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Abstract—Coded computation is a framework for providing
redundancy in distributed computing systems to make them
robust to slower nodes, or stragglers. In [1], the authors propose
a coded computation scheme based on maximum distance sep-
arable (MDS) codes for computing the product AᵀB, and this
scheme is suitable for the case where one of the matrices is small
enough to fit into a single compute node. In this work, we study
coded computation involving large matrix multiplication where
both matrices are large, and propose a new coded computation
scheme, which we call product-coded matrix multiplication. Our
analysis reveals interesting insights into which schemes perform
best in which regimes. When the number of backup nodes scales
sub-linearly in the size of the product, the product-coded scheme
achieves the best run-time performance. On the other hand,
when the number of backup nodes scales linearly in the size of
the product, the MDS-coded scheme achieves the fundamental
limit on the run-time performance. Further, we propose a novel
application of low-density-parity-check (LDPC) codes to achieve
linear-time decoding complexity, thus allowing our proposed
solutions to scale gracefully.

I. INTRODUCTION

Distributed systems featuring computing and storage ca-

pacity at unprecedented scale are driving today’s big data

era. These systems are characterized by various sources of

individual node delays and latencies related to queueing,

computing and communicating, that cannot be controlled

or tracked at fine scale [2]. These unpredictable individual-

component latencies result in a new kind of ‘systems noise’

that we need to deal with if we are to provide delay guarantees

in large-scale distributed computing systems.

Coded computation is a principled framework for providing

redundancy in distributed computing systems to make them

robust to slower computing nodes, or stragglers. In [1], the

authors propose a coded computation scheme called ‘MDS-

coded matrix multiplication’, based on maximum distance

separable (MDS) codes. The key idea is as follows. Imagine

a distributed computing system with a single master node

(master) and 3 worker nodes (workers). Assume that the

latencies of the workers are unpredictable due to system noise.

The goal is to compute a matrix multiplication AᵀB as quick

as possible in the presence of stragglers. The MDS-coded

scheme first splits A into two submatrices, i.e., A = [A1 A2],
and precomputes the parity of the two, e.g., A3 = A1 +A2.

Then, for each i, it assigns the task of computing Aᵀ
i B to

worker i. When worker i finishes its task, it sends the result

back to the master node. One can observe that under this
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scheme the master node can compute AᵀB as soon as any
2 out of the 3 task results are obtained. For instance, Aᵀ

1B
and Aᵀ

3B are sufficient for the master node to reconstruct

Aᵀ
2B = Aᵀ

3B −Aᵀ
1B, and hence AᵀB.

One assumption made in this approach is that the size of

B is small enough since otherwise computing Aᵀ
i B’s with

individual workers is infeasible. This assumption restricts its

applicability of the proposed scheme to modern applications

involving large-scale matrix multiplications.

This motivates us to study the problem of large matrix mul-

tiplication. We first generalize various distributed computation

schemes to this new problem. We then design a new coded

computation scheme based on product codes, called product-
coded matrix multiplication. We analyze the expected run-time

of various computation schemes, thus revealing interesting

insights into which schemes perform best in which regimes.

When the number of backup workers scales sub-linearly in the

size of the product (the number of operations to compute the

product), the product-coded scheme achieves the best average

run-time performance. On the other hand, when the number of

backup workers scales linearly in the size of the product, the

MDS-coded scheme achieves the optimal average run-time.

Further, we show how low-density-parity-check (LDPC)

codes provide our schemes with linear-time decoding algo-

rithms, thus allowing them to scale gracefully.

A. Computation Model and Notation

Throughout the paper, without loss of generality, we assume

that a worker in the distributed computing system is capable

of computing a dot product of vectors of size d. When

worker i is assigned a task of computing a dot product, the

task completion time, denoted by Ti, is randomly distributed,

Note that in this work, we do not distinguish time taken for

computing a dot product and time taken for transmitting the

computation result to the master node. Further, we denote

the kth order statistics of (T1, . . . , Tn) by Tk:n. That is, Tk:n

is the kth smallest value among (T1, . . . , Tn). The overall

computational time, at which the master node can fully decode

the overall computation result, is denoted by T .

B. Related Work

The idea of applying codes to speed up distributed algo-

rithms has been applied to various setups with different goals.

In [3], an anytime coding scheme for approximate matrix

multiplication is proposed, and it is shown that the proposed

scheme can improve the quality of approximation compared

with the other existing coded schemes for exact computation.
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In [4], the authors propose a scheme called ‘Short-Dot’, which

induces some sparsity to the encoded matrices at the cost

of reduced decoding flexibility. The authors show that the

overall computation time can be reduced by carefully trading

off the decoding flexibility with the amount of computation

per worker. The authors of [5] study the optimal code design

for computing gradients in a distributed system. The authors

observe that in many machine learning problems, the gradient

of a loss function is the sum of simpler gradients, each of

which is computed with each data point. Based on the obser-

vation that the only thing that matters is the total gradient, the

authors propose a novel coded computation scheme tailored

for computing a sum of functions.
Codes are also shown useful for reducing the communica-

tion overhead. In [6], the authors reduce the communication

overhead required for the shuffling phase of MapReduce.

In [1], the authors reduce the communication cost required

for rearranging training data points across distributed workers.

The trade-off between computational time and communication

overhead in the MapReduce framework is studied in [7].

II. OVERVIEW OF THE EXISTING SCHEMES

In this section, we overview a few existing schemes, which

can be applied to the large matrix multiplication AᵀB. We

assume that both matrices A and B scale together, i.e., A ∈
R

d×k and B ∈ R
d×k. Let us denote the ith column of the

matrix A and B by ai ∈ R
d and bi ∈ R

d, respectively, i.e.,

A = [a1 a2 · · · ak], and B = [b1 b2 · · · bk]. Let N be the

number of workers. Note that N ≥ k2, as computing AᵀB
requires k2 dot products, i.e., aᵀ

i bj’s for 1 ≤ i, j,≤ k.

A. Replication-based Computation
When N = zk2 for some positive integer z, the replication

scheme redundantly assigns each computation task aᵀ
i bj to z

workers. Each of the k2 task results can be obtained from

the fastest worker among the z ones computing the same

dot product, and the master node can recover AᵀB when

it collects all the aᵀ
i bj’s.

B. (One-dimensional) MDS-coded Computation
The MDS-coded algorithm, proposed in [1], assumes that

one of the two matrices, say B, is small enough that com-

putation of aᵀ
i B is computable with distributed workers.

Hence, by viewing the large matrix multiplication problem

AB as k instances of small matrix multiplication problem,

i.e., AᵀB = [Aᵀb1 Aᵀb2 · · · Aᵀbk], one can apply the

MDS-coded computation scheme. Assuming that N = nk,

workers are divided into k groups of size n, each of which

is dedicated to compute Aᵀbj for some j. Consider the first

group, which is for computing Aᵀb1. The MDS-coded scheme

first encodes the k columns of A using an (n, k) MDS code

to obtain n coded columns, say a1 to an. It then assigns

computation of aᵀ
i b1 to the ith worker of this group. Similarly,

the jth group of n workers jointly computes Aᵀbj .
The computational time of the MDS-coded computation

is determined by the maximum of the computational times

among the k groups, and the computational time of each group

is determined by the kth fastest worker among the n workers

in the group.

C. Fully MDS-coded Computation

Treating aᵀ
i bj’s as k2 systematic symbols, one could apply

an (N, k2) MDS code to obtain a set of N coded computation

tasks. While this approach guarantees the optimal decoding

flexibility, i.e., any k2 task results are sufficient to recover

AᵀB, this approach is inefficient since it significantly in-

creases the amount of computation assigned to backup work-

ers. To see this, consider the case of N = k2+1. One can ap-

ply a systematic (k2+1, k2) MDS code to obtain the following

k2+1 computation tasks: aᵀ
1b1,a

ᵀ
1b2, . . . ,a

ᵀ
kbk−1,a

ᵀ
kbk, and∑k

i=1

∑k
j=1 wija

ᵀ
i bj , where wij’s are encoding coefficients.

Note that while each of the first k2 computation tasks involves

a single dot product, the last worker has to compute k2 dot

products (and scalar multiplications) and k2 − 1 additions.

Thus, this backup worker effectively becomes wasted. In

general, the generator matrices of MDS codes are dense,

implying heavy workloads of backup workers.

III. PRODUCT-CODED MATRIX MULTIPLICATION

In this section, we propose a new coded computation

scheme based on product codes, called the product-coded

matrix multiplication. While the MDS-coded computation

encodes computation along one dimension only, the product-

coded scheme encodes computation along both dimensions,

achieving an improved coding gain compared to the (one-

dimensional) MDS-coded scheme. Product code is one way

of constructing a larger code with small codes as building

blocks [8]. For instance, when one is given an (n, k) MDS

code, a product code can be constructed as follows. We first

arrange k2 symbols in a k-by-k array. Every row of the array

is encoded with the (n, k) MDS code, resulting in a k-by-n
array. Finally, each column of the array is encoded with the

(n, k) MDS code, giving us an n-by-n array, including the

n2 encoded symbols. Let us call this product code an (n, k)2

product code. By viewing aᵀ
i bj’s as k2 input symbols, the

product-coded computation applies an (n, k)2 product code,

made of an (n, k) MDS code, to obtain n2 coded computation

tasks. Assuming a linear MDS code, it can be shown that (i, j)
entry of the coded computation task is simply aᵀ

i bj where ai

is the ith encoded column if the matrix A is encoded via an

(n, k) MDS code, and bi is the jth encoded column of B
under the same MDS code. Note that unlike the fully MDS-

coded scheme, every computation tasks of the product-coded

scheme involves only a single dot product, not requiring any

additional computational overhead or unbalanced workloads.

Note that when k or more symbols are collected from any

row or column, the entire row or column can be reconstructed

via the decoding algorithm of the underlying MDS code.

Hence, one can iteratively reconstruct the missing entries in

such rows and columns until every rows and columns is either

fully reconstructed or has more than n− k missing entries.

A. Example: k = 2

We now provide an illustration of the above schemes for

the case of k = 2. That is, one wants to compute

AᵀB =

[
aᵀ
1

aᵀ
2

] [
b1 b2

]
=

[
aᵀ
1b1 aᵀ

1b2
aᵀ
2b1 aᵀ

2b2

]
. (1)
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aᵀ1b1 aᵀ1b2

aᵀ2b2aᵀ2b1

(a) 2x Replication

aᵀ1b1 aᵀ1b2

aᵀ2b2

aᵀ3b2aᵀ3b1

aᵀ2b1

aᵀ4b1 aᵀ4b2

(b) (4, 2) MDS code

aᵀ1b1 aᵀ1b2

aᵀ2b2

aᵀ3b2aᵀ3b1

aᵀ2b1

aᵀ3b3

aᵀ1b3

aᵀ2b3

(c) (3, 2)2 Product code

Fig. 1: Illustration of different computation schemes.

aᵀ1b1 aᵀ1b3

aᵀ3b2aᵀ3b1

(a) Iteration 0

aᵀ1b1 aᵀ1b3

aᵀ3b2aᵀ3b1

aᵀ2b1

(b) Iteration 1

aᵀ1b1 aᵀ1b2 aᵀ1b3

aᵀ3b3aᵀ3b2aᵀ3b1

aᵀ2b1

(c) Iteration 2

aᵀ1b1 aᵀ1b2 aᵀ1b3

aᵀ2b3

aᵀ3b3

aᵀ2b2

aᵀ3b2aᵀ3b1

aᵀ2b1

(d) Iteration 3

Fig. 2: The decoding algorithm for the product-coded scheme.

Given N = 8 workers (or 4 backup workers), the 2x-

replication scheme can be deployed: it assigns two workers

for each of the 4 tasks, as shown in Fig. 1a.

Another choice is to use the (4, 2)-MDS-coded matrix

multiplication algorithm. That is, we encode the columns of

A using a (4, 2) MDS code to obtain a1 to a4. We then

apply the (4, 2)-MDS coded matrix multiplication to Aᵀb1
and Aᵀb2 as in Fig. 1b.

With N = 9 workers (or 5 backup workers), one can use

the (3, 2)2-product-coded matrix multiplication algorithm. We

first apply a (3, 2) MDS code to both A and B to obtain a1

to a3 and b1 to b3. Then, the computation tasks aᵀ
i bj’s are

assigned to the workers as illustrated in Fig. 1c.

Fig. 2 illustrates the peeling decoding process for the

product-coded scheme. Assume that the master node has

collected 4 computation results as shown in Fig. 2a. In the first

iteration, the first column has 2 computation results, and hence

can be decoded to obtain aᵀ
2b1. In the second iteration, the first

and third rows are decodable, and the missing computation

result in each row is recovered. Once the second iteration is

done, the second and third column become decodable, thus

allowing for the full recovery of AᵀB.

B. Decodability Condition of Product-coded Scheme

The computational times of the replication-based scheme

and the MDS-coded scheme can be stated with order statistics.

Unlike these schemes, the computational time of the product-

coded scheme cannot be simply stated with order statistics

because the decodability condition depends on the pattern

formed by the completed tasks.

The peeling decoding algorithm for the product-coded

scheme can be analyzed by viewing the iterative process as

an edge-removal process in a bipartite graph [9]. Consider

a bipartite graph with n left nodes (corresponding to the n
rows) and n right nodes (corresponding to the n columns)

with edges corresponding to the computation results that are

not received yet. Observe that decoding a row (column) with

less than or equal to n − k missing entries can be viewed

as removing the edges from a left (right) node if the degree

is less than or equal to n − k. Therefore, the sufficient and

necessary condition for successful decoding is non-existence

of a subgraph with all nodes of degree at least n − k + 1.

In the graph theory terminology, the (n− k + 1)-core of the

bipartite graph, the largest subgraph with all nodes of degree

at least n− k + 1, must be empty.

In [10], the authors precisely characterize the sharp thresh-

old of emergence of non-empty cores in a random graph.

Later, the authors of [9] show that the same threshold holds

for random bipartite graphs, stated as follows.

Theorem 1. (From [9], [10]) Consider a random bipartite
graph with n left nodes and n right nodes, where each edge
presents with probability λ

n . Let � ≥ 3 be fixed, π�(λ) =∑
i≥�

e−λλi

i! , and λ� = minλ>0

[
λ

π�−1(λ)

]
. Then, if λ < λ�,

the �-core of the random bipartite graph is empty w.h.p. If
λ > λ�, the �-core is non-empty w.h.p.

IV. COMPUTATIONAL TIME ANALYSIS

In this section, we first review some useful results on order

statistics given in [11], [12], and then present the asymptotic

computational time analysis results. We focus on two different

regimes. The first regime is where the number of backup

workers scales sublinearly in the size of the product, i.e.,

N = k2+Θ(k), while the second regime is where the number

of backup workers scales linearly in the size of the product,

i.e., N = k2 +Θ(k2).

For simplicity, our computational time analysis assumes the

exponential latency model: the response time of each worker

is an exponential random variable with rate μ. We remark that

the analysis can be easily extended to general response time

distributions.

Due to the memoryless property, the expected value of the

maximum of n exponential random variables of rate μ can

be shown as Hn/μ where Hn is the nth harmonic number,

i.e., Hn =
∑n

i=1 1/i. Similarly, the expected value of the kth

order statistics of n exponential random variables of rate μ is

(Hn−Hn−k)/μ. Also, the minimum of z exponential random

variable of rate μ is exponentially distributed with rate zμ. For

scaling k, Hk = log k+γ+o(1), where γ is a fixed constant.

A. Order Statistics

We first recap some known results on order statistics, which

will be used for our computational time analysis. The proba-

bility density function and the cumulative distribution function

of exponential random variables of rate μ are denoted by f(t)
and F (t), respectively: f(t) = μe−μt and F (t) = 1 − e−μt.

Let Ti’s be n i.i.d. exponential random variables of rate μ.

(1) (Central order statistics) For a fixed 0 < r < 1,

Trn:n
p−→ N

(
t,
r(1− r)

nf2(t)

)
, (2)

where t = F−1(r).
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(2) (Intermediate order statistics) For k = k(n) such that

rn := k
n → 1,

Tk:n
d−→ N

(
tn,

n− k + 1

n2f2(tn)

)
, (3)

where tn = F−1(rn).
(3) (Maximum of normal random variables) Consider n

independent normal random variables Yi ∼ N(μ, σ2) for

1 ≤ i ≤ n. As n grows to infinity,

E[Yn:n] ≈ μ+ σ
√
2 logn. (4)

B. Regime I: Sublinear Number of Backup Workers

In this section, we focus on the case in which we have

Θ(k) backup workers, which is sublinear in the size of the

product, which is k2. The following lemma first states the

lower bound on the expected computational time, which holds

for any computation scheme.

Lemma 1. For a fixed integer t, as k grows to infinity, the
expected computational time of any scheme with k2 + tk
workers is lower bounded as E[T ] ≥ 1

μ log
(
k+t
t

)
+ o(1).

Proof: Since the master node has to collect at least k2

task results, the lower bound on the computational time is the

(k2)th order statistics of k2 + tk computational times.

The following theorems characterize the asymptotic com-

putational time performances of the MDS-coded scheme and

the product-coded scheme.

Theorem 2. For a fixed positive integer t, as k grows to
infinity, the expected computational time of the (k + t, k)-
MDS-coded scheme with k2 + tk workers is

E[TMDS-coded] ≈ 1

μ
log

(
k + t

t

)
+

1

μt

√
2(t+ 1) log k. (5)

Proof: Let n = k+ t. Recall that the computational time

of the MDS-coded scheme is determined by the maximum

of the computational times among the k groups, and the

computational time of each group is determined by the kth

fastest worker among n workers in the group.

We first consider the computational time of each group.

It is easy to see that tn = 1
μ log

(
n
t

)
satisfies the condition

F (tn) = rn, and f(tn) = μe−μtn = μt
n . Hence, using

(3), we can see that the computational time of each group

converges in distribution to N
(

1
μ log

(
n
t

)
, (t+1)

t2μ2

)
. Since the

computational times of all groups converge to the same normal

random variable in distribution, the joint distribution of them

also converges to a jointly normal random variable. Applying

(4) to these independent normal random variables concludes

the proof.

Theorem 3. For a fixed even integer t, as k grows to infinity,
the expected computational time of the (k+ t/2, k)2-product-
coded scheme with k2 + tk + t2/4 workers is

E[Tproduct-coded] ≈ 1

μ
log

(
k + t/2

ct/2+1

)
. (6)

Proof: Let n = k + t/2. By Thm. 1, the (k + t/2, k)2-

product-coded scheme can recover the overall computation

results as soon as the number of missing computation results

goes below �ct/2+1n	. Thus, the computational time of the

product-coded scheme is the (n2−�ct/2+1n	)th order statistics

of the n2 computational times. Since the ceiling can be safely

ignored in the asymptotic regime, the claim is proved.
Thus, with k2 + tk + O(1) workers, the product-coded

computation achieves an order-wise improved computational

time performance compared to the MDS-coded computation.

C. Regime II: Linear Number of Backup Workers
We now consider the regime where the number of backup

workers is Θ(k2), which is linear in the minimum number of

workers k2. The lower bound on the average runtime of any

computation is as follows.

Lemma 2. For a fixed constant δ, as k grows to infinity, the
expected computational time of any scheme with (1 + δ)k2

workers is lower bounded as E[T ] ≥ 1
μ log

(
1+δ
δ

)
+ o(1).

Note that in this regime, the replication scheme is a feasible

choice. The following proposition shows that its average

computational time scales as log k in the limit.

Proposition 1. For a fixed positive integer δ, as k grows to
infinity, the expected computational time of (1+δ)-replication
scheme with (1 + δ)k2 workers is E[Trep] =

2 log k
(1+δ)μ + o(1).

Proof: Recall that the computational time of the (1+ δ)-
replication scheme is the maximum of k2 task completion

times, and the completion time of each task is the minimum

of (1+δ) response times. Since the minimum of (1+δ) expo-

nential random variables of rate μ is exponentially distributed

with rate (1+ δ)μ, the overall runtime is the maximum of k2

exponential random variables with rate (1 + δ)μ.
We now analyze the computational time performance of the

MDS-coded scheme. The following theorem shows that by

using standard concentration inequalities, the computational

time of the MDS-coded scheme can be shown optimal.

Theorem 4. For a fixed constant δ, as k grows to infinity, the
expected computational time of the ((1 + δ)k, k)-MDS-coded
scheme with (1 + δ)k2 workers is

E[TMDS-coded] =
1

μ
log

(
1 + δ

δ

)
+ o(1). (7)

Proof: Recall that the computational time of the MDS-

coded computation is determined by the maximum of the

computational times among the k groups, and the compu-

tational time of each group is determined by the kth fastest

worker among the n workers in the group. Let us denote the

computational time of aᵀ
i bj by Ti,j .

Define tu := 1
μ log

(
1+δ
δ

)
+α

√
log k
k for some constant α >

0. A worker is not completed by time tu with probability

1− F (tu) =
δ

1 + δ
e−μα

√
log k
k 
 δ

1 + δ

(
1− μα

√
log k

k

)
.

(8)

Applying Hoeffding’s inequality [13], we have

Pr ({1 ≤ i ≤ n : Ti,j > tu} ≥ δk) ≤ e−2( δ
1+δ )

2
μ2α2 log k (9)

= k−2( δ
1+δ )

2
μ2α2

. (10)
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Number of workers, N
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MDS-coded
Product-coded
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Fig. 3: The average computational times of various computation schemes.
We run Monte Carlo simulations to estimate the average computational time.

Thus, applying the union bound, we have

Pr(TMDS-coded > tu) ≤ k1−2( δ
1+δ )

2
μ2α2

. (11)

By choosing α large enough, Pr(TMDS-coded > tu) = o(k−1).
Since TMDS-coded is stochastically dominated by the maximum

of (1 + δ)k2 exponential random variables,

E[TMDS-coded] ≤ (1− o(k−1))tu + o(k−1)H(1+δ)k2 (12)

=
1

μ
log

(
1 + δ

δ

)
+ o(1). (13)

Similarly, at time tl := 1
μ log

(
1+δ
δ

) − α log k
k , one can

also show that Pr(TMDS-coded < tl) = o(k−1). Thus,

E[TMDS-coded] ≥ (1− o(k−1))tl =
1
μ log

(
1+δ
δ

)
+ o(1).

Using a similar proof technique, one can also analyze the

computational time of the product-coded scheme.

Proposition 2. For a fixed constant δ, as k grows to infin-
ity, the expected computational time of the (

√
1 + δk, k)2-

product-coded scheme with (1 + δ)k2 workers is

E[Tproduct-coded] =
1

μ
log

(
1 + δ +

√
1 + δ

δ

)
+ o(1). (14)

Thus, in the regime where the number of backup workers

is Θ(k2), the MDS-coded scheme asymptotically achieves the

optimal computational time, while the product-coded compu-

tation achieves a strictly suboptimal computational time.

We now explain why the product-coded scheme outper-

forms the MDS-coded scheme only in the sublinear regime.

When about k2 out of k2 + tk workers are completed, it

is likely that tk stragglers are not evenly spread out across

different columns. Hence, recovering missing computation

results by decoding both columns and rows significantly

increases the decodability. On the other hand, when about k2

out of (1 + δ)k2 workers are completed, the δk2 stragglers

are evenly spread out across different columns with high

probability. Thus, the one-way decoding of the MDS-coded

scheme becomes sufficient, and the two-way redundancy of

the product-coded scheme becomes wasteful.

V. DISCUSSION

A. Simulation Results

We now provide a numerical comparison of the average

computational times of the studied computation schemes. We

set k = 20, and vary N ∈ {600, 800, . . . , 2400}. Plotted in

Fig. 3 is the average computational time as a function of N .

The product-coded scheme closely matches the lower bound

when N is small but starts performing worse than the MDS-

coded scheme as N increases, as predicted in theory.

B. Decoding Complexity and LDPC Codes
The schemes studied in this work are built upon MDS

codes. Since we deal with real numbers, a random matrix

of size k×n can be used as the generator matrix of an (n, k)
MDS code. The decoding complexity of such random linear

codes is O(k3), which is negligible compared with the overall

computational time if the matrix size d is much larger than k.
If d is comparable with k, one needs to make use of an

MDS code that allows for an efficient decoding algorithm.

However, all the known decoding algorithms, e.g., the best-

known decoding algorithms for Reed-Solomon codes [14],

have computational complexity of ω(k log k). For this case,

one can leverage efficient modern codes such as LDPC

codes [15]. By replacing ‘any k out of n’ of the (n, k) MDS

condition with ‘almost any k(1+ε) out of n’ for an arbitrarily

small ε > 0, one may use the optimal LDPC code for erasure

probability of n−k
n to enjoy linear-time decoding complexity.

C. Open Problems
A few interesting questions remain open. Another natural

question is whether a similar technique can be extended to the

case of higher-dimensional linear operations such as tensor

operations. Further, a complete characterization of run-time

distributions is also an interesting future work.
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