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Abstract—We explore the active top-K sorting problem, in
which the goal is to recover the top-K items in order out of
n items, from adaptive pairwise comparisons that are collected
possibly in a sequential manner as per our design choice.
Under a fairly general model which subsumes as special cases
various models (e.g., Strong Stochastic Transitivity model, BTL
model and uniform noise model), we characterize an upper
bound on the sample size required for reliable top-K sorting.
As a consequence, we demonstrate that active ranking can
offer significant multiplicative gains in sample complexity over
passive ranking. Depending on the underlying stochastic noise
model, such gain varies from around logn

log logn
to n2 logn

log logn
. We

also present an algorithm that runs linearly in n and which
achieves the sample complexity bound. Our theoretical findings
are corroborated via numerical experiments.

I. INTRODUCTION

Ranking is one of the central problems that have proved
crucial in a wide spectrum of contexts: social choice [1], [2],
web search and information retrieval [3], recommendation
systems [4], and crowd sourcing [5], to name a few. The
task aims to bring a consistent ordering to a collection
of items, given only partial preference information. The
two main paradigms among a large volume of works on
ranking include spectral ranking algorithms [6], [3], [7] and
maximum likelihood estimation (MLE) [8]. While these
ranking schemes yield reasonably good estimates which are
faithful globally w.r.t. the latent preferences (i.e., low `2
loss), the minimum `2 loss does not necessarily imply a high
ranking accuracy. Also these methods focus on recovery
of the entire-item ordering, not well customized for many
realistic scenarios in which only a few significant items, say
top-K items, are often desired to be retrieved.

In an effort to exploit the more practically relevant
scenario, Chen-Suh [9] studied the top-K ranking problem,
and characterized the minimax limit on the sample size
needed (i.e., the sample complexity) for reliable top-K
ranking, assuming a prominent statistical model called the
Bradley-Terry-Luce (BTL) model [10], [11]. However, this
development is intended for a passive measurement setting
in which pairwise data are collected prior to analysis.

In many applications which often allow for interaction
with users, we may be able to choose comparison pairs of
items in an adaptive manner. This adaptive way of ranking
can possibly save for a large number of blindly collected
measurements and/or yield a higher ranking accuracy [12].
Motivated by these applications, this work investigates
the problem of retrieving top-K items under an adaptive

measurement setting in which pairwise comparisons are
gathered interacting with a ranker (termed active ranking). In
particular, we seek to answer the following questions: (a) how
much can active ranking provide performance improvements
over passive ranking? (b) how does the limit on the adaptive
sample size for feasible top-K sorting scale with K?

Main contributions. In this work, we make some progress
towards addressing these questions for a general measurement
model in which the pairwise comparison probabilities are
arbitrary subject to a mild condition (see (4) in Section II
for details) and thus which includes as special cases various
models like the BTL model, Strong Stochastic Transitivity
(SST) model [13], and uniform noise model [14].

Our main contribution lies in establishing an upper bound
on the adaptive sample size necessary for identifying top-K
items in order:

O

(
(n+K logK)

max(log log n, logK)

∆K

)
(1)

where ∆K = mini∈[K] minj:j≥i(Pij − 0.5)2. Here Pij
indicates the probability of item i being preferred over item
j. Observe that the sample complexity bound well scales
with K: O(n log log n/∆K) in the small K regime (e.g,
K = O(log n)); O(K log2K/∆K) in the large K regime
(e.g., K = Θ(n)). Another consequence of our result is that
active ranking can provide significant multiplicative gains
over passive ranking. For instance, when specializing our
result into the uniform noise model and BTL model, one
can demonstrate that the factor gains are Ω

(
n2 logn
log logn

)
and

Ω
(

logn
log logn

)
, respectively. See Table I in Section III for

details.
Our second contribution is the development of a

computationally-feasible linear-time algorithm that returns
correct top-K ordered items as soon as the number of
adaptive comparisons exceeds the above bound promised.
The proposed scheme is based on a divide-&-conquer concept
which also forms the basis of a well-known merge-sorting
algorithm. It runs in multiple rounds. In Round 1, we divide
the set of n items into multiple groups. We then identify
top-item for each group and form a short list containing the
local winners. The top-item in the short list is then selected.
In Round 2, we backtrack the path along which the top-
item was passing, and identify the second-top in the home
group where the top-item was originated from. Competing
the newly selected item with those in the short list, we choose
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the second-top item. We repeat this procedure in subsequent
rounds until we identify top-K items in order. One significant
distinction w.r.t. noiseless sorting algorithms that have been
well studied especially in the TCS literature is that, in our
noisy measurement setting, we employ repeated comparisons
to combat the noise effect, and also identify the minimum
number of repeated comparisons required to ensure that the
retrieved items are correct winners. The carefully chosen
number for repeated comparisons together with a couple
of bounding techniques plays a key role in characterizing
the above sample complexity bound. Finally, we conduct
numerical experiments to corroborate our main results.

Related work. To the best of our knowledge, Chen-
Suh [9] was the first work to focus on top-K identification
under the non-adaptive random comparison model for the
first time. They developed a nearly linear-time algorithm,
called SpectralMLE, that achieves the order-wise optimal
sample complexity for feasible top-K ranking under the
BTL model. Subsequently, sample complexity analyses
were made with regard to different yet popular ranking
paradigms such as simple counting methods [15] and spectral
methods [16] (e.g., RankCentrality [6]), under passive
measurement settings. In this work, we examine an adaptive
measurement setting under a fairly general model, thereby
showing that active ranking can significantly outperform
passive ranking for a variety of scenarios.

Recently, Braverman-Mao-Weinberg [17] developed an
active ranking algorithm, which is limited to the top-selection
case. Interestingly, we found that for the K = 1 case and the
uniform noise model, their algorithm can achieve the same
sample complexity as ours for a certain target error rate.
Szörényi et.al. [18] also focused on the K = 1 case under
the BTL model, thus developing an active ranking algorithm
which however yields a larger sample complexity than ours.
Most recently, Heckel et.al. [19] proposed an active ranking
algorithm for a general problem setting. We found that their
algorithm is outperformed by ours when specializing it to
top-K sorting setting of our interest. See III-A for details.

There has been a proliferation of active ranking algo-
rithms [20], [21], [22], [23], [14], [24]. While interesting
ranking schemes are developed for perfect ranking [20], [21],
[22] and approximate ranking [21], [23], [14], [24], they are
not customized for top-K selection and hence the sample
complexity for top-K retrieval is not analyzed therein.

On the other hand, the best-K identification with adaptive
sampling has been extensively explored under the name of
the multi-armed bandit problem [25], [26], [27], [28] for a
so-called value-based model in which the observation on
each item is drawn only from the distribution underlying this
individual. Also there are many related yet different problem
settings considered in prior literature [2], [29], [30], [31].

Notation. Unless specified otherwise, we use [n] to repre-
sent {1, 2, . . . , n}, and log to represent a logarithm in base
2. The standard notation f(n) & g(n) (res. f(n) = O(g(n))
or f(n) . g(n)) means there exists a constant c > 0 such
that f(n) ≥ cg(n) (resp. f(n) ≤ cg(n)).

II. PROBLEM FORMULATION

Comparison model. We denote by G = ([n], E) a com-
parison graph in which items i and j are compared if and
only if (i, j) belongs to the edge set E . More precisely, a
multi-edge graph is taken into consideration to accommodate
repeated measurements for an observed pair. We take into
account an adaptive comparison graph in which the edge set
is dynamically selected interacting with a ranker. Specifically,
for a sample instance t ∈ [1 : S] where S indicates the total
sample size, an edge et = (it, jt) is chosen based on the
pairwise outcomes obtained up to t− 1.

Pairwise comparisons. Given et = (i, j), the outcome of
the tth comparison, denoted by Yt, is generated as per the
following rule:

Yt =

{
1 with probability Pij
0 otherwise, (2)

where Yt = 1 indicates that item i is preferred over item
j. The outcomes Yt’s are independent across t. For ease
of presentation, we represent the collection of sufficient
statistics as

Yij :=
∑

t:et=(i,j),et∈E

Yt; Y := {Yij : (i, j) ∈ E}. (3)

Ground-truth ranking. Without loss of generality, assume
that the ground truth ranking is the order of 1 � 2 � · · · � n.
In fact, the SST model [13] suggests one way to relate
the ranking to the model parameters Pij’s by putting the
following constraint1: Pik > Pjk for all k 6= {i, j} whenever
item i � item j. In this paper, we consider a more general
setting by relaxing the constraint as:

Pij >
1

2
whenever i � j. (4)

Notice that the new constraint (4) is weaker, thus spanning
a larger parameter space. One can readily verify that our
model also subsumes as special cases other prominent models.
Observe that whenever i � j,

Pij =

{ 1
2 + γ > 1

2 , (uniform noise model);
wi

wi+wj
> 1

2 , (BTL model). (5)

where γ denotes an arbitrary constant ∈ (0, 0.5) and wi
indicates the importance score w.r.t. item i that determines
a ranking.

Performance metric and goal. Given the pairwise com-
parisons, one wishes to know whether or not the top-K
ordered items are identifiable. In light of this, we consider the
probability of error Pe in decoding the correct top-K order,
namely, Pe(ψ) := P {ψ(Y ) 6= (1 � · · · � K)}, where ψ is
any ranking scheme that returns an order of K indices. Our
goal in this work is to characterize the sample complexity
S∗, defined as the minimum sample size above which top-K
ranking is feasible, in other words, Pe can be vanishingly
small as n grows.

1We ignore the tie situation as we consider a strict order of ranking. Pre-
cisely speaking, the constraint is called Strict Strong Stochastic Transitivity
(SSST) property [13].
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III. MAIN RESULTS

As noted in the passive ranking setup [9], the most crucial
part of top-K partitioning under the BTL model hinges on
separating the two items near the boundary, being reflected

in
(
wK−wK+1

wK+wK+1

)2

. Similarly for top-K sorting setting of our
interest, one can easily show that the key measure would be:

mini∈[K]

(
wi−wi+1

wi+wi+1

)2

. We find that in our general model,
the corresponding key measure is:

∆K = min
i∈[K]

min
j:j>i

(Pij − 0.5)2. (6)

Observe that Pij − 0.5 =
wi−wj

2(wi+wj) under the BTL model.
Hence, we will use this measure to express our upper bound
on sample complexity as below.

Theorem 1: With probability exceeding 1 − (log n)−c0 ,
the top-K order can be identified provided that

SK ≥ c1(n+K logK)
max(log log n, logK)

∆K
. (7)

Here, (c0, c1) are some universal positive constants.
See Section IV for the proof of Theorem 1 and algorithm

description.
Notice that in (6), the term Pij − 0.5 captures how noisy

the comparison data is. It is a sort of the difficulty level of
separating item i from item j. So the result in Theorem 1
coincides with our intuition because small ∆K means the
difficulty of ranking which results in an increase of sample
complexity. We also provide several interesting remarks in
order.

Penalty due to noisy measurements: As mentioned
earlier, the top-K sorting problem has been extensively
explored in the TCS literature, but only the noiseless setting
has been the main focus, thus yielding sample complexity
characterization:

Snoiseless,K = Θ(n+K logK). (8)

Comparing (8) to (7), we see that the penalty factor in sample
complexity due to noisy measurements is:

O

(
max(log log n, logK)

∆K

)
. (9)

Actually it is not clear whether or not this penalty factor is
fundamental due to the lack of the optimality result. However,
the gap, if any, is up to poly(log n), as long as ∆K is not
too small (scales at most with poly(log n)).

How the limit scales with K: Observe in (7) that:

SK =

 O
(
n log logn

∆K

)
, K = O(log n);

O
(
K log2K

∆K

)
, K = Θ(n).

We see that the sample complexity bound scales with K in
a graceful manner. Here one interesting observation that one
can make in the K = O(log n) regime of practical interest
is that the sample complexity bound can be irrelevant to K

under some measurement model. One such example is the
uniform noise model where ∆K = γ2 and thus

Suniform,K = O

(
n log log n

γ2

)
, (10)

for every K. However, this phenomenon does not carry over
to other noisy models, like the BTL model in which the
noise quality varies according to associated preference scores.
Note that

SBTL,K = O

 n log log n

mini∈[K]

(
wi−wi+1

wi+wi+1

)2

 . (11)

But our result still suggests that the phenomenon may hold
universally for a variety of statistical models as long as K
is small enough.

Active vs. passive ranking: For illustrative purpose, let
us focus on the interested regime where K = O(log n) and
consider two special measurement models: (1) uniform noise
model; (2) BTL model. In the uniform noise model, Shah-
Wainwright [15] made some progress on passive ranking
sample complexity for a certain observation model:

Spassive
uniform,K = Θ

(
n3 log n

γ2

)
, (12)

for every choice of K. This together with (10) demon-
strates that the factor gain due to active measurements is
Ω
(
n2 logn
log logn

)
, which is quite substantial. In the BTL model,

Chen-Suh [9] characterized the sample complexity under
passive ranking as:

Spassive
BTL,K = O

 n log n

mini∈[K]

(
wi−wi+1

wi+wi+1

)2

 . (13)

Comparing this to (13), we see that the factor gain is
Ω
(

logn
log logn

)
, which is not quite significant but still scales

with n and hence exhibits respectful improvements in high
dimensional regimes. The comparisons are summarized in
Table I.

Computational complexity: A noticeable feature of our
proposed algorithm is its low computational complexity. It
runs in time O(n) in the above practically-relevant regime
where K = O(log n). For general K, it runs in time
O(n+K logK), being nearly linear in n. Here, it should be
noted that this complexity assumes that the input fed to our
ranking algorithm is the sufficient statistic of the outcome
comparisons: Yij (see (3)), rather than the entire collection
of Yt’s associated with the pair (i, j). This will be evident
later when describing the algorithm.

A. Comparison to Related Work

Braverman-Mao-Weinberg [17] developed an active rank-
ing algorithm for the K = 1 case and analyzed the order-wise
tight sample complexity in terms of target error rate under
the uniform noise model. More concretely, suppose we want
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Noise Model Active Measurement Passive Measurement Gain

Uniform Noise Pij = 0.5 + γ(−1)1{i≺j} O
(
n log logn

γ2

)
Θ
(
n3 logn
γ2

)
Ω
(
n2 logn
log logn

)
BTL model Pij = wi

wi+wj
O

 n log logn

mini∈[K]

(
wi−wi+1
wi+wi+1

)2

 Θ

 n logn

mini∈[K]

(
wi−wi+1
wi+wi+1

)2

 Ω
(

logn
log logn

)

TABLE I
MULTIPLICATIVE GAINS OF ACTIVE RANKING OVER PASSIVE RANKING.

the error probability not to exceed a target error rate δ. Then,
the result of [17] implies

S1,δ = Θ

(
n log 1

δ

γ2

)
. (14)

Notice that our result (7) admits the target error rate that
scales like 1

logn , implying that their algorithm can achieve
the same sample complexity as ours for a certain scenario in
which δ ≤ 1

logn . For a relaxed target error like 1
log logn , their

algorithm achieves a slightly smaller sample complexity by
a factor of log logn

log log logn .
Szörényi et.al. [18] also developed a top-selection active

ranking algorithm and analyzed sample complexity under the
BTL model. Their sample complexity bound reads around
the order of n log n, thus yielding a larger sample complexity
compared to ours.

On the other hand, Heckel et.al. [19] proposed an active
ranking algorithm for a general problem setting which
subsumes top-K sorting as a special case. They also
characterized sample complexity under a fairly general
measurement model which is slightly different from ours,
but still includes several popular models as special cases.
However, their algorithm does not outperform ours. For
instance, in the uniform noise model, their algorithm achieves
around the order of Kn2

γ2 in sample complexity (up to a
logarithmic factor gap). Hence, comparing this to (10), our
algorithm outperforms by a factor of Kn.

IV. PROPOSED RANKING ALGORITHM

A. Top Selection (K = 1): Binary Search Tree

We first focus on the case K = 1, in which we are only
interested in determining the single top item. The adaptive
algorithm proposed below can be viewed as a customized
version of binary tree search in which decisions in each layer
are made in accordance with random measurements. Here
one distinctive feature relative to conventional binary search
is that in order to combat against the uncertainty of the
observations, we repeat each binary measurement multiple
(say m) times. It is shown that for a carefully designed m
(to be detailed soon), the algorithm will output the index of
the maximum item with overwhelming probability.

The algorithm builds a binary tree of depth dlog ne. We
denote the i-th item index in layer ` by x`,i. Initially, we

randomly locate items on the leaves of the tree, that are
denoted by x1,i for i = 1, . . . , n. Then, in each iteration, a
pair in layer ` is tested, and the winner will proceed to layer
(`+ 1). Hence, half of the existing items will be eliminated
in each iteration, until we get to the root layer in which
there would be only one surviving item. The algorithm is
formally presented in Algorithm 1.

Input: m
Data: X = {x[1], x[2], . . . , x[n]}.
Output: a∗: the index of item with the highest

score. (Assume |X| is a power of 2 for
simplicity)

1 initialization;
2 n← |X|;
3 for i← 1 to |X| do
4 a(i)← i;
5 end
6 comparison;
7 for `← 1 to log n do
8 for i← 1 to n/2` do
9 T ← 0;

10 for t← 1 to m do
11 et ← (a(2i− 1), a(2i));
12 T ← T + Yt;
13 end
14 if T ≥ m

2 then
15 a(i)← a(2i− 1);
16 else
17 a(i)← a(2i);
18 end
19 end
20 end
21 a∗ ← a(1)

Algorithm 1: SELECT(X;m).

Number of measurements: The algorithm consists of
dlog ne layers, and n/2` pairs are being tested in layer `.
Hence, the total number of tests will be

∑dlogne
`=1 n2−` ≤ n.

Each test requires m binary measurements, which implies
the total number of measurements for a population of size
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n is given by

N (SELECT(X;m)) = O(m|X|) = O(mn), (15)

for a dataset of size n.
Error analysis: The algorithm will successfully return2

item 1 if and only if the top item survives all the comparisons
it is involved in. Since the tree has dlog ne layers, each
element will be tested against at most dlog ne other items.
Let j` be the item that is tested against item 1 in layer ` of
the tree. We have

P (error) = E [SELECT(X;m)]

= P

dlog |X|e⋃
`=1

{item 1 gets eliminated in layer `}


(a)

≤
dlog |X|e∑
`=1

P

[
m∑
t=1

Y
(t)
1j`

<
m

2

]
(b)

≤
dlog |X|e∑
`=1

2−mKL( 1
2‖P1j`

)

=

dlog |X|e∑
`=1

2
−m

2 log 1
4P1j`

(1−P1j`
)

(c)

≤ log |X| ·max
j 6=1

2
−m

2 log 1
4P1j(1−P1j)

= 2
log log |X|−m

2 minj 6=1 log 1
4P1j`

(1−P1j`
) (16)

where KL (· ‖ ·) indicates the Kullback-Leibler divergence
defined w.r.t. the logarithm in base 2. Note that we used the
union bound in (a), and Chernoff bound in (b). It is worth
mentioning that the first term in (c) should read dlog |X|e
instead of log |X| for a mathematical rigor. However, for
illustrative simplicity, we drop the ceiling, which turns out
not to affect the entire analysis to be followed.

Let ∆ij = (Pij − 0.5)2. Then we have

ln 2 log log n

∆ij
=

4 ln 2 log log n

(2Pij − 1)2
≥ 4 ln 2 log log n

− ln[1− (2Pij − 1)2]

=
4 log log n

log 1
4Pij(1−Pij)

.

It is clear that the probability of error vanishes at rate
(log n)−ε as n grows, provided that

m ≥ (1 + ε) ln 2

2

log log n

minj 6=1 ∆1j
=

(1 + ε) ln 2

2

log log n

∆1
,

where ∆1 = minj>1 ∆1j .
Plugging this choice for m into (15), we can obtain the

number of comparison required for SELECT algorithm. This
implies

S1 = O

(
n log log n

∆1

)
, (17)

2Recall that we assumed that the ground truth ranking is the order of
1 � · · · � n.

for K = 1.
Example 1: Consider a set of n = 8 items, in which item

number 1 is top ranked item. This item can be identified by
the binary tree in Figure 1, in which each binary decision
is made based on the majority rule among m comparisons.
It is worth mentioning that a wrong decision that does not
include item 1 (e.g., when 7 beats 3 in spite of 3 � 7) will
not affect the ultimate output of the algorithm.

1 2 63 87 5

1

2

5

1

2

1

m

67

Fig. 1. An illustrative example for Binary Search Tree with repeated
comparisons.

Remark 1: Parallel to this work, the top-selection problem
is studied in [17] under the uniform noise model. The
algorithm in [17] first identifies the top item in a subset of
size n/ log n items, and then iteratively refines the estimate
by further comparing that to other items in the set. It is shown
that the number of measurements required grows linearly
with n, when a constant (non-vanishing) error probability
is desired. However, in order to achieve a vanishing error
probability scaling as 1/poly(log n), the algorithm of [17]
requires the same number (up to a constant factor) of pair-
wise comparisons, as the one presented above.

B. Top-K Sorting: A Heap-based Algorithm

In this section we present an algorithm to identify the top
K items along with their order. The algorithm is built based
on SELECT, which can find the the single top item with
high probability. We first split the dataset with n items into
K groups each of size n/K. Then we identify the top item
in each sub-group using SELECT, and form a short list that
includes all top items from the sub-groups. Then we build
a (max-)HEAP data-structure for the short list of K items.
The HEAP structure allows us to easily extract the top item
from the short-list. Once the top item of the short list is
identified and removed, we go back to its home sub-group,
identify the second top item in that sub-group, and add it to
the short list. We maintain the HEAP structure of the short
list during the process, to be able to easily extract the next
top item of the list. We repeat this procedure for (K − 1)
rounds until we retrieve all the top K elements. The main
algorithm, TOP is presented in Algorithm 2.

Example 2: In the example illustrated in Figure 2, the
goal is to identify the top K = 10 items, along with their
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Input: Integers K, and m
Data: Array X = {x[1], x[2], . . . , x[n]}.
Output: Indices of top-K: π(1), π(2), . . . , π(K)

1 n← |X|;
2 Q← dn/Ke;
3 for i← 1 to K do
4 Ci ← {x[(i− 1)Q+ 1], x[(i− 1)Q+

2], . . . , x[min{iQ, n}]};
5 b(i)← (i− 1)Q+ SELECT(Ci;m);
6 end
7 Z ← {x[b(1)], x[b(2)], . . . , x[b(K)]};
8 BuildHeap(Z;m);
9 for i← 1 to K do

10 π(i)← Z[1];
11 j ← bZ[1]/Kc;
12 Cj ← Cj \ {x[Z[1]]};
13 Z[1]← SELECT(Ci;m) ;
14 Heapify(Z,X, 1;m);
15 end

Algorithm 2: TOP

order. We first split the items into K = 10 groups of equal
size, namely C1, C2, . . . , C10. The top item in each sub-
group can be found using the binary search tree. Then we
build a heap data-structure on the short list, obtained using
the top items. As it is clear in the figure, heap is also a
binary tree, with the property that both children of each
node have a rank lower than their parent. Then the root will
be reported as the top item.

Next, we go back to the home-subgroup of the root, to
find the second-top item of that group. The top item will be
replaced by the second top item, and heap will be re-arranged
to maintain its property. Iterating on this for (K − 1) = 9
times, we can identify items 1, 2, . . . , 10.

· · · · · · · · ·
C1 C2

b(2)= 5b(1)= 13

C10

b(10) = 6

13 5 6914 110 177 2

9

1

26

7 514

17

10

13

short list

heap

· · ·

· · ·

Fig. 2. The top items of the sub-groups form a short list, which will be
used to build a heap.

For the sake of completeness, we also present a modified
version of Heapify and BuildHeap algorithms that work
based on noisy observations in Algorithm 3 and Algorithm 4,

Input: Integers i and m
Data: Array Z of indices and Data X
Output: Array Z with sub-tree at node i being a

max-heap

1 left← 2i;
2 right← 2i+ 1;
3 T ← 0;
4 for t← 1 to m do
5 et ← (Z[left], Z[i]);
6 T ← T + Yt;
7 end
8 if left ≤ |Z| and T ≥ m

2 then
9 max← left;

10 else
11 max← i;
12 end
13 T ← 0;
14 for t← 1 to m do
15 et ← (Z[right], Z[max)];
16 T ← T + Yt;
17 end
18 if right ≤ |Z| and T ≥ m

2 then
19 max← right;
20 end
21 if max 6= i then
22 swap(Z[i], Z[max]) ;
23 Heapify(Z,X,max;m);
24 end

Algorithm 3: Heapify

Input: Integers i and m
Data: Array Z of indices and Data X
Output: max-heap Z

1 for i← b|Z|/2c downto 1 do
2 Heapify(Z,X, i;m)
3 end

Algorithm 4: BuildHeap

respectively. It is worth mentioning the sample complexity of
building a HEAP over N items using noiseless measurements
is O(N), and insertion of a new item to an existing HEAP
with N items requires O(logN) comparisons. Finally, HEAP
maintains the maximum item at the beginning of the list,
so that max-extraction can be done for free. Here, in
the modified version of the algorithms, we repeat each
comparison used for HEAP for m times, and decide based on
the majority of the observation. The variable m is a design
parameter, which will be determined later.

Sample complexity: The sample complexity of the al-
gorithm can be simply evaluated in terms of the input
parameters as follows. We first identify the top entry of
each of the K sub-groups. Later, during the iterative phase
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of the algorithm, we need to repeat SELECT algorithm on the
remaining elements of sub-groups for another K iterations,
which results in 2K runs of SELECT, each on subgroups of
size at most n/K items. Each run of algorithm SELECT with
parameter m on a dataset Ci requires N [SELECT(Ci;m)]
pairwise comparison, as given in (15).

In order to build the heap structure on K sub-winners
we need to make O(K) binary decisions, where we repeat
each comparison m times to deal with the noise. Moreover,
in each iteration one new item is added to the short list.
We need to make O(logK) binary decisions to maintain
the heap structure. Similar to BuildHeap, we repeat each
comparison for m times, and then decide based on a majority
rule. Therefore, we have

N [TOP(X,K;m)]

, 2K · N [SELECT(Ci;m)] +N [BuildHeap(Z;m)]

+KN [InsertHeap(Z;m)]

= 2K ·O(mn/K) +mO(K) +mO(K logK)

= O(mn+mK logK). (18)

Error analysis: We expect to discover the top item
correctly in each run of SELECT, only when the sub-group
includes one of the top K items of the original population,
and we don’t care about the validity of the result otherwise.
On the other hand, during the iterative part of the algorithm,
every single wrong decision that includes a top-K item may
propagate to the final result, and hence, we consider that as
a source of error. Hence, using the union bound we have

P (error) = E [TOP(X,K;m)]

≤
2K∑
i=1

E [SELECT(Ci;m)] + E [BuildHeap(Z;m)]

+KE [InsertHeap(Z;m)]

(a)

≤ 2K log
n

K
2−2mmini∈[K],j>i ∆ij

+K(1 + logK)2−2mmini∈[K],j>i ∆ij

(b)
= 21+logK+log log(n/K)−2m∆K

+ 21+logK+log logK−2m∆K . (19)

where (a) holds since in each of 2K runs of algorithm
SELECT the sub-groups include at most n/K items, and
an error in SELECT affects the ultimate result only if the
corresponding subgroup includes (at least) one of the top-K
items. We have also used the fact ∆K = mini∈[K],j>i ∆ij

in (b).
By choosing m so that it satisfies 3

m ≥ (1 + ε)
max{logK, log log(n/K)}

∆K

m ≥ (1 + ε)
max{logK, log log n}

∆K
,

(20)

3Note that condition m ≥ (1 + ε) log logn
∆K

is needed to guarantee decay
of the error at rate 1/poly(logn), specially when K = O(logn).
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Fig. 3. Evolution of empirical success rate with respect to ∆1 and m
when n = 100 and K = 1.

we have

E [TOP(X,K;m)] ≤ 2−c log logn = (log n)−c, (21)

in which c > 0 is a positive constant depending of ε. Hence

m = O

(
max{logK, log log n}

∆K

)
is sufficient to have vanishing error probability. This implies

SK = O

(
(n+K logK) max{logK, log log n}

∆K

)
.

Remark 2: The repetition parameter used for the
SELECT algorithm, and the one used for HEAP can be
potentially different, and accordingly optimized. However,
our analysis shows that individual choice of repetition
parameter can provide a minor gain only for a tiny range of
K. So, we rather choose the same parameter for the sake of
simplicity.

V. EXPERIMENTAL RESULTS

We conduct two synthetic experiments to corroborate our
main result stated in Theorem 1. We examine the single top
selection (K = 1) using Algorithm 1, under BTL model.
To this end, we generate a preference score vector of size
n = 100 which contains distinct scores subject to ∆1 =
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(P12 − 0.5)2 =
(

w1−w2

2(w1+w2)

)2

. For each case we run the
algorithm for several values of m. In each case, the empirical
success rate is obtained by averaging over 10000 Monte Carlo
trials. Figure 3 shows how the empirical success rate varies
with respect to ∆1 and m. In particular, Figure 3(b) shows
that for a fixed success rate m scales with 1/∆1, which is
consistent with our theoretical analysis.

VI. CONCLUSION AND FUTURE WORK

We investigated the active top-K sorting from noisy
comparisons. We characterized an upper bound on the sample
size necessary for top-K recovery, thereby demonstrating sub-
stantial multiplicative gains over passive ranking for various
measurement models. We also developed a nearly linear-
time algorithm that can achieve the derived bound. Some
future works of interest include: (a) derivation of minimax
information-theoretic lower bounds that can possibly match
our upper bound, up to constant factors; (b) extension of
our ranking algorithm to a variety of statistical models such
as the Plackett-Luce model [32], [29] and the mixture BTL
model [33]; (c) performance evaluations of our algorithm vs.
prior active ranking algorithms for real-world data.
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