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Abstract—We explore two-way interference channels (ICs)
where there are forward and backward ICs with four indepen-
dent messages: two associated with the forward IC and the other
two with respect to the backward IC. For a linear deterministic
model of this channel, we develop inner and outer bounds on
the capacity region. As a consequence, we demonstrate that
interaction across forward and backward channels enables a
more beneficial use of the channels, thereby yielding strict capac-
ity improvements over non-interactive independent transmission.
Moreover, our novel outer bound establishes the characterization
of channel regimes in which interaction has no bearing on sum
capacity.

I. INTRODUCTION

The inherent two-way nature of communication links pro-

vides an opportunity to enable interaction between nodes. It

allows nodes to adapt their transmitted signals to past received

signals in exchanging their messages. Interaction at a node is

enabled through the use of its past received signals, which are

usually obtained via feedback offered by backward communi-

cation links associated with that node. Hence, exploring the

role of feedback needs to be preceded towards understanding

two-way communication.

The history of feedback traces back to Shannon [1]. For

memoryless point-to-point channels, Shannon proved that

feedback cannot increase capacity [1], but subsequent work

showed that the situation is different for many multi-user

channels. In particular, recent research shows that feedback

provides a significant gain for communication over interfer-

ence channels (ICs) [2], [3], [4]. Interestingly an explicit

analysis in [3] reveals that the feedback gain is unbounded,

i.e., the gap between the feedback and nonfeedback capacities

can be arbitrarily large for certain channel parameters.

While feedback promises substantial theoretical gain, it

comes with challenges in implementation. The reason is that

the feedback gain analyzed in [3] is concerning an idealistic

scenario in which the channel output feedback is given for

free. In the scenario, the cost of using feedback is not taken

into account and thus the theoretical feedback gain therein

is not promised yet in practice. So one natural question that

arises is: Can feedback provide a gain even when the feedback

cost is taken into consideration?

In an effort to address this question, we consider two-way

interference channels where there are forward and backward
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ICs (not necessarily the same) with four independent mes-

sages: two associated with the forward IC and the other two

with respect to the backward IC. In the considered model, two

transmissions compete for the use of each channel, e.g., the

backward IC: (1) Sending independent backward messages; (2)

Sending feedback signals to aid forward-message transmission.

So in this model, feedback cost is well reflected via the tension

between the two transmissions. As a stepping stone towards

practically relevant Gaussian channels, we use an intermedi-

ate model: the Avestimehr-Diggavi-Tse (ADT) deterministic

model [5], which is known to well capture key properties of

the wireless Gaussian channels.

Our contributions are two-folded. We first characterize an

inner bound on the capacity region of the two-way IC. As

a result, we demonstrate that interaction between forward

and backward ICs can provide capacity improvements over

non-interactive transmission. The second contribution is the

derivation of a novel outer bound, which one cannot obtain

with prior techniques, such as the cutset bound, the genie-

aided bound [6], [2], [3] and the generalized network sharing

bound [7]. This new development leads to the characterization

of entire channel regimes in which interaction provides no gain

in sum capacity.

Related Work: The most related works are Sahai et.al. [8]

and Suh-Wang-Tse [9]. Sahai et.al. [8] demonstrated that there

is no interaction gain when forward-and-backward channels

are identical and lie in the strong interference regime. Suh-

Wang-Tse [9] established more broader channel regimes where

interaction provides no gain, as well as identified some other

regimes in which interaction offers a gain. However, the

complete characterization of the regimes with gain or without

gain has been open. Our main contribution of this paper is

to settle this open problem. We characterize channel regimes

with gain or without gain, under the channel model considered

in [8], [9] and herein, thereby obtaining the gain-vs-nogain

picture (see Fig. 2). A key innovation behind this result is

the development of a novel outer bound. On the other hand,

Cheng-Devroye [10] considered a partial two-way transmis-

sion scenario where interaction is enabled only at two nodes,

while no interaction is permitted at the other two nodes. It

has been shown under the scenario that the partial interaction

provides no gain for some channel regimes.

II. MODEL

Fig. 1 describes a two-way ADT deterministic IC where user

k wants to send its own message Wk to user k̃, while user k̃
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Fig. 1. Two-way ADT deterministic interference channel (IC).

wishes to send its own message W̃k to user k, k = 1, 2. We

assume that (W1,W2, W̃1, W̃2) are independent and uniformly

distributed. For simplicity, we consider a setting where both

forward and backward ICs are symmetric but not necessarily

the same. In the forward IC, n and m indicate the number

of signal bit levels for direct and cross links respectively.

The corresponding values in the backward IC are denoted by

(ñ, m̃). Let Xk ∈ F
max(n,m)
2 be user k’s transmitted signal

and Vk ∈ F
m
2 be a part of Xk visible to user j̃(6= k̃).

Similarly let X̃k be user k̃’s transmitted signal and Ṽk be a

part of X̃k visible to user j(6= k). The deterministic model

captures broadcast and superposition of signals. See [5] for

explicit details. A signal bit level observed by both users is

broadcasted. If multiple signal levels arrive at the same signal

level at a user, we assume modulo-2-addition.

The encoded signal Xki of user k at time i is a func-

tion of its own message and past received signals: Xki =
fki(Wk, Ỹ

i−1
k ). We define Ỹ i−1

k := {Ỹkt}
i−1
t=1 where Ỹkt

denotes user k’s received signal at time t, offered through

the backward IC. Similarly the encoded signal X̃ki of user k̃
at time i is a function of its own message and past received

signals: X̃ki = f̃ki(W̃k, Y
i−1
k ).

A rate tuple (R1, R2, R̃1, R̃2) is said to be achievable

if there exists a family of codebooks and encoder/decoder

functions such that the decoding error probabilities go to

zero as code length N tends to infinity. In this work, we

focus on a sum-rate pair (R, R̃) := (R1 + R2, R̃1 + R̃2) and

the corresponding capacity region, defined as the closure of

the set of achievable sum-rate pairs: C = closure{(R, R̃) :
(R1, R2, R̃1, R̃2) ∈ Chigh} where Chigh denotes the capacity

region w.r.t. the high-dimensional rate tuple (R1, R2, R̃1, R̃2).
Let Csum = sup{R+ R̃ : (R, R̃) ∈ C}.

III. MAIN RESULTS

We first state the capacity region for the non-interactive

scenario, which we will use as a baseline for comparisons

to our main results that will be stated later.

Theorem 1 (Non-interaction capacity [6], [11]): The

capacity region Cno for the non-interactive scenario is the set

of (R, R̃) such that R ≤ Cno and R̃ ≤ C̃no where

Cno = min {2max(n−m,m),max(2n−m,m), 2n} , (1)

C̃no = min {2max(ñ− m̃, m̃),max(2ñ− m̃, m̃), 2ñ} . (2)

A. Inner Bound

Theorem 2 (Inner bound): Let α = m
n

and α̃ = m̃
ñ

. The

capacity region of the two-way IC includes the set R of (R, R̃)
such that, for some 0 ≤ λ ≤ 1 and 0 ≤ λ̃ ≤ 1,

R ≤















(1− λ)min
{

Cno +
2λ̃
1−λ

max(ñ− m̃, m̃), Cpf

}

, α < 2
3

,

(1− λ)Cno,
2
3
≤ α < 2,

(1− λ)min
{

Cno +
2λ̃ñ
1−λ

, Cpf

}

, α ≥ 2,

R̃ ≤















(1− λ̃)min
{

C̃no +
2λ

1−λ̃
max(n−m,m), C̃pf

}

, α̃ < 2
3

,

(1− λ̃)C̃no,
2
3
≤ α̃ < 2,

(1− λ̃)min
{

C̃no +
2λn

1−λ̃
, C̃pf

}

, α̃ ≥ 2.

Here Cpf and C̃pf indicate the perfect-feedback sum capacities

of the forward and backward ICs respectively [3]: Cpf =
max(2n−m,m); C̃pf = max(2ñ− m̃, m̃).

Proof: See Section IV.

Remark 1: The inner bound formula is closely coupled

with our achievability built upon a particular frequency band

coordination in which a band assigned to each channel is split

into two parts: (1) one for its own message transmission;

(2) the other for feedback transmission. Here a parameter

λ ∈ [0, 1] represents the fraction of feedback transmission in

the forward channel. Similarly λ̃ is defined w.r.t. the backward

channel. This will be clearer in Section IV with Fig. 3. �

Theorems 1 and 2 allow us to check whether or not there

is a gain due to interaction. Specifically we make an explicit

comparison by evaluating the µ-sum rates:

max
(R,R̃)∈Cno

R+ µR̃
?
< max

(R,R̃)∈R

R + µR̃.

Here one can interpret the µ as the ratio of the revenue of the

backward rate R̃ to that of R. For instance, µ = 0 represents

the case where there is no revenue reaped by transmissions

intended for backward-message delivery; µ = 1 indicates the

case in which the revenues are the same for both transmissions.

Strict inequality for some µ in the above implies that there

exits a revenue scenario in which interaction provides a gain

over non-interactive transmission. Here we examine perhaps

the most interesting and practically-relevant scenario: µ = 1,

in which the revenues w.r.t. R and R̃ are the same, and hence

any interaction gain that can be reaped in the case can be

viewed as a net gain.

Comparison 1 (Net Gain): For illustration purpose, we

consider an example of (n,m) = (2, 1) and (ñ, m̃) = (1, 1). In

this example, Theorem 1 gives Csum
no = Cno+C̃no = 2+1 = 3,

while Theorem 2 yields:

Rsum = max
0≤λ,λ̃≤1

min
{

2(1− λ) + 2λ̃, 3(1− λ)
}

+ 1− λ̃

= 3.5 > 3 = Csum
no
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Fig. 2. Gain-vs-nogain picture: The blue regime indicates the case in which
Rsum > Csum

no , while the red regime denotes the case where C̄sum = Csum
no .

where Rsum = 3.5 is achieved when (λ, λ̃) = (0, 0.5). Notice

that interaction provides around 16.7% net gain over non-

interactive transmission. Later in Section IV (particularly see

Remark 3), we will provide an intuition as to where this net

gain comes from. In Corollary 1 (see below), we also identify

other channel regimes in which interaction provides capacity

improvements. See Fig. 2. �

Corollary 1 (µ = 1): Rsum > Csum
no for the regimes:

(G1) (α < 2
3 , α̃ > 2

3 ); (G2) (23 < α < 2, α̃ < 2
3 );

(G3) (23 < α < 2, α̃ > 2); and (G4) (α ≥ 2, α̃ < 2).
Proof: A tedious yet straightforward computation with

Theorems 1 and 2 completes the proof.

B. Outer Bound

The identification of regimes that exhibit a net gain, summa-

rized in Corollary 1, is based on an inner bound in Theorem 2,

which is due to a particular achievable scheme that will be

described in Section IV. So a natural question that arises is:

Can interaction offer a net gain also for the other remaining

regimes outside (G1)-(G4)? In other words, is there another

achievable scheme that enables a net gain for the remaining

regimes? We answer this question negatively by establishing

a novel outer bound as follows.

Theorem 3 (Outer Bound): The capacity region of the two-

way IC is included by the set C̄ of (R, R̃) such that

R ≤ (n−m)+ +max(n,m) (3)

R̃ ≤ (ñ− m̃)+ +max(ñ, m̃) (4)

R+ R̃ ≤ 2(n+ ñ) (5)

R+ R̃ ≤ 2max(n−m,m) + 2max(ñ− m̃, m̃). (6)

Proof: Notice that the first two bounds match with the

perfect-feedback bound [3], [8], [9]. So one can prove them

with a simple modification to the proof in the references. The

third bound comes from the following cutset bounds, of which

the proofs will be omitted here: R1 + R̃2 ≤ n+ ñ and R2 +
R̃1 ≤ n+ ñ. Our key contribution lies in the derivation of the

last bound, which will be provided in Section V.

Comparison 2 (No Gain): The bounds of (3) and (4) in

Theorem 3 reveals that for the regime of (23 ≤ α ≤ 2, 23 ≤

α̃ ≤ 2), R + R̃ ≤ 2n −m + 2ñ − m̃. This bound coincides

1− λ

forward band

backward band

forward msg tx

feedback for forward msgs

feedback for backward msgs

backward msg tx

λ

1− λ̃λ̃

 

Fig. 3. Proposed scheme: Coordination of forward and backward bands.

with Cno+ C̃no, suggesting no gain. Similarly using the bound

of (5), one can show that interaction does not help when

(α ≥ 2, α̃ ≥ 2). The last regime of (α < 2
3 , α̃ < 2

3 ) has been

open thus far. Our main contribution is in the characterization

of the open regime with the novel bound (6). Note that this

bound yields R+ R̃ ≤ 2max(n−m,m) + 2max(ñ− m̃, m̃)
equal to Csum

no , implying no gain. See Fig. 2. �

Remark 2: Our inner and upper bounds do not match in

general. For instance, a careful inspection reveals that our

achievable sum rate due to Theorem 2 is strictly less than

the upper bound in Theorem 3 except for the no-gain regimes

in Fig. 2. �

IV. PROOF OF THEOREM 2

Our proposed scheme employs the following frequency

band coordination. We split a band assigned to each channel

into two parts: one for its own message transmission and the

other for feedback that aids the other message transmission

w.r.t. the other channel. See Fig. 3.

Under this coordination, each channel is then used either for

its own message transmission or for feedback w.r.t. messages

associated with the other cannel. In other words, fresh message

transmission and feedback transmission are orthogonalized

each other. This orthogonality ensures that the signals in the

blue colored bands (consisting of the (1 − λ) fraction of

the forward band and the λ̃ fraction of the backward band

in Fig. 3) contain forward-message related signals only, and

hence R is determined solely by transmission that occurs in

the blue colored bands. Similarly transmission through the red

colored bands contributes to R̃.

We are now ready to prove the claimed inner bound. First

consider the forward-message sum rate. We normalize the

fraction (1 − λ) of the forward band assigned for forward-

message transmission to 1, and let γ = λ̃
1−λ

. Then, R would

be (1−λ) times a sum rate for the case in which the forward

and backward symbol rates are 1 and γ respectively. In fact,

an achievable rate in the normalized setting is derived in [9],

which is formally stated in Lemma 1 (see below). Using

Lemma 1, one can readily obtain the claimed achievable rate.

Similarly one can prove the achievable rate w.r.t. R̃, which

completes the proof.

Lemma 1 ([9]): Suppose that the forward and backward

symbol rates are 1 and γ respectively. Then, one can achieve

R =

{

min {Cno + 2γmax(ñ− m̃, m̃), Cpf} , α < 2
3 ,

min {Cno + 2γñ, Cpf} , α ≥ 2.

Proof: See [9, Section IV] for the proof.
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Fig. 4. An achievable scheme for α := m

n
= 1

2
, α̃ := m̃

ñ
= 1: Rsum =

3 + 0.5 > 3 = Csum
no is achieved when (λ, λ̃) = (0, 0.5).

A. Example: (n,m) = (2, 1), (ñ, m̃) = (1, 1)

In this section, we seek to illustrate achievability for the

example considered in Comparison 1, as an effort to provide

an intuition behind the nature of the net gain that we claimed

earlier. Notice in Corollary 1 that in the considered example,

we achieve Rsum = 3 + 0.5 > 3 = Csum
no when (λ, λ̃) =

(0, 0.5).
Let us first see how we achieve R = 3. Similar to the

perfect feedback scheme [3], it has two stages. See Fig. 4.

In the first stage, each user sends one private bit and one

common bit on the two levels. In the perfect feedback scheme,

user 1 wanted to know the other user information b1 which

caused interference to its desired symbol a2. Similarly user

2 wanted to know a1. In an attempt to satisfy this demand,

the two bits (a2 ⊕ b1, b2 ⊕ a1) were fed back to the users. It

appears that two time slots are needed to feed back these two

bits. However, one can satisfy the demand in one shot. Note

that the symbol b1 wanted by user 1 is available at user 2̃.

Similarly the symbol a1 wanted by user 2 is available at user

1̃. Suppose we now send these two bits instead. Users 1 and

2 can then decode b1 and a1 respectively, exploiting its own

signal as side information. The key observation here is that

exploiting side information at users 1 and 2, the backward IC

becomes equivalent to two non-interfering cross point-to-point

channels. In the second stage, each user starts with sending one

fresh private bit on the bottom level, and additionally sends

the other user’s information (decoded with feedback) on the

vacant common level. Users 1̃ and 2̃ can then decode 6 bits

in total during the two stages, thus achieving R = 3.

Observe that the forward channel is fully utilized only for

forward-message transmission, i.e., 1 − λ = 1, while the

backward channel is utilized once every two slots for feedback,

i.e., λ̃ = 0.5. On the other hand, the non-interactive backward-

message transmission can be made for the remaining (1− λ̃)-
fraction of the backward band, thereby yielding R̃ = 0.5.

Hence, Rsum = 3 + 0.5 = 3.5, which shows around 16.7%
net gain over non-interaction transmission with Csum

no = 3.

Remark 3 (Why Net Gain?): Note in Fig. 4 that the two

bits (a1, b1) can be successfully fed back through the one-bit-

capacity backward IC. This is because each user can cancel

the seemingly interfering information by exploiting its own

information as side information. This enables the effective

feedback gain: a capacity increase of 1 bit with λ̃C̃no = 1/2
bits of the backward IC’s original capability. This is the very

reason as to why the net gain occurs. �

V. PROOF OF THEOREM 3

We focus on the proof of the novel bound (6) which hinges
upon several lemmas stated below. The proof is streamlined
with the help of a key notion, called triple mutual infor-
mation (or interaction information [12]), which is defined
as I(X ;Y ;Z) := I(X ;Y ) − I(X ;Y |Z). It turns out that
the commutative property of the notion plays a crucial role
in deriving several key steps in the proof: I(X ;Y ;Z) =
I(X ;Z;Y ) = · · · = I(Z;Y ;X). Using this notion and
starting with Fano’s inequality, we get

N(R1 +R2 − ǫN ) ≤ I(W1;Y
N

1 , W̃1) + I(W2;Y
N

2 , W̃2)

≤ I(W1;Y
N

1 , V
N

1 |W̃1) + I(W2;Y
N

2 , V
N

2 |W̃2)

=
∑

{

I(W1; Y1i, V1i|W̃1, Y
i−1
1 , V

i−1
1 )

+I(W2;Y2i, V2i|W̃2, Y
i−1
2 , V

i−1
2 )

}

=
∑

{

I(V1i;W1|W̃1, Y
i−1
1 , V

i−1
1 ) + I(Y1i;W1|W̃1, Y

i−1
1 , V

i

1 )

+I(V2i;W2|W̃2, Y
i−1
2 , V

i−1
2 ) + I(Y2i;W2|W̃2, Y

i−1
2 , V

i

2 )
}

(a)
=

∑

{

I(Y1i;W1,W2, W̃2|W̃1, Y
i−1
1 , V

i

1 )

+I(Y2i;W2,W1, W̃1|W̃2, Y
i−1
2 , V

i

2 )

+I(V1i;W1|W̃1, Y
i−1
1 , V

i−1
1 )− I(Y1i;W2, W̃2|W1, W̃1, Y

i−1
1 , V

i

1 )

+I(V2i;W2|W̃2, Y
i−1
2 , V

i−1
2 )− I(Y2i;W1, W̃1|W2, W̃2, Y

i−1
2 , V

i

2 )
}

≤
∑

{H(Y1i|V1i) +H(Y2i|V2i)

+I(V1i;W1|W̃1, Y
i−1
1 , V

i−1
1 )− I(Y1i;W2, W̃2|W1, W̃1, Y

i−1
1 , V

i

1 )

+I(V2i;W2|W̃2, Y
i−1
2 , V

i−1
2 )− I(Y2i;W1, W̃1|W2, W̃2, Y

i−1
2 , V

i

2 )
}

where (a) follows from a chain rule. Now using Lemma 2

(see below), we get:

N(R1 +R2 + R̃1 + R̃2 − ǫN )

≤
∑

{

H(Y1i|V1i) +H(Y2i|V2i) +H(Ỹ1i|Ṽ1i) +H(Ỹ2i|Ṽ2i)
}

≤ 2N max(n−m,m) + 2N max(ñ− m̃, m̃).

If (R1, R2, R̃1, R̃2) is achievable, then ǫN → 0 as N tends to

infinity. Therefore, we get the desired bound.
Lemma 2:

∑

{

I(V1i;W1|W̃1, Y
i−1
1 , V

i−1
1 )− I(Y1i;W2, W̃2|W1, W̃1, Y

i−1
1 , V

i

1 )

+I(V2i;W2|W̃2, Y
i−1
2 , V

i−1
2 )− I(Y2i;W1, W̃1|W2, W̃2, Y

i−1
2 , V

i

2 )

+I(Ṽ1i; W̃1|W1, Ỹ
i−1
1 , Ṽ

i−1
1 )− I(Ỹ1i; W̃2,W2|W̃1,W1, Ỹ

i−1
1 , Ṽ

i

1 )

+I(Ṽ2i; W̃2|W2, Ỹ
i−1
2 , Ṽ

i−1
2 )− I(Ỹ2i; W̃1,W1|W̃2,W2, Ỹ

i−1
2 , Ṽ

i

2 )
}

≤ 0
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Proof: Consider 1st and 2nd terms in summation of LHS:

(a)
=

∑

{

I(V1i;W1|W̃1, Y
i−1
1 , V i−1

1 )

−I(Y1i;W2, W̃2, Ỹ
i
1 |W1, W̃1, Y

i−1
1 , V i

1 )

(b)
=

∑

{

I(V1i, Ṽ1i;W1|W̃1, Y
i−1
1 , V i−1

1 , Ṽ i−1
1 )

−I(Y1i; Ỹ
i
1 |W1, W̃1, Y

i−1
1 , V i

1 , Ṽ
i
1 )

−I(Y1i;W2, W̃2|W1, W̃1, Ỹ
i−1
1 , Y i−1

1 )
}

=
∑

{

I(V1i, Ṽ1i;W1|W̃1, V
i−1
1 , Ṽ i−1

1 )

−I(V1i, Ṽ1i;W1;Y
i−1
1 |W̃1, V

i−1
1 , Ṽ i−1

1 )

−I(Y1i; Ỹ
i
1 |W1, W̃1, Y

i−1
1 , V i

1 , Ṽ
i
1 )

−I(Y1i;W2, W̃2|W1, W̃1, Ỹ
i
1 , Y

i−1
1 )

}

where (a) follows from the fact that Ỹ i
1 is a function of

(W1, W̃1,W2, W̃2) and (b) follows from the fact that Ṽ i
1 is

a function of (W̃1, Y
i−1
1 ).

Using Lemma 3 stated below and applying the same to 5th
and 6th terms in summation of LHS, we get:

(1st, 2nd, 5th and 6th terms of LHS in the claimed bound)

(a)

≤
∑

{

I(V1i, Ṽ1i;W1|W̃1, V
i−1
1 , Ṽ

i−1
1 )

+I(Ỹ1i;Y
i−1
1 |W1, W̃1, Ỹ

i−1
1 , Ṽ

i

1 )

−I(Ṽ1i;W1, Ỹ
i−1
1 |W̃1, V

i−1
1 , Ṽ

i−1
1 )

−I(Y1i;W2, W̃2|W1, W̃1, Ỹ
i

1 , Y
i−1
1 )

}

+
∑

{

I(Ṽ1i; W̃1|W1, Ỹ
i−1
1 , V

i−1
1 , Ṽ

i−1
1 )

−I(Ỹ1i; W̃2,W2, Y
i−1
1 |W̃1,W1, Ỹ

i−1
1 , Ṽ

i

1 )
}

(b)

≤
∑

{

I(V1i, Ṽ1i;W1|W̃1, V
i−1
1 , Ṽ

i−1
1 )

−I(Ṽ1i;W1, Ỹ
i−1
1 |W̃1, V

i−1
1 , Ṽ

i−1
1 )

−I(Y1i;W2, W̃2|W1, W̃1, Ỹ
i

1 , Y
i−1
1 )

}

+
∑

{

I(Ṽ1i; W̃1,W1, Ỹ
i−1
1 |V i−1

1 , Ṽ
i−1
1 )

−I(Ỹ1i; W̃2,W2|W̃1,W1, Ỹ
i−1
1 , Y

i−1
1 )

}

(c)

≤
∑

{

I(V1i, Ṽ1i;W1|W̃1, V
i−1
1 , Ṽ

i−1
1 )

−I(Y1i, Ỹ1i;W2, W̃2|W1, W̃1, Ỹ
i−1
1 , Y

i−1
1 )

+I(V1i, Ṽ1i; W̃1|V
i−1
1 , Ṽ

i−1
1 )

}

(d)
= I(V N

1 , Ṽ
N

1 ;W1, W̃1)− I(Y N

1 , Ỹ
N

1 , V
N

2 , Ṽ
N

2 ;W2, W̃2|W1, W̃1)

≤ I(V N

1 , Ṽ
N

1 ;W1, W̃1)− I(V N

2 , Ṽ
N

2 ;W2, W̃2|W1, W̃1)

where (a) follows from the fact that V i−1
1 and Y i−1

1 are

functions of (W1, Ỹ
i−1
1 ) and (W1,W2, W̃1, W̃2), respectively;

(b) follows from a chain rule (applied on the last term) and

the non-negativity of mutual information; (c) follows from a

chain rule and the non-negativity of mutual information; (d)
follows from a chain rule and the fact that (V N

2 , Ṽ N
2 ) is a

function of (W1, W̃1, Y
N
1 , Ỹ N

1 ).
Applying the same to 3rd, 4th, 7th and 8th terms in

summation of LHS, we get:

(LHS in the claimed bound)

≤ I(W2, W̃2, V
N

1 , Ṽ
N

1 ;W1, W̃1)− I(V N

2 , Ṽ
N

2 ;W2, W̃2|W1, W̃1)

+ I(W1, W̃1, V
N

2 , Ṽ
N

2 ;W2, W̃2)− I(V N

1 , Ṽ
N

1 ;W1, W̃1|W2, W̃2)

= 0.

Lemma 3:

−
∑

{

I(V1i, Ṽ1i;W1;Y
i−1
1 |W̃1, V

i−1
1 , Ṽ i−1

1 )

+I(Y1i; Ỹ
i
1 |W1, W̃1, Y

i−1
1 , V i

1 , Ṽ
i
1 )
}

≤
∑

{

I(Ỹ1i;Y
i−1
1 |W1, W̃1, Ỹ

i−1
1 , Ṽ i

1 )

−I(Ṽ1i;W1, Ỹ
i−1
1 |W̃1, V

i−1
1 , Ṽ i−1

1 )
}

.

Proof: See the full version of this paper [13].

VI. CONCLUSION

In this work, we established inner and outer bounds of the

two-way ADT deterministic IC, thereby categorizing channel

regimes into (i) one where interaction provides a gain in sum

capacity and (ii) the other in which it does not. Our achiev-

ability does not fully utilize interaction because it does not

allow mixing feedback with pure message signals. Hence one

future work of interest would be to characterize the capacity

region of the two-way IC to identify the entire channel regime

in which stronger interaction that permits blending the signals

offers a larger gain.
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