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ABSTRACT

We consider autoencoders (AEs) for matrix completion (MC)

with application to collaborative filtering (CF) for recommeda-

tion systems. It is observed that for a given sparse user-item

rating matrix, denoted as M , an AE performs matrix factor-

ization so that the recovered matrix is represented as a product

of user and item feature matrices. Such an AE sequentially
estimates user and item feature matrices: for the item-based

AE (I-AE) that uses columns of M as its input vectors, the

AE’s encoder first estimates an item feature matrix and then

the decoder estimates a user feature matrix based on the output

of the encoder. Similarly, the user-based AE (U-AE) that uses

the columns of MT as its input vectors first estimates a user

feature matrix and then an item feature matrix. This sequen-

tial estimation can degrade the performance of the MC/CF,

because the decoder depends on the output of the encoder. To

enhance MC/CF performance, we propose alternating AEs

(AAEs), a parallel algorithm employing both I-AE and U-AE

and alternatively use them. We apply the AAE to synthetic,

MovieLens 100k and 1M data sets. The results demonstrate

that AAE can outperform all existing MC/CF methods.

Index Terms— Matrix factorization, Collaborative filter-

ing, Autoencoder, Recommendation systems

1. INTRODUCTION

The objective of matrix completion (MC) is to complete a low-

rank matrix from its incomplete version with many missing

entries. A conventional approach to tackle an MC problem is

to solve a rank minimization (RM) problem that minimizes the

rank of the completed matrix while maintaining the observed

entries. Since an RM problem is computationally intractable

(NP-hard), heuristic algorithms that solve the RM problems

approximately but efficiently have been proposed [1]. In [2],

the authors consider such a heuristic algorithm, which mini-

mizes the trace of the completed matrix and derives a lower
bound on the number of observed entries for an exact MC.

In [3], the lower bound is improved with an efficient singular

value decomposition (SVD) based algorithm, called OptSpace.

Both the lower bounds are derived under the assumption that
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the pattern of missing entries is uniformly random. Although

these results are interesting and provide guidelines for perfect

MC, their use for practical applications is rather limited. This

is true because the number of observed entries is often less

than the lower bounds and the pattern of missing entries can

be non-uniform. In applications such as recommendation sys-

tems, alternative methods for MC, which are referred to as

collaborative filtering (CF), have been proposed.

In CF, most algorithms are based on the rank factoriza-

tion theorem [4]. To be specific, let M ∈ IRn1×n2 be an

incomplete rating matrix, and M̂ ∈ IRn1×n2 be its completed

version. Under the assumption that M and M̂ have rank

r << min (n1, n2), the matrix M̂ is given by

M̂ = UV T (1)

where U ∈ IRn1×r and V ∈ IRn2×r represent the user and

item feature matrices, respectively. A popular approach to

such feature extraction is to estimate U and V alternatively in

the least-squares sense [5]. This type of LS estimate, called al-

ternative LS (ALS), formed a major component of the winning

entry in the Netflix Challenge [6].

As an alternative to the LS approach, deep learning tech-

niques have been applied to CF. It is shown in [7] that CF based

on a restricted Boltzmann machine (RBM) can perform slightly

better than the LS methods. In addition, autoencoders (AEs),

called AutoRec [8], and their modifications [9, 10] are used for

CF. More recently, a neural autoregressive architecture, called

CF-NADE [11], and geometric deep learning on user/item

graphs [12] have been proposed for CF. Experimental results

indicate that the AE-based techniques can outperform the LS-

and RBM- based techniques, and CF-NADE performs the best.

In this paper, we analyze an AE consisting of a nonlinear

encoder followed by a linear decoder and observe that the AE

estimates the features matrices sequentially. For I-AE, the

item feature matrix V T is estimated first and the user feature

matrix U is obtained as a function of V T . Similarly, for U-AE,

UT is estimated first and then V is obtained. This sequential

estimation of feature matrices can cause some performance

degradation, because one of the estimated feature matrices

always depends on the other. To improve CF performance, we

propose alternating autoencoders (AAEs) for CF that employ

both I-AE and U-AE and use them alternately. We applied

the AAEs to synthetic, MovieLens 100k and 1M data sets.
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The results demonstrate that AAE can outperform all existing

MC/CF methods.

The rest of this paper is organized as follows. Section

2 analyzes the characteristics of AEs for CF and Section 3

describes the proposed AAE. Section 4 presents experimental

results that show the advantage of the AAE over existing CF

algorithms. Section 5 concludes with some future directions.

Notations : Matrices and vectors are denoted by bold-

faced uppercase and lowercase letters, respectively. The col-

umn space and the rank of a matrix A are denoted by col(A)
and rank(A). In addition, the (i, j)-th entry of a matrix A is

denoted as Aij , and ‖A‖F is the Frobenius norm of A. The

orthogonal projection of a vector x ∈ IRm onto the space

spanned by columns of A ∈ IRm×r is denoted as PA(x).

2. RANK FACTORIZATION BY AUTOENCODERS

We shall show that an AE with the following characteristics

can perform matrix factorization: i) Layers of the encoder,

with the exception of the center layer, employ the rectified

linear unit (ReLU). ii) For the center layer, either sigmoid or

hyperbolic tangent (tanh) activation functions are used, and

the number of units in this layer is equal to the rank r which

is assumed to be known1. iii) The decoder employs linear

activation functions. In this section, it is assumed that the

pattern of missing entries of M is uniformly random.

Fig. 1 illustrates I-AE with 3 hidden layers (nL = 3).

Suppose that M is filled with a default rating of 0 for M ijs

without rating observations. For the input mi which is the

i-th column of M , the output of I-AE, m̂i is represented

as m̂i = Whi, where W = [w1, . . . ,wr] = W 4W 3 ∈
IRn1×r; W 3 and W 4 are the weighting matrices for the de-

coder, and hi ∈ IRr is the output of the encoder given by

hi = σS(W 2σRL(W 1mi + b1) + b2). Here σS(·) and

σRL(·) are sigmoid and rectified linear units, respectively;

W 1 and W 2 are weighting matrices for the encoder; and b1
and b2 are biases. The weights and biases of I-AE are de-

termined by solving the following optimization problem via

back-propagation:

min
W i,bi

n1∑
i=1

n2∑
j=1

Iij (Y ij −M ij)
2
+ λ

nL+1∑
i=1

‖W i‖2F , (2)

where Iij is the indicator function that is equal to 1 if user i
rated item j and equal to 0 otherwise, and λ is the regulariza-

tion coefficient.

Suppose that I-AE parameters converge to their optimal

values after a certain number of epochs. Denoting the re-

sulting output matrices of the encoder and decoder by H =
[h1, . . . ,hn2

] ∈ IRr×n2 and Y = [y1, . . . ,yn2
] ∈ IRn1×n2 ,

respectively, the input-output relation can be written as

Y = WH. (3)

1Use of ReLU for the center layer is prohibited, because the dimension of

output vectors from the center layer should be equal to r and remain constant.

Bases extraction= + +

Encoder Decoder

Input Output

Fig. 1. An I-AE with 3 hidden layers (nL = 3).

The matrices in (3) have rank r, as shown below.

Observation 1. After convergence, the matrices Y , W and

H for I-AE satisfy

rank(H) = rank(W ) = rank(Y ) = r (4)

In what follows, we justify this observation via simulation.

The rank equalities in (4) holds if W TW is nonsingular,

col(Y ) = col(W ), and col(Y T ) = col(HT ) (5)

The equality in (3) indicates that col(Y ) ⊆ col(W ) and

col(Y T ) ⊆ col(HT ) [13]. Therefore (5) can be proved by

showing that

col(Y ) ⊇ col(W ), and col(Y T ) ⊇ col(HT ). (6)

The subspace relations in (6) can be proved by showing that

‖PW (yi)‖/‖yi‖ = 1 and ‖PHT (ȳi)‖/‖ȳi‖ = 1 (7)

for all i, where ȳi is the i-th column of Y T . Next, we show

through computer simulation that (7) holds for all i.
In the simulation, we first generate 100× 100 matrices of

rank two (r = 2) by multiplying two 100 × 2 matrices con-

sisting of independent identically distributed (i.i.d.) Gaussian

random variables. Then from each matrix an incomplete ma-

trix M ∈ IR100×100 is obtained by sampling 15% of its entries

uniformly at random positions. The results in this section are

obtained through 100 generations of such M matrices.

We use AEs with 3 hidden layers, as shown in Fig. 1:

since the inputs to the center layer can be either positive or

negative, tanh(·) functions are employed in the center layer,

and the number of units for this layer is set at r = 2, while

those for the 1st and 3rd layers are set at 15. In this case, the

rank r is known and there is no noise; thus the regularization

coefficient λ in (2) is set at λ = 0. The initial weights of

AE are determined by the initialization method in [14] and

the biases are initialized by zero. For back-propagation, the

gradient-based optimization algorithm, called Adam [15], is

used and the learning rate is 0.0001.

Fig. 2 shows the empirical means and variances of the

normalized norms of projections against the training epoch. It
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Fig. 2. Means and variances of the normalized norms in (7)

is seen that the means and variances of the normalized norms

converge to 1 and 0, respectively, after about 8,000 epochs.

Furthermore, the maximum and minimum values of all the

normalized norms after 10,000 epochs are 0.9997 and 0.9982,

respectively. These results indicate that the column space

relations in (6) hold true. During the simulation, we also

observe that the products W TW and HHT are nonsingular,

and that W satisfies (9), after about 8,000 epochs. These

results show that the rank equalities in (4) are valid.

Next we show the rank factorization property of I-AE.

Observation 2. For I-AE,

Y = M̂ , W = U and H = V T (8)

for the matrices in (1) and (3). Furthermore, the i-th row of

W , denoted as wrow
i , can be represented as

wrow
i = M(i, Ii)HT

Ii
(HIi

HT
Ii
)−1 (9)

where Ii denotes the set of items that user i rated, and HIi
de-

notes the sub-matrix of H where columns j ∈ Ii are selected.

M(i, Ii) is the row vector where columns j ∈ Ii of the i-th
row of M is taken.

Proof. (8) holds true because of (4) and the fact that

rank(U) = rank(V ) = rank(M̂) = r. The expression

in (9) has been derived in [5] by solving a regularized LS

problem for obtaining W when H is given. During the

simulation for Fig. 2, we observe the validity of (9). �
This observation indicates that I-AE’s encoder estimate

V T and then its decoder estimates U using the estimate of

V T (Fig 3).

In a similar manner, we can show that U-AE performs

matrix factorization. In this case U-AE’s input is MT , and the

desired output is given by M̂
T
= V UT . Denoting U-AE’s

output, the output of the decoder and that of the encoder, by

Y ,W and H , respectively, we can show that

Y = M̂
T
, H = UT and W = V . (10)

The equalities in (10) can be shown following the approach

in Observations 1 and 2. U-AE’s encoder estimates UT and

decoder obtains V using the estimates of UT (Fig. 3).

Nonlinear
Encoder

Linear
Decoder=

Nonlinear
Encoder

Linear
Decoder=

= == =
= == =

I-AE

U-AE

Fig. 3. Structure of I-AE, U-AE and AAE.

3. ALTERNATING AUTOENCODERS

Fig. 3 shows the proposed AAE employing both I-AE and

U-AE and their alternate use. After each training epoch, AAE

evaluates the root mean square error (RMSE) of the current

AE, and alternates with the other AE if the RMSE becomes

less than a threshold value. Whenever alternation occurs, the

current AE’s encoder output becomes the weighting matrix

of the next AE’s decoder. To be specific, we introduce the

following notations: ek and τk denote the RMSE for the k-th

epoch and threshold, respectively. The index of training epoch

at which alternation occurs is denoted as kal. The threshold τk
is adaptive and given by τk = ekal

− δ for a small constant δ.

Algorithm 1 illustrates an AAE that starts with I-AE (of

course, the AAE can be started with U-AE). In steps 3-7, I-

Algorithm 1 Alternating autoencoders.

1: Input: Incomplete matrix M , error tolerance δ and maxi-

mum training epoch kmax.

2: Initialize H0 and all weighting matrices of AEs, k = 0,

τ0 = ∞ and kal = 0.

3: repeat
4: k = k + 1

5: Update Hk of I-AE, while fixing W k = H
T

kal
, via

back-propagation.

6: Evaluate ek.

7: until ek < τk−1

8: Set τk = ek − δ and kal = k.

9: repeat
10: k = k + 1
11: Update Hk of U-AE, while fixing W k = HT

kal
, via

back-propagation.

12: Evaluate ek.

13: until ek < τk

14: Set τk = ek − δ and kal = k

15: Go to step 3 and repeat the process until k = kmax.

16: Output: Estimated low-rank matrix M̂ = H
T

kmax
Hkmax
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AE’s encoder updates Hk, while fixing the decoder weight

W k at Hkal
. This update for Hk is repeated until the RMSE

ek < τk−1. Since τ0 = ∞, at the beginning alternation

occurs after a single epoch (kal = 1). The threshold τk and

alternation time kal are updated in step 8. In a similar manner,

the parameters for U-AE are updated in steps 9-14, and the

alternation continues until the number of epochs becomes

k = kmax. The input-output relations of AE after the k-th

epoch, are given by Y k = W kHk for I-AE and Y k =
W kHk for U-AE; the final output in step 16 is given by the

product of final outputs from U-AE’s and I-AE’s encoders:

M̂ = H
T

kmax
Hkmax

.

4. EXPERIMENTS

Both synthetic and MovieLens [16] data sets are used to com-

pare the performances of the proposed and existing MC/CF

techniques. As in the simulation for Fig. 2, the initial weights

of the AE are determined by the method in [14] and the initial

biases are set at zero; for back-propagation Adam [15] is used.

For the AAE, the error margin δ = 0.0005.

4.1. Synthetic data

We generate 500× 500 matrices of rank 10 (r = 10), denoted

as M0, and obtain incomplete matrices M by choosing |M |
entries of M0, where |M | is the number of observed entries

of M . Following the approach in [3], the normalized recon-

struction error, E = ‖M0 − M̂‖F /‖M0‖F , is evaluated for

each pair of (M0,M), and it is declared that M is success-

fully reconstructed if the error is less than 10−4. We obtain

the reconstruction rate which is given by the ratio between the

number of successfully reconstructed matrices and the total

number of generated M matrices (50 in this simulation).

The parameters of I-AE/U-AE are as follows: 3 hidden

layers with 100, 10 and 100 units. Since the inputs of the

center layer can take either positive or negative values, tanh
functions are employed in the center layer. The learning rate

for the back-propagation is piecewise constant: 0.01 for k ≤
40, 000, 0.001 for 40, 000 < k ≤ 80, 000 and 0.0001 for

80, 000 < k ≤ 100, 000 = kmax. AAE employs these I-AE

and U-AE, and alternately uses them.

Fig. 4 compares the reconstruction rates of I-AE, U-AE,

AAE and OptSpace [3]. In this case I-AE and U-AE ex-

hibit identical performance, because the item- and user-vectors

have identical distribution. I-AE/U-AE perform better than

OptSpace, and AAE outperforms the others.

4.2. Movielens data

We evaluate and compare the AAE with OptSpace [3], ALS

[5], LLORMA [17], AutoRec [8], and CF-NADE [11]. For

MovieLens data, at each trial, we randomly choose 90% of the

data and use them for training; the remaining data are used for

testing and the root mean square error (RMSE) is evaluated.

We repeat this trial procedure 5 times and report the average
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Fig. 4. Reconstruction rates for randomly generated 500×500
matrix with rank 10. |M | is the number of observed entries.

RMSE. For all I-AE/U-AE/AAE, the center layer employs the

sigmoid activation functions, because the inputs of the center

layer can take only non-negative values; the learning rate is

set at 0.0001.

The parameters of I-AE/U-AE for ML-100k data are as

follows: 3 hidden layers with 100, 50 and 100 units. The regu-

larization ratio λ is set at 0.00032. The parameters of I-AE/U-

AE employed in AAE are the same except that λ = 0.005.

For ML-1M data, we use I-AE and U-AE with different num-

bers of layers/units, because distribution of item-vectors is

considerably different from that of user-vectors. The param-

eters of I-AE are: 3 hidden layers with 400, 500, 400 units;

λ = 0.00105. The parameters of U-AE are: 5 hidden lay-

ers with 600, 400, 500, 400, 600 units; λ = 0.0009. These

I-AE/U-AE are employed in AAE.

Table 1 compares the RMSE performance. AAE outper-

form all the other techniques. It is interesting to note that using

alternation, the AAE performs better than the individual I-AE

and U-AE which are employed in AAE.

Table 1. RMSE comparison
ML-100k ML-1M

Optspace [3] 0.911 0.873

ALS-WR [5] 0.913 0.843

LLORMA [17] 0.898 0.833

CF-NADE [11] - 0.829

U-AutoRec [8] - 0.874

I-AutoRec [8] - 0.831

U-AE 0.905 0.841

I-AE 0.884 0.829

AAE 0.877 0.826

5. CONCLUSION

Based on the observation that an AE consisting of a nonlinear

encoder and a linear decoder can perform matrix factorization

and sequentially estimate the feature matrices, we proposed an

AAE that employs both I-AE and U-AE and alternately uses

them. Experimental results with synthetic, MovieLens 100k

and 1M data sets demonstrated that the AAE can outperform

all existing techniques.
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