufficiently small. Thus,

(13) ≤ Pr

(

− V1αn√
log(1/η)

<

2V2∑

i=1

Pi(2Θi − 1))

)

+ o(n−1)

Lemma 10: For an integer K > 0, let {Pi}Ki=1
i.i.d.∼ Bern

(αn) and {Θi}Ki=1
i.i.d.∼ Bern(θ). Then, for any � > 0

Pr

(

log
(

1− θ

θ

) K∑

i=1

Pi(2Θi − 1) ≥ −�

)

≤ e
1
2 �−K (αn (

√
1−θ−√θ)2 +O (α2

n)) .

Proof: See Appendix D-G. �
By Lemma 10,

Pr

(

− V1αn√
log(1/η)

<

2V2∑

i=1

Pi(2Θi − 1))

)

≤ e
1
2

lo g (1−θ
θ)√

l o g (1 / η)
V1 αn −2V2 (αn (

√
1−θ−√θ)2 +O (α2

n))
. (15)

Note that as αn = o(1),

1
2

log
(1−θ

θ

)

√
log(1/η)

V1αn − 2V2

(
αn (
√

1− θ −
√

θ)2 + O(α2
n)
)

= (1 + o(1))
[

log
(1−θ

θ

)

√
log(1/η)2d

d

n

(
n

d

)
αn − 2

(
1
2
− η

)d−1

· d
n

(
n

d

)(
αn (
√

1− θ −
√

θ)2 + O(α2
n)
)]

= (1 + o(1))
[

log
(1−θ

θ

)

√
log(1/η)2d

d

n

(
n

d

)
αn − 2

(
1
2
− η

)d−1

· d
n

(
n

d

)
αn (
√

1− θ −
√

θ)2
]

→ − 1
2d−2

d

n

(
n

d

)
αn (
√

1− θ −
√

θ)2

as η → 0+ and n→∞. Thus, (15) ≤ e−(1+ε/2) log n = o(n−1)
for sufficiently large n and small η.

APPENDIX C

To extend the analysis to the planted clique model, we need
another type of error fraction, which is defined as follows:

err′(Φ) := min
Π∈P

max
1≤j≤k

1
nj
|{i ∈ Ψ−1(j) : Π(Φ(i))
= j}| .

Note that err′ characterizes the maximum value of within-
cluster error fraction over all clusters. Let us denote the smallest
singular value of B (defined in Section III-A) by σ and the size
of smallest cluster by nmin . Then, following [5], one can prove
the following result by tweaking the proof of Theorem 1:

Theorem 4: For some c14 , c15 , the following holds: if
(
n
d

)
αn ≥ c14n and c15(1 + ε)

kn(n −2
d−2)

αn n2
m in σ 2 < 1, then w.p. exceed-

ing 1−O(n−1),

err′(ΦHSC) ≤ c15(1 + ε)
kn
(
n−2
d−2

)

αnn2
minσ2 . (16)

We now demonstrate how Theorem 4 guarantees the detection
of planted clique when s ≥ c∗ · √n for some constant c∗. To
apply Theorem 4, we need to first compute σ of

B =

(1
2

(
s−2
d−2

)
+ 1

2

(
n−2
d−2

) 1
2

(
n−2
d−2

)

1
2

(
n−2
d−2

) 1
2

(
n−2
d−2

)

)

.

Using the fact that the minimum singular value of (a+b
a

a
a) is

2b√
4+(b

a)2 +2+ b
a

, we have

σ =
2
(

s−2
d−2

)

√

4 +
(

(s−2
d−2)

(n −2
d−2)

)2

+ 2 + (s−2
d−2)

(n −2
d−2)

= Θ
(
sd−2) .

Hence, by Theorem 4 (as αn = 1), Thus, whenever s =
Ω(
√

n),

err′(ΦHSC) ≤ c15(1 + ε)
2n
(
n−2
d−2

)

s2σ2 = O

(
nd−1

s2(d−1))

)
= O(1) .

APPENDIX D

A. Proofs of Lemma 3 and Lemma 5

Without loss of generality, we will prove the lemmas assum-
ing that E[Xi] > 0 for all i. We first obtain a useful bound on
the moment generating function (mgf) of S. For an arbitrary
λ > 0,

E[exp{λS}] = E

[

exp

{

λ

(
n∑

i=1

Xi

)}]

≤
n∏

i=1

(
1 +

(eλb − 1)
b

E[Xi]
)

≤
(

1 +

(
eλb − 1

)

b

∑n
i=1 E[Xi]

n

)n

, (17)

where the first inequality holds since eλx−1
x ≤ eλb−1

b holds for all
0 < x ≤ b, and the second inequality holds due to the AM-GM
inequality. We now prove the lemmas using this bound.

1) Proof of Lemma 5: Using Markov’s inequality and (17),

Pr(S > x) = Pr(eλS > eλx) ≤ exp{−λx}E[exp{λS}]

≤ exp{−λx}
(

1 +

(
eλb − 1

)

b

E[S]
n

)n

.

AHN et al.: HSC IN THE WEIGHTED STOCHASTIC BLOCK MODEL 971

By choosing λ = 1
b log(1 + bx

E[S]), i.e., x = (eb λ−1)
b E[S], we

have

Pr(S > x) ≤ exp
{
−x

b
log

(
1 +

bx

E[S]

)}(
1 +

x

n

)n

≤ exp
{
−x

b
log

(
1 +

bx

E[S]

)}
exp(x)

= exp
[
−x

b
·
{

log
(

1 +
bx

E[S]

)
− b

}]
.

By setting x = ka, we have

Pr(S > k · a) = exp
[
−ka

b
·
{

log
(

1 +
bka

E[S]

)
− b

}]

≤ exp
[
−k

log (1 + bk)− b

b
· a
]

,

where the inequality holds since a ≥ E[S]. Since [log(1 +
bk)− b] ∼ log(k), log(1 + bk)− b ≥ 1

2 log(k) holds for all
k ≥ c7 , where c7 is some positive constant depending only on
b. Applying this inequality to the above bound completes the
proof.

2) Proof of Lemma 3: Since the proof bears great similarity
to the conventional case [67], we only show the upper bound.
Using Markov’s inequality and (17) with b = 1,

Pr (S > (1 + δ)E[S]) = Pr
(
eλS > eλ(1+δ)E[S]

)

≤ e−λ(1+δ)E[S]
(

1 + (eλ − 1)
E[S]

n

)n

By taking λ = log (1 + δ), we obtain

Pr (S > (1 + δ)E[S]) ≤ e−(1+δ) log(1+δ)E[S]
(

1 +
δE[S]

n

)n

≤ e−(1+δ) log(1+δ)E[S]+δE[S] ≤ e−
δ 2

2 + δ E[S], (18)

where the last equality holds since log(1 + δ) ≥ δ
1+δ/2 . This

completes the proof of the upper bound.

B. Proof of Lemma 4

Assume that |E (i)(j) ∩ Eh | = c · γ|E (i)(j)| for some con-
stant c > 0. For simplicity, let us write

∑
e∈E (i) (j)∩Eh We as

∑c·γ |E (i) (j)|
i=1 Wi . Then we get:

Pr
(∑

e∈E (i) (j)∩Eh
We >

pαn |E (i)(j)|
√

log(1/γ)

)

= Pr
(c·γ |E (i) (j)|∑

i=1

Wi >
1

cγ
√

log(1/γ)
· cγpαn |E (i)(j)|

)
.

(19)

From the proof of Lemma 3 (see (18)), one can deduce the
following:

Corollary 4: Let S be the sum of m mutually independent
random variables taking values in [0, 1]. For any δ > 0, we have

Pr (S > (1 + δ)E[S]) ≤ e−{(1+δ) log(1+δ)−δ}E[S] . (20)

We will apply Corollary 4 with (1 + δ) = (cγ
√

log(1/γ))−1 .

As (cγ
√

log(1/γ))−1 →∞ as γ → 0+ , we may regard δ to
be an arbitrarily large constant. Because (1 + δ) log(1 + δ)−
δ = (1 + o(1))(1 + δ) log(1 + δ) as δ →∞, in what follows,
we will replace the upper bound (20) with e−(1+δ) log(1+δ)E[S]:

(19) ≤
(

1
ecγ

√
log(1/γ)

)− 1
c γ
√

l o g (1 / γ)
cγpαn |E (i) (j)|

≤
(

1
ecγ

√
log(1/γ)

)− 1
c γ
√

l o g (1 / γ)
cγpαn |E (i) (j)|

. (21)

Since we consider the regime
(
n
d

)
αn = Θ(n log n), pαn |E (i)

(j)| = c′ · log n for some constant c′ > 0. Hence, the last term
is equal to
(

1
ecγ

√
log(1/γ)

)− 1√
l o g (1 / γ)

c ′·log n

= exp
(
− log n ·

{√
log(1/γ)− 1+ log c + 1

2 log(log(1/γ))
√

log(1/γ)

})
.

Since the exponent diverges as γ → 0+ , we prove the lemma.

C. Proof of Lemma 6

WLOG, assume that ‖C‖ = supx∈B xT Cx; the case ‖C‖ =
− infx∈B xT Cx follows similarly. Observe that the diame-
ter of each cell resulting from discretization is δ. For a vec-
tor d such that ‖d‖2 ≤ δ and x ∈ B, (x + d)T C(x + d)−
xT Cx = 2dT Cx + dT Cd. Thus, we get:
∣
∣(x + d)T C(x + d)

∣
∣− ∣

∣xT Cx
∣
∣

≤ ∣
∣(x + d)T C(x + d)− xT Cx

∣
∣ ≤ 2

∣
∣dT Cx

∣
∣+

∣
∣dT Cd

∣
∣

≤ 2‖d‖‖C‖‖x‖+ ‖C‖‖d‖2 ≤ 2‖d‖‖C‖+ ‖C‖‖d‖2

≤ 3‖d‖‖C‖ ≤ 3δ‖C‖ .
Let x∗ = arg supx∈B xT Cx. Then, there exists x0 ∈ Dδ

such that ‖x0 − x∗‖ ≤ δ, so

‖C‖ = (x∗)T Cx∗ ≤ (x0)T Cx0 + 3δ‖C‖
≤ sup

x∈Dδ

|xT Cx|+ 3δ‖C‖ .

By rearrangement, we get: (1− 3δ)‖C‖ ≤
supx∈Dδ

|xT Cx|.

D. Proof of Lemma 7

Let us say node i is bad if denA (i, [n]) ≥ cthr · nν for some
constant cthr to be chosen later. Let δ := (nν)−3 .

Pr(there are more than δn bad nodes)

≤
∑

X⊂[n]:|X |=δn

Pr (every node in X is bad)

≤
∑

X⊂[n]:|X |=δn

Pr (denA (X, [n]) ≥ δn · (cthr · nν)) .

972 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 5, OCTOBER 2018

Note that for any subsets A and B,

denA (A,B) =
∑

i∈A

∑

j∈B
Ai,j =

∑

i∈A

∑

j∈B

∑

e∈E
{i,j}⊂e

We

=
∑

e∈E

[
We

(∑

(i,j)∈A×B:{i,j}⊂e

1
)]

, (22)

i.e., denA (A,B) is a sum of independent random vari-
ables taking values in [0, d2]. Hence, using the fact
that E[denA (X, [n])] ≤ δn2ν (∵ ν ≥ maxi,j E [Ai,j]) to-
gether with Lemma 5 (take b = d2), there exists c7 > 0 such
that

Pr
(
denA (X, [n]) ≥ kδn2ν

) ≤ exp
(
−
(

1
2d2 k log k

)
· δn2ν

)

whenever k ≥ c7 .

By taking cthr = c7 ,
∑

X⊂[n]:|X |=δn

Pr
(
denA (X, [n]) ≥ cthrδn

2ν
)

≤
(

n

δn

)
exp

(
−
(

1
2d2 cthr log cthr

)
· δn2ν

)

(a)
≤ exp

{(
δ log

1
δ

+ δ −
(

1
2d2 cthr log cthr

)
· δnν

)
· n
}

.

where (a) is due to the fact that
(

n
m

) ≤ (
ne
m

)m
. Plugging back

in δ = (nν)−3 , we obtain

δ log
1
δ

+ δ −
(

1
2d2 cthr log cthr

)
· δnν

= −3 log(nν)(nν)−3 + (nν)−3 −
(

1
2d2 cthr log cthr

)
· (nν)−2 .

(23)

Since (23) · (nν)2 → − 1
2d2 cthr log cthr < 0 as nν →∞,

there exists a constant c8 such that nν ≥ c8 implies (23) < 0.
This completes the proof.

E. Proof of Lemma 8

By taking c9 = cthr, the first part of Definition 8 follows easily
by the definition of A0 .

We now turn to the second part of Definition 8. Without loss
of generality, we assume that A ∩ B = ∅ and |A| ≤ |B|.

1) The case where |B| ≥ n
e :

It follows that ν|A||B| ≥ ν |A|n
e , and since we verified the

first part of Definition 8, we obtain denA0 (A,B) ≤ |A| ·
c9nν. Hence, denA0 (A,B) ≤ c9eν|A||B|.

2) The case where |B| < n
e :

It suffices to show the property for the case where A0

is replaced by A due to the fact that denA0 (A,B) ≤
denA (A,B). Because of (22), denA (A,B) is a sum of
independent random variables taking values in [0, d2].
As E[denA (A,B)] ≤ ν|A||B| (∵ ν ≥ maxi,j E [Ai,j]),
Lemma 5 ensures that there exist constants c7 > 0 such

that

Pr(denA (A,B) > k · ν|A||B|)

≤ exp
(
− 1

2d2 k log k · ν|A||B|
)

for any k ≥ c7 regardless of choices of A and B.
Claim 2: Let

ka,b := max
{

min
{

k ≥ 1 : k log k ≥ 14d2

νa
log

n

b

}
, c7

}
.

Then, with probability 1−O(n−1), the following holds: For
any two subsets A and B,

denA (A,B) ≤ k|A|,|B|ν|A||B| .
Proof: It is sufficient to prove the following: Pr(

⋃
A,B

[denA (A,B) > k|A|,|B|ν|A||B|]) = O(n−1). Note that in the
case of |A| = a and |B| = b, Pr(denA (|A|, |B|) > kA,B ·
ν|A||B|) is upper bounded by exp(− 1

2d2 ka,b log ka,b · νab) as
ka,b ≥ c7 . Hence, the union bound yields:

Pr

⎛

⎝
⋃

A,B
[denA (A,B) > kA,B · ν|A||B|]

⎞

⎠

≤
∑

a,b

[(
n

a

)(
n

b

)
exp

(
− 1

2d2 ka,b log ka,b · νab

)]
.

Since there are at most n2 choices for (a, b), it is enough to
show that

(
n
a

)(
n
b

)
exp

(− 1
2d2 ka,b log ka,b · νab

) ≤ 1
n3 for any

(a, b).
By the definition of “ka,b”, we have ka,b log ka,b ≥ 14d2

νa
log n

b . Hence,

1
2d2 ka,b log ka,b · νab ≥ 7b log

n

b

(a)
≥ a + b + 5b log

n

b

(b)
≥a + b + a log na + b log nb + 3 log n ,

where (a) follows since a ≤ b ≤ n
e ; (b) follows since x log x is

increasing on [1, n
e]. Thus, we have

exp
(
− 1

2d2 ka,b log ka,b · νab

)

≤ exp
(
−a

(
log

n

a
+ 1

)
− b

(
log

n

b
+ 1

)
− 3 log n

)
.

Further, since
(

n
m

) ≤ (
ne
m

)m = exp (m(log n/m + 1)),
(

n

a

)(
n

b

)
= exp (a (log n/a + 1) + b (log n/b + 1)) .

Thus,
(
n
a

)(
n
b

)
e−

1
2 d 2 ka , b log ka , b ·νab ≤ e−3 log n . �

By the above claim, we have that for any A and B such that
|A| ≤ |B| ≤ n

e , either of the following holds:

(i) denA (A,B) ≤ c7ν|A||B| or;

(ii) k|A|,|B| log k|A|,|B| =
14d2

νa
log

n

b
.

For (ii), one can derive: denA (A,B) ≤ k|A|,|B| · ν|A||B| =
(14d2

ν |A| log k |A|, |B|
log n

|B|) · ν|A||B|≤(14d2

ν |A| log denA (A,B)
ν |A||B|

log n
|B|)·ν|A|

|B|, and hence denA (A,B) log denA (A,B)
ν |A||B| ≤ 14d2 |B| log n

|B| .

AHN et al.: HSC IN THE WEIGHTED STOCHASTIC BLOCK MODEL 973

Combining the above two cases 1) and 2), the proof is com-
pleted by taking c10 = max{c9e, c7} and c11 = 14d2 .

F. Proof of Lemma 9

One can easily show that the LHS is equal to
∑

e∈E :We
=x
[I {fe(X⊕ e1)
= We} − I {fe(X)
= We}]. Since the sum-
mand is nonzero only if fe(X⊕ e1)
= fe(X), we count the
number of such edges.

First, observe that if 1 /∈ e, fe(X⊕ e1) = fe(X). Further, if
two (or more) nodes other than node 1 are of different affilia-
tions, then fe(X⊕ e1) = fe(X) = 0. Thus, e must include 1
and all the other nodes in e must be of the same affiliation: If all
the nodes of e other than node 1 are affiliated with community 0,
fe(X⊕ e1) = 1 and fe(X) = 0; and if all the nodes of e other
than node 1 are affiliated with community 1, fe(X⊕ e1) = 0
and fe(X) = 1.

Define the set of edges corresponding to the former case
as E1 , and that corresponding to the latter case as E2 , i.e., E1
:= {e ∈ E : 1 ∈ e and (e \ {1}) ⊂ {ηn + 1, ηn + 2, . . . , ηn
+ n/2}} and E2 := {e ∈ E : 1 ∈ e and (e \ {1}) ⊂ {2, 3, . . . ,
ηn, ηn + n/2 + 1, ηn + n/2 + 2, . . . , n}}. Consider all ho-
mogeneous edges in E1 . The total contribution of the terms as-
sociated with these edges to the sum is

∑
e∈E1 :We
=x,e:homogeneous

[I {1
= We} − I {0
= We}]. Each term is −1 if observation
is not corrupted, and +1 if observation is corrupted. Thus, the
total contribution is

∑|{e∈E1 : e is homogeneous}|
i=1 Pi(2Θi − 1) =

∑(n / 2−η n
d−1)

i=1 Pi(2Θi − 1), where Pi
i.i.d.∼ Bern(αn) and Θi

i.i.d.∼
Bern(θ). By rewriting other contributions in a similar way, we
complete the proof.

G. Proof of Lemma 10

Let Z := log
(1−θ

θ

)∑K
i=1 Pi(2Θi − 1) + � and M(λ) :=

E[eλ log(1−θ
θ)P1 (2Θ1−1)]. Via simple calculation, we have

Pr (Z > 0) = Pr
(
e

1
2 Z > 1

) ≤ e
1
2 �
{

M
(
1/2

)}K

= e
1
2 �+K{−αn (

√
1−θ−√θ)2 +O (α2

n)}. .

REFERENCES

[1] K. Ahn, K. Lee, and C. Suh, “Information-theoretic limits of subspace
clustering,” in Proc. IEEE Int. Symp. Inf. Theory, 2017, pp. 2473–2477.

[2] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, Aug. 2000.

[3] F. McSherry, “Spectral partitioning of random graphs,” in Proc. 42nd
IEEE Symp. Found. Comput. Sci., 2001, pp. 529–537.

[4] K. Rohe, S. Chatterjee, and B. Yu, “Spectral clustering and the high-
dimensional stochastic blockmodel,” Ann. Statist., vol. 39, pp. 1878–1915,
2011.

[5] J. Lei and A. Rinaldo, “Consistency of spectral clustering in stochastic
block models,” Ann. Statist., vol. 43, no. 1, pp. 215–237, 2015.

[6] G. Ghoshal, V. Zlatić, G. Caldarelli, and M. Newman, “Random hyper-
graphs and their applications,” Phys. Rev. E, vol. 79, no. 6, 2009, Art. no.
066118.

[7] T. Michoel and B. Nachtergaele, “Alignment and integration of complex
networks by hypergraph-based spectral clustering,” Phys. Rev. E, vol. 86,
no. 5, 2012, Art. no. 056111.

[8] D. Ghoshdastidar and A. Dukkipati, “Uniform hypergraph partitioning:
Provable tensor methods and sampling techniques,” J. Mach. Learn. Res.,
vol. 18, no. 50, pp. 1–41, 2017.

[9] D. Ghoshdastidar and A. Dukkipati, “Consistency of spectral partitioning
of uniform hypergraphs under planted partition model,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2014, pp. 397–405.

[10] D. Ghoshdastidar and A. Dukkipati, “A provable generalized tensor spec-
tral method for uniform hypergraph partitioning,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 400–409.

[11] D. Ghoshdastidar and A. Dukkipati, “Consistency of spectral hypergraph
partitioning under planted partition model,” Ann. Statist., vol. 45, no. 1,
pp. 289–315, 2017.

[12] L. Florescu and W. Perkins, “Spectral thresholds in the bipartite stochastic
block model,” in Proc. 29th Annu. Conf. Learn. Theory, 2016, pp. 943–
959.

[13] E. Abbe, “Community detection and stochastic block models: Recent
developments,” J. Mach. Learn. Res., arXiv: 1703.10146, 2017.

[14] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, “Asymptotic analy-
sis of the stochastic block model for modular networks and its algorithmic
applications,” Phys. Rev. E, vol. 84, 2011, Art. no. 066106.

[15] E. Mossel, J. Neeman, and A. Sly, “Reconstruction and estimation in
the planted partition model,” Probability Theory Related Fields, vol. 162,
no. 3/4, pp. 431–461, 2015.

[16] L. Massoulié, “Community detection thresholds and the weak Ramanu-
jan property,” in Proc. 46th Annu. ACM Symp. Theory Comput., 2014,
pp. 694–703.

[17] C. Bordenave, M. Lelarge, and L. Massoulie, “Non-backtracking spec-
trum of random graphs: Community detection and non-regular Ramanujan
graphs,” in Proc. 56th Annu. Symp. Found. Computer Sci., 2015, pp. 1347–
1357.

[18] Y. Chen and J. Xu, “Statistical-computational tradeoffs in planted prob-
lems and submatrix localization with a growing number of clusters and
submatrices,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 882–938, 2016.

[19] J. Banks, C. Moore, J. Neeman, and P. Netrapalli, “Information-theoretic
thresholds for community detection in sparse networks,” in Proc. Conf.
Learn. Theory, 2016, pp. 383–416.

[20] A. Montanari, “Finding one community in a sparse graph,” J. Statist.
Phys., vol. 161, no. 2, pp. 273–299, 2015.

[21] J. Neeman and P. Netrapalli, “Non-reconstructability in the stochastic
block model,” arXiv:1404.6304, 2014.

[22] E. Abbe and C. Sandon, “Proof of the achievability conjectures in the
general stochastic block model,” Commun. Pure Appl. Math., 2017,
doi: 10.1002/cpa.21719.

[23] A. A. Amini and E. Levina, “On semidefinite relaxations for the block
model,” Ann. Statist. vol. 46, pp. 149–179, 2014.

[24] C. Gao, Z. Ma, A. Y. Zhang, and H. H. Zhou, “Achieving optimal mis-
classification proportion in stochastic block model,” J. Mach. Learn. Res.,
vol. 60, pp. 1–45, 2017.

[25] E. Mossel, J. Neeman, and A. Sly, “Consistency thresholds for the planted
bisection model,” in Proc. 47th Annu. ACM Symp. Theory Comput., 2015,
pp. 69–75.

[26] S.-Y. Yun and A. Proutiere, “Community Detection via Random and Adap-
tive Sampling,” COLT, pp. 138–175, 2014.

[27] E. Abbe and C. Sandon, “Community detection in general stochas-
tic block models: Fundamental limits and efficient algorithms for re-
covery,” in Proc. IEEE 56th Annu. Symp. Found. Comput. Sci., 2015,
pp. 670–688.

[28] E. Abbe, A. S. Bandeira, and G. Hall, “Exact recovery in the stochas-
tic block model,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 471–487,
Jan. 2016.

[29] B. Hajek, Y. Wu, and J. Xu, “Achieving exact cluster recovery threshold via
semidefinite programming: Extensions,” IEEE Trans. Inf. Theory, vol. 62,
no. 10, pp. 5918–5937, Oct. 2016.

[30] A. Y. Zhang et al., “Minimax rates of community detection in stochastic
block models,” Ann. Statist., vol. 44, pp. 2252–2280, 2016.

[31] M. Angelini, F. Caltagirone, F. Krzakala, and L. Zdeborova, “Spectral
detection on sparse hypergraphs,” in Proc. 53rd Annu. Allerton Conf.
Commun., Control, Comput., 2015, pp. 66–73.

[32] K. Ahn, K. Lee, and C. Suh, “Community recovery in hypergraphs,”
in Proc. 54th Annu. Allerton Conf. Commun., Control, Comput., 2016,
pp. 657–663.

[33] C.-Y. Lin, C. I, and I.-H. Wang, “On the fundamental statistical limit of
community detection in random hypergraphs,” in Proc. IEEE Int. Symp.
Inf. Theory, 2017, pp. 2178–2182.

[34] V. M. Govindu, “A tensor decomposition for geometric grouping and
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2005,
pp. 1150–1157.

http://dx.doi.org/10.1002/cpa.21719

974 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 5, OCTOBER 2018

[35] S. Agarwal, K. Branson, and S. Belongie, “Higher order learning with
graphs,” in Proc. Int. Conf. Mach. Learn., 2006, pp. 17–24.

[36] G. Chen and G. Lerman, “Spectral curvature clustering (SCC),” Int. J.
Comput. Vis., vol. 81, no. 3, pp. 317–330, 2009.

[37] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of
products,” Studies Appl. Math., vol. 6, pp. 164–189, 1927.

[38] B. Barak and A. Moitra, “Noisy tensor completion via the sum-of-squares
hierarchy,” in Proc. Conf. Learn. Theory, 2016, pp. 417–445.

[39] C. Kim, A. S. Bandeira, and M. X. Goemans, “Community detection in
hypergraphs, spiked tensor models, and sum-of-squares,” in Proc. 12th
Int. Conf. Sampling Theory Appl., 2017, pp. 124–128.

[40] V. Jog and P.-L. Loh, “Information-theoretic bounds for exact recov-
ery in weighted stochastic block models using the renyi divergence,”
in Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput., 2015,
pp. 1308–1315.

[41] M. Xu, V. Jog, and P.-L. Loh, “Optimal rates for community estimation in
the weighted stochastic block model,” arXiv:1706.01175, 2017.

[42] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels:
First steps,” Soc. Netw., vol. 5, no. 2, pp. 109–137, 1983.

[43] E. Mossel, J. Neeman, and A. Sly, “Consistency thresholds for binary
symmetric block models,” arXiv:1407.1591, 2014.

[44] U. Feige and E. Ofek, “Spectral techniques applied to sparse random
graphs,” Random Struct. Algorithms, vol. 27, pp. 251–275, 2005.

[45] A. Coja-Oghlan, “Graph partitioning via adaptive spectral techniques,”
Combinatorics, Probability Comput., vol. 19, pp. 227–284, 2010.

[46] V. Vu, “A simple SVD algorithm for finding hidden partitions,”
arXiv:1404.3918, 2014.

[47] O. Guédon and R. Vershynin, “Community detection in sparse networks
via grothendiecks inequality,” Probability Theory Related Fields, vol. 165,
no. 3/4, pp. 1025–1049, 2016.

[48] J. Matoušek, “On approximate geometric k-clustering,” Discrete Comput.
Geometry, vol. 24, no. 1, pp. 61–84, 2000.

[49] P. Chin, A. Rao, and V. Vu, “Stochastic block model and community
detection in sparse graphs: A spectral algorithm with optimal rate of
recovery,” in Proc. 28th Conf. Learn. Theory, 2015, pp. 391–423.

[50] C. Boutsidis, P. Kambadur, and A. Gittens, “Spectral clustering via the
power method-provably,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 40–
48.

[51] R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completion from a few
entries,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2980–2998, Jun. 2010.

[52] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion
using alternating minimization,” in Proc. 45th Annu. ACM Symp. Theory
Comput., 2013, pp. 665–674.

[53] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternat-
ing minimization,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2013,
pp. 2796–2804.

[54] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via wirtinger
flow: Theory and algorithms,” IEEE Trans. Inf. Theory, vol. 61, no. 4,
pp. 1985–2007, Apr. 2015.

[55] X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for robust
PCA via gradient descent,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2016, pp. 4152–4160.

[56] Y. Chen, G. Kamath, C. Suh, and D. Tse, “Community recovery in graphs
with locality,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 689–698.

[57] S. Balakrishnan, M. J. Wainwright, and B. Yu, “Statistical guarantees
for the EM algorithm: From population to sample-based analysis,” Ann.
Statist., vol. 45, pp. 77–120, 2017.

[58] Y. Chen and C. Suh, “Spectral MLE: Top-k rank aggregation from pairwise
comparisons,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 371–380.

[59] F. Krzakala et al., “Spectral redemption in clustering sparse networks,”
Proc. Nat. Acad. Sci. United States Amer., vol. 110, no. 52, pp. 20 935–
20 940, 2013.

[60] I. Chien et al., “On the minimax misclassification ratio of hypergraph
community detection,” 2018, AISTATS, PMLR 84:871–879.

[61] A. Coja-Oghlan, C. Moore, and V. Sanwalani, “Counting connected graphs
and hypergraphs via the probabilistic method,” Random Struct. Algo-
rithms, vol. 31, no. 3, pp. 288–329, 2007.

[62] J. Nesetril, O. Serra, J. A. Telle, O. Cooley, M. Kang, and C. Koch,
“Evolution of high-order connected components in random hypergraphs,”
Electron. Notes Discrete Math., vol. 49, pp. 569–575, 2015.

[63] J. Friedman, J. Kahn, and E. Szemeredi, “On the second eigenvalue of
random regular graphs,” in Proc. 21st Annu. ACM Symp. Theory Comput.,
1989, pp. 587–598.

[64] T. Tao, Topics in Random Matrix Theory. Providence, RI, USA: Amer.
Math. Soc.2012, vol. 132.

[65] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,”
Found. Comput. Math., vol. 12, pp. 389–434, 2012.

[66] P. Jain and S. Oh, “Provable tensor factorization with missing data,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2014, pp. 1431–1439.

[67] N. Alon and J. H. Spencer, The Probabilistic Method. Hoboken, NJ, USA:
Wiley, 2004.

[68] N. Alon, M. Krivelevich, and B. Sudakov, “Finding a large hidden clique
in a random graph,” Random Struct. Algorithms, vol. 13, pp. 457–468,
1998.

[69] R. Tron and R. Vidal, “A benchmark for the comparison of 3-D mo-
tion segmentation algorithms,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2007, pp. 1–8.

[70] R. Heckel, M. Tschannen, and H. Bölcskei, “Dimensionality-reduced sub-
space clustering,” Inf. Inference, A J. IMA, vol. 6, no. 3, pp. 246–283, 2017.

[71] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory,
and applications,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11,
pp. 2765–2781, Nov. 2013.

[72] E. L. Dyer, A. C. Sankaranarayanan, and R. G. Baraniuk, “Greedy feature
selection for subspace clustering,” J. Mach. Learn. Res., vol. 14, no. 1,
pp. 2487–2517, 2013.

[73] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery
of subspace structures by low-rank representation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013.

[74] R. Heckel and H. Bölcskei, “Robust subspace clustering via thresholding,”
IEEE Trans. Inf. Theory, vol. 61, no. 11, pp. 6320–6342, Nov. 2015.

[75] D. Park, C. Caramanis, and S. Sanghavi, “Greedy subspace clustering,” in
Proc. 27th Int. Conf. Neural Inf. Process. Syst., 2014, pp. 2753–2761.

[76] S. Jain and V. Madhav Govindu, “Efficient higher-order clustering on
the Grassmann manifold,” in Proc. IEEE Int. Conf. Comput. Vis., 2013,
pp. 3511–3518.

[77] O. Duchenne, F. Bach, I.-S. Kweon, and J. Ponce, “A tensor-based algo-
rithm for high-order graph matching,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 12, pp. 2383–2395, Dec. 2011.

[78] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowl. Inf. Syst., vol. 42, no. 1, pp. 181–213,
2015.

Kwangjun Ahn received the B.S. degree from the Department of Mathematical
Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South
Korea, in 2017.

He is currently a military police desk clerk in the US Army as a part of
Korean Augmentation to the US Army. His research interests include applied
mathematics.

Kangwook Lee received the Ph.D. degree in EECS from UC Berkeley, Berkeley,
CA, USA, in 2016. He is a recipient of the KFAS Fellowship from 2010 to 2015.
He is a Postdoctoral Researcher in the School of Electrical Engineering, Korea
Advanced Institute of Science and Technology. His research interests include
information theory and machine learning.

Changho Suh (S’10–M’12) received the B.S. and M.S. degrees in electrical
engineering from Korea Advanced Institute of Science and Technology (KAIST,
Daejeon, South Korea, in 2000 and 2002, respectively, and the Ph.D. degree in
electrical engineering and computer sciences from UC-Berkeley, Berkeley, CA,
USA, in 2011. He is an Ewon Associate Professor in the School of Electrical
Engineering, KAIST, since 2012. From 2011 to 2012, he was a Postdoctoral
Associate with the Research Laboratory of Electronics, MIT. From 2002 to 2006,
he had been with the Telecommunication R&D Center, Samsung Electronics.
He received the 2015 Haedong Young Engineer Award from the Institute of
Electronics and Information Engineers, the 2013 Stephen O. Rice Prize from
the IEEE Communications Society, the David J. Sakrison Memorial Prize from
the UC-Berkeley EECS Department in 2011, and the Best Student Paper Award
of the IEEE International Symposium on Information Theory in 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

