
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 4, APRIL 2017 2201

Adversarial Top-K Ranking
Changho Suh, Member, IEEE, Vincent Y. F. Tan, Senior Member, IEEE, and Renbo Zhao, Member, IEEE

Abstract— We study the top-K ranking problem where the goal
is to recover the set of top-K ranked items out of a large collection
of items based on partially revealed preferences. We consider an
adversarial crowdsourced setting where there are two population
sets, and pairwise comparison samples drawn from one of the
populations follow the standard Bradley-Terry-Luce model (i.e.,
the chance of item i beating item j is proportional to the relative
score of item i to item j ), while in the other population, the
corresponding chance is inversely proportional to the relative
score. When the relative size of the two populations is known,
we characterize the minimax limit on the sample size required
(up to a constant) for reliably identifying the top-K items, and
demonstrate how it scales with the relative size. Moreover, by
leveraging a tensor decomposition method for disambiguating
mixture distributions, we extend our result to the more realistic
scenario, in which the relative population size is unknown, thus
establishing an upper bound on the fundamental limit of the
sample size for recovering the top-K set.

Index Terms— Adversarial population, Bradley-Terry-Luce
model, crowdsourcing, minimax optimality, sample complexity,
top-K ranking, tensor decompositions.

I. INTRODUCTION

RANKING is one of the fundamental problems that has
proved crucial in a wide variety of contexts—social

choice [1], [2], web search and information retrieval [3],
recommendation systems [4], ranking individuals by group
comparisons [5] and crowdsourcing [6], to name a few. Due
to its wide applicability, a large volume of work on ranking
has been done. The two main paradigms in the literature
include spectral ranking algorithms [3], [7], [8] and maxi-
mum likelihood estimation (MLE) [9]. While these ranking
schemes yield reasonably good estimates which are faithful
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globally w.r.t. the latent preferences (i.e., low �2 loss), it is
not necessarily guaranteed that this results in optimal ranking
accuracy. Accurate ranking has more to do with how well the
ordering of the estimates matches that of the true preferences
(a discrete/combinatorial optimization problem), and less to
do with how well we can estimate the true preferences
(a continuous optimization problem).

In applications, a ranking algorithm that outputs a total
ordering of all the items is not only overkill, but it also
unnecessarily increases complexity. Often, we pay attention
to only a few significant items. Thus, recent work such as
that by Chen and Suh [10] studied the top-K identification
task. Here, one aims to recover a correct set of top-ranked
items only. This work characterized the minimax limit on the
sample size required (i.e., the sample complexity) for reli-
able top-K ranking, assuming the Bradley-Terry-Luce (BTL)
model [11], [12].

While this result is concerned with practical issues, there
are still limitations when modeling other realistic scenarios.
The BTL model considered in [10] assumes that the quality
of pairwise comparison information which forms the basis
of the model is the same across annotators. In reality (e.g.,
crowdsourced settings), however, the quality of the information
can vary significantly across different annotators. For instance,
there may be a non-negligible fraction of spammers who
provide answers in an adversarial manner. In the context of
adversarial web search [13], web contents can be maliciously
manipulated by spammers for commercial, social, or political
benefits in a robust manner. Alternatively, there may exist false
information such as false voting in social networks and fake
ratings in recommendation systems [14].

A. Our Model and Justifications for the Model

As an initial effort to address this challenge, we investigate
a so-called adversarial BTL model, which postulates the exis-
tence of two sets of populations—the faithful and adversarial
populations, each of which has proportion η and 1 − η
respectively. Specifically we consider a BTL-based pairwise
comparison model in which there exist latent variables indi-
cating ground-truth preference scores of items. In this model, it
is assumed that comparison samples drawn from the faithful
population follow the standard BTL model (the probability
of item i beating item j is proportional to item i ’s relative
score to item j ), and those of the adversarial population act
in an “opposite” manner, i.e., the probability of i beating j is
inversely proportional to the relative score. See Fig. 1.

This model may, at a first glance, seem somewhat contrived
and artificial. However, we believe that it is justified as an
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Fig. 1. Adversarial top-K ranking given samples Y = {Y (�)i j } where (i, j) ∈ E
and E is the edge set of an Erdős-Rényi random graph.

initial step to study the fundamental limits of ranking in
adversarial settings due to the following reasons.
• Nowadays, it is of paramount importance for retailers

(like hotels and restaurants) to have outstanding recom-
mendations of their establishments on the Web. For exam-
ple, the websites Tripadvisor and Zagat (or Yelp) provide
recommendation and ratings for hotels and restaurants
respectively. Let us work with hotels. Suppose there are
two hotels A and B owned by Alice and Bob respectively
and they are competing for businesses in the same city,
say C. All of the tourists who come to C are nice and
honest and provide decent ratings (more precisely, pair-
wise rankings) of both hotels and these rankings follow a
standard BTL model parametrized by a latent vector w.
However, because Alice wants to beat Bob in attracting
tourists to her hotel A, Alice hires spammers to flood
Tripadvisor with “opposite” and indeed unfavorable rat-
ings. These are generated from the opposite BTL model
parametrized by w′ = fliplr(w) (i.e., the preference vector
is flipped). Now, because Alice wants to be circumspect
in her egregious actions (to minimize the likelihood of
being caught), she will not ask her spammers to say that
B is terribly bad, corresponding to B having completely
negative ratings all the time. Alice will ask spammers to
write less-than-positive reviews (i.e., “flipped” reviews)
about B on Tripadvisor so as to induce some subtle yet
adversarial behavior into the system (parametrized by w′),
resulting in B having worse ratings than it should have.
Now the machine learning task at hand is to be cognizant
of the presence of spammers, uncover the true rankings
of hotels in C, and possibly also to learn the proportion of
spammers. In a more realistic scenario, there is a network
of hotels represented by a sparse graph in which pairs
of hotels that are linked in the graph try to undermine
each others’ businesses as for the pairwise scenario
involving A and B.

• The other motivation is mathematical tractability: By
having the adversarial population have the same (yet
reordered) parameters compared to the faithful popula-
tion, the number of parameters in the model is reduced
(halved), hence the learning task becomes significantly
more tractable (cf. Lemma 6). However, the complexity
of the task of obtaining provable bounds, especially if

one seeks globally optimal estimates for the unknown
parameters (e.g., η), is still readily apparent from our
analyses and results.

B. Main Contributions

We seek to characterize the fundamental limits on the
sample size required for top-K ranking, and to develop com-
putationally efficient ranking algorithms. There are two main
contributions in this paper.

Building upon RankCentrality [7] and SpectralMLE [10],
we develop a ranking algorithm to characterize the minimax
limit required for top-K ranking, up to constant factors, for
the η-known scenario. We also show the minimax optimality
of our ranking scheme by proving a converse or impossibility
result that applies to any ranking algorithm using information-
theoretic methods. As a result, we find that the sample com-
plexity is inversely proportional to (2η− 1)2, which suggests
that less distinct the population sizes, the larger the sample
complexity. We also demonstrate that our result recovers that
of the η = 1 case in [10], so the work contained herein is a
strict generalization of that in [10].

The second contribution is to establish an upper bound
on the sample complexity for the more practically-relevant
scenario where η is unknown. A novel procedure based on
tensor decomposition approaches in Jain and Oh [15] and
Anandkumar et al. [16] is proposed to first obtain an estimate
of the parameter η that is in a neighborhood of η, i.e.,
we seek to obtain an ε-globally optimal solution. This is
usually not guaranteed by traditional iterative methods such
as Expectation Maximization [17]. Subsequently, the estimate
is then used in the ranking algorithm that assumes knowledge
of η. We demonstrate that this algorithm leads to an order-wise
worse sample complexity relative to the η-known case. Our
theoretical analyses suggest that the degradation is unavoidable
if we employ this natural two-step procedure.

Let us, at this point, comment informally on some of the
mathematical complexities in the derivations of our results,
specifically for the case in which η is unknown. After a careful
analysis of a non-asymptotic sample complexity bound on
disambiguating mixtures in [15, Th. 3], we deduce that for
any ε, δ > 0, with probability exceeding 1− δ, there exists an
algorithm (based on tensor decompositions) that produces an
estimate of η, called η̂, satisfying

|η̂ − η| ≤ ε (1)

if the sample size L satisfies

L = �
(

1

ε2 log
n

δ

)
. (2)

For a precise statement of claim, please see Lemma 5. Here
we observe a subtle tradeoff. If we drive the estimation error
|η̂ − η| down (i.e., ε in (1) is small), then the �∞ error
of the preference vector ‖w − ŵ‖∞ (in the actual ranking
algorithm) would also go down. However, according to (2),
the sample size would then increase. On the other hand, if
|η̂ − η| is not small, then the sample size required decreases
but the ranking accuracy, measured according to ‖w − ŵ‖∞,
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would be adversely affected. Thus, our analysis entails finding
a “sweet spot” for the accuracy of learning η (for (1)) by
balancing the two competing objectives (of sample size and
ranking accuracy) to find the best achievable sample com-
plexity using the current strategy. This, we feel, is the main
non-trivial aspect of our analyses. Such a technique, while
being extremely useful in our context, may also be applicable
to other multi-stage estimation and learning tasks in machine
learning as one needs to carefully “balance” the estimation
quality of the first stage with the eventual learning outcome
after all stages are completed.

C. Related Work

The most relevant related works are those by
Chen and Suh [10], Negahban et al. [7], and
Chen et al. [6]. Chen and Suh [10] focused on top-K
identification under the standard BTL model, and derived
an �∞ error bound on preference scores which is intimately
related to top-K ranking accuracy. Negahban et al. [7]
considered the same comparison model and derived an
�2 error bound. A key distinction in our work is that we
consider a different measurement model in which there are
two population sets, although the �∞ and �2 norm error
analyses in [7] and [10] play crucial roles in determining the
sample complexity.

The statistical model introduced by Chen et al. [6] attempts
to represent crowdsourced settings and forms the basis of our
adversarial comparison model. We note that no theoretical
analysis of the sample complexity is available in [6] or other
related works on crowdsourced rankings [18]–[20]. For exam-
ple, Kim et al. [20] employed variational EM-based algorithms
to estimate the latent scores; global optimality guarantees for
such algorithms are difficult to establish. Jain and Oh [15]
developed a tensor decomposition method [16] for learning
the parameters of a mixture model [21]–[23] that includes
our model as a special case. We specialize their model and
relevant results to our setting for determining the accuracy of
the estimated η. This allows us to establish an upper bound
on the sample complexity when η is unknown.

Recently, Shah and Wainwright [24] showed that a simple
counting method [25] achieves order-wise optimal sample
complexity for top-K ranking under a general comparison
model which includes, as special cases, a variety of parametric
ranking models including the one under consideration in this
paper (the BTL model). However, the authors made assump-
tions on the statistics of the pairwise comparisons which are
different from that in our model. Hence, their result is not
directly applicable to our setting.

D. Paper Organization

This paper is organized as follows. In Section II, we detail
our system model and define the performance criterion. In
Section III, we state our main results and provide interpre-
tations of and intuitions behind these results. In Sections IV
(achievability) and V (minimax converse) we prove the result
concerning the sample complexity of learning the top-K
ranking when the proportion of adversaries η is known.

In Section VI we provide a high-level description of the
algorithm for the case in which η is unknown and we
sketch the achievability proof. In Section VII, we perform
experiments on synthetic data to corroborate our result for the
known η scenario. We conclude our discussion and suggest
avenues for future research in Section VIII. Proofs of more
technical results and other auxiliary discussions are deferred
to the appendices.

E. Notations

We provide a brief summary of the notations used through-
out the paper. Let [n] represent {1, 2, · · · , n}. We denote by
‖w‖, ‖w‖1, ‖w‖∞ the �2 norm, �1 norm, and �∞ norm of w,
respectively. Additionally, for any two sequences f (n) and
g(n), f (n) � g(n) or f (n) = �(g(n)) mean that there exists
a (universal) constant c such that f (n) ≥ cg(n); f (n) � g(n)
or f (n) = O(g(n)) mean that there exists a constant c such
that f (n) ≤ cg(n); and f (n) � g(n) or f (n) = �(g(n))
mean that there exist constants c1 and c2 such that c1g(n) ≤
f (n) ≤ c2g(n). The notation poly(n) denotes a sequence in
O(nc) for some c > 0.

II. PROBLEM SETUP

We now describe the model which we will analyze sub-
sequently. We assume that the observations used to learn the
rankings are in the form of a limited number of pairwise com-
parisons over n items. In an attempt to reflect the adversarial
crowdsourced setting of our interest in which there are two
population sets—the faithful and adversarial sets—we adopt
a comparison model introduced by Chen et al. [6]. This is a
generalization of the BTL model [11], [12]. We now delve
into the details of the components of the model.

1) (Preference scores): As in the standard BTL model,
this model postulates the existence of a ground-truth
preference score vector w = (w1, w2, . . . , wn) ∈ R

n+.
Each wi represents the underlying preference score of
item i . Without loss of generality, we assume that the
scores are in non-increasing order:

w1 ≥ w2 ≥ . . . ≥ wn > 0. (3)

It is assumed that the dynamic range of the score vector
is fixed irrespective of n:

wi ∈ [wmin, wmax], ∀ i ∈ [n], (4)

for some positive constants wmin and wmax. In fact, the
case in which the ratio wmax

wmin
grows with n can be readily

translated into the above setting by first separating out
those items with vanishing scores (e.g., via a simple
voting method like Borda count [25], [26]).

2) (Comparison graph): Let G := ([n], E) be the compar-
ison graph such that items i and j are compared by
an annotator if the node pair (i, j) belongs to the edge
set E . We will assume throughout that the edge set E
is drawn in accordance to the Erdős-Rényi (ER) model
G ∼ Gn,p . That is node pair (i, j) appears independently
of any other node pair with an observation probability
p ∈ (0, 1).
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3) (Pairwise comparisons): For each edge (i, j) ∈ E , we
observe L comparisons between i and j . Each outcome,
indexed by � ∈ [L] and denoted by Y (�)i j , is drawn
from a mixture of Bernoulli distributions weighted
by an unknown parameter η ∈ (1/2, 1]. The �-th
observation of edge (i, j) has distribution Bern( wi

wi+w j
)

with probability η and distribution Bern( w j
wi+w j

) with
probability 1− η. Hence,

Y (�)i j ∼ Bern
(
η

wi

wi +w j
+ (1− η) w j

wi +w j

)
. (5)

See Fig. 1. When η = 1/2, all the observations are fair
coin tosses. In this case, no information can be gleaned
about the rankings. Thus we exclude this degenerate
setting from our study. The case of η ∈ [0, 1/2) is
equivalent to the “mirrored” case of 1 − η ∈ (1/2, 1]
where we flip 0’s to 1’s and 1’s to 0’s. So without loss
of generality, we assume that η ∈ (1/2, 1]. We allow η
to depend on n.
We remark that in Chen et al. [6], each annotator
indexed by � has its own quality parameter η�. In our
model all the η�’s are equal for the sake of tractability
and to model the scenario in which there are two
sub-populations—faithful and adversarial.
Conditioned on a realization of the random graph
G = ([n], E), for each (i, j) ∈ E , the Y (�)i j ’s are
independent and identically distributed across all �’s,
each according to the distribution in (5). Let Y (�) be
the column vector with entries Y (�)i j where these entries
are indexed according to the lexicographical order of
(i, j) ∈ E . Define Y := {Y (�) : � ∈ [L]}. We will also
often employ the sufficient statistics

Yi j := 1

L

L∑
�=1

Y (�)i j , ∀ (i, j) ∈ E . (6)

Note that Yi j is a function of L, the per-edge number of
samples and L is measure of the quality of the measure-
ments. We let Y i := {Yi j } j :(i, j )∈E and Y := {Yi j }(i, j )∈E
be various collections of the sufficient statistics.

4) (Performance metric): We are interested in recovering
the top-K ranked items in the collection of n items
from the data Y . We denote the true set of top-K ranked
items by SK which, by our ordering assumption, is the
set [K ]. We would like to design a ranking scheme
ψ : {0, 1}|E |×L → ([n]

K

)
that maps from the available

measurements to a set of K indices. Given a ranking
scheme ψ , the performance metric we consider is the
probability of error

Pe(ψ) := Pr [ψ(Y ) �= SK ] . (7)

We consider the fundamental admissible region Rw of
(p, L) pairs in which top-K ranking is feasible for a
given w, i.e., Pe(ψ) can be arbitrarily small for large
enough n. In particular, we are interested in the sample

complexity

Sδ := inf
p∈[0,1],L∈Z+

sup
a∈�δ

{(
n

2

)
pL : (p, L) ∈ Ra

}
,

(8)

where �δ := {a ∈ R
n : (aK − aK+1)/amax ≥ δ}. Here

we consider a minimax scenario in which, given a score
estimator, nature can behave in an adversarial manner,
and so she chooses the worst preference score vector that
maximizes the probability of error under the constraint
that the normalized score separation between the K -th
and (K + 1)-th items is at least δ. Note that

(n
2

)
p is the

expected number of edges of the ER graph so
(n

2

)
pL is

the expected number of pairwise samples drawn from
the model of our interest.

III. MAIN RESULTS

As suggested in [10], a crucial parameter for successful
top-K ranking is the separation between the two items near
the decision boundary,

	K := wK −wK+1

wmax
. (9)

The sample complexity depends on w and K only through
	K —more precisely, it decreases as 	K increases. Our con-
tribution is to identify relationships between η and the sample
complexity when η is known and unknown. We will see that
the sample complexity increases as 	K decreases. This is
intuitively true as 	K captures how distinguishable the top-K
set is from the rest of the items.

We assume that the graph G is drawn from the ER
model Gn,p with edge appearance probability p. We require
p to satisfy

p >
log n

n
. (10)

From random graph theory, this implies that the graph is con-
nected with high probability. If the graph were not connected,
rankings cannot be inferred [9].

We start by considering the η-known scenario in which key
ingredients for ranking algorithms and analysis can be easily
digested, as well as which forms the basis for the η-unknown
setting.

Theorem 1 (Known η): Suppose that η is known and
G ∼ Gn,p. Also assume that L = O(poly(n)) and Lnp ≥

c0
(2η−1)2

log n. Then with probability ≥ 1 − c1n−c2 , the set of

top-K set can be identified exactly provided that

L ≥ c3
log n

(2η − 1)2np	2
K

. (11)

Conversely, for a fixed ε ∈ (0, 1
2 ), if

L ≤ c4
(1− ε) log n

(2η − 1)2np	2
K

(12)

holds, then for any top-K ranking scheme ψ , there exists a
preference vector w with separation 	K such that Pe(ψ) ≥ ε.
Here, and in the following, ci > 0, i ∈ {0, 1, . . . , 4} are finite
universal constants.
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Proof: See Section IV for the algorithm and a sketch of
the achievability proof (sufficiency). The proof of the converse
(impossibility part) can be found in Section V.

This theorem asserts that the sample complexity scales as

S	K �
n log n

(2η − 1)2	2
K

. (13)

This result recovers that for the faithful scenario where η = 1
in [10]. When η− 1

2 is uniformly bounded above 0, we achieve
the same order-wise sample complexity. This suggests that
the ranking performance is not substantially worsened if the
sizes of the two populations are sufficiently distinct. For the
challenging scenario in which η ≈ 1

2 , the sample complexity
depends on how η− 1

2 scales with n. Indeed, this dependence
is quadratic. Also notice that since the sample complexity
in (13) is stated in terms of S	K , for a fixed number of
pairwise samples

(n
2

)
pL, it does not matter how to choose

p and L as long as p satisfies (10) and the product
(n

2

)
pL

satisfies (13). Theorem 1 will be validated by experimental
results in Section VII. Several other remarks are in order.

1) (No computational barrier): Our proposed algorithm is
based primarily upon two popular ranking algorithms:
spectral methods [7] and MLE [9], both of which enjoy
nearly-linear time complexity in our ranking problem
context. Hence, the information-theoretic limit promised
by (13) can be achieved by a computationally efficient
algorithm.

2) (Implication of the minimax lower bound): The minimax
lower bound continues to hold when η is unknown, since
we can only do better for the η-known scenario, and
hence the lower bound is also a lower bound in the η-
unknown scenario.

3) (Another adversarial scenario): Our results readily gen-
eralize to another adversarial scenario in which samples
drawn from the adversarial population (of proportion η)
are completely noisy, i.e., they follow the distribution
Bern( 1

2 ). With a slight modification of our proof tech-
niques, one can easily verify that the sample complexity
is on the order of

S̃	K �
n log n

η2	2
K

(14)

if η is known. Hence the closer the faithful proportion η
is to 0, the worse the sample complexity, which is
intuitively true. The result in (14) will be evident after
we describe the algorithm in Section IV. For a sketch of
the argument to obtain (14), please refer to Section IV-C.

Theorem 2 (Unknown η): Suppose that η is unknown and
G ∼ Gn,p. Also assume that L = O(poly(n)) and Lnp ≥

c0
(2η−1)4

log2 n. Then with probability ≥ 1− c1n−c2 , the top-K
set can be identified exactly provided that

L ≥ c3
log2 n

(2η − 1)4np	4
K

. (15)

Proof: See Section VI for the key ideas in the proof.
This theorem implies that the sample complexity satisfies

S	K � n log2 n

(2η − 1)4	4
K

. (16)

Fig. 2. Illustrations of our main theorems (Theorems 1 and 2)

Fig. 3. Ranking algorithm for the η-known scenario: (1) shifting the empirical

mean of pairwise measurements to get Ỹi j = Yi j−(1−η)
2η−1 , which converges to

wi
wi+w j

as L →∞; (2) performing SpectralMLE [10] seeded by Ỹ to obtain

a score estimate ŵ; (3) return a ranking based on the estimate ŵ. Our analysis

reveals that the �∞ norm bound w.r.t. ŵ satisfies ‖ŵ−w‖∞ � 1
2η−1

√
log n
npL ,

which in turn ensures Pe → 0 under 	K � 1
2η−1

√
log n
npL .

This bound is worse than (13)—the inverse dependence on
(2η− 1)2	2

K is now an inverse dependence on (2η− 1)4	4
K .

This is because our algorithm involves estimating η, incurring
some loss. Whether this loss is fundamentally unavoidable
(i.e., whether the algorithm is order-wise optimal or not) is
open. See detailed discussions in Section VIII. Moreover, since
the estimation of η is based on tensor decompositions with
polynomial-time complexity, our algorithm for the η-unknown
case is also, in principle, computationally efficient. Note that
minimax lower bound in (13) also serves as a lower bound in
the η-unknown scenario.

The conclusions of Theorems 1 and 2 are illustrated
graphically in Fig. 2.
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IV. ALGORITHM AND ACHIEVABILITY

PROOF OF THEOREM 1

A. Algorithm Description

Inspired by the consistency between the preference scores
w and ranking under the BTL model, our scheme also adopts
a two-step approach where w is first estimated and then the
top-K set is returned.

Recently a top-K ranking algorithm SpectralMLE [10] has
been developed for the faithful scenario and it is shown to
have order-wise optimal sample complexity. The algorithm
yields a small �∞ loss of the score vector w which ensures a
small point-wise estimate error. Establishing a key relationship
between the �∞ norm error and top-K ranking accuracy,
Chen and Suh [10] then identify an order-wise tight bound
on the �∞ norm error required for top-K ranking, thereby
characterizing the sample complexity. Our ranking algorithm
builds on SpectralMLE, which proceeds in two stages: (1) an
appropriate initialization that concentrates around the ground
truth in an �2 sense, which can be obtained via spectral
methods [3], [7], [8]; (2) a sequence of T iterative updates
sharpening the estimates in a point-wise manner using MLE.

We observe that RankCentrality [7] can be employed as
a spectral method in the first stage. In fact, RankCentrality
exploits the fact that the empirical mean Yi j converges to the
relative score wi

wi+w j
as L → ∞. This motivates the use of

the empirical mean for constructing the transition probability
from j to i of a Markov chain. Note that the detailed balance
equation πi

w j
wi+w j

= π j
wi

wi+w j
that holds as L → ∞ will

enforce that the stationary distribution of the Markov chain
is identical to w up to some constant scaling. Hence, the
stationary distribution is expected to serve as a reasonably
good global score estimate. However, in our problem setting
where η is not necessarily 1, the empirical mean does not
converge to the relative score, instead it behaves as

Yi j
L→∞−→ η

wi

wi +w j
+ (1− η) w j

wi +w j
. (17)

(The above convergence is “in probability”.) Note, however,
that the limit is linear in the desired relative score and η,
implying that knowledge of η with an appropriate linear
transformation then leads to the relative score. A natural idea
then arises. We construct a shifted version of the empirical
mean:

Ỹi j := Yi j − (1− η)
2η − 1

L→∞−→ wi

wi +w j
, (18)

and take this as an input to RankCentrality. This then forms
a Markov chain that yields a stationary distribution that is
proportional to w as L → ∞ and hence a good estimate of
the ground-truth score vector when L is large. This serves as
a good initial estimate to the second stage of SpectralMLE as
it guarantees a small point-wise error.

A formal and more detailed description of the procedure is
summarized in Algorithm 1. Also see the block diagram of
the procedure in Fig. 3. For completeness, we also include the
procedure of RankCentrality in Algorithm 2. Here we empha-
size two distinctions w.r.t. the second stage of SpectralMLE.

Algorithm 1 Adversarial top-K ranking for the η-known
scenario

Input: The average comparison outcome Yi j for all (i, j) ∈
E ; the score range [wmin, wmax].

Partition E randomly into two sets E init and E iter each
containing 1

2 |E | edges. Denote by Y init
i (resp. Y iter

i ) the
components of Y i obtained over E init (resp. E iter).

Compute the shifted version of the average comparison
output: Ỹi j = Yi j−(1−η)

2η−1 . Denote by Ỹ
init
i the components

of Ỹ i obtained over E init

Initialize w(0) to be the estimate computed by Rank Cen-
trality on Ỹ

init
i (1 ≤ i ≤ n).

Successive Refinement: for t = 0 : T do
1) Compute the coordinate-wise MLE

wmle
i ← arg maxτ L

(
τ,w

(t)
\i ;Y iter

i

)
where L is the likelihood function defined in (19).

2) For each 1 ≤ i ≤ n, set

w
(t+1)
i ←

{
wmle

i , |wmle
i − w(t)i | > ξt ;

w
(t)
i , else,

where ξt is the replacement threshold defined in (20).
Output the indices of the K largest components of w(T ).

Algorithm 2 Rank Centrality [7]

Input: The shifted average comparison outcome Ỹi j for all
(i, j) ∈ E iter.

Compute the transition matrix P̂ = [ p̂i j ]1≤i, j≤n such that
for (i, j) ∈ E iter

p̂i j =
{

Ỹ j i
dmax

, if i �= j ;
1− 1

dmax

∑
k:(i,k)∈E iter Ỹki , if i = j.

where dmax is the maximum out-degrees of vertices in E iter.

Output the stationary distribution of P̂ .

First, the computation of the pointwise MLE w.r.t. say, item
i , requires knowledge of η:

L(τ,w(t)
\i ;Y i

)

=
∏

j :(i, j )∈E

[(
η

τ

τ +w(t)j

+ (1− η) w
(t)
j

τ +w(t)j

)Yi j

×
(
η

w
(t)
j

τ +w(t)j

+ (1− η) τ

τ +w(t)j

)1−Yi j
]
. (19)

Here, L(τ,w(t)
\i ;Y i ) is the profile likelihood of the preference

score vector [w(t)1 , · · · , w(t)i−1, τ,w
(t)
i+1, · · · , w(t)n ] where w(t)

indicates the preference score estimate in the t-th iteration,
w
(t)
\i denotes the score estimate excluding the i -th component,

and Y i is the data available at node i . The second difference
is the use of a different threshold ξt which incorporates the
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effect of η:

ξt := c

2η − 1

{√
log n

npL
+ 1

2t

(√
log n

pL
−
√

log n

npL

)}
, (20)

where c > 0 is a constant. This threshold is used to decide
whether w(t+1)

i should be set to be the pointwise MLE wmle
i

in (25) (if |wmle
i −w(t)i | > ξt ) or remains as w(t)i (otherwise).

The design of ξt is based on (1) the �∞ loss incurred in
the first stage; and (2) a desirable �∞ loss that we intend
to achieve at the end of the second stage. Since these two
values are different, ξt needs to be adapted accordingly. Notice
that the computation of ξt requires knowledge of η. The two
modifications in (19) and (20) result in a more complicated
analysis vis-à-vis Chen and Suh [10].

B. Achievability Proof of Theorem 1

Let ŵ be the final estimate w(T ) in the second stage. We
carefully analyze the �∞ loss of the w vector, showing that
under the conditions in Theorem 1

‖ŵ − w‖∞ ≤ c1

2η − 1

√
log n

npL
. (21)

holds with probability exceeding 1 − c2n−c3 . This bound
together with the following observation completes the proof.

Observe that if wK − wK+1 ≥ c4
2η−1

√
log n
npL , then for a top-K

item 1 ≤ i ≤ K and a non-top-K item j ≥ K + 1,

ŵi − ŵ j ≥ wi −w j − |wi − ŵi | − |w j − ŵ j | (22)

≥ wK − wK+1 − 2‖ŵ − w‖∞ > 0. (23)

This implies that our ranking algorithm outputs the top-K
ranked items as desired. Hence, as long as wK − wK+1 �

1
2η−1

√
log n
npL holds (coinciding with the claimed bound in

Theorem 1), we can guarantee perfect top-K ranking, which
completes the proof of Theorem 1.

The remaining part is the proof of (21). The proof builds
upon the analysis made in [10], which demonstrates the
relationship between ‖w(0)−w‖

‖w‖ and ‖w(T )−w‖∞. We establish
a new relationship for the arbitrary η case, formally stated in
the following lemma. We will then use this to prove (21).

Lemma 1: Fix δ, ξ > 0. Consider ŵ
ub such that it is

independent of G and satisfies

‖ŵub − w‖
‖w‖ ≤ δ and ‖ŵub − w‖∞ ≤ ξ. (24)

Consider an estimate of the score vector ŵ such that
|ŵi −wi | ≤ |ŵub

i −wi | for all i ∈ [n]. Let

wmle
i := arg max

τ
L(τ, ŵ\i ;Y i ). (25)

Then, the pointwise error

|wmle
i − wi | ≤ c0 max

{
δ + log n

np
· ξ, c1

2η − 1

√
log n

npL

}
(26)

holds with probability at least 1− c2n−c3 .

Proof: The relationship in the faithful scenario η = 1,
which was proved in [10], means that the point-wise
MLE wmle

i is close to the ground truth wi in a component-
wise manner, once an initial estimate ŵ is accurate enough.
Unlike the faithful scenario, in our setting, we have (in general)
noisier measurements Y i due to the effect of η. Nonetheless
this lemma reveals that the relationship for the case of η = 1
is almost the same as that for an arbitrary η case only with a
slight modification. This implies that a small point-wise loss
is still guaranteed as long as we start from a reasonably good
estimate. Here the only difference in the relationship is that the
multiplication term of 1

2η−1 additionally applies in the upper
bound of (26). See Appendix A for the proof.

Obviously the accuracy of the point-wise MLE reflected in
the �∞ error depends crucially on an initial error ‖w(0)−w‖.
In fact, Lemma 1 leads to the claimed bound (21) once the
initial estimation error is properly chosen as follows:

‖w(0) − w‖
‖w‖ � 1

2η − 1

√
log n

npL
. (27)

Here we demonstrate that the desired initial estimation error
can indeed be achieved in our problem setting, formally stated
in Lemma 2 (see below). On the other hand, adapting the
analysis in [10], one can verify that with the replacement
threshold ξt defined in (20), the �2 loss is monotonically
decreasing in an order-wise sense, i.e.,

‖w(t) − w‖
‖w‖ � ‖w(0) − w‖

‖w‖ . (28)

We are now ready to prove (21) when L = O(poly(n)) and

‖w(t) − w‖
‖w‖ � δ � 1

2η − 1

√
log n

npL
. (29)

Lemma 1 asserts that in this regime, the point-wise MLE wmle

is expected to satisfy

‖wmle − w‖∞ � ‖w(t) − w‖
‖w‖ + log n

np
‖w(t) − w‖∞. (30)

Using the analysis in [10], one can show that the choice of
ξt in (20) enables us to detect outliers (where an estimation
error is large) and drag down the corresponding point-wise
error, thereby ensuring that ‖w(t+1) −w‖∞ � ‖wmle −w‖∞.
This together with the fact that

‖w(t) − w‖
‖w‖ � ‖w(0) − w‖

‖w‖ � 1

2η − 1

√
log n

npL
(31)

(see (29) above and Lemma 2) gives

‖w(t+1) − w‖∞ � 1

2η − 1

√
log n

npL
+ log n

np
‖w(t) − w‖∞.

(32)

A straightforward computation with this recursion yields (21)
if log n

np is sufficiently small (e.g., p > 2 log n
n ) and T , the

number of iterations in the second stage of SpectralMLE, is
sufficiently large (e.g., T = O(log n)).
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Lemma 2: Let L = O(poly(n)) and Lnp ≥ c0
(2η−1)2

log n.

Let w(0) be an initial estimate: an output of RankCentrality [7]
when seeded by Ỹ := {Ỹi j }(i, j )∈E . Then,

‖w − w(0)‖
‖w‖ ≤ c1

2η − 1

√
log n

npL
(33)

holds with probability exceeding 1− c2n−c3 .
Proof: Here we provide only a sketch of the proof, leaving

details to Appendix B. The proof builds upon the analysis
structured by [7, Lemma 2], which bounds the deviation of
the Markov chain w.r.t. the transition matrix P̂ after t steps:

‖ p̂t − w‖
‖w‖ ≤ ρt ‖ p̂0 − w‖

‖w‖
√
wmax

wmin
+ 1

1− ρ ‖	‖
√
wmax

wmin

(34)

where p̂t denotes the distribution w.r.t. P̂ at time t seeded by
an arbitrary initial distribution p̂0, the matrix 	 := P̂ − P,
indicates the fluctuation of the transition probability matrix1

around its mean P := E[P̂], and ρ := λmax+‖	‖
√
wmax
wmin

. Here

λmax = max{λ2,−λn} and λi indicates the i -th eigenvalue
of P .

Unlike the faithful scenario η = 1, in the arbitrary η case,
the bound on ‖	‖ depends on η:

‖	‖ � 1

2η − 1

√
log n

npL
, (35)

which will be proved in Lemma B by using various concen-
tration bounds (e.g., Hoeffding and Tropp [27]). Adapting the
analysis in [7], one can easily verify that ρ < 1 under one
of the conditions in Theorem 1 that Lnp � log n

(2η−1)2
. Applying

the bound on ‖	‖ and ρ < 1 to (34) gives the claimed bound,
which completes the proof.

C. The Completely Noisy Case

As a final remark, in the third remark following
Theorem 1, we mentioned that if the adversarial population
generates completely noisy Bern( 1

2 ) observations, then the
sample complexity is as in (14). This is easily seen as follows:
Analogously to (17), the samples Yi j are now generated from
a Bernoulli distribution with bias η wi

wi+w j
+ (1 − η) 1

2 . Thus,
we ought to shift and scale the observed samples to form
Ỹi j := 1

η (Yi j − 1
2 )+ 1

2 and this sequence of random variables
will converge to the desired proportion wi

wi+w j
as L → ∞.

Due to the factor η in the denominator (instead of 2η − 1 as
in (18)), we see that the sample complexity is as in (14) (with
η2 in the denominator).

V. CONVERSE PROOF OF THEOREM 1

As in Chen and Suh’s work [10], by Fano’s inequality,
we see that it suffices for us to upper bound the mutual
information between a set of appropriately chosen rankings
M of cardinality M := min{K , n−K }+1. More specifically,

1The notation 	 = P̂− P , a matrix, should not be confused with the scalar
normalized score separation 	K , defined in (9).

let σ : [n] → [n] represent a permutation over [n]. We also
denote by σ(i) and σ([K ]) the corresponding index of the i -th
ranked item and the index set of all top-K items, respectively.
We subsequently impose a uniform prior over M as follows:
If K < n/2 then

Pr[σ([K ]) = S] = 1

M
for S = {2, . . . , K } ∪ {i}, i = 1, K + 1, . . . , n (36)

and if K ≥ n/2, then

Pr[σ([K ]) = S] = 1

M
for S = {1, . . . , K + 1} \ {i}, i = 1, . . . , K + 1. (37)

In words, each alternative hypothesis is generated by swap-
ping only two indices of the hypothesis (ranking) obeying
σ([K ]) = [K ]. Clearly, the original minimax error probability
is lower bounded by the corresponding error probability of
this reduced ensemble.

Let the set of observations for the edge (i, j) ∈ E be
denoted as �Yi j := {Y (�)i j : � ∈ [L]}. We also find it convenient
to introduce an “erased” version of the observations Z =
{ �Zi j : (i, j) ∈ [n]2} which is related to the true observations
Y := { �Yi j : (i, j) ∈ E} as follows,

�Zi j =
{ �Yi j (i, j) ∈ E

e (i, j) /∈ E . (38)

Here e is an erasure symbol. Let σ , a chance variable, be a
uniformly distributed ranking in M (the ensemble of rankings
created in (36)–(37)). Let P�Yi j |σ j

be the distribution of the
observations given that the ranking is σ j ∈M where j ∈ [M]
and a similar notation is used for when �Yi j is replaced by �Zi j .
Now, by the convexity of the relative entropy and the fact
that the rankings are uniform, the mutual information can be
bounded as

I (σ ; Z) ≤ 1

M2

∑
σ1,σ2∈M

D
(
PZ|σ1

∥∥PZ|σ2

)
(39)

= 1

M2

∑
σ1,σ2∈M

∑
i �= j

D
(

P�Zi j |σ1

∥∥P�Zi j |σ2

)
(40)

= p

M2

∑
σ1,σ2∈M

∑
i �= j

D
(

P�Yi j |σ1

∥∥P�Yi j |σ2

)
(41)

= p

M2

∑
σ1,σ2∈M

∑
i �= j

L∑
�=1

D

(
P

Y (�)i j |σ1

∥∥P
Y (�)i j |σ2

)
. (42)

Assume that under ranking σ1, the score vector is w :=
(w1, . . . , wn) and under ranking σ2, the score vector is w′ :=
(wπ(1), . . . , wπ(n)) for some fixed permutation π : [n] → [n].
By using the statistical model in Section II, we know that

D

(
P

Y (�)i j |σ1

∥∥P
Y (�)i j |σ2

)

= D

(
η

wi

wi +w j
+ (1− η) w j

wi +w j

∥∥∥
η

wπ(i)

wπ(i) +wπ( j )
+ (1− η) wπ( j )

wπ(i) + wπ( j )

)
(43)



SUH et al.: ADVERSARIAL TOP-K RANKING 2209

where D(α‖β) := α log α
β + (1 − α) log 1−α

1−β is the binary
relative entropy. For brevity, write

a := wi

wi +w j
, and b := wπ(i)

wπ(i) +wπ( j )
. (44)

Furthermore, we note that the chi-squared divergence is an
upper bound for the relative entropy between two distributions
P = {Pi }i∈X and Q = {Qi }i∈X on the same (countable)
alphabet X (see e.g. [28, Lemma 6.3]), i.e.,

D(P‖Q) ≤ χ2(P‖Q) :=
∑
i∈X

(Pi − Qi )
2

Qi
. (45)

We also use the notation χ2(α‖β) to denote the binary chi-
squared divergence similarly to the binary relative entropy.
Now, we may bound (43) using the following computation

D
(
ηa + (1− η)(1− a)

∥∥ηb + (1− η)(1− b)
)

≤ χ2 (ηa + (1− η)(1− a)
∥∥ηb + (1− η)(1− b)

)
(46)

= (2η − 1)2(a − b)2(
(2η − 1)b + (1− η))(η − (2η − 1)b

) (47)

Now

|a − b| ≤ wK

wK +wK+1
− wK+1

wK +wK+1
≤ wmax

2wmin
	K . (48)

Hence, if we consider the case where η = (1/2)+ (which is
the regime of interest), uniting (47) and (48) we obtain

D
(
ηa + (1− η)(1− a)

∥∥ηb + (1− η)(1− b)
)

� (2η − 1)2	2
K . (49)

By construction of the hypotheses in (36)–(37), conditional
on any two distinct rankings σ1, σ2 ∈M, the distributions of
�Yi j (namely P�Yi j |σ1

and P�Yi j |σ2
) are different over at most 2n

locations so

∑
i �= j

L∑
l=1

D

(
P

Y (�)i j |σ1

∥∥P
Y (�)i j |σ2

)
� nL(2η − 1)2	2

K . (50)

Thus, plugging this into the bound on the mutual information
in (42), we obtain

I (σ ; Z) � pnL(2η − 1)2	2
K . (51)

Plugging this into Fano’s inequality, and using the fact that
M ≤ n/2 (from M = min{K , n − K } + 1), we obtain

Pe(ψ) ≥ 1− I (σ ; Z)
log M

− 1

log M
(52)

≥ 1− I (σ ; Z)
log(n/2)

− 1

log(n/2)
. (53)

Thus, if S	K =
(n

2

)
pL ≤ c2(1−ε) logn

(2η−1)2	2
K

for some small enough

but positive c2, we see that

Pe(ψ) ≥ ε > 0. (54)

Since this is independent of the decoder ψ , the converse part
is proved.

As a final remark, let us mention that it is easy to use
techniques in [29] to show that if L satisfies the upper bound
in (13), not only does the probability of error fail to tend to
zero as in (54), but it is arbitrarily close to 1 for sufficiently
large n, a so-called strong converse statement.

VI. ALGORITHM AND PROOF OF THEOREM 2

A. High-Level Description of Algorithm

The proof of Theorem 2 follows by combining the results
of Jain and Oh [15] with the analysis for the case when
η is known in Theorem 1. Jain and Oh were interested
in disambiguating a mixture distribution from samples. This
corresponds to our model in (5). They showed using tensor
decomposition methods that it is possible to find a globally
optimal solution for the mixture weight η using a computa-
tionally efficient algorithm. They also provided an �2 bound
on the error of the distributions but as mentioned, we are
more interested in controlling the �∞ error so we estimate w

separately. The use of the �2 bound in [15] leads to a worse
sample complexity for top-K ranking.

Thus, in the first step, we will use the method in [15] to
estimate η given the sufficient statistics of the data samples
(pairwise comparisons) Y . The estimate is denoted as η̂. It
turns out that one can specialize the result in [15] with suitably
parametrized “distribution vectors”

π0 :=
[
. . .

wi

wi+w j

w j

wi+w j

wi ′

wi ′ +w j ′

w j ′

wi ′ +w j ′
. . .

]T

(55)

and π1 := 12|E | − π0 ∈ R
2|E | and where in (55), (i, j) runs

through all edges in E . Hence, we are in fact applying [15] to a
more restrictive setting where the two probability distributions
represented by π0 and π1 are “coupled” but this does not
preclude the application of the results in [15]. In fact, this
assumption makes the calculation of relevant parameters (in
Lemma 6) easier. The relevant second and third moments are

M2 := ηπ0 ⊗ π0 + (1− η)π1 ⊗ π1, (56)

M3 := ηπ0 ⊗ π0 ⊗ π0 + (1− η)π1 ⊗ π1 ⊗ π1, (57)

where π j ⊗ π j ∈ R
(2|E |)×(2|E |) is the outer product and

π j ⊗ π j ⊗ π j ∈ R
(2|E |)×(2|E |)×(2|E |) is the 3-fold tensor

outer product. If one has the exact M2 and M3, we can
obtain the mixture weight η exactly. The intuition as to why
tensor methods are applicable to problems involving latent
variables has been well-documented (e.g. [16]). Essentially, the
second- and third-moments contained in M2 and M3 provide
sufficient statistics for identifying and hence estimating all
the parameters of an appropriately-defined model with latent
variables (whereas second-order information contained in M2
is, in general, not sufficient for reconstructing the parameters).
Thus, the problem boils down to analyzing the precision
of η when we only have access to empirical versions of
M2 and M3 formed from pairwise comparisons in G. As shown
in Lemma 5 to follow, there is a tradeoff between the sample
size per edge L and the quality of the estimate of η. Hence,
this causes a degradation to the overall sample complexity
reflected in Theorem 2.

In the second step, we plug the estimate η̂ into the algorithm
for the η-known case by shifting the observations Y similarly
to (18) but with η̂ instead of η. See Fig. 4. However, here there
are a couple of important distinctions relative to the case where
η is known exactly. First, the likelihood function L(·) in (19)
needs to be modified since it is a function of η in which now
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Fig. 4. Ranking algorithm for the unknown η scenario. The key dis-
tinction relative to the known η case is that we estimate η based on the
tensor decomposition method [15], [16] and the estimate η̂ is employed
for shifting Y and performing the point-wise MLE. This method allows

us to get ‖ŵ − w‖∞ � 1
2η−1

4
√

log2 n
npL , which ensures that Pe → 0 under

	K � 1
2η−1

4
√

log2 n
npL .

we only have its estimate η̂. Second, since the guarantee on
the �∞ loss of the preference score vector w is different (and
in fact worse), we need to design the threshold ξt differently
from (20). We call the modified threshold ξ̂t , to be defined
precisely in (66).

B. Detailed Algorithm for Estimating
the Mixing Coefficient η

The algorithm for estimating η is shown in Algorithm 3,
with a subroutine (alternating minimization for matrix comple-
tion) shown in Algorithm 4. Some notations that appear in the
algorithms are defined as follows. First, we define two sets of
indices �2 := {(i, j) ∈ [2 |E |] × [2 |E |] : �i/2� �= � j/2�} and
�3 := {(i, j, k) ∈ [2 |E |] × [2 |E |] × [2 |E |] : �i/2� �= � j/2� �=
�k/2� �= �i/2�}. For a vector x ∈ R

d , let ⊗3x := x ⊗ x ⊗ x
be the 3-fold (tensor) outer product. Given a m-th order tensor
A ∈ R

d×d×...×d ∼= R
dm

and an index set � ⊆ [d]m , we define
the projection operator P� : Rdm → R

dm
as

[P�(A)]i1,...,im :=
{

Ai1,...,im , (i1, . . . , im) ∈ �
0, otherwise,

(58)

for all (i1, . . . , im) ∈ [d]m . If A is symmetric and m = 2,
denote its (unique) eigen-decomposition as A = UA�AU T

A ,
where the diagonal entries of �A are arranged in the deceas-
ing order. Then we define PA := (UA�

1/2
A )T and Q A :=

UA�
−1/2
A . If A is symmetric and m = 3, we define an r×r×r

operation with respect to R ∈ R
d×r as

(A[R]3) j1, j2, j3 :=
∑

i1,i2,i3∈[d]
Ai1,i2,i3

3∏
k=1

Rik , jk , (59)

for all j1, j2, j3 ∈ [r ]. For any A, B ∈ R
dm

, define
their inner product 〈A, B〉 := ∑

i1,...,im∈[d] Ai1,...,im Bi1,...,im
and ‖A‖F := √〈A, A〉. Finally, define two set of indices
I1 := {1, . . . , �L/2�} and I2 := {�L/2� + 1, . . . , L}.

Note that in Algorithm 3, a crucial step is to find the
third-order statistic Ĝ by solving the least squares problem
in (60). Our theoretical guarantee for exact identification of

Algorithm 3 Estimating mixing coefficient η [15]
Input: The collection of observed pairwise comparisons Y

Split Y evenly into two subsets of samples Y (1) := {Y (�) :
� ∈ I1} and Y (2) := {Y (�) : � ∈ I2}
Compute M̂2, the estimated second-order moment matrix
M2 in (56) based on Y (1) using Algorithm 4

Compute Ĝ, the estimated third-order statistic of G :=
M3[QM2 ]3 by solving the least squares problem2

Ĝ ∈ argmin
Z∈R2×2×2

∥∥∥∥∥∥P�3

⎛
⎝Z

[
PM̂2

]
3
−
∑
t∈I2

⊗3Y (t)

|I2|

⎞
⎠[QM̂2

]
3

∥∥∥∥∥∥
2

F

.

(60)

Compute the first eigenvalue λ1 of Ĝ using the robust power
method in Anandkumar et al. [16]

Return the estimated mixing coefficient η̂ = λ−2
1

Algorithm 4 Alternating Minimization for Matrix
Completion [15]

Input: The collection of observed pairwise comparisons
Y (1), maximum number of iterations T

Compute a summary statistic S2 := 1
|I1|
∑

t∈I1
Y (t) ⊗ Y (t).

Initialize U0 ∈ R
2|E |×2 using the top two eigenvectors of

P�2(S2).

For τ = 0, . . . , T − 1

Compute the (projected) Cholesky decomposition

Ûτ+1 ∈ argmin
U∈R2|E|×2

∥∥∥P�2

(
S2 −UU T

τ

)∥∥∥2

F
. (61)

Compute the QR decomposition

[Uτ+1, Rτ+1] = QR(Ûτ+1). (62)

end for

Return the estimated second-order moment matrix
M̂2 := ÛT U T

T−1

the top-K set (Theorem 2) requires both the sample size L
and the number of observed edges |E | to be sufficiently
large. Therefore, (60) is a large-scale optimization problem.
Recently, Huang et al. [30] proposed to use the stochastic
tensor gradient descent (STGD) method to perform tensor
decomposition in an online manner specifically for problems
where L is large. In Appendix G, we discuss how to make use
of this method to solve (60). We also discuss the difficulties
of applying such a method when |E | (i.e., the number of
“features”) is also large.

2Ĝ can be taken to be any minimizer of (60), and similar for Ûτ+1 in (61).
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C. Proof of Theorem 2

As in Section IV-B, the crux is to analyze the �∞ loss of
the w vector. We show that

‖ŵ − w‖∞ ≤ c0

2η − 1
4

√
log2 n

npL
(63)

holds with probability ≥ 1 − c1n−c2 . To guarantee that
top-K ranking is accurate, we then follow the same argument
as in (22)–(23). We lower bound ‖ŵ−w‖∞ in (63) by 	K and
solve for L. Thus, it suffices to show (63) under the conditions
of Theorem 2.

The proof of (63) follows from several lemmas, two of
which we present in this section. These are the analogues of
Lemmas 1 and 2 for the η-known case. Once we have these
two lemmas, the strategy to proving (63) is almost the same
as that in the η-known setting in Section IV-B so we omit the
details.

The first lemma concerns the relationship between the
normalized �2 error and the �∞ error when we do not have
access to the true mixture weight η, but only an estimate of
it given via Algorithm 3.

Lemma 3: Consider ŵ
ub such that it is independent of G

and satisfies (24). Consider ŵ such that |ŵi−wi | ≤ |ŵub
i −wi |

for all i ∈ [n]. Now define

wmle
i := arg max

τ
L̂(τ, ŵ\i ;Y i ), (64)

where L̂(·) is the surrogate likelihood (cf. (19)) constructed
with η̂ in place of η. Then, for all i , the same pointwise MLE
bound in (26) holds with probability ≥ 1− c0n−c1 .

Proof: The proof parallels that of Lemma 1 but is more
technical. We analyze the fidelity of the estimate η̂ relative to η
as a function of L (Lemma 5). This requires the specialization
of Jain and Oh [15] to our setting. By proving several
continuity statements, we show that the estimated normalized
log-likelihood (NLL) 1

L log L̂(·) is uniformly close to the true
NLL 1

L logL(·) w.h.p. This leads us to prove (26), which is
the same as the η-known case. The details are deferred to
Appendix C.

Similarly to the case where η is known, we need to
subsequently control the initial error ‖w(0) − w‖. For the
η-known case, this is done in Lemma 2 so the following lemma
is an analogue of Lemma 2.

Lemma 4: Assume the conditions of Theorem 2 hold. Let
w(0) be an initial estimate, i.e., an output of RankCentrality
when seeded by Ỹ which consists of the shifted observations
with η̂ in place of η (cf. (18)). Then,

‖w − w(0)‖
‖w‖ ≤ c0

2η − 1
4

√
log2 n

npL
(65)

holds with probability ≥ 1− c1n−c2 .
Proof: See Section VI-D for a sketch of the proof and

Appendix D for a detailed calculation of an upper bound on
the spectral norm of the fluctuation matrix, which is a key
ingredient of the proof of Lemma 4.

We remark that (65) is worse than its η-known counterpart
in (33). In particular, there is now a fourth root inverse depen-
dence on L (compared to a square root inverse dependence),

which means we potentially need many more observations to
drive the normalized �2 error ‖w−w(0)‖

‖w‖ down to the same level.
This loss is present because there is a penalty incurred in
estimating η via the tensor decomposition approach, especially
when η is close to 1/2. In the analysis, we need to control
the Lipschitz constants of functions such as t �→ 1

2t−1 and
t �→ 1−t

2t−1 (see e.g. (18)). Such functions behave badly near
1/2. In particular, the gradient diverges as t ↓ 1/2. We have
endeavored to optimize (65) so that it is as tight as possible,
at least using the proposed methods.

Using Lemmas 3 and 4 and invoking a similar argument as
in the η-known scenario, we can now to prove (63). One key
distinction here lies in the choice of the threshold:

ξ̂t := c

2η̂ − 1

⎧⎨
⎩

4

√
log2 n

npL
+ 1

2t

⎛
⎝ 4

√
n log2 n

pL
− 4

√
log2 n

npL

⎞
⎠
⎫⎬
⎭ .
(66)

The rationale behind this choice, which is different from (20),
is that it drives the initial �∞ loss (associated to the initial �2
loss in Lemma 4) to approach the desired �∞ loss in (63).
Taking this choice, which we optimized, and adapting the
analysis in [10] with Lemma 3, one can verify that the
�∞ loss is monotonically decreasing in an order-wise sense:
‖w(t)−w‖
‖w‖ � ‖w(0)−w‖

‖w‖ similarly to (28). By applying Lemma 3
to the regime where L = O(poly(n)) and

‖w(t) − w‖
‖w‖ � δ � 1

2η − 1
4

√
log2 n

npL
, (67)

we get

‖wmle − w‖∞ � ‖w(t) − w‖
‖w‖ + log n

np
‖w(t) − w‖∞. (68)

As in the η-known setting, one can show that the replacement
threshold ξ̂t leads to ‖wmle − w‖∞ � ‖w(t) − w‖∞. This
together with Lemma 4 gives

‖w(t+1) − w‖∞ � 1

2η − 1
4

√
log2 n

npL
+ log n

np
‖w(t) − w‖∞.

(69)

A straightforward computation with this recursion yields the
claimed bound as long as log n

np is sufficiently small (e.g.,

p > 2 log n
n ) and T is sufficiently large (e.g., T = O(log n)).

This completes the proof of (63).

D. Proof Sketch of Lemma 4

The proof of Lemma 4 relies on the fidelity of the estimate
η̂ as a function of L when we use the tensor decomposition
approach by Jain and Oh [15] on the problem at hand.

Lemma 5 (Fidelity of η Estimate): If the number of obser-
vations per observed node pair L satisfies

L � 1

ε2 log
n

δ
, , (70)

then the estimate η̂ is ε-close to the true value η with
probability exceeding 1− δ.
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Proof: The complete proof using Theorem 3 and Lemma 6
is provided in Section VI-E.

We take δ = n−c0 (for some constant c0 > 0) in the sequel
so (70) reduces to L � 1

ε2 log n. A major contribution in the
present paper is to find a “sweet spot” for ε; if it is chosen too
small, ‖ŵ−w‖∞ is reduced (improving the estimation error)
but L increases (worsening the overall sample complexity).
Conversely, if ε is chosen to be too large, the requirement
on L in (70) is relaxed, but ‖ŵ − w‖∞ increases and hence,
the overall sample complexity grows (worsens) eventually. The
estimate in (70) is reminiscent of a Chernoff-Hoeffding bound
estimate of the sample size per edge L required to ensure that
the average of i.i.d. random variables is ε-close to its mean
with probability ≥ 1 − δ. However, the justification is more
involved and requires specializing Theorem 3 (to follow) to
our setting.

Now, we denote the difference matrix 	 := P̂− P in which
η̂ is used in place of η as 	̂. Now using Lemma 5, several
continuity arguments, and some concentration inequalities, we
are able to establish that

‖	̂‖ � 1

2η − 1
4

√
log2 n

npL
(71)

with probability ≥ 1−c1n−c2 . The inequality (71) is proved in
Appendix D. Now similarly to the proof of Lemma 1, ρ < 1
under the conditions of Theorem 2. Applying the bound on the
spectral norm of ‖	̂‖ in (71) to (34) (which continues to hold
in the η-unknown setting) completes the proof of Lemma 4.

E. Proof of Lemma 5

To prove Lemma 5, we specialize the non-asymptotic
bound on the recovery of parameters in a mixture model
in [15] to our setting; cf. (55). Before stating this, we intro-
duce a few notations. Let the singular value decomposition
of M2, defined in (56), be written as M2 = U�V T where
� = diag(σ1(M2), σ2(M2)) and U ∈ R

(2|E |)×2 the matrix
consisting of the left-singular vectors, is decomposed as

U = [((U (1))T (U (2))T . . . (U (|E |))T
]T
. (72)

Each submatrix U (k) ∈ R
2×2 where k denotes a node pair. We

say that M2 is μ̃-block-incoherent if the operator norms for
all |E | blocks of U , namely U (k), are upper bounded as

‖U (k)‖2 ≤ μ̃
√

2

|E | , ∀ k ∈ E . (73)

For M2, the smallest block-incoherent constant μ̃ is known
as the block-incoherence of M2. We denote this as μ(M2) :=
inf{μ̃ : M2 is μ̃-block-incoherent}.

Theorem 3 (Jain and Oh [15]): Fix any ε, δ > 0. There
exists a polynomial-time algorithm in |E |, 1

ε and log 1
δ

[15, Algorithm 1] such that if

|E | � σ1(M2)
4.5μ(M2)

σ2(M2)4.5
(74)

and for a large enough (per-edge) sample size L satisfying

L � μ(M2)σ1(M2)
6|E |3

min{η, 1− η}σ2(M2)9
· log(n/δ)

ε2 , (75)

the estimate of the mixture weight η̂ is ε-close to the true
mixture weight η with probability exceeding 1− δ.

It remains to estimate the scalings of σ1(M2), σ2(M2) and
μ(M2). These require calculations based on π0, π1 and M2
and are summarized in the following crucial lemma.

Lemma 6: For a fixed (deterministic) sequence of graphs
with |E | edges,

σi (M2) = �(|E |), i = 1, 2, (76)

μ(M2) = �(1). (77)
Proof: The proof of this lemma can be found in

Appendix E. It hinges on the fact that ‖π0‖2 = ‖π1‖2,
as the faithful and adversarial populations have “permuted”
preference score vectors. This lemma is where the assumption
that the preference scores for the two populations are coupled
is essential.

Now the proof of Lemma 5 is immediate upon substitut-
ing (76) into (74)–(75). We then notice that |E | = �(n2 p) =
ω(1) with high probability so (74) is readily satisfied. Also
μ(M2)σ1(M2)

6|E |3
min{η,1−η}σ2(M2)9

= �(1) so we recover (70) as desired.

VII. EXPERIMENTAL RESULTS

For the case where η is known, a number of experiments on
synthetic data were conducted to validate Theorem 1. We first
state parameter settings common to all experiments. The total
number of items is n = 1000 and the number of ranked items
K = 10. In the pointwise MLE step in Algorithm 1, we set the
number of iterations T = �log n� and c = 1 in the formula for
the threshold ξt in (20). The observation probability of each
edge of the Erdős-Rényi graph is p = 6 log n

n . The latent scores
are uniformly generated from the dynamic range [0.5, 1]. Each
(empirical) success rate is averaged over 1000 Monte Carlo
trials.

We first examine the relations between success rates and η
for various values of the normalized separation of the scores
	K ∈ {0.1, 0.2, . . . , 0.5}. Here we consider two different
scenarios, one being such that η is close to 1/2 and the other
being such that η is close to 1. We set the number of samples
per edge, L = 1000 for the first case and L = 10 for the
second. This is because when η is small, more data samples
are needed to achieve non-negligible success rates. The results
for these two scenarios are shown in Figs. 5(a) and 5(b)
respectively. For both cases, when L is fixed, we observe as
η increases, the success rates increase accordingly. However,
the effect of η on success rates is more prominent when η is
close to 1/2. This is in accordance to (13) in Theorem 1 since
1/(2η− 1)2 has sharp decrease (as η increases) near 1/2 and
a gentler decrease near 1. Also, success rates increase when
	K increases. This again corroborates (13) which says that
the sample complexity is proportional to 1/	2

K .
Next we examine the relations between success rates and

normalized sample size

Snorm := S	K

(n log n)/[(2η − 1)2	2
K ]
, (78)

for η ∈ {0.6, 0.7, . . . , 1}. We fix 	K = 0.4 in this case. The
results are shown in Fig. 6. We observe the relations between
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Fig. 5. Success rates across η for (a) η close to 1/2 and (b) η close to 1.

Fig. 6. Success rates across normalized sample size Snorm.

success rates and Snorm are almost the same for all η’s so the
implied constant factor in � notation in (13) depends very
weakly on η (if at all).

Finally we numerically examine the relation between the
sample complexity and η. We fix 	K = 0.4 and focus on
the regime where η is close to 1/2. For each η, we use
the bisection method to approximately find the minimum
sample size per edge L̂ that achieves a high success rate
qth = 0.99. Specifically, the bisection procedure terminates

Fig. 7. Normalized empirical sample size Ŝnorm for η close to 1/2.

when the empirical success rate q̂ corresponding to L̂ satisfies
|q̂ − qth| < ε, where ε is set to 5 × 10−3. We repeat such
a procedure 10 times to get an average result L̂ave. We also
compute the resulting standard deviation and observe that it
is small across the 10 independent runs. Define the expected
minimum total sample size

Ŝ :=
(

n

2

)
pL̂ave. (79)

To illustrate the explicit dependence of Ŝ on η, we further
normalize Ŝ to

Ŝnorm := Ŝ

(n log n)/	2
K

, (80)

thus isolating the dependence of minimum total sample size
on η only. We then fit a curve C/(2η− 1)2 to Ŝnorm, where C
is chosen to best fit the points by optimizing a least-squares-
like objective function. The empirical results (mean and one
standard deviation) together with the fitted curve are shown in
Fig. 7. We observe Ŝnorm depends on η via 1/(2η−1)2 almost
perfectly up to a constant. This corroborates our theoretical
result in (13), i.e., the reciprocal dependence of the sample
complexity on (2η − 1)2.

For the case where η is not known, the computational and
storage costs turn out to be prohibitive even for a moderate
number of items n (see Appendix G). Hence, we leave the
implementation of the algorithm for the η-unknown case to
future work. It is likely that one may need to formulate
the ranking problem in an online manner [31] or resort to
online methods for performing tensor decompositions [30],
[32], [33]. Furthermore, existing online methods will also
have to be significantly enhanced for our algorithm to be
efficient.

VIII. CONCLUSION AND FURTHER WORK

In this paper, we have provided an analytical framework
for addressing the problem of recovering the top-K ranked
items in an adversarial crowdsourced setting. We considered
two scenarios. First, the proportion of adversaries 1 − η is
known and the second, more challenging scenario, is when
this parameter is unknown. For the first scenario, we adapted
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the SpectralMLE [10] and RankCentrality [7] algorithms to
provide an order-wise optimal sample complexity bound for
the total number of measurements for recovering the exact top-
K set. These results were verified numerically and the depen-
dence of the sample complexity on the reciprocal of (2η−1)2

was corroborated. For the second scenario, we adapted Jain
and Oh’s global optimality result for disambiguating a mixture
of discrete distributions [15] to first learn η. Subsequently, we
plugged this (inexact) estimate into the known-η algorithm
and utilized a sequence of continuity arguments to obtain an
upper bound on the sample complexity. This bound is order-
wise worse than the case where η is known, showing that
the error induced by the estimation of the mixture parameter
dominates the overall procedure.

A few natural questions result from our analyses.
1) The foremost concern is to narrow the gap in the sam-

ple complexities between the η-known and η-unknown
scenarios. This seems challenging given that (i) thresh-
old ξ̂t in (66) must not be dependent on parameters
that are assumed to be unknown such as the weight
separation 	K and (ii) the fundamental difficulty of
obtaining a globally optimal solution for the fraction of
adversaries from samples that are drawn from a mixture
distribution. Thus, we conjecture that if we adopt a two-
step approach—first estimate η, then plug this estimate
into the η-known algorithm—such a loss in the order of
the sample complexity is unavoidable. This is because
the fidelity of the estimate of η in Lemma 5 is natural
(cf. Chernoff-Hoeffding bound) and does not seem to
be order-wise improvable. We surmise that a new class
of algorithms, avoiding the explicit estimation of η,
needs to be developed to improve the overall sample
complexity performance. Nonetheless, the analysis and
results herein might shed light on the fundamental limits
of machine learning problems that include a multi-stage
estimation and learning procedure.

2) If closing the gap is difficult, can we hope to derive
a converse or impossibility result, explicitly taking into
account the fact that η is unknown? Our current converse
result assumes that η is known, which may be too
optimistic for the unknown setting. One possibility to
strengthen the lower bound is to leverage converse
techniques in universal source and channel coding (e.g.,
Clarke and Barron [34] and Beirami and Fekri [35]).
Such techniques are significantly more involved than
routine applications of Fano’s inequality. Our situation
here in which we do not know η is somewhat similar
to universal decoding algorithms which do not have any
knowledge of the statistical model (source or channel).
Another possibility is to place a prior distribution on η
(i.e., adopt a Bayesian formulation), and to use this to
tighten the converse bound.

3) The tensor decomposition method [15], [16], while
being polynomial time in its parameters, incurs high
storage and computational costs. As discussed in Appen-
dix G, a tractable implementation to yield meaningful
estimates of η is challenging. There has been significant
recent progress on large-scale scalable tensor decompo-

sition algorithms in [30], [32], and [33]. In these works,
the authors aim to avoid storing and manipulating large
tensors directly but the direct adaptation of these works
for our problem is still formidable. Since implemen-
tation is not the focus of the present work, we leave
the development of truly tractable algorithms to future
work.

4) Recent work by Shah and Wainwright [24] has shown
that simple counting methods for certain observation
models (including the BTL model and the mixture BTL
model) achieve order-wise optimal sample complexities.
In the observation model considered therein, for each
pair of items i and j , there is a random number of
observations Rij that follows a binomial distribution
with parameters L ∈ N and probability of success
p ∈ (0, 1). Notice that the observation model in [24]
differs from ours.

5) Lastly, it would be interesting to consider other choice
models (e.g., the Plackett-Luce model [36] studied in
[37] and [38]) as well as other comparison graphs
not limited to the ER graph, as the comparison graph
structure affects the sample complexity significantly, as
suggested in [7, Th. 1].

APPENDIX A
PROOF OF LEMMA 1

For ease of presentation, we will henceforth assume that
wmax = 1 since this simply amounts to a rescaling of all the
preference scores.

To prove the lemma, it suffices to show that if τ satisfies

|τ − wi | � max
{
δ + log n

np · ξ, 1
2η−1

√
log n
npL

}
, then

the corresponding likelihood function cannot be the
point-wise MLE:

L(τ, ŵ\i ; yi ) < L(wi , ŵ\i ; yi ). (A.1)

We start by evaluating the likelihood function w.r.t. the
ground-truth score vector:

�∗(τ ) := 1

L
logL(τ,w\i ;Y i ) (A.2)

=
∑

j :(i, j )∈E

{
Yi j log

(
η

τ

τ +w j
+ (1− η) w j

τ +w j

)

+(1− Yi j ) log

(
η

w j

τ +w j
+ (1− η) τ

τ +w j

)}
.

(A.3)

The likelihood loss w.r.t. wi and τ is then computed as:

�∗(wi )− �∗(τ )

=
∑

j :(i, j )∈E

{
Yi j log

(
η wi
wi+w j

+ (1− η) w j
wi+w j

η τ
τ+w j

+ (1− η) w j
τ+w j

)

+(1− Yi j ) log

(
η

w j
wi+w j

+ (1− η) wi
wi+w j

η
w j
τ+w j

+ (1− η) τ
τ+w j

)}
. (A.4)
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Taking expectation w.r.t. Y i conditional on G, we get:

E
[
�∗(wi )− �∗(τ )|G

]
=

∑
j :(i, j )∈E

D

(
η

wi

wi +w j
+ (1− η) w j

wi + w j

∥∥∥∥
η

τ

τ +w j
+ (1− η) w j

τ + w j

)
(A.5)

(a)
� np(2η − 1)2|wi − τ |2 (A.6)

where (a) follows from Pinsker’s inequality (D(p‖q) ≥
2(p− q)2; see [39, Th. 2.33] for example) and using the fact
that di � np when p > log n

n . Here di indicates the degree of
node i : the number of edges incident to node i . This suggests
that the true point-wise MLE of wi strictly dominates that of
τ in the mean sense. We can actually demonstrate that this is
the case beyond the mean sense with high probability, as long

as |wi − τ | � 1
2η−1

√
log n
npL (our hypothesis), which is asserted

in the following lemma.

Lemma 7: Suppose that |wi − τ | � 1
2η−1

√
log n
npL . Then,

�∗(wi )− �∗(τ ) � np(2η − 1)2|wi − τ |2. (A.7)

holds with probability approaching one.
Proof: Using Bernstein’s inequality formally stated in

Lemma 12 (see Appendix F), one can obtain a lower
bound on �∗(wi ) − �∗(τ ) in terms of its expectation
E
[
�∗(wi )− �∗(τ )|G

]
, its variance Var

[
�∗(wi )− �∗(τ )|G

]
,

and the maximum value of individual quantities that we sum
over. One can then show that the variance and the maximum
value are dominated by the expectation under our hypothesis,
thus proving that the lower bound is the order of the desired
bound as claimed. For completeness, we include the detailed
proof at the end of this appendix; see Appendix A-A.

However, when running our algorithm, we do not have
access to the ground truth scores w\i . What we can actually
compute is

�̂(τ ) := 1

L
logL(τ, ŵ\i ;Y i ) (A.8)

instead of �∗(τ ). Fortunately, such surrogate likelihoods are
sufficiently close to the true likelihoods, which we will show
in the rest of the proof. From this, we will next demonstrate
that (A.1) holds for sufficiently separated τ such that |τ −
wi | � max

{
δ + log n

np · ξ, 1
2η−1

√
log n
npL

}
.

As seen from (A.31), one can quantify the difference
between �̂(wi ) and �̂(τ ) as

�̂(wi )− �̂(τ )
=

∑
j :(i, j )∈E

{
Yi j log

{
(ηwi + (1− η)ŵ j )(ηŵ j + (1− η)τ)
(ητ + (1− η)ŵ j )(ηŵ j + (1− η)wi )

}

+ log

(
(τ + ŵ j )(ηŵ j + (1− η)wi )

(wi + ŵ j )(ηŵ j + (1− η)τ)
)}

. (A.9)

Using (A.9) and (A.31), we can represent the gap between

the surrogate loss and the true loss as

�̂(wi )− �̂(τ )− (�∗(wi )− �∗(τ ))
=

∑
j :(i, j )∈E

Yi j

[ {
log

{
(ηwi + (1− η)ŵ j )(ηŵ j + (1− η)τ)
(ητ + (1− η)ŵ j )(ηŵ j + (1− η)wi )

}

− log

{
(ηwi + (1− η)w j )(ηw j + (1− η)τ)
(ητ + (1− η)w j )(ηw j + (1− η)wi )

}}

+
{

log

(
τ + ŵ j

wi + ŵ j

)
+ log

(
ηŵ j + (1− η)wi

ηŵ j + (1− η)τ
)

− log

(
τ +w j

wi +w j

)
− log

(
ηw j + (1− η)wi

ηw j + (1− η)τ
)}]

.

(A.10)

Using Bernstein’s inequality under our hypothesis as we did
in Lemma 7, one can verify that

�̂(wi )− �̂(τ )− (�∗(wi )− �∗(τ ))
� E

[
�̂(wi )− �̂(τ )− (�∗(wi )− �∗(τ ))|G

]

=
∑

j :(i, j )∈E
gη(ŵ j ) (A.11)

where

gη(t)

:= ηwi+(1−η)w j

wi +w j

{
log

{
(ηwi + (1−η)t)(ηt + (1− η)τ)
(ητ + (1− η)t)(ηt + (1− η)wi )

}

− log

{
(ηwi + (1−η)w j)(ηw j + (1− η)τ)
(ητ + (1− η)w j )(ηw j + (1− η)wi )

}}

+ log

(
τ + t

wi + t

)
+ log

(
ηt + (1− η)wi

ηt + (1− η)τ
)

− log

(
τ +w j

wi + w j

)
− log

(
ηw j + (1− η)wi

ηw j + (1− η)τ
)
. (A.12)

Here the function gη(t) obeys the following two properties:
(i) gη(w j ) = 0 and (ii) the derivative satisfies
∣∣∣∣∂gη(t)

∂ t

∣∣∣∣
= (2η − 1)|τ −wi |
(ηt + (1− η)τ)(ηt + (1− η)wi )

×
∣∣∣∣ηwi + (1− η)w j

wi +w j
· η(1− η)(t2 − τwi )

(ηwi + (1− η)t)(ητ + (1− η)t)
−ηt2 − (1− η)wiτ

(τ + t)(wi + t)

∣∣∣∣ (A.13)

(a)
� (2η − 1)2|τ −wi | (A.14)

where (a) follows from the fact that
∣∣∣∣ηwi + (1− η)w j

wi +w j
· η(1− η)(t2 − τwi )

(ηwi + (1− η)t)(ητ + (1− η)t)
−ηt2 − (1− η)wiτ

(τ + t)(wi + t)

∣∣∣∣ � (2η − 1). (A.15)

Notice that the left-hand-side in the above is zero when
η = 1/2. This together with the above two properties
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demonstrates that

|gη(t)| ≤ |gη(w j )| + |t −w j | · sup
t∈[wmin,wmax]

∣∣∣∣∂gη(t)

∂ t

∣∣∣∣ (A.16)

� (2η − 1)2|τ − wi ||t − w j |. (A.17)

Applying this to the above gap between the surrogate loss and
the true loss, we get:∣∣∣�̂(wi )− �̂(τ )− (�∗(wi )− �∗(τ ))

∣∣∣
�

∑
j :(i, j )∈E

(2η − 1)2|τ −wi ||ŵ j − w j | (A.18)

≤ (2η − 1)2|τ −wi |
∑

j :(i, j )∈E
|ŵub

j −w j | (A.19)

where the inequality arises from our hypothesis, namely that
|ŵ j − w j | ≤ |ŵub

j − w j | for all j ∈ [n].
We now move on to deriving an upper bound on (A.19).

From our assumptions on the initial estimate, we have

‖ŵ − w‖2 ≤ ‖ŵub − w‖2 ≤ ‖w‖2δ2 ≤ nδ2. (A.20)

Since G and ŵ
ub are statistically independent,

E

⎡
⎣ ∑

j :(i, j )∈E
|ŵub

j −w j |
⎤
⎦ = p‖ŵub − w‖1

≤ p
√

n‖ŵub − w‖ ≤ npδ,

(A.21)

E

⎡
⎣ ∑

j :(i, j )∈E
|ŵub

j −w j |2
⎤
⎦ = p‖ŵub − w‖2 ≤ npδ2. (A.22)

Recall our assumption that max j |ŵub
j −w j | ≤ ξ . Again using

Bernstein inequality in Lemma 12 for any fixed γ ≥ 3, with
probability at least 1− 2n−γ , one has∑
j :(i, j )∈E

|ŵub
j −w j |

≤ E

⎡
⎣ ∑

j :(i, j )∈E
|ŵub

j − w j |
⎤
⎦

+

√√√√√2γ log n · E
⎡
⎣ ∑

j :(i, j )∈E
|ŵub

j − w j |2
⎤
⎦+ 2γ

3
ξ log n

(A.23)

≤ npδ +√2γ np log nδ + 2γ

3
ξ log n (A.24)

(a)≤ npδ +√γ npδ + 2γ

3
ξ log n (A.25)

(b)≤ γ npδ + γ ξ log n (A.26)

where (a) follows from our choice on p (we assume
p > 2 log n

n ) and (b) follows from the fact that 1 + √γ ≤ γ
for γ ≥ 3. This combined with (A.19) gives us∣∣∣�̂(wi )− �̂(τ )− (�∗(wi )− �∗(τ ))

∣∣∣
� (2η − 1)2|τ −wi |np

(
δ + log n

np
ξ

)
. (A.27)

We are now ready to control �̂(wi ) − �̂(τ ). Putting (A.7)
and (A.27) together, with probability approaching one, one
has

�̂(wi )− �̂(τ )
� �∗(wi )− �∗(τ )
−(2η − 1)2|τ − wi |np

(
δ + log n

np
ξ

)
(A.28)

� np(2η− 1)2|wi − τ |2

−(2η − 1)2|τ − wi |np

(
δ + log n

np
ξ

)
(A.29)

� 0 (A.30)

where the last step follows from our hypothesis: |wi − τ | �
δ + log n

np ξ . This completes the proof of Lemma 1.

A. Proof of Lemma 7

Another representation of the true loss is:

�∗(wi )− �∗(τ )
=

∑
j :(i, j )∈E

{
Yi j log

{
(ηwi + (1− η)w j )(ηw j + (1− η)τ)
(ητ + (1− η)w j )(ηw j + (1− η)wi )

}

+ log

(
(τ + w j )(ηw j + (1− η)wi )

(wi +w j )(ηw j + (1− η)τ)
)}

(A.31)

This gives

Var
[
�∗(wi )− �∗(τ )|G

]

= Var

⎡
⎣ ∑

j :(i, j )∈E
Yi j

× log

{
(ηwi + (1− η)w j )(ηw j + (1− η)τ)
(ητ + (1− η)w j )(ηw j + (1− η)wi )

}⎤⎦ (A.32)

(a)
� |wi − τ |2(2η − 1)2

∑
j :(i, j )∈E

Var[Yi j ] (A.33)

= |wi − τ |2(2η − 1)2

×
∑

j :(i, j )∈E

(ηwi + (1− η)w j )(ηw j + (1− η)wi )

L(wi +w j )2
(A.34)

� |wi − τ |2(2η − 1)2
np

L
(A.35)

where (a) follows from the fact that log β
α ≤ β−α

α for
β > α > 0. Also note that the maximum value of individual
quantities 1

L Y (�)i j that we sum over is given by

1

L
Y (�)i j

∣∣∣∣log

{
(ηwi + (1− η)w j )(ηw j + (1− η)τ)
(ητ + (1− η)w j )(ηw j + (1− η)wi )

}∣∣∣∣
� |wi − τ |(2η − 1)

L
. (A.36)

Making use of Bernstein’s inequality together with (A.5),
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(A.35) and (A.36) implies that conditional on G,

�∗(wi )− �∗(τ )
≥ E

[
�∗(wi )− �∗(τ )|G

]
−√2γ log n · Var [�∗(wi )− �∗(τ )|G]− 2γ

3
B log n (A.37)

� np(2η− 1)2|wi − τ |2 −
√

2γ

√
np log n

L
|wi − τ |(2η − 1)

−2γ

3

|wi − τ |(2η − 1)

L
log n (A.38)

≥ np(2η− 1)2|wi − τ |2

−
(√

2γ + 2γ

3

)√
np log n

L
|wi − τ |(2η− 1) (A.39)

(a)
� np(2η− 1)2|wi − τ |2 (A.40)

holds with probability at least 1−2n−γ . Here (a) follows from

our hypothesis: |wi − τ | � 1
2η−1

√
log n
npL .

APPENDIX B
PROOF OF LEMMA 2

As mentioned earlier, the proof builds upon the analysis
structured by [7, Lemma 2], which bounds the deviation of
the Markov chain w.r.t. the transition matrix P̂ (defined in
Algorithm 2) after t steps:

‖ p̂t − w‖
‖w‖ ≤ ρt ‖ p̂0 − w‖

‖w‖
√
wmax

wmin
+ 1

1− ρ ‖	‖
√
wmax

wmin

(B.1)

where p̂t denotes the distribution w.r.t. P̂ at time t seeded by
an arbitrary initial distribution p̂0, the matrix 	 := P̂ − P
indicates the fluctuation of the transition probability matrix

around its mean P := E[P̂], and ρ := λmax+‖	‖
√
wmax
wmin

. Here
λmax = max{λ2,−λn} and λi indicates the i -th eigenvalue
of P .

For an arbitrary η case, a bound on ‖	‖ is:

‖	‖ � 1

2η − 1

√
log n

npL
(B.2)

which will be proved in the sequel. On the other hand, adapting
the analysis in [7] (particularly see Lemma 4 in the reference),
one can easily verify that ρ < 1 under our assumption that
Lnp � log n

(2η−1)2
. Applying the bound on ‖	‖ and ρ < 1 to the

above gives the claimed bound, which completes the proof.
Let us now prove the bound on ‖	‖, which is a general-

ization of the proof in [7]. Let D be a diagonal matrix with
Dii := 	ii . Let 	̄ := 	− D. Note that

‖	‖ ≤ ‖D‖ + ‖	̄‖ = max
i
|	ii | + ‖	̄‖. (B.3)

We will use Hoeffding inequality to bound |	ii |. As for
‖	̄‖, we will focus on bounds of E[|	i j |p], since Tropp
inequality in [27] turns out to relate the bound of E[|	i j |p] to
that of ‖	̄‖, as pointed out in [7]. Hence, here we provide
derivations mainly for the bounds on |	ii | and E[|	i j |p].
Later we will appeal to a relationship between ‖	̄‖ and

E[|	i j |p], formally stated in Lemma 8 (see below), to prove
the desired bound on ‖	̄‖.

Bounding |	ii |: Observe that

Ldmax	ii = −Ldmax

∑
k �=i

	ik

= −
∑
k �=i

L∑
�=1

(
Y (�)ki − (1− η)

2η − 1
− wk

wi +wk

)
. (B.4)

Let Xk� := Y (�)ki −(1−η)
2η−1 − wk

wi+wk
. Then, we have E[Xk�] = 0

and − η+1
2η−1 ≤ Xk� ≤ η

2η−1 . Using Hoeffding inequality, we
obtain:

Pr [|Ldmax	ii | ≥ t] ≤ 2 exp

(
−2(t 2η−1

2η+1 )
2

Ldi

)

≤ 2 exp

(
−2(t 2η−1

2η+1 )
2

Ldmax

)
. (B.5)

Choosing t = c
√

Ldmax log n
(

2η+1
2η−1

)
for some c > 0, one

can make the tail bound arbitrarily close to zero in the limit
of large n. Also dmax � np when p > log n

n . Hence, with

probability approaching one, one has ‖D‖ � 1
2η−1

√
log n
npL .

Bounding ‖	̄‖: A careful inspection reveals that

	̄ =
∑

i< j :(i, j )∈E
(ei e

T
j − e j e

T
i )( p̂i j − pi j ) (B.6)

where ei denotes the standard basis vector in which only the
i -th entry is 1 while the others are zeros. Here with a slight
abuse of notation, we use E to indicate E init. As mentioned
earlier, we intend to make use of the concentration result by
Tropp [27] for sum of independent self-adjoint matrices. To
this end, we apply the dilation idea in [27] for symmetrization:

Zi j := Aij	i j :=
[

0 ei eT
j − e j eT

i
e j eT

i − ei eT
j 0

]
	i j . (B.7)

Note that

‖	̄‖ =
∥∥∥∥∥∥

∑
i< j :(i, j )∈E

(ei e
T
j − e j e

T
i )( p̂i j − pi j )

∥∥∥∥∥∥
=
∥∥∥∥∥∥

∑
i< j :(i, j )∈E

Aij	i j

∥∥∥∥∥∥ =
∥∥∥∥∥∥

∑
i< j :(i, j )∈E

Zi j

∥∥∥∥∥∥ . (B.8)

We now invoke Tropp’s inequality formally stated in the
following lemma.

Lemma 8: Consider a sequence Zi j of independent random
self-adjoint matrices. Assume that

E[Zi j ] = 0 and E[Z p
i j ] �

p!
2

R p−2 Ã2
i j , p ≥ 2. (B.9)

Define σ 2 :=
∥∥∥∑i, j Ã2

i j

∥∥∥. Then, for all t ≥ 0,

Pr

[∥∥∥∑
i, j

Zi j

∥∥∥ ≥ t

]
≤ exp

(
− t2/2

σ 2 + Rt

)
. (B.10)
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To figure out what Ãi j , σ 2 and R are, we consider

E[Z p
i j ]

(a)� E[	p
i j ]A2

i j (B.11)

(b)≤ p!
2

(
2η + 1

2η − 1

1√
Ld2

max

)p−2
2η − 1

2η + 1

1

Ld2
max

A2
i j .

(B.12)

To see (a), note that A p
i j is equal to A2

i j when p is even; Aij

otherwise. Also one can verify that the eigenvalues of Aij are
either 1 or −1. Hence, A p

i j � A2
i j . To see (b), observe that

Ldmax	i j =
L∑
�=1

(
Y (�)j i − (1− η)

2η − 1
− w j

wi + w j

)
. (B.13)

Applying Hoeffding inequality into the term inside the
summation, we get

Pr
[|Ldmax	i j | ≥ t

] ≤ 2 exp

(
−2(t 2η−1

2η+1 )
2

L

)
, (B.14)

which yields

Pr
[|	i j | ≥ t

] ≤ 2 exp

(
−2t2

(
2η − 1

2η + 1

)2

Ld2
max

)
. (B.15)

This implies that 	i j is a sub-Gaussian random variable.
Hence, we obtain the bound

E
[|	i j |p

] ≤ p!
2

(
2η + 1

2η − 1

1√
Ld2

max

)p

, (B.16)

which yields (b) in (B.12).
We now see that R = 2η+1

2η−1
1√
Ld2

max
and Ã2

i j =
2η−1
2η+1

1
Ld2

max
A2

i j . Some calculations yield

σ2 :=
∥∥∥∥∥∥

∑
i< j :(i, j )∈E

Ã2
i j

∥∥∥∥∥∥ (B.17)

= 2η − 1

2η + 1

1

Ld2
max

∥∥∥∥
n∑

i=1

n∑
j=i+1

1 {(i, j) ∈ E}

×
[

ei eT
i + e j eT

j 0
0 ei eT

i + e j eT
j

] ∥∥∥∥ (B.18)

= 2η − 1

2η + 1

1

Ld2
max

∥∥∥∥∥
n∑

i=1

di

[
ei eT

i 0
0 ei eT

i

]∥∥∥∥∥ (B.19)

= 2η − 1

2η + 1

1

Ldmax
. (B.20)

Now applying Lemma 8 and using the fact that ‖	̄‖ =
‖∑i, j Zi j‖, we get:

Pr
[∥∥	̄∥∥ ≥ t

] ≤ 2n exp

⎛
⎜⎝ −t2/2

(2η+1)2

Ldmax(2η−1)2
+ (2η+1)t√

Ld2
max(2η−1)2

⎞
⎟⎠ .

(B.21)

Under the assumption that dmax � np ≥ log n and choosing
t = c1

2η−1

√
log n/(npL), the tail probability is bounded by

2n exp{−c2
2 log n} for some constants c1 and c2. Hence, with

probability approaching one, we get the desired bound:

‖	̄‖ � 1

2η − 1

√
log n

npL
. (B.22)

APPENDIX C
PROOF OF LEMMA 3

Proof: In this proof, for the sake of brevity, we only
highlight the parts of the proof of Lemma 1 that have to
be modified when we use η̂ in place of η in the likelihood
function.

Define

κ∗(τ ) := 1

L
log L̂(τ,w\i ;Y iter

i ) (C.1)

=
∑

j :(i, j )∈E

{
Yi j log

(
η̂

τ

τ +w j
+ (1− η̂) w j

τ + w j

)

+(1− Yi j ) log

(
η̂

w j

τ +w j
+ (1− η̂) τ

τ +w j

)}
.

(C.2)

Notice that κ∗ is similar to �∗ in (A.3) except that η in the
latter is replaced by its surrogate η̂ in the former because we
only have access to this estimate.

Consider the difference

κ∗(wi )− κ∗(τ )

=
∑

j :(i, j )∈E

{
Yi j log

(
η̂ wi
wi+w j

+ (1− η̂) w j
wi+w j

η̂ τ
τ+w j

+ (1− η̂) w j
τ+w j

)

+(1− Yi j ) log

(
η̂

w j
wi+w j

+ (1− η̂) wi
wi+w j

η̂
w j
τ+w j

+ (1− η̂) τ
τ+w j

)}
. (C.3)

Now when we take expectation

E[Yi j ] = η wi

wi +w j
+ (1− η) w j

wi +w j
. (C.4)

Note that this is in terms of η and not η̂ as in the differ-
ence of the empirical log-likelihoods in (C.3). In particular,
E[κ∗(wi ) − κ∗(τ ) |G] is not a sum of KL divergences but
instead there is some “mismatch”. However, by some basic
approximations, we have

E
[
κ∗(wi )− κ∗(τ )

∣∣G]

=
∑

j :(i, j )∈E

{(
η

wi

wi +w j
+ (1− η) w j

wi +w j

)

× log

(
η̂ wi
wi+w j

+ (1− η̂) w j
wi+w j

η̂ τ
τ+w j

+ (1− η̂) w j
τ+w j

)

+
(
η

w j

wi +w j
+ (1− η) wi

wi +w j

)

× log

(
η̂

w j
wi+w j

+ (1− η̂) wi
wi+w j

η̂
w j
τ+w j

+ (1− η̂) τ
τ+w j

)}
(C.5)
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�
∑

j :(i, j )∈E

{(
η̂

wi

wi +w j
+ (1− η̂) w j

wi +w j

)

× log

(
η̂ wi
wi+w j

+ (1− η̂) w j
wi+w j

η̂ τ
τ+w j

+ (1− η̂) w j
τ+w j

)

+
(
η̂

w j

wi +w j
+ (1− η̂) wi

wi +w j

)

× log

(
η̂

w j
wi+w j

+ (1− η̂) wi
wi+w j

η̂
w j
τ+w j

+ (1− η̂) τ
τ+w j

)}
(C.6)

=
∑

j :(i, j )∈E
D

(
η̂

wi

wi +w j
+ (1− η̂) w j

wi +w j

∥∥∥∥
η̂

τ

τ +w j
+ (1− η̂) w j

τ +w j

)
(C.7)

� np(2η̂− 1)2|wi − τ |2 (C.8)

where
1) (C.5) follows from the difference of κ∗’s in (C.3) and

the expectation in (C.4);
2) (C.6) holds with high probability (guaranteed by the

sample complexity bound in Theorem 2) by multiplica-
tively and uniformly approximating ηwi + (1−η)w j by
η̂wi+(1−η̂)w j and ηw j+(1−η)wi by η̂w j+(1−η̂)wi

using Lemma 9 (in Appendix C-A at the end of this
appendix) with constant ν = 0.1 (say);

3) (C.8) is an application of Pinsker’s inequality
[39, Th. 2.33].

The punchline in this calculation is that with our choice of
parameters, the scaling of the lower bound of E[κ∗(wi ) −
κ∗(τ ) |G] is the same as that for the known η case in (A.6).

Now we bound the conditional variance. We have

Var
[
κ∗(wi )− κ∗(τ )

∣∣G]

= Var

⎡
⎣ ∑

j :(i, j )∈E
Yi j

× log

{
(η̂wi + (1− η̂)w j )(η̂w j + (1− η̂)τ )
(η̂τ + (1− η̂)w j )(η̂w j + (1− η̂)wi )

}⎤
⎦

(C.9)

� |wi − τ |2(2η̂ − 1)2
∑

j :(i, j )∈E
Var[Yi j ] (C.10)

≤ |wi − τ |2(2η̂ − 1)2
∑

j :(i, j )∈E

1

4L
(C.11)

� |wi − τ |2(2η̂ − 1)2
np

L
. (C.12)

where
1) (C.10) follows from the original argument as in the proof

of Lemma 7 in Appendix A-A;
2) (C.11) follows from the fact that the variance of any

Bernoulli random variable is upper bounded by 1/4;
3) and (C.12) holds with high probability due to the nature

of the Erdős-Rényi graph.
Thus, by using the bounds in (C.8), (C.12) and Bernstein’s
inequality (Lemma 12), and mimicking the proof of Lemma 7

in Appendix A-A with η̂ in place of η, we may conclude that

κ∗(wi )− κ∗(τ ) � np(2η̂ − 1)2|wi − τ |2. (C.13)

By Lemma 10 which allows us to multiplicatively approximate
(2η̂−1)2 with (2η−1)2 (to within a constant factor of (1−ν)2),
we also have

κ∗(wi )− κ∗(τ ) � np(2η− 1)2|wi − τ |2 (C.14)

with probability tending to one polynomially fast.
Just as in the proof of Lemma 1, we do not have access

to the true ground truth scores w\i . We instead analyze the
behavior of surrogate log-likelihoods κ̂ with the true score
vectors w\i replaced by their estimates ŵ\i . We have

κ̂(wi )− κ̂(τ )
=

∑
j :(i, j )∈E

{
Yi j log

{
(η̂wi + (1− η̂)ŵ j )(η̂ŵ j + (1− η̂)τ )
(η̂τ + (1− η̂)ŵ j )(η̂ŵ j + (1− η̂)wi )

}

+ log

{
(τ + ŵ j )(η̂ŵ j + (1− η̂)wi )

(wi + ŵ j )(η̂ŵ j + (1− η̂)τ )
}}
. (C.15)

In a similar way to the case where η is known (cf. (A.10)), we
can quantify the gap between the difference of surrogate log-
likelihoods κ̂(wi )− κ̂(τ ) and difference of true log-likelihoods
κ∗(wi )− κ∗(τ ) as follows:

κ̂(wi )− κ̂(τ )−
(
κ∗(wi )− κ∗(τ )

)
�

∑
j :(i, j )∈E

gη,η̂(ŵ j ),

(C.16)

where now

gη,η̂(t)

:= ηwi+(1−η)w j

wi + w j

{
log

(
(η̂wi+(1−η̂)t)(η̂t + (1− η̂)τ )
(η̂τ+(1−η̂)t)(η̂t + (1− η̂)wi )

)

− log

(
(η̂wi + (1− η̂)w j )(η̂w j + (1− η̂)τ )
(η̂τ + (1− η̂)w j )(η̂w j + (1− η̂)wi )

)}

+ log

(
τ + t

wi + t

)
+ log

(
η̂t + (1− η̂)wi

η̂t + (1− η̂)τ
)

− log

(
τ +w j

wi +w j

)
− log

(
η̂w j + (1− η̂)wi

η̂w j + (1− η̂)τ
)
. (C.17)

Note that gη,η(t) = gη(t) in (A.12) in the proof of Lemma 1.
The reason why η appears in the leading factor in (C.17)
is because we are taking expectation of Yi j which is gen-
erated from the true model with parameter η (cf. (C.4)).
The parameter η̂ appears in {. . .} in (C.17) because the log-
likelihood function κ∗(·) (cf. (C.2)) is defined with respect to
the surrogate η̂ since here we assume we have no knowledge
of the true η.

Several properties of gη(t) were studied in the proof of
Lemma 1. Here we need to study gη,η̂(t). In fact, by using
Lemma 9 to approximate ηwi+(1−η)w j with η̂wi+(1−η̂)w j ,
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we see that with probability tending to one polynomially fast,

gη,η̂(t)

� η̂wi+(1−η̂)w j

wi +w j

{
log

{
(η̂wi+(1−η̂)t)(η̂t + (1− η̂)τ )
(η̂τ+(1−η̂)t)(η̂t + (1− η̂)wi )

}

− log

{
(η̂wi + (1− η̂)w j )(η̂w j + (1− η̂)τ )
(η̂τ + (1− η̂)w j )(η̂w j + (1− η̂)wi )

}}

+ log

(
τ + t

wi + t

)
+ log

(
η̂t + (1− η̂)wi

η̂t + (1− η̂)τ
)

− log

(
τ +w j

wi +w j

)
− log

(
η̂w j + (1− η̂)wi

η̂w j + (1− η̂)τ
)

(C.18)

= gη̂(t) (C.19)

where gη̂(t) is g(t) in (A.12) with η replaced by η̂. Basically,
we replaced the factor η̂wi + (1 − η̂)w j with (a constant
multiplied by) ηwi + (1 − η)w j in (C.18). Now, the bound
in (C.16) can be further upper bounded as

κ̂(wi )− κ̂(τ )−
(
κ∗(wi )− κ∗(τ )

)
�

∑
j :(i, j )∈E

gη̂(ŵ j ).

(C.20)

The rest of the proof of Lemma 1, in particular the steps
in (A.37)–(A.40), goes through verbatim with η replaced by η̂.
Finally, we can use Lemma 10 to multiplicatively approximate
(2η̂− 1) with (2η− 1) to complete the proof of Lemma 3.

A. Approximation Lemmas and Their Proofs

Lemma 9: For any pair of weights (wi , w j ) and any con-
stant ν > 0, if

L �
(
wmax

νwmin

)2

log
n

δ
, (C.21)

we have that ∣∣∣∣
(ηwi + (1− η)w j

η̂wi + (1− η̂)w j

)
− 1

∣∣∣∣ ≤ ν (C.22)

with probability exceeding 1− δ.
The important point here is that this approximation is

uniform over (i, j) ∈ [n]2 and as n → ∞; cf. the lower
bound on L in (C.21) and the threshold ν in (C.22) do
not depend on (i, j). This bound implies that, with high
probability, we can readily approximate ηwi + (1−η)w j with
(1 ± ν)(η̂wi + (1− η̂)w j ) for any constant ν > 0. Also note
that since wmin, wmax = �(1) and ν > 0 is also a constant,
the bound in (C.21) is in fact L � log n

δ � log n (with
δ = 1/ poly(n)). This is clearly satisfied by the assumption
in (16) in Theorem 2.

Proof: [Proof of Lemma 9] Assume without loss of gen-
erality that wi > w j (the expression in (C.22) is symmetric
in wi and w j ). Consider

Pr

[
ηwi + (1− η)w j

η̂wi + (1− η̂)w j
> 1+ ν

]

= Pr
[
(η − η̂)(wi − w j ) > νη̂wi + ν(1− η̂)w j

]
(C.23)

≤ Pr
[
(η − η̂)(wi − w j ) > νwmin

]
(C.24)

= Pr

[
η − η̂ > ν

wmin

wi −w j

]
(C.25)

≤ Pr

[
η − η̂ > ν

wmin

wmax

]
(C.26)

≤ Pr

[
|η − η̂| > ν wmin

wmax

]
(C.27)

where in (C.24), we lower bounded wi , w j by wmin, (C.25)
assumes that wi > w j and (C.26) follows because wi −
w j ≤ wi ≤ wmax. A bound for the other inequality
Pr
(ηwi+(1−η)w j

η̂wi+(1−η̂)w j
< 1− ν) proceeds in a completely analogous

way. Since wmin, wmax = �(1), the result follows immedi-
ately from the union bound and the probabilistic bound on
|η̂ − η| (Lemma 5).

Lemma 10: For any constant ν > 0, if

L � 1

ν2(2η − 1)2
log

n

δ
, (C.28)

we have that ∣∣∣∣
(2η̂ − 1

2η − 1

)
− 1

∣∣∣∣ ≤ ν (C.29)

with probability exceeding 1− δ.
Here, in contrast to Lemma 9, (2η − 1) in (C.29) may be

vanishingly small, so the lower bound on L in (C.28) contains
the additional term (2η−1)2. Proof: [Proof of Lemma 10]
Consider

Pr

[∣∣∣∣
(2η̂ − 1

2η − 1

)
− 1

∣∣∣∣ > ν

]
= Pr

[∣∣∣∣ η̂ − η2η − 1

∣∣∣∣ > ν

2

]
(C.30)

= Pr
[∣∣η̂ − η∣∣ > ν

2
(2η − 1)

]
.

(C.31)

But we know from Lemma 5 that if

L � 1(
ν
2 (2η − 1)

)2 log
n

δ
� 1

ν2(2η − 1)2
log

n

δ
, (C.32)

then the probability in (C.31) is no larger than δ.

APPENDIX D
PROOF OF LEMMA 4

From the proof sketch in Section VI-D, we see that it
suffices to prove the upper bound on ‖	̂‖ in (71). The entries
of 	̂ are denoted in the usual way as 	̂i j where i, j ∈ [n].
When η was known, it was imperative to understand the
probability that

Fij := Ldmax	i j =
(∑L

�=1 Y (�)i j

)− L(1− η)
2η − 1

− L
wi

wi +w j

(D.1)

deviates from zero. See the corresponding bound in (B.14).
When one only has an estimate of η, namely η̂, it is then
imperative to do the same for

F̂i j :=
(∑L

�=1 Y (�)i j

)− L(1− η̂)
2η̂ − 1

− L
wi

wi +w j
. (D.2)

Our overarching strategy is to bound F̂i j in terms of Fij and
then use the concentration bound we had established for Fij

in (B.14) to then understand the stochastic behavior of F̂i j .
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To simplify notation, define the sum U := LYi j =∑L
�=1 Y (�)i j .

Consequently,∣∣F̂i j − Fij
∣∣

=
∣∣∣∣U − L(1− η̂)

2η̂ − 1
− U − L(1 − η)

2η − 1

∣∣∣∣ (D.3)

≤ L

∣∣∣∣ 1− η̂
2η̂ − 1

− 1− η
2η − 1

∣∣∣∣+U

∣∣∣∣ 1

2η̂ − 1
− 1

2η − 1

∣∣∣∣ (D.4)

≤ L

[ ∣∣∣∣ 1− η̂
2η̂ − 1

− 1− η
2η − 1

∣∣∣∣+
∣∣∣∣ 1

2η̂ − 1
− 1

2η − 1

∣∣∣∣
]

(D.5)

where the final bound follows from the fact that |U | ≤ L
almost surely (since Y (�)i j ∈ {0, 1}). Now we make use of
the following lemma that uses the sample complexity result
in Lemma 5 to quantify the Lipschitz constant of the maps
t �→ 1

2t−1 and t �→ 1−t
2t−1 in the vicinity of t = (1/2)+.

Lemma 11: Let λ1 : (1/2, 1] → R+ and λ2 : (1/2, 1] →
R+ be defined as

λ1(t) := 1− t

2t − 1
, and λ2(t) := 1

2t − 1
. (D.6)

Then if

L � 1

(2η − 1)2
log

n

δ
(D.7)

with probability exceeding 1 − δ (over the random variable
η̂ which depends on the samples drawn from the mixture
distribution (5)), we have for each j = 1, 2,

|λ j (η̂)− λ j (η)| ≤ 8

(2η − 1)2
|η̂ − η|. (D.8)

The proof of this lemma is deferred to Appendix D-A at the
end of this appendix. We take δ = 1/ poly(n) in the sequel
so (D.7) is equivalently

L � log n

(2η − 1)2
(D.9)

which when combined with S = (n2)pL is less stringent than
the statement of Theorem 2. Thus, under the condition (D.9),
Lemma 11 yields that

∣∣F̂i j − Fij
∣∣ ≤ 16L

(2η − 1)2
|η̂ − η| (D.10)

with probability exceeding 1 − 1/ poly(n). By the reverse
triangle inequality, we obtain∣∣F̂i j − Fij

∣∣ ≥ ∣∣|F̂i j | − |Fij |
∣∣. (D.11)

To make the dependence of |η̂− η| on the number of samples
L explicit, we define

εL := |η̂ − η|. (D.12)

By uniting (D.10)–(D.12), we obtain

|Fij | − ε′L ≤
∣∣F̂i j

∣∣ ≤ |Fij | + ε′L (D.13)

where

ε′L :=
16L

(2η − 1)2
εL . (D.14)

For later reference, define

ε′′L :=
16L

(2η − 1)2
dmaxεL . (D.15)

With the estimate in (D.13), we observe that for any t > 0,
one has

Pr
[∣∣F̂i j

∣∣ ≥ t
]
≤ Pr

[|Fij | + ε′L ≥ t
] = Pr

[|Fij | ≥ t − ε′L
]

(D.16)

where the randomness in the probability on the left is over
both η̂ and Y := {Y (�)i j : � ∈ [L], (i, j) ∈ E} (the former
is a function of the latter) whereas the randomness in the
probability on the right is only over Y . Thus, by using the
equality Fij = Ldmax	i j and applying Hoeffding’s inequality
to (D.16) (cf. the bound in (B.14)), we obtain

Pr
[∣∣Ldmax	̂i j

∣∣ ≥ t
]
≤ 2 exp

(
− 2((t−ε′L) 2η−1

2η+1 )
2

L

)
. (D.17)

Now by the same argument as in (B.4), Ldmax	̂ii =
−∑k �=i Ldmax	̂ik = −∑k �=i F̂ik so we have

|Ldmax	̂ii | − ε′′L ≤ |Ldmax	̂ii | ≤ |Ldmax	̂ii | + ε′′L . (D.18)

As a result, similarly to the calculation that led to (D.17), we
obtain

Pr
[∣∣Ldmax	̂ii

∣∣ ≥ t
]
≤ 2 exp

(
− 2((t−ε′′L) 2η−1

2η+1 )
2

Ldmax

)
. (D.19)

From the Hoeffding bound analysis leading to the non-
asymptotic bound in (D.19), we know that by choosing

t := c
√

Ldmax log n
(2η + 1

2η − 1

)
+ ε′′L, (D.20)

for some sufficiently large constant c > 0,

Pr
[∣∣Ldmax	̂ii

∣∣ ≥ t
]
= O

( 1

poly(n)

)
. (D.21)

In other words,

|	̂ii | � 1

2η − 1

√
log n

Ldmax
+ ε′′L

Ldmax
(D.22)

with probability at least 1 − 1/ poly(n). Recall the definition
of ε′′L in (D.15). We now design (εL , ε

′′
L) such that

ε′′L
Ldmax

= 16

(2η − 1)2
εL = 1

2η − 1
4

√
log2 n

Ldmax
. (D.23)

Now note dmax = �(log n) with high probability. This implies
that the second term in (D.22) dominates the first term. Thus,

|	̂ii | � 1

2η − 1
4

√
log2 n

Ldmax
, (D.24)

with probability at least 1 − 1/ poly(n). A similar high
probability bound, of course, holds for |	̂i j | if we choose
t in (D.17) similarly to the choice made in (D.20). We may
rearrange (D.23) to yield

εL � (2η − 1)
4

√
log2 n

Ldmax
. (D.25)

Given the bound on the diagonal elements 	̂ii in (D.24) and
a similar bound on the off-diagonal elements 	̂i j , similarly to
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the proof of Lemma 2 in Appendix B, the spectral norm of 	̂
can be bounded as

‖	̂‖ � 1

2η − 1
4

√
log2 n

Ldmax
. (D.26)

Now we check that the lower bound on L is satisfied when we
choose εL according to (D.25). Using the sample complexity
bound in (70) and rearranging, we obtain

L � log n

(2η − 1)4
(D.27)

which when combined with S = (n2)pL is less stringent than
the statement of Theorem 2. This completes the proof of the
upper bound of ‖	̂‖ in (71).

As a final remark, let us mention that we could have
improved the sample complexity S	K from being dependent
on the reciprocal of 	4

K in (16) to being dependent on the
reciprocal of 	2

K if the value of 	K is known a priori. If
it were known, we could have incorporated it into the choice
of ε′′L in (D.23).

A. Proof of Lemma 11

Consider the functions λ1 : (1/2, 1] → R and λ2 :
(1/2, 1] → R given by (D.6). By direct differentiation, we
have

λ′1(t) =
−1

(2t − 1)2
, and λ′2(t) =

−2

(2t − 1)2
. (D.28)

We note that an everywhere differentiable function g is Lip-
schitz continuous with Lipschitz constant sup |g′|. We now
assume that η, η̂ ∈ [η∗, 1] for some η∗ > 1/2. By using the
fact that 2/(2η∗ − 1)2 is an upper bound of the derivative of
λ j |[η∗,1] (i.e., λ j restricted to the domain [η∗, 1]), one has

|λ j (η̂)− λ j (η)| ≤ 2

(2η∗ − 1)2
|η̂ − η| (D.29)

for j = 1, 2. We now put

η∗ := 1

2

(
η + 1

2

)
. (D.30)

This quantity is the average of 1/2 and η and so is greater
than 1/2 as required. Also, η− η∗ = η/2− 1/4. Now, (D.29)
becomes

|λ j (η̂)− λ j (η)| ≤ 2

(η − 1/2)2
|η̂ − η| = 8

(2η − 1)2
|η̂ − η|

(D.31)

for j = 1, 2 if η̂ ∈ [η∗, 2η − η∗] ⊂ [η∗, 1]. The probability
that this happens (recalling that η̂ is the random variable in
question) is

Pr
[
η∗ ≤ η̂ ≤ 2η − η∗] = 1− Pr

[
|η̂ − η| > η

2
− 1

4

]
.

(D.32)

From Lemma 5, we know that if

L � 1

ε2 log
n

δ
, (D.33)

then we have |η̂−η| ≤ ε with probability at least 1−δ. Hence,
if

L � 1

( η2 − 1
4 )

2
log

n

δ
� 1

(2η − 1)2
log

n

δ
(D.34)

then (D.31) holds with probability at least 1−δ. This completes
the proof of Lemma 11.

APPENDIX E
PROOF OF LEMMA 6

A. The Scaling of Singular Values σi (M2)

Since M2 is symmetric and positive semidefinite, its eigen-
values (which are all non-negative) are the same as its singular
values. Since the eigenvectors are invariant to scaling, let us
assume that

v = π0 + bπ1 (E.1)

is an eigenvector. Then by uniting the definition of M2 in (56)
and (E.1), we have

M2v = (η‖π0‖2 + ηb〈π0, π1〉)π0

+((1− η)a〈π0, π1〉 + b(1− η)‖π1‖2)π1. (E.2)

Since v is assumed to be an eigenvector, M2v satisfies that

M2v = σv (E.3)

where σ is some eigenvalue or singular value. Since π0 is
linearly independent of π1, this equates to

η‖π0‖2 + ηb〈π0, π1〉 = σ (E.4)

(1− η)a〈π0, π1〉 + b(1− η)‖π1‖2 = σb. (E.5)

Now note from the definitions of π0 and π1 that

‖π0‖2 = ‖π1‖2 (E.6)

because the elements are the same and π1 is simply a permuted
version of π0. So we will replace ‖π1‖2 with ‖π0‖2 hence-
forth. Eliminating σ from the simultaneous equations in (E.4)
and (E.5), we obtain the quadratic equation in the unknown b:

η〈π0, π1〉b2 + (2η − 1)‖π0‖2b − (1− η)〈π0, π1〉 = 0(E.7)

which implies that

b∗= −(2η−1)‖π0‖2±√(2η−1)2‖π0‖4+4η(1−η)〈π0, π1〉2
2η〈π0, π1〉 .

(E.8)

Now, we observe that

〈π0, π1〉 =
∑
(i, j )∈E

2
wiw j

wi +w j
(E.9)

‖π0‖2 =
∑
(i, j )∈E

w2
i +w2

j

(wi + w j )2
. (E.10)

so by the fact that wmin and wmax are bounded, we see that
〈π0, π1〉 = �(|E |) and ‖π0‖2 = �(|E |). Plugging these
estimates into b∗, we see that b∗ = �(1). Thus, by (E.4),
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we see that with high probability over the realization of the
Erdős-Rényi graph,

σ = �(η|E |) = �
(
ηn2 p

)
. (E.11)

This scaling holds for both singular values σ1(M2) and σ2(M2)
so this proves (76). Two distinct values for the singular values
due to the ± sign in b∗ in (E.8). This completes the proof
of (76).

B. The Scaling of Block-Incoherence Parameter μ(M2)

Now let us evaluate the scaling of μ(M2). From
(E.1) and (E.8), we know the form of the eigenvectors of M2.
The singular vectors must be normalized so they can be written
as

v̂ := v

‖v‖2
. (E.12)

Since the length of v is 2|E |, and the values (elements) of v
are uniformly upper and lower bounded, it is easy to see that
‖v‖2 = �(√|E |). As a result, one has

v̂ = �
(

1√|E |
)
v. (E.13)

Thus, each subblock of U has entries that scale as O(|E |−1/2)
and so

∥∥U (k)
∥∥

2 = �
(

1√|E |
)
. (E.14)

As a result, from the definition of μ(M2) in (72), we see that
μ(M2) is of constant order, i.e.,

μ(M2) = �(1), (E.15)

which completes the proof of (77).

APPENDIX F
BERNSTEIN INEQUALITY

Lemma 12: Consider n independent random variables Xi

with |Xi | ≤ B. For any γ ≥ 2, one has
∣∣∣∣∣

n∑
i=1

Xi − E

[
n∑

i=1

Xi

]∣∣∣∣∣ ≤
√√√√2γ log n

n∑
i=1

E
[
X2

i

]+ 2γ

3
B log n

(F.1)

with probability at least 1− 2n−γ .

APPENDIX G
STGD METHOD TO SOLVE (60)

In this appendix, we describe how to solve (60) in
Algorithm 3 using the STGD method (cf. Huang et al. [30]).
We also discuss some difficulties in directly using [30] on our
problem in which |E | is assumed to be large (for Theorem 2
to be valid).

First, define a linear operator τ : R2|E |×2|E |×2|E | → R
2×2×2

given by the recipe

τ (W ) := P�3(W )
[
QM̂2

]
3. (G.1)

Then (60) becomes

argmin
Z∈R2×2×2

⎧⎪⎨
⎪⎩ f (Z) :=

∥∥∥∥∥∥τ
⎛
⎝Z

[
PM̂2

]
3
−
∑
t∈I2

⊗3Y (t)

|I2|

⎞
⎠
∥∥∥∥∥∥

2

F

⎫⎪⎬
⎪⎭ .
(G.2)

Next, we rewrite f as follows

f (Z)
c=
∥∥∥τ (Z

[
PM̂2

]
3

)∥∥∥2

F

−2

〈
τ
(

Z
[
PM̂2

]
3

)
, τ

⎛
⎝ 1

|I2|
∑
t∈I2

⊗3Y (t)

⎞
⎠
〉

(G.3)

=
∥∥∥τ (Z

[
PM̂2

]
3

)∥∥∥2

F

−2

〈
τ (Z[X, X, X]), 1

|I2|
∑
t∈I

τ (xt ⊗ xt ⊗ xt )

〉
(G.4)

= 1

|I2|
∑
t∈I2

∥∥∥τ (Z
[
PM̂2

]
3

)∥∥∥2

F

−2
〈
τ
(

Z
[
PM̂2

]
3

)
, τ
(
⊗3Y (t)

)〉
, (G.5)

where ‘
c=’ omits constants that are independent of Z , i.e.,

f (Z)
c= g(Z) if and only if f (Z) = g(Z)+ c where c does

not depend on Z . Now, define

ft (Z) :=
∥∥∥τ (Z

[
PM̂2

]
3

)∥∥∥2

F
− 2

〈
τ
(

Z
[
PM̂2

]
3

)
, τ
(
⊗3Y (t)

)〉
,

(G.6)

then f (Z) = 1
|I2|
∑

t∈I2
ft (Z). Therefore we can use the

STGD method [30] to minimize f over tensors Z ∈ R
2×2×2.

It remains to find the gradient of ft . For any (small perturba-
tion matrix) 	Z ∈ R

2×2×2, we have

ft (Z +	Z)

=
∥∥∥τ ([PM̂2

]
3
+	Z

[
PM̂2

]
3

)∥∥∥2

F

− 2
〈
τ (Z

[
PM̂2

]
3
+	Z

[
PM̂2

]
3
), τ

(
⊗3Y (t)

)〉
(G.7)

= ft (Z)+ 2
〈
τ
(
	Z

[
PM̂2

]
3

)
, τ
(

Z
[
PM̂2

]
3
−⊗3Y (t)

)〉
+ o (‖	Z‖F ) . (G.8)

By definition, the Fréchet derivative [40] of ft at Z , D ft (Z) :
R

2×2×2 → R is defined as

[D ft (Z)] (	Z)

:= 2
〈
τ
(
	Z

[
PM̂2

]
3

)
, τ
(

Z
[
PM̂2

]
3
−⊗3Y (t)

)〉
. (G.9)

To find an explicit form of the gradient of ft at Z , denoted as
∇ ft (Z), we write [D ft (Z)] (	Z) in the form 〈∇ ft (Z),	Z〉.
Define Bt(Z) := τ

(
Z
[
PM̂2

]
3 − ⊗3Y (t)

)
. Then, for any

	Z ∈ R
2×2×2, we have (G.10)–(G.16) at the top of the next

page. Therefore, we find that the gradient of ft is

∇ ft (Z) = 2P�3

(
Bt (Z)

[
QT

M̂2

]
3

) [
PT

M̂2

]
3
. (G.17)

However, from (G.13), we observe that the complexity for
computing the gradient ∇ ft (Z) is �(|E |3). Since Theorem 2
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[D ft (Z)] (	Z) = 2
〈
τ
(
	Z

[
PM̂2

]
3

)
, Bt (Z)

〉
(G.10)

= 2
∑

j1, j2, j3∈[2]

∑
i1,i2,i3∈�3

(
	Z

[
PM̂2

]
3

)
i1,i2,i3

3∏
k=1

(
QM̂2

)
ik , jk

(Bt (Z)) j1, j2, j3 (G.11)

= 2
∑

j1, j2, j3∈[2]

∑
i1,i2,i3∈�3

∑
a1,a2,a3∈[2]

(	Z)a1,a2,a3

3∏
k=1

(
PM̂2

)
ak ,ik

3∏
k=1

(
QM̂2

)
ik , jk

(Bt (Z)) j1, j2, j3 (G.12)

= 2
∑

a1,a2,a3∈[2]
(	Z)a1,a2,a3

∑
i1,i2,i3∈�3

⎛
⎝ ∑

j1, j2, j3∈[2]
(Bt (Z)) j1, j2, j3

3∏
k=1

(
QT

M̂2

)
jk,ik

⎞
⎠ 3∏

k=1

(
PT

M̂2

)
ik ,ak

(G.13)

= 2
∑

a1,a2,a3∈[2]
(	Z)a1,a2,a3

∑
i1,i2,i3∈�3

(
Bt (Z)

[
QT

M̂2

]
3

)
i1,i2,i3

3∏
k=1

(
PT

M̂2

)
ik ,ak

(G.14)

= 2
∑

a1,a2,a3∈[2]
(	Z)a1,a2,a3

(
P�3

(
Bt (Z)

[
QT

M̂2

]
3

) [
PT

M̂2

]
3

)
a1,a2,a3

(G.15)

= 2
〈
P�3

(
Bt (Z)

[
QT

M̂2

]
3

) [
PT

M̂2

]
3
,	Z

〉
. (G.16)

requires |E | (which is close to
(n

2

)
p = �(n log n) w.h.p.) to

be large, the complexity for computing ∇ ft (Z) dramatically
increases as |E | grows. Moreover, note that ft in (G.6) is
not separable across the triple of indices (i1, i2, i3) ∈ �3
so a further stochastic gradient descent-like algorithm to
minimize ft may not be easy to derive. The same problem
also arises in the computation of Bt (Z). That said, the STGD
algorithm described herein can at least deal with dataset with
a large L, thereby providing only a partial remedy to the
scalability issue pertaining to Algorithm 3.
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