
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020 813

Two-Way Function Computation
Seiyun Shin, Student Member, IEEE, and Changho Suh , Member, IEEE

Abstract— We explore the role of interaction for the problem
of reliable computation over two-way multicast networks. Specif-
ically we consider a four-node network in which two nodes wish
to compute a modulo-sum of two independent Bernoulli sources
generated from the other two, and a similar task is done in
the other direction. The main contribution of this work lies
in the characterization of the computation capacity region for
a deterministic model of the network via a novel transmission
scheme. One consequence of this result is that, not only we can get
an interaction gain over the one-way non-feedback computation
capacities, but also we can get all the way to perfect-feedback1

computation capacities simultaneously in both directions for some
channel regimes. This result draws a parallel with the recent
result developed in the context of two-way interference channels.

Index Terms— Computation capacity, interaction, network
decomposition, perfect-feedback, two-way function multicast
channel.

I. INTRODUCTION

THE inherent two-way nature of communication links pro-
vides an opportunity to enable interaction among nodes.

It allows the nodes to efficiently exchange their messages
by adapting their transmitted signals to the past received
signals that can be fed back through backward communica-
tion links. This problem was first studied by Shannon who
derived the inner and outer bounds on its capacity region [3].
Although there have been results that improve upon Shannon’s
inner [4]–[6] and outer bounds [7], [8], we are still lacking
in our understanding of how to treat two-way information
exchange, and the underlying difficulty has impeded progress
on this field over the past few decades.

Since interaction is enabled through the use of feedback,
feedback is a more basic research topic that needs to be
understood beforehand. The history of feedback traces back to
Shannon who showed that feedback has no bearing on capacity
for memoryless point-to-point channels [9]. Subsequent work
demonstrated that feedback provides a gain for point-to-
point channels with memory [10]–[14] as well as for many

Manuscript received October 20, 2018; revised April 29, 2019; accepted
July 19, 2019. Date of publication August 16, 2019; date of current version
January 20, 2020. This work was supported by the National Research
Foundation of Korea (NRF) funded by the Korea Government (MSIT) under
Grant 2018R1A1A1A05022889 and by the U.S. Air Force Office of Scientific
Research (AFOSR) under Grant FA2386-19-1-4050. This paper was presented
in part at the Proceedings of Allerton Conference on Communication, Control,
and Computing in 2017 [1] and 2014 [2].

The authors are with the School of Electrical Engineering, Korea Advanced
Institute of Science and Technology, Daejeon 34141, South Korea (e-mail:
seiyun.shin@kaist.ac.kr; chsuh@kaist.ac.kr).

Communicated by M. Wigger, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this article are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2019.2935775
1This is an idealistic case where feedback links are perfect with infinite

capacities and are given for free. We left the exact definition in Section II.

multi-user channels [15]–[17]. For many scenarios, however,
capacity improvements due to feedback are rather modest.

On the contrary, [18], [19] have changed the traditional
viewpoint on the role of feedback. It is shown in [18], [19]
that feedback offers more significant capacity gains for the
Gaussian interference channel. Subsequent works [20]–[24]
show more promise on the use of feedback. In particular, [24]
demonstrates a very interesting result: Not only feedback can
yield a net increase in capacity, but also we can sometimes get
perfect-feedback capacities simultaneously in both directions.

We seek to examine the role of feedback for more general
scenarios in which nodes now intend to compute functions of
the raw messages rather than the messages themselves. These
general settings include many realistic scenarios such as sensor
networks [25] and cloud computing scenarios [26], [27]. For
an idealistic scenario where feedback links are perfect with
infinite capacities and are given for free, Suh-Gastpar [28]
have shown that feedback provides a significant gain also for
computation. However, the result in [28] assumes a dedicated
infinite-capacity feedback link as in [19]. As an effort to
explore a net gain that reflects feedback cost, [2] investigated a
two-way setting of the function multicast channel considered
in [28] where two nodes wish to compute a linear function
(modulo-sum) of the two Bernoulli sources generated from the
other two nodes. The two-way setting includes a backward
computation demand as well, thus well capturing feedback
cost. For a deterministic model, a scheme is proposed to
demonstrate that a net interaction gain can occur also in the
computation setting. However, the maximal interaction gain is
not fully characterized due to a gap between the lower and
upper bounds. In particular, whether or not one can get all
the way to perfect-feedback computation capacities in both
directions (as in the two-way interference channel [24]) has
been unanswered.

To answer the question, we consider the Avestimehr-
Diggavi-Tse (ADT) deterministic model [29] which well cap-
tures key properties of the wireless Gaussian channel since the
model abstracts superposition and broadcast properties of the
wireless Gaussian channel. For this model, we characterize
the computation capacity region of the two-way function
multicast channel via a new capacity-achieving scheme. As a
result, we answer the above question positively. Specifi-
cally, we demonstrate that for some channel regimes (to be
detailed later; see Corollary 1), the new scheme simultaneously
achieves the perfect-feedback computation capacities in both
directions. As in the two-way interference channel [24], this
occurs even when feedback offers gains in both directions and
thus feedback w.r.t. one direction must compete with the traffic
in the other direction.

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3101-4291


814 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

Fig. 1. Four-node ADT deterministic network.

Our achievability builds upon the scheme in [24] where
feedback allows the exploitation of effectively future infor-
mation as side information via retrospective decoding (to be
detailed later; see Remark 3). A key distinction relative to [24]
is that in our computation setting, the retrospective decoding
occurs in a nested manner for some channel regimes; this
will be detailed when describing our achievability. We also
employ the network decomposition method of [30] to simplify
the achievability proof.

Notations: Before continuing to describe our model,
we introduce a few notations that will be used throughout.
First, we assume that any vector in the form of X ∈ F

q
2 is a

row vector. Here F2 indicates the finite field with two elements.
Also, we use shorthand notation to indicate the sequence,
e.g., SK

1 := (S11, . . . , S1K ). The calligraphic letters R and
C denote the computation rate region and the capacity region,
respectively. Finally, we note that tilde notation ˜ is used to
indicate parameters relevant to the backward channel.

II. MODEL

Consider a four-node Avestimehr-Diggavi-Tse (ADT) deter-
ministic network as illustrated in Fig. 1. This network is a
full-duplex bidirectional system in which all nodes are able
to transmit and receive signals simultaneously. Our model
consists of forward and backward channels which are assumed
to be orthogonal. For simplicity, we focus on a setting in which
both forward and backward channels are symmetric, but not
necessarily the same. In the forward channel, n and m indicate
the number of signal bit levels (or resource levels) for direct
and cross links respectively. The corresponding values for the
backward channel are denoted by (ñ, m̃).

With N channel uses of the network (or in time N),
node k (k = 1, 2) wishes to transmit the number K (N)
forward messages, while node k̃ (k̃ = 1̃, 2̃) wishes to
transmit the number K̃ (N) backward messages. While K (N)
is a precise expression as it is indeed a function of N ,
for notational simplicity, we will denote K (N) by K .

Similarly we will denote K̃ (N) by K̃ . We define SK
k and S̃ K̃

k as
forward and backward messages respectively. We assume that
(SK

1 , SK
2 , S̃ K̃

1 , S̃ K̃
2 ) are independent and identically distributed

according to Bern
(

1
2

)
. Let Xk ∈ F

q
2 be an encoded signal

of node k where q = max(m, n) and Vk ∈ Fm
2 be part of Xk

visible to node j̃ ( �= k̃). Similarly let X̃k ∈ F
q̃
2 be an encoded

signal of node k̃ where q̃ = max(m̃, ñ) and Ṽk be part of X̃k

visible to node j ( �= k). We note that all the signals are in the
form of row vectors. The signals received at node k and k̃ are
then given by

Y1 =X1Gq−n ⊕ X2Gq−m, Y2 = X1Gq−m ⊕ X2Gq−n, (1)

Ỹ1 =X̃1G̃q̃−ñ ⊕ X̃2G̃q̃−m̃ , Ỹ2 = X̃1G̃q̃−m̃ ⊕ X̃2G̃q̃−ñ, (2)

where G and G̃ are shift matrices: [G]i j = 1 { j = i + 1}
(1 ≤ i, j ≤ q), [G̃]i j = 1 { j = i + 1} (1 ≤ i, j ≤ q̃). Here ⊕
indicates bit wise XOR.

The encoded signal Xki of node k at time i is a
function of its own message and past received signals:
Xki = fki (SK

1 , Ỹ i−1
k ). We define Ỹ i−1

k := {Ỹkt }i−1
t=1 where

Ỹkt denotes node k’s received signal at time t . Similarly the
encoded signal X̃ki of node k̃ at time i is a function of its own
message and past received sequences: X̃ki = f̃ki (S̃ K̃

k , Y i−1
k ).

From the received signal Y N
k , node k̃ wishes to com-

pute {S1i ⊕ S2i }K
i=1. Similarly node k wishes to compute

{S̃1 j ⊕ S̃2 j }K̃
j=1 from its received signals Ỹ N

k . An error

occurs whenever { ̂S1i ⊕ S2i }K
i=1 �= {S1i ⊕ S2i }K

i=1 or

{ ̂S̃1 j ⊕ S̃2 j }K̃
j=1 �= {S̃1 j ⊕ S̃2 j }K̃

j=1. The error probabilities

are given by δk = Pr[{ ̂S1i ⊕ S2i }K
i=1 �= {S1i ⊕ S2i }K

i=1] and

δ̃k = Pr[{ ̂S̃1 j ⊕ S̃2 j }K̃
j=1 �= {S̃1 j ⊕ S̃2 j }K̃

j=1]. We say that a

computation rate pair (R, R̃) =
(

K
N , K̃

N

)
is achievable if there

exists a family of codebooks and encoder/decoder functions
such that all the decoding error probabilities go to zero as the
number of channel uses N tends to infinity. The computation
capacity region C is the closure of the set of achievable
computation rate pairs.

In this work, we compare our results (to be stated later)
to two other results made under two different scenarios. The
first is the non-feedback (non-interaction) scenario [30] in
which there is no interaction among the signals arriving from
different nodes and hence Xki = fki (SK

k ), X̃ki = f̃ki (S̃ K̃
k ).

The second is the perfect-feedback scenario [28] in which
noiseless output feedback is given for free to aid computa-
tions in both directions so that Xki = fki (SK

k , Y i−1
1 , Y i−1

2 ),

X̃ki = f̃ki (S̃ K̃
k , Ỹ i−1

1 , Ỹ i−1
2 ).

III. MAIN RESULTS

Theorem 1 (Two-way Computation Capacity). The computa-
tion capacity region C is the set of (R, R̃) such that

R ≤ Cpf, (3)

R̃ ≤ C̃pf, (4)

R + R̃ ≤ m + m̃, (5)

R + R̃ ≤ n + ñ, (6)



SHIN AND SUH: TWO-WAY FUNCTION COMPUTATION 815

where Cpf and C̃pf indicate the perfect-feedback computation
capacities in the forward and backward channels respectively
(see (9) and (10) in Baseline 2 for detailed formulae).

Proof: See Sections IV and V for the achievability and
converse proofs respectively.

Baseline 1 (Non-feedback Computation Capacity [30]). Let
α := m

n and α̃ := m̃
ñ . The computation capacity region Cno

for the non-feedback scenario is the set of (R, R̃) such that
R ≤ Cno and R̃ ≤ C̃no where

Cno =
⎧⎨
⎩

min
{
m, 2

3 n
}
, α < 1,

min
{
n, 2

3 m
}
, α > 1,

n, α = 1,
(7)

C̃no =
⎧⎨
⎩

min
{
m̃, 2

3 ñ
}
, α̃ < 1,

min
{
ñ, 2

3 m̃
}
, α̃ > 1,

ñ, α̃ = 1.
(8)

Here Cno and C̃no denote the non-feedback computation
capacities of forward and backward channels respectively.

Baseline 2 (Perfect-feedback Computation Capacity [28]).
The computation capacity region Cpf for the perfect-feedback
scenario is the set of (R, R̃) such that R ≤ Cpf and R̃ ≤ C̃pf
where

Cpf =

⎧⎪⎨
⎪⎩

2
3 n, α < 1,
2
3 m, α > 1,
n, α = 1,

(9)

C̃pf =

⎧⎪⎨
⎪⎩

2
3 ñ, α̃ < 1,
2
3 m̃, α̃ > 1,
ñ, α̃ = 1.

(10)

By comparing Theorem 1 and Baseline 1, one can readily
see that feedback (that can be provided through interaction)
offers a gain (in terms of computation capacity region) as long
as (α /∈ [ 2

3 , 3
2 ], α̃ /∈ [ 2

3 , 3
2 ]). With Definition 1 below, a further

careful inspection reveals that there are channel regimes in
which one can enhance Cno (or C̃no) without sacrificing the
other counterpart. This implies a net interaction gain.

Definition 1 (Interaction Gain). We say that an interaction
gain occurs if one can achieve (R, R̃) = (Cno + δ, C̃no + δ̃)
for some δ ≥ 0 and δ̃ ≥ 0 such that max(δ, δ̃) > 0.
Here a net interaction gain can be quantified as (δ, δ̃) :=
(R, R̃) − (Cno, C̃no).

Our earlier work in [2] has demonstrated that an interaction
gain occurs in the light blue regime in Fig. 2. We also find the
regimes in which feedback does increase computation capacity
but interaction cannot provide such increase, meaning that
whenever δ > 0, δ̃ mush be −δ and vice versa. The regimes
are (α < 2

3 , α̃ < 2
3 ) and (α > 3

2 , α̃ > 3
2 ). One can readily

check that this follows from the cut-set bounds (5) and (6).
Achieving perfect-feedback computation capacities: It is

noteworthy to mention that there exist channel regimes in
which both δ and δ̃ can be strictly positive. This implies
that for these regimes, not only feedback does not sacrifice
one transmission for the other, but it can actually improve

Fig. 2. Gain-vs-nogain picture: The plot is over two key parameters: α and
α̃, where α is the ratio of the interference-to-noise ratio (in dB) to the signal-
to-noise ratio (in dB) of the forward channel and α̃ is the corresponding
quantity of the backward channel. The parameter γ is the ratio of the
backward signal-to-noise ratio (in dB) to the forward signal-to-noise ratio
(in dB) and is fixed to be a value greater than or equal to 1 in the plot. Dark
pink/blank region: feedback does not increase computation capacity in either
direction and thus interaction is not useful. Light pink/check: feedback does
increase computation capacity but interaction cannot provide such increase.
Light blue/slash: there is a net interaction gain. Dark blue/dots: interaction
is so efficient that one can achieve perfect-feedback computation capacities
simultaneously in both directions.

both simultaneously. More interestingly, as in the two-way
interference channel [24], the gains δ and δ̃ can reach up to the
maximal feedback gains, reflected in Cpf −Cno and C̃pf − C̃no
respectively. The dark blue/dots regimes in Fig. 2 indicate such
channel regimes when 1 ≤ γ := ñ

n . Note that such regimes
depend on γ . The amount of feedback that one can send is
limited according to available resources, which is affected by
the channel asymmetry parameter γ . The following corollary
identifies channel regimes in which achieving perfect-feedback
computation capacities in both directions is possible.

Corollary 1. Consider a case in which feedback helps for both
forward and backward channels: Cpf > Cno and C̃pf > C̃no.
Under such a case, the channel regimes in which C = Cpf are
as follows:

(I) α <
2

3
, α̃ >

3

2
,

{
Cpf − Cno ≤ m̃ − C̃pf,

C̃pf − C̃no ≤ n − Cpf

}
, (11)

(II) α >
3

2
, α̃ <

2

3
,

{
Cpf − Cno ≤ ñ − C̃pf,

C̃pf − C̃no ≤ m − Cpf

}
. (12)

Proof: A tedious yet straightforward calculation with
Theorem 1 completes the proof.

Remark 1 (Why the Perfect-feedback Regimes?). The ratio-
nale behind achieving perfect-feedback computation capacities
in both directions bears a resemblance to the one found in
the two-way interference channel [24]: Interaction enables
full-utilization of available resources, whereas the dearth of



816 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

interaction limits that of those. Below we elaborate on this
for the considered regime in Corollary 1: (α ≤ 2

3 , α̃ ≥ 3
2 ).

We first note that the total number of available resources
for the forward and backward channels depend on n and m̃ in
this regime. In the non-feedback case, observe from Baseline
1 that some resources are under-utilized; specifically one can
interpret n−Cno and m̃−C̃no as the remaining resource levels
that can potentially be utilized to aid function computations. It
turns out feedback can maximize resource utilization by filling
up such resource holes under-utilized in the non-feedback
case. Note that Cpf − Cno represents the amount of feedback
that needs to be sent for achieving Cpf. Hence, the condition
Cpf − Cno ≤ m̃ − C̃pf (similarly C̃pf − C̃no ≤ n − Cpf) in
Corollary 1 implies that as long as we have enough resource
holes, we can get all the way to perfect-feedback computation
capacity. We will later provide an intuition as to why feedback
can do so while describing our achievability; see Remark 3
in particular. �

IV. PROOF OF ACHIEVABILITY

Our achievability proof consists of four parts. We initially
outline what the key ingredients of our achievability are.
For the next two subsections, we provide achievable schemes
for two toy examples in which the key ingredients of our
achievability idea are well presented. Once the description of
the two schemes is done, we will then outline the proof for
generalization as to how to combine these case-by-case results
to obtain the computation capacity of the overall network.
We leave the detailed proof for these in Appendices A,
B and C.

A. Key Techniques

The key ingredients of the proposed coding schemes entail
(1) superposition coding; (2) the idea of interference neu-
tralization [31]; and (3) retrospective [24] (and nested ret-
rospective) decodings. Specifically, in our two-way setting,
the transmission of superposition coded signals w.r.t. one
direction can simultaneously deliver its own message signals
and feedback signals that can aid the transmission w.r.t. the
other direction. This has given us an opportunity to boost
up the computation rate since message signals and feedback
signals are sent using the same resource. Despite the potential
efficiency w.r.t. the achievable computation rate, a challenge
of “being corrupted” arises due to the hardness of extracting
the desired modulo-2 sum functions from the superimposed
signals. The idea of interference neutralization now comes into
play which enables somewhat further recovering the desired
computation results. In addition to this second ingredient,
we highlight that retrospective decoding plays a crucial role in
completely resolving the challenge. Together with these ingre-
dients, it turns out that our scheme asymptotically approaches
the perfect-feedback computation capacity as the number of
time slots goes to infinity.

B. Example 1: (m, n) = (1, 2), (m̃, ñ) = (2, 1)

1) Perfect-Feedback Strategy: We first review the perfect-
feedback scheme [28], which we will use as a baseline for

Fig. 3. A perfect-feedback scheme for (m, n) = (1, 2) model.

comparison to our achievable scheme. It suffices to consider
the case of (m, n) = (1, 2), as the other case of (m̃, ñ) = (2, 1)
follows similarly by symmetry. The perfect-feedback scheme
for (m, n) = (1, 2) consists of two stages; the first stage has
two time slots; and the second stage has one time slot. See
Fig. 3. Observe that the bottom level at each receiving node
naturally forms a modulo-2 sum function, say F� (:= a�⊕b�).
In the first stage, we send forward symbols at nodes 1 and 2.
At time 1, node 1 sends (a1, a2); and node 2 sends (b2, b1).
Node 1̃ then obtains F2 (:= a2 ⊕ b2); and node 2̃ obtains F1.
As in the first time slot, nodes 1 and 2 deliver (a3, a4) and
(b4, b3) respectively at time 2. Then nodes 1̃ and 2̃ obtain F4
and F3 respectively. Note that until the end of time 2, (F1, F3)
are not yet delivered to node 1̃. Similarly (F2, F4) are missing
at node 2̃.

Feedback can, however, accomplish the computation of
these functions of interest. With feedback, each transmit-
ting node can now obtain the desired functions which were
obtained only at one receiving node. Exploiting a feedback link
from node 2̃ to node 1, node 1 can obtain (F1, F3). Similarly,
node 2 can obtain (F2, F4) from node 1̃.

The strategy in Stage 2 is to forward all of these fed-back
functions at time 3. Node 1̃ then receives F1 cleanly at the top
level. At the bottom level, it gets a mixture of the two desired
functions: F3 ⊕ F2. Note that F2 in the mixture was already
obtained at time 1. Hence, using F2, node 1̃ can decode F3.
Similarly, node 2̃ can obtain (F2, F4). In summary, nodes 1̃
and 2̃ can compute four modulo-2 sum functions during three
time slots, thus achieving R = 4

3 (= Cpf).
In our model (see Fig. 4), however, feedback is provided

in a limited fashion, as feedback signals are delivered only
through the backward channel. There are two different types
of transmissions for using the backward channel. The channel
can be used (1) for backward-message computation, or (2)
for sending feedback signals. Usually, unlike the perfect-
feedback case, the channel use for one purpose limits that for
the other (see Remark 2 for details), and this tension incurs
a new challenge. Before getting into our scheme, we will
elaborate such tension through the backward channel (m̃, ñ) =
(1, 2), which is different from our case (m̃, ñ) = (2, 1) of
interest.

Remark 2 (One Bit Feedback Through (m̃, ñ) = (1, 2) Costs
Exactly One Bit). From the above strategy, observe that F1 is
delivered from node 2̃ to node 1, while F2 is delivered from



SHIN AND SUH: TWO-WAY FUNCTION COMPUTATION 817

Fig. 4. An achievable scheme for (m, n) = (1, 2), (m̃, ñ) = (2, 1), and L = 2.

node 1̃ to node 2. In order to implement this feedback strategy
through (m̃, ñ) = (1, 2) (which is a symmetric version of
the forward channel described in Fig. 3), one can see that
nodes 1̃ and 2̃ must use a cross link. Then, nodes 1 and 2
can receive the desired fed-back functions through the bottom
level. However, note that the bottom level at each receiving
node naturally forms a modulo-2 sum function. Hence, there is
a backward-message computation demand through this bottom
level as well. Owing to this tension between feedback transmis-
sion and the backward-message computation, we see that there
is one-to-one tradeoff between feedback and the backward-
message computation. In fact, this is the case where feedback
does increase capacity, but interaction cannot provide such
gain (i.e., feedback cost equals to feedback gain).

In our achievability for (m, n) = (1, 2), (m̃, ñ) = (2, 1),
however, we develop an achievable scheme that can com-
pletely resolve the tension, thus achieving the perfect-feedback
performance. See below.

2) Achievability: Like the perfect-feedback case, our
scheme has two stages. The first stage has 2L time slots;
and the second stage has L time slots. During the first stage,
the number 4L forward fresh symbols are transmitted at

nodes 1 and 2; and the number 4(L − 1) of backward fresh
symbols are transmitted at nodes 1̃ and 2̃. No fresh symbols
are transmitted at the second stage, but some refinements are
performed to recover the desired function computations. In this
example, we claim that the following computation rate pair is
achievable: (R, R̃) = ( 4

3 , 4L−4
3L

)
. In other words, during the

total 3L time slots, our scheme ensures 4L forward and 4L−4
backward message computations. As L → ∞, we obtain the
desired result: (R, R̃) → ( 4

3 , 4
3

) = (Cpf, C̃pf).
Stage 1: The purpose of this stage is to compute 2L and

2(L − 1) modulo-2 sum functions on the bottom level of for-
ward and backward channels, while relaying feedback signals
(as in the perfect feedback case) on the top level. To this end,
we employ (1) superposition coding (i.e., the first idea that we
introduced in Section IV-A): Each node superimposes fresh
symbols and feedback symbols. For ease of understanding,
we focus on the case where L = 2. Also see Fig. 4. It turns
out that one can readily extend this scheme for the large L.
For an arbitrary L, we leave detailed scheme in Appendix A.

Time 1 & 2: Node 1 sends (a1, a2); and node 2 sends
(b2, b1). Nodes 1̃ and 2̃ then receive (a1, F2) and (b2, F1)
respectively. Observe that F1 and F2 have not yet been



818 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

delivered to nodes 1̃ and 2̃ respectively. In the backward
channel, a similar transmission strategy is employed in for
the backward-message computation. Nodes 1̃ and 2̃ wish
to transmit fresh backward symbols: (ã2, ã1) and (b̃1, b̃2)
so that nodes 1 and 2 can compute (b̃1, F̃2) and (ã2, F̃1).
However, feedback transmission over the backward channel
must be accomplished in order to achieve the forward perfect-
feedback computation capacity. Recall that in the perfect-
feedback strategy, the received signals F2 and F1 are desired
to be fed back. One way to accomplish both tasks is to
superimpose feedback signals onto fresh symbols. Specifically
nodes 1̃ and 2̃ encode ã2 ⊕ F2 and b̃1 ⊕ F1 on the top
level respectively. Then, a challenge arises if these signals are
transmitted without additional encoding procedure. Observe
that node 1 would receive F̃2 ⊕ F2, while the original goal is
to compute the backward functions solely on the bottom level.
In other words, the feedback signal F2 causes interference to
node 1, because there is no way to cancel out this signal.

Interestingly, the idea of (2) interference neutralization [31]
can play a role. On the bottom level, node 2̃ sending the
mixture of b̃2 (fresh symbol) and b2 (received on the top
level) enables the interference to be neutralized. This allows
node 1 to obtain F̃2 ⊕a2, which in turn leads node 1 to obtain
F̃2 by canceling a2 (own symbol). Similarly node 1̃ delivers
(ã2 ⊕ F2, ã1 ⊕ a1). As a result, nodes 1 and 2 can obtain
(b̃1 ⊕ F1, F̃2) and (ã2 ⊕ F2, F̃1) respectively.

At time 2, we repeat this w.r.t. new symbols. As a result,
nodes 1̃ and 2̃ receive (a3, F4) and (b4, F3) respectively, while
nodes 1 and 2 receive (b̃3⊕F3, F̃4⊕a4) and (ã4⊕F4, F̃3⊕b3).
Similar to the first time slot, nodes 1 and 2 utilize their own
symbols as side information to obtain F̃4 and F̃3 respectively.

Using the fed-back F̃2 ⊕ a2 (received at time 1), node 1
now delivers a5 ⊕ F̃2 ⊕a2 on top at time 3; furthermore, using
b̃1 ⊕ F1 (also received at time 1) and a1 (own symbol), node 1
also delivers a6 ⊕ b̃1 ⊕ b1 on bottom. With a similar strategy,
node 2 delivers (b6 ⊕ F̃1 ⊕ b1, b5 ⊕ ã2 ⊕ a2) at the same
time. Then, node 1̃ receives (a5 ⊕ F̃2 ⊕ a2, F6 ⊕ ã1), while
node 2̃ receives (b6 ⊕ F̃1 ⊕ b1, F5 ⊕ b̃2). Note that using their
own symbols ã1 and b̃2, nodes 1̃ and 2̃ can obtain F6 and F5
respectively. At time 4, we repeat the same process w.r.t. new
symbols. As a result, nodes 1̃ and 2̃ obtain (a7 ⊕ F̃4 ⊕ a4, F8)
and (b8 ⊕ F̃3 ⊕ b3, F7). During these two time slots, nodes 1̃
and 2̃ do not send any fresh backward symbols. Instead, they
mimic the perfect-feedback strategy; that is, through the top
level, node 1̃ feeds back (F6, F8), while node 2̃ feeds back
(F5, F7).

Note that until the end of time 4, (F1, F3, F5, F7) and
(F2, F4, F6, F8) are not yet delivered to nodes 1̃ and 2̃,
while (F̃1, F̃3) and (F̃2, F̃4) are missing at nodes 1 and 2
respectively.

Stage 2: During the next two time slots at the second stage,
we accomplish the computation of the desired functions not yet
obtained by each node. Recall that the transmission strategy
in the perfect-feedback scenario is simply to forward all of
the received signals at each node. The received signals are in
the form of modulo-2 sum functions of interest (see Fig. 3).
In our model, however, the received signals include symbols
generated from the other-side nodes. See Fig. 4. For instance,

the received signal at node 1 in time 1 is b̃1 ⊕ F1, which
contains the backward symbol b̃1. Hence, unlike the perfect-
feedback scheme, forwarding the signal directly from node 1
to node 1̃ is not guaranteed for node 1̃ to decode the desired
function F1.

To address this, we introduce a recently developed
approach [24]: Retrospective decoding. The key feature of this
approach is that the successive refinement is done in a retro-
spective manner, allowing us to resolve the aforementioned
issue. The outline of the strategy is as follows: Nodes 1̃ and 2̃
start to decode (F5, F7) and (F6, F8) respectively. Here one
key point to emphasize is that these decoded functions act
as side information. Ultimately, this information enables the
other-side nodes to obtain the desired functions w.r.t. the past
symbols. Specifically the decoding order reads backward:

(F5, F6, F7, F8) → (F̃1, F̃2, F̃3, F̃4) → (F1, F2, F3, F4) .

In order for nodes 1̃ and 2̃ to decode the first set of desired
functions, the transmission strategy of nodes 1 and 2 at time
5 is to deliver the received functions. In other words, they
forward (F5, F7) and (F6, F8) (received at time 3 and 4)
respectively. Then nodes 1̃ and 2̃ obtain (F5, F7 ⊕ F6) and
(F6, F8 ⊕ F5). Using F6 (received at time 3), node 1̃ can
decode F7. Similarly node 2̃ can decode F8. As mentioned
above, now the idea in the backward channel is to exploit
the newly decoded F5. Using F2 (received at time 1) and
a5 ⊕ F̃2 ⊕a2 (received at time 3) further, node 1̃ can construct:

F̃2 ⊕ b5 ⊕ b2 = F5 ⊕ F2 ⊕ (a5 ⊕ F̃2 ⊕ a2).

This constructed signal is sent at the top level. Furthermore,
with the newly decoded F7, (a1, F4, F6) (received at time 1, 2
and 3) and a7 ⊕ F̃4 ⊕ 4 (received at time 4), node 1̃ can
construct:

F̃4 ⊕ b7 ⊕ b4 ⊕ F6 ⊕ a1

= F7 ⊕ a1 ⊕ F4 ⊕ F6 ⊕ (a7 ⊕ F̃4 ⊕ a4).

This is sent at the bottom level. In a similar manner, node 2̃
encodes (F̃1⊕a6⊕a1, F̃3⊕a8⊕a3⊕F5⊕b2). Sending all of the
encoded signals, nodes 1 and 2 then receive (F̃1⊕a6⊕a1, F̃3⊕
F̃2 ⊕a8 ⊕a3 ⊕a5) and (F̃2 ⊕b5 ⊕b2, F̃4 ⊕ F̃1 ⊕b7 ⊕b4 ⊕b6)
respectively.

Observe that from the top level, node 1 can finally decode
F̃1 of interest using (a6, a1) (own symbols). From the bottom
level, node 1 can also obtain F̃3 from F̃3 ⊕ F̃2 ⊕ a8 ⊕ a3 ⊕
a5 by utilizing F̃2 (received at time 1) and (a8, a3, a5) (own
symbols). Similarly, node 2 can decode (F̃2, F̃4).

With the help of these decoded functions, nodes 1 and 2
can then construct signals that can aid in the decoding of
the desired functions at the other-side nodes. Node 1 uses
newly decoded F̃1 and b̃1 ⊕ F1 (received at time 1) to
generate F1 ⊕ ã1 on the top level; using (b̃3 ⊕ F3, F̃2, F̃3),
it also constructs F3 ⊕ ã3 ⊕ F̃2 on the bottom level. In a
similar manner, node 2 encodes (F2 ⊕ b̃2, F4 ⊕ b̃4 ⊕ F̃1).
Forwarding all of these signals at time 6, nodes 1̃ and 2̃ receive
(F1 ⊕ ã1, F3 ⊕ F2 ⊕ ã3 ⊕ ã2) and (F2 ⊕ b̃2, F4 ⊕ F1 ⊕ b̃4 ⊕ b̃1)
respectively. Here using their past decoded functions and own
symbols, nodes 1̃ and 2̃ can obtain (F1, F3) and (F2, F4).



SHIN AND SUH: TWO-WAY FUNCTION COMPUTATION 819

Consequently, during six time slots, eight modulo-2 sum
functions w.r.t. forward symbols are computed, while four
backward functions are computed. This gives (R, R̃) = ( 4

3 , 2
3

)
.

By further transmitting fresh symbols and feedback signals at
Stage 1 and applying retrospective decoding idea at Stage 2,
one can see that (R, R̃) = ( 4

3 , 4L−4
3L

)
is achievable. Note

that as L → ∞, we get the desired computation rate pair:
(R, R̃) → ( 4

3 , 4
3

) = (Cpf, C̃pf). We present the scheme for
arbitrary L in Appendix A.

Remark 3 (How to achieve the perfect-feedback bound?). As
in the two-way interference channel [24], the key point in
our achievability lies in exploiting the following three types
of information as side information: (1) past received signals;
(2) own message symbols; and (3) future decoded functions.
Recall that in our achievability in Fig. 4, the encoding strategy
is to combine own symbols with past received signals, e.g.,
at time 1 node 1̃ encodes (ã2⊕F2, ã1⊕a1), which is the mixture
of its own symbols (ã2, ã1) and the received signals (F2, a1).
The decoding strategy is to utilize past received signals, e.g.,
at time 1, node 1 exploits its own symbol a2 to decode F̃2.

The most interesting part that is also highlighted in the
two-way interference channel [24] is the utilization of the last
type of information: Future decoded functions. For instance,
with b̃1 ⊕ F1 (received at time 1) only, node 1 cannot help
node 1̃ to decode F1. However, note that our strategy is to
forward F1 ⊕ ã1 at node 1 at time 6. Here the signal is the
summation of b̃1 ⊕ F1 and F̃1. Additionally, F̃1 is in fact the
function that node 1 wishes to decode in the end; it can be
viewed as a future function because it is not available at time
1. Thus, the approach is to defer the decoding procedure for
F1 until F̃1 becomes available at node 1; note in Fig. 4 that
F̃1 is computed at time 5 (a deferred time slot) in the second
stage. The decoding procedure for F3 and (F2, F4) at nodes 1̃
and 2̃ proceeds similarly as follows: Deferring the decoding
of these functions until F̃3 and (F̃2, F̃4) become available at
nodes 1 and 2 respectively. Note that the decoding of (F5, F7)
and (F6, F8) at nodes 1̃ and 2̃ precedes that of (F̃1, F̃3) and
(F̃2, F̃4) at nodes 1 and 2 respectively. The idea of deferring
the refinement together with the retrospective decoding plays
a key role in achieving the perfect-feedback bound in the limit
of L.

C. Example 2: (m, n) = (1, 2), (m̃, ñ) = (1, 0)

1) Perfect-Feedback Strategy: Similar to the previous exam-
ple, we first review the perfect-feedback scheme presented in
our earlier work [28], which we will use as a baseline for
comparison with our achievable scheme. We focus on the case
of (m̃, ñ) = (1, 0), as that for (m, n) = (1, 2) was already
presented. The perfect-feedback scheme for (m̃, ñ) = (1, 0)
consists of two stages; the first stage has one time slot; and
the second stage has two time slots. At time 1, we send
backward symbols ã1 and b̃2 at nodes 1̃ and 2̃ respectively.
Then nodes 1 and 2 receive b̃2 and ã1 respectively. Node 1
can then deliver the received symbol b̃2 to node 1̃ through
feedback. Similarly, node 2̃ can obtain ã1 from node 2.

At time 2 (the first time of Stage 2), with the feedback
signals, nodes 1̃ and 2̃ can construct F̃2 and F̃1 respectively

and send them over the backward channel. Then nodes 1 and
2 obtain F̃1 and F̃2 respectively. Note that until the end of
time 2, F̃2 is not delivered to node 1. Similarly, F̃1 is missing
at node 2. Using one more time slot, we can deliver these
functions to the intended nodes. With feedback, node 2̃ can
obtain F̃2 from node 2. Sending this at time 3 allows node 1 to
obtain F̃2. Similarly, node 2 can obtain F̃1. As a result, nodes
1 and 2 obtain (F̃1, F̃2) during three time slots. This gives
a computation rate of 2

3 (= C̃pf). We note that compared to
the example (m̃, ñ) = (2, 1) (the prior perfect-feedback case),
the current strategy does not finish the decoding procedure at
Stage 2 in one shot. Rather, it needs one more time slot for
relaying and computing the desired functions.

2) Achievability: In the two-way setting, a challenge arises
due to the tension between feedback transmission and traffic
w.r.t. the other direction. The underlying idea to resolve this
challenge is similar to that for (m, n) = (1, 2), (m̃, ñ) = (2, 1).
However, one noticeable distinction relative to Example 1 is
that the retrospective decoding occurs in a nested manner. It
was found that this phenomenon occurs due to the fact that
the decoding procedure of backward functions at the second
stage is not done in one shot (recall the above perfect-feedback
scheme); it needs additional time for relaying and computing
the desired functions. Hence the decoding of the functions
of interest w.r.t. fresh message symbols generated during one
stage may not be completed in the very next stage.

Our achievability now introduces the concept of multiple
layers, say M layers. Each layer consists of two stages as
in Example 1. Hence there are 2M stages overall. For each
layer, the first stage consists of 2L time slots; and the second
stage consists of L + 1 time slots. For the first stage of each
layer, 4L and 2L of fresh symbols are transmitted through
the forward and backward channels respectively. In the second
stage, no fresh forward and backward symbols are transmitted,
but some refinements are performed (to be specified later).

Among the total 4L M forward and 2L M backward func-
tions, we claim that our scheme ensures the computation of
the 4L(M−(2L+1−2L−2)) number of forward functions and
the 2L(M − (2L+1 − 2L − 2)) number of backward functions
at the end of Layer M . However, we note that the remaining
4L(2L+1 −2L −2) forward and 2L(2L+1 −2L −2) backward
functions can be successfully computed as we proceed with
our scheme further. At the moment of time (3L +1)M , we get
the computation rate pair of:
(

4L(M − (2L+1 − 2L − 2))

(3L + 1)M
,

2L(M − (2L+1 − 2L − 2))

(3L + 1)M

)
.

(13)

As the scheme is somewhat complicated, we first illustrate
the scheme for a simple case (L, M) = (2,∞) that well
presents the idea of achievability although not achieving the
optimal computation rate pair of (Cpf, C̃pf) = ( 4

3 , 2
3

)
in this

case. The exact achievability for an arbitrary (L, M) will be
presented in Appendix B. One can see from (13) that by
setting M = (2 + ε)L where ε > 0, and letting L → ∞
with the general scheme, we get the optimal performance:
(R, R̃) = ( 4

3 , 2
3

) = (Cpf, C̃pf).



820 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

Fig. 5. An achievable scheme for (m, n) = (1, 2), (m̃, ñ) = (1, 0), and (L , M) = (2,∞) in Layer 1.

Stage 1: Let us illustrate the scheme for (L, M) = (2,∞).
We claim that (R, R̃) = ( 8

7 , 4
7

)
is achievable, which coin-

cides with (13). The proposed scheme consists of 7M
(= (3L + 1)M) time slots. And the first stage within the first
layer consists of 4 (= 2L) time slots. See Fig. 5.

At time 1, node 1 sends (a1, a2); node 2 sends (b2, b1).
Then nodes 1̃ and 2̃ receive (a1, F2) and (b2, F1) respec-
tively. Repeating this forward transmission strategy w.r.t. fresh
forward symbol at time 2 and 3, nodes 1̃ and 2̃ receive
(a3, F4, a5, F6) and (b4, F3, b6, F5) respectively. Through the
backward channel, nodes 1̃ and 2̃ keep silent at time 1 and 3,
while they employ a feedback strategy at time 2 in order to
send the desired feedback signals and a fresh backward symbol
in one shot. Specifically nodes 1̃ and 2̃ deliver F2 ⊕ a3 ⊕ ã1
and F1 ⊕ b4 ⊕ b̃2. Nodes 1 and 2 then get F1 ⊕ b4 ⊕ b̃2 and
F2 ⊕ a3 ⊕ ã1 respectively.

From the received F1 ⊕ b4 ⊕ b̃2, node 1 cancels out its
odd-index symbol a1 and adds the fresh symbol a7, thus
encoding a7 ⊕ b1 ⊕ b4 ⊕ b̃2. Similarly, node 2 encodes
b8 ⊕ a2 ⊕ a3 ⊕ ã1. At time 4, nodes 1 and 2 forward the
encoded signal on the top level. Furthermore, through the
bottom level, each node forwards its own symbols in order
to ensure additional function computations at the receiver-side
nodes. We note that for each transmitting node, the indices
of the transmitted symbols coincide with those of the other

transmitting node’s own symbols added and canceled out on
the top level during the same period. In particular, node 2
forwards b7 ⊕ b1 on the bottom level, as node 1 adds a7 and
cancels out a1 at time 4. Similarly, node 1 forwards a8 ⊕ a2.
Nodes 1̃ and 2̃ then receive (a7 ⊕ b1 ⊕ b4 ⊕ b̃2, F8 ⊕ a3 ⊕ ã1)
and (b8 ⊕ a2 ⊕ a3 ⊕ ã1, F7 ⊕ b4 ⊕ b̃2). Note that node 1̃ can
decode F8 from F8 ⊕ a3 ⊕ ã1 using ã1 (own symbol) and a3
(received at time 2). Similarly, node 2̃ can decode F7.

Similar to the feedback strategy at time 2, node 1̃ delivers
F6⊕a7⊕b1⊕b4⊕ã3⊕b̃2 which is the mixture of F6 (received
at time 3), a7 ⊕b1 ⊕b4 ⊕ b̃2 (received at time 4), and ã3 (fresh
symbol). Similarly, node 2̃ delivers F5 ⊕b8⊕a2 ⊕a3 ⊕ b̃4 ⊕ ã1.
Nodes 1 and 2 then get F5 ⊕ b8 ⊕ a2 ⊕ a3 ⊕ b̃4 ⊕ ã1 and
F6 ⊕ a7 ⊕ b1 ⊕ b4 ⊕ ã3 ⊕ b̃2 respectively.

Note that until the end of time 4, (F1, F3, F5, F7) and
(F2, F4, F6, F8) are not yet delivered to nodes 1̃ and
2̃ respectively, while (F̃1, F̃2, F̃3, F̃4) are missing at both
nodes 1 and 2.

Stage 2: The transmission strategy at the second stage
is to accomplish the computation of the desired functions
not yet obtained by each node. We employ the retrospective
decoding strategy introduced in Example 1. This stage consists
of 3 time slots. At time 5, from the signal received at time 4
(= 2L), node 1 cancels out all of its odd-index symbols
(a3, a5) and adds the even-index symbol a8 (= a4L), thus



SHIN AND SUH: TWO-WAY FUNCTION COMPUTATION 821

Fig. 6. An achievable scheme for (m, n) = (1, 2), (m̃, ñ) = (1, 0), and (L , M) = (2,∞) in Layer 2.

encoding b5 ⊕ F8 ⊕ a2 ⊕ b̃4 ⊕ ã1. In a similar manner, node 2
encodes a6 ⊕ F7 ⊕ b1 ⊕ ã3 ⊕ b̃2 using even-index symbols
(b4, b6) and the odd-index symbol b7. The transmission strat-
egy for each node is to forward the encoded signal on the top
level.

As in the transmission strategy on the bottom level at
time 4, each node forwards its own symbols in order to ensure
additional function computations at the other-side nodes.
Specifically node 2 forwards b8 ⊕b5 ⊕b3 since node 1 cancels
out (a3, a5) and adds a8 at time 5. Similarly, node 1 forwards
a7 ⊕ a6 ⊕ a4 on the bottom level. Nodes 1̃ and 2̃ then receive:
node 1̃ : (b5 ⊕ F8 ⊕ a2 ⊕ b̃4 ⊕ ã1, b7 ⊕ a4 ⊕ b1 ⊕ ã3 ⊕ b̃2);
node 2̃ : (a6 ⊕ F7 ⊕ b1 ⊕ ã3 ⊕ b̃2, a8 ⊕ b3 ⊕ a2 ⊕ b̃4 ⊕ ã1).

From the received signal on the bottom level, node 1̃ can
decode F7 (= F4L−1) by adding a7 ⊕ b1 ⊕ b4 ⊕ b̃2 (received
at time 4), F4 (received at time 2), and ã3 (own symbol).
Similarly, node 2̃ can decode F8 (= F4L). From the received
signal on the top level, nodes 1̃ and 2̃ use (F8, F2, ã4, ã1) and
(F7, F1, b̃3, b̃2) to generate b5 ⊕ b2 ⊕ F̃4 and a6 ⊕ a1 ⊕ F̃3
respectively. Note that sending them back allows nodes 1 and 2
to obtain F̃3 (= F̃2L−1) and F̃4 (= F̃2L) by canceling (a6, a1)
and (b5, b2) (own symbols) respectively.

At time 6, nodes 1 and 2 forward what they just decoded on
the top level: F̃3 and F̃4. Similar to the transmission strategy
on the bottom level at time 5, nodes 1 and 2 additionally
forward a5 ⊕ a2 and b6 ⊕ b1. Then nodes 1̃ and 2̃ obtain
(F̃3, a5 ⊕a2 ⊕ F̃4) and (F̃4, b6 ⊕b1 ⊕ F̃3) respectively. Observe
that node 1̃ can now obtain F5 by adding b5 ⊕ a2 ⊕ b̃4 ⊕
ã1 (received on the top level at time 5), a5 ⊕ a2 ⊕ F̃4
(received on the bottom level at time 6), and (ã4, ã1) (own
symbols). Similarly, node 2̃ can obtain F6. Subsequently,
transmitting F̃3 and F̃4 (received on the top level) over the
backward channel enables nodes 1 and 2 to obtain F̃4 and F̃3
respectively.

Note that until the end of time 6, (F1, F3) and (F2, F4) are
not yet delivered to nodes 1̃ and 2̃, while (F̃1, F̃2) is missing
at nodes 1 and 2. We have one more time in Stage 2 to resolve
this, but unlike the prior example, the decoding of all the
remaining functions appears to be impossible during this stage.
For instance, with F1 ⊕ b4 ⊕ b̃2 (received at time 2) solely,
node 1 cannot help node 1̃ to decode F1. However, if F̃2 is
somehow obtained at node 1, it can forward F1 ⊕ F4 ⊕ ã2
(which is the summation of F1 ⊕ b4 ⊕ b̃2, F̃2, and a4 (own
symbol)), and thus can achieve F1 at node 1̃ (by canceling
F4 (decoded functions at Stage 1) and ã1 (own symbol). Note
that F̃2 is in fact the function that node 1 wishes to decode



822 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

Fig. 7. An achievable scheme for (m, n) = (1, 2), (m̃, ñ) = (1, 0), and (L , M) = (2,∞) in Layer 3 and 4.

in the end; it can be viewed as a future function, as it is
not available at the moment. Consequently, the approach is to
additionally postpone the decoding procedure to another layer.
Hence, nodes 1 and 2 remain silent at time 7 and defer the
decoding strategy until time 21 (in Layer 3).

Through the backward channel, however, additional
backward-message computations are possible via newly-
decoded forward functions. With the newly decoded F7 and
a7 ⊕ b1 ⊕ b4 ⊕ b̃2 (received at time 4), node 1̃ generates
b7 ⊕ b1 ⊕ b4 ⊕ F̃2. Interestingly, sending this through the
backward channel allows node 2 to obtain F̃2. Similarly,
constructing a8 ⊕ a2 ⊕ a3 ⊕ F̃1 and sending this at node 2̃
permits node 1 to obtain F̃1. Nonetheless, one can see that F̃2
and F̃1 are still missing at nodes 1 and 2 respectively. We will
illustrate that these unresolved function computations will be
accomplished as we proceed with our scheme further.

Stage 3 and 4: The scheme for Layer 2 is essentially
identical to that for Layer 1 except for the transmission scheme
over the forward channel at time 10. See Fig. 6 (shaded in light
yellow).

Time 10: The distinction relative to Layer 1 is that
nodes 1 and 2 additionally exploit the most recently received
signal w.r.t. the previous layer. The purpose of this is to
relay signals that can help resolve the unresolved function

computations in Layer 1. Specifically, using a8 ⊕a2 ⊕a3 ⊕ F̃1
(received at time 7 in Stage 2), node 1 constructs a13 ⊕ a8 ⊕
a2⊕F̃1 and sends it on the top level. The construction idea is to
cancel out node 1’s odd-index symbol a3 and to add the fresh
symbol a13. Similarly node 2 constructs b14 ⊕ b7 ⊕ b1 ⊕ F̃1
and sends it on the top level. Then nodes 1̃ and 2̃ receive
a13⊕a8⊕a2⊕ F̃1 and b14⊕b7⊕b1⊕ F̃2. These relayed signals
will be exploited in the next layer to accomplish the compu-
tation of F̃2 and F̃1 (introduced in Layer 1) at nodes 1 and 2
respectively.

Through the bottom level, nodes 1 and 2 transmit additional
signals in order to ensure the modulo-2 sum function compu-
tation at the other-side nodes. In particular, node 1 transmits
a14 ⊕ a4. Then node 1̃ gets F14 ⊕ b7 ⊕ a4 ⊕ b1 ⊕ F̃2. Using
b7 ⊕ b1 ⊕ b4 ⊕ F̃2 (the transmitted signal of node 1̃ at time 7)
and F4 (received at time 2), node 1̃ can obtain F14. Similarly,
transmitting b13 ⊕ b3 at node 2 ensures node 2̃ to obtain F13.

Similar to the case of Layer 1, at the end of time 14 in
Layer 2, one can see that (F9, F11) and (F10, F12) are not yet
delivered to nodes 1̃ and 2̃, while F̃6 and F̃5 are missing at
nodes 1 and 2 respectively. We will resolve these computations
later.

Stage 5 and 6: The scheme for Layer 3 is identical to that
for Layer 2 except for two parts: the transmission scheme over



SHIN AND SUH: TWO-WAY FUNCTION COMPUTATION 823

the backward channel at time 15; and that over the forward
channel at time 21. See Fig. 7.

Time 15: The first distinction relative to Layer 2 is the
transmitted signals at node 1̃ and 2̃:

node 1̃ : b13 ⊕ b8 ⊕ b2 ⊕ F̃1;
node 2̃ : a14 ⊕ a7 ⊕ a1 ⊕ F̃2.

The construction idea of these signals is to use the relayed
signals, the newly decoded functions in Layer 2, and previ-
ously decoded functions. For instance, b13 ⊕ b8 ⊕ b2 ⊕ F̃1 is
the summation of a13 ⊕ a8 ⊕ a2 ⊕ F̃1 (received at time 10)
and (F13, F8, F2) (decoded at time 12, 4, and 1). One can see
that nodes 1 and 2 can now obtain F̃2 and F̃1 using their own
symbols. We find that all of the backward functions introduced
in Layer 1 are successfully computed at nodes 1 and 2.

Time 21: Here we accomplish the remaining function com-
putation demands introduced in Layer 1. The idea is to exploit
F̃2 and F̃1 decoded at time 15. Using F̃2, F1⊕b4⊕b̃2 (received
at time 2), and a4 (own symbol), node 1 encodes F1 ⊕ F4 ⊕ ã2
and sends it on the top level. One can see that node 1̃ can
obtain F1 by canceling F4 (decoded at time 2) and ã2 (own
symbol). In a similar manner, constructing F2 ⊕ F3 ⊕ b̃1 and
delivering it on the top level enables node 2̃ to obtain F2.
In order to achieve additional modulo-2 sum computations at
the same time, nodes 1 and 2 deliver F̃1 and F̃2 (obtained at
time 7) on the bottom level. It is found that applying a similar
decoding strategy ensures nodes 1̃ and 2̃ to obtain F3 and F4
respectively.

Note that all of the function computations w.r.t. the
symbols introduced in Layer 1 are accomplished. In other
words, nodes 1̃ and 2̃ obtain {F�}8

�=1, while nodes 1 and 2
obtain {F̃�}4

�=1.
Stage 7 and 8: We repeat the same procedure as before.

Note that the strategy at time 28 in Layer 4 is identical to that
at time 21 in Layer 3. In turn, all of the function computation
demands introduced in Layer 2 are perfectly accomplished.
In other words, nodes 1̃ and 2̃ obtain {F�}16

�=9, while nodes 1
and 2 obtain {F̃�}8

�=5.
As we proceed with our scheme, one can see that all

of the function computation demands introduced in Layer
i − 2 can be completely accomplished at the end of Layer i .
At the end of Layer M , i.e., time 7M (= (3L + 1)M),
nodes 1̃ and 2̃ can obtain {F�}8(M−2)

�=1 , while nodes 1 and 2 can

obtain {F̃�}4(M−2)
�=1 . This yields (R, R̃) =

(
8(M−2)

7M , 4(M−2)
7M

)
.

As M tends to infinity, the scheme can achieve ( 8
7 , 4

7 ).
Following the aforementioned strategy, we find that this
idea can be extended to arbitrary values of (L, M), thus
yielding: (R, R̃) =

(
4L(M−(2L+1−2L−2))

(3L+1)M , 2L(M−(2L+1−2L−2))
(3L+1)M

)
.

We present details about the scheme for an arbitrary (L, M)
in Appendix B.

Remark 4 (Why nested retrospective decoding can achieve the
desired performance?). In Stage 2 of our scheme (see Fig. 5),
we see that feedback-aided successive refinement w.r.t. the
fresh symbols sent previously enables each node to compute
additional functions; however, each node could not com-
pute all of the desired functions within the current layer.

Fig. 8. Regimes to check for achievability proof. By symmetry, it suffices
to consider (R1), (R2), (R3), and (R4).

Our scheme at time 7 in Layer 1 for the forward channel
is to remain silent and defer the desired function com-
putations. This vacant time slot causes inefficiency in the
performance.

The good news is that additional relaying of functions of
interest in Layer 2 (see time 10 in Fig. 6) enables an additional
forward channel use at the second stage of Layer 3 (see
time 21 in Fig. 7). In particular, nodes 1̃ and 2̃ can obtain
(F1, F3) and (F2, F4) through this channel use. And from
Layer 3, one can see that the second stage of each layer is
fully packed. From this observation, we can conclude that the
sum of the vacant time slots is finite. Therefore, we can make
the inefficiency stemming from the vacant time slots negligible
by setting M → ∞. Similar to Example 1, it is found that
by setting L → ∞, we can eventually achieve the optimal
performance. See details in Appendix B.

D. Proof Outline

We now prove the achievability for arbitrary values of
(m, n), (m̃, ñ). Note that C = Cno when ((α ∈ [ 2

3 , 1), α ∈
(1, 3

2 ]), (α̃ ∈ [ 2
3 , 1), α̃ ∈ (1, 3

2 ])). Furthermore, for the
case where α = 1, C = n and one can see that sacrificing
the forward transmission for aiding the backward-message
transmission (by sending feedback signals on forward link
levels) incurs one-to-one trade-off unless α̃ ≤ 2

3 or α̃ > 3
2 .

The case for α̃ = 1 similarly follows. We rule out these three
cases since the proofs for them are somewhat straightforward.
In addition to these cases, by symmetry, it suffices to consider
the following four regimes. See Fig. 8:

(R1) α ≤ 2/3, α̃ ≤ 2/3; (14)

(R2) (α ∈ [2/3, 1), α ∈ (1, 3/2]), α̃ ≥ 3/2; (15)

(R3) α ≤ 2/3, (α̃ ∈ [2/3, 1), α̃ ∈ (1, 3/2]); (16)

(R4) α ≤ 2/3, α̃ ≥ 3/2. (17)

1) Regimes in Which Interaction Provides No Gain: Refer-
ring to Fig. 2, the channel regimes of this category are (R1),
(R1’), and (α = 1 or α̃ = 1). A simple combination of the
non-feedback scheme [30] and the interactive scheme in [2]
can yield the desired result for the regimes.



824 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

Fig. 9. A network decomposition example of (m, n) = (2, 4), (m̃, ñ) = (3, 1) model. The decomposition is given by (2, 4), (3, 1) −→ (1, 2),
(2, 1) × (1, 2), (1, 0).

2) Regimes in Which Interaction Helps Only Either in For-
ward or Backward Direction: It is found that the achievability
in this case is also a simple combination of the non-feedback
scheme [30] and the interactive scheme in [2]. The channel
regimes of this category are: (R2), (R2’), (R3), and (R3’).

3) Regimes in Which Interaction Helps Both in Forward and
Backward Directions: As mentioned earlier, the key idea is to
employ the retrospective decoding. For ease of generalization
to arbitrary channel parameters in the regime, here we employ
the network decomposition method [30] where an original net-
work is decomposed into elementary orthogonal subnetworks
and achievable schemes are applied separately into the subnet-
works. See Fig. 9 for an example of such network decomposi-
tion. The idea is to use graph coloring. The figure graphically
proves the fact that (m, n) = (2, 4), (m̃, ñ) = (3, 1) model
can be decomposed into the following two orthogonal subnet-
works: (m(1), n(1)) = (1, 2), (m̃(1), ñ(1)) = (2, 1) model (blue
color); and (m(2), n(2)) = (1, 2), (m̃(2), ñ(2)) = (1, 0) model
(red color). Note that the original network is simply a con-
catenation of these two subnetworks. We denote the decom-
position by (2, 4), (3, 1) −→ (1, 2), (2, 1) × (1, 2), (1, 0). As
mentioned earlier, the idea is simply to apply the developed
achievable schemes separately for the two subnetworks. Notice
that we developed the schemes for (m, n) = (1, 2), (m̃, ñ) =
(2, 1) and (m, n) = (1, 2), (m̃, ñ) = (1, 0) model. For the
case of (m, n) = (1, 2), (m̃, ñ) = (2, 1), our proposed
scheme achieves (R, R̃) = ( 4

3 , 4L−4
3L

)
. And for the case of

(m, n) = (1, 2), (m̃, ñ) = (1, 0), our strategy achieves
(R, R̃) =

(
4L(M−(2L+1−2L−2))

(3L+1)M , 2L(M−(2L+1−2L−2))
(3L+1)M

)
. Setting

M = (2 + ε)L , ε > 0, and letting L → ∞, the first
scheme achieves

( 4
3 , 4

3

)
, while the second achieves

( 4
3 , 2

3

)
.

Thus, the separation approach gives:

(R, R̃) =
(

4

3
,

4

3

)
+

(
4

3
,

2

3

)
=

(
8

3
, 2

)
,

which coincides with the claimed computation rate region of
{(R, R̃) : R ≤ Cpf = 8

3 , R̃ ≤ C̃pf = 2}. �
We find that this idea can be extended to arbitrary values of

(m, n), (m̃, ñ). The channel regimes of this category are the

remaining regimes: (R4) and (R4’). See Appendix C for the
detailed proof.

V. PROOF OF CONVERSE

Since the bounds of (5) and (6) are straightforward cut-
set bounds, we omit them. Note that the bounds of (3) and
(4) are the perfect-feedback bounds in [28]. For completeness,
we will provide the proof for (3). Note that the bound of (4)
follows by symmetry.

Proof of (3) (Perfect-feedback Bound): The proof for the
case of α = 1 is straightforward owing to the standard

cut-set argument: N(R − εN ) ≤ I (SK
1 ⊕ SK

2 ; Y N
1 , S̃ K̃

1 )
(a)=

I (SK
1 ⊕ SK

2 ; Y N
1 |S̃ K̃

1 ) ≤ ∑N
i=1 H (Y1i) ≤ N max(m, n). Here

(a) follows from the independence of SK
1 ⊕ SK

2 and S̃ K̃
1 . If R

is achievable, then εN → 0 as N tends to infinity, and hence
R ≤ max(m, n) = n.

Now consider the case where α �= 1. Starting with Fano’s
inequality, we get:
N (3R − εN )

≤
[

I
(

SK
1 ⊕ SK

2 ; Y N
1 , S̃ K̃

1

)
+ I

(
SK

1 ⊕ SK
2 ; Y N

2 , S̃ K̃
2

)

+ I
(

SK
1 ⊕ SK

2 ; Y N
1 , S̃ K̃

1

) ]

=
[

I
(

SK
1 ⊕ SK

2 ; Y N
1 |S̃ K̃

1

)
+ I

(
SK

1 ⊕ SK
2 ; Y N

2 |S̃ K̃
2

)

+ I
(

SK
1 ⊕ SK

2 ; Y N
1 |S̃ K̃

1

) ]

≤
[

H
(

Y N
1 |S̃ K̃

1

)
− H

(
Y N

1 |SK
1 ⊕ SK

2 , S̃ K̃
1

)
+ H

(
Y N

2 |S̃ K̃
2

)

− H
(

Y N
2 |SK

1 ⊕ SK
2 , S̃ K̃

2

)
+ I

(
SK

1 ⊕ SK
2 ; Y N

1 |S̃ K̃
1

) ]
(b)≤

[
H

(
Y N

1

)
− H

(
Y N

1 |SK
1 ⊕ SK

2 , S̃ K̃
1 , S̃ K̃

2

)
+ H

(
Y N

2

)
− H

(
Y N

2 |SK
1 ⊕ SK

2 , S̃ K̃
1 , S̃ K̃

2 , Y N
1

)
+ I

(
SK

1 ⊕ SK
2 ; Y N

1 |S̃ K̃
1

) ]



SHIN AND SUH: TWO-WAY FUNCTION COMPUTATION 825

=
[

H
(

Y N
1

)
+ H

(
Y N

2

)
− H

(
Y N

1 , Y N
2 |SK

1 ⊕ SK
2 , S̃ K̃

1 , S̃ K̃
2

)

+ I
(

SK
1 ⊕ SK

2 ; Y N
1 |S̃ K̃

1

) ]
(c)≤

[
H

(
Y N

1

)
+ H

(
Y N

2

)
− H

(
Y N

1 , Y N
2 |SK

1 ⊕ SK
2 , S̃ K̃

1 , S̃ K̃
2

)
+ I

(
SK

1 ⊕ SK
2 ; Y N

1 |S̃ K̃
1 , S̃ K̃

2

) ]
(d)≤

[
H

(
Y N

1

)
+ H

(
Y N

2

)
− H

(
Y N

1 , Y N
2 |SK

1 ⊕ SK
2 , S̃ K̃

1 , S̃ K̃
2

)
+ I

(
SK

1 ; Y N
1 , Y N

2 |S̃ K̃
1 , S̃ K̃

2

) ]
(e)≤

[
H

(
Y N

1

)
+ H

(
Y N

2

)
− H

(
Y N

1 , Y N
2 |SK

1 ⊕ SK
2 , S̃ K̃

1 , S̃ K̃
2

)
+ I

(
SK

1 ; Y N
1 , Y N

2 |SK
1 ⊕ SK

2 , S̃ K̃
1 , S̃ K̃

2

) ]

= H
(

Y N
1

)
+ H

(
Y N

2

)
≤

N∑
i=1

[H (Y1i ) + H (Y2i )]

≤ 2N max(m, n)

where (b) follows from the fact that conditioning reduces
entropy; (c) follows from the non-negativity of mutual infor-
mation and the fact that SK

1 ⊕ SK
2 and S̃ K̃

2 are independent

conditioned on S̃ K̃
1 ; (d) follows from Lemma 1 below; and

(e) follows from the non-negativity of mutual information and
the fact that SK

1 and SK
1 ⊕ SK

2 are independent conditioned on

(S̃ K̃
1 , S̃ K̃

2 ). If R is achievable, then εN → 0 as N tends to
infinity, and hence R ≤ 2

3 max(m, n). We therefore acquire
the desired bound.

Lemma 1.

I
(

SK
1 ⊕ SK

2 ; Y N
1 |S̃ K̃

1 , S̃ K̃
2

)
≤ I

(
SK

1 ; Y N
1 , Y N

2 |S̃ K̃
1 , S̃ K̃

2

)
.

Proof:

I
(

SK
1 ⊕ SK

2 ; Y N
1 |S̃ K̃

1 , S̃ K̃
2

)
(a)= H

(
SK

1 |S̃ K̃
1 , S̃ K̃

2

)
− H

(
SK

1 ⊕ SK
2 |S̃ K̃

1 , S̃ K̃
2 , Y N

1

)
≤ H

(
SK

1 |S̃ K̃
1 , S̃ K̃

2

)
− H

(
SK

1 |S̃ K̃
1 , S̃ K̃

2 , Y N
1 , Y N

2 , SK
2

)
(b)= H

(
SK

1 |S̃ K̃
1 , S̃ K̃

2

)
− H

(
SK

1 |S̃ K̃
1 , S̃ K̃

2 , Y N
1 , Y N

2

)
= I

(
SK

1 ; Y N
1 , Y N

2 |S̃ K̃
1 , S̃ K̃

2

)
where (a) follows from the fact that H (SK

1 |S̃ K̃
1 , S̃ K̃

2 ) =
H (SK

1 ) = H (SK
1 ⊕ SK

2 ) = H (SK
1 ⊕ SK

2 |S̃ K̃
1 , S̃ K̃

2 ); and (b)

follows from SK
1 − (Y N

1 , Y N
2 , S̃ K̃

1 , S̃ K̃
2 ) − SK

2 (see Lemma 2
below).

Lemma 2. SK
1 − (Y N

1 , Y N
2 , S̃ K̃

1 , S̃ K̃
2 ) − SK

2 .

Proof:

I
(

SK
1 ; SK

2 |Y N
1 , Y N

2 , S̃ K̃
1 , S̃ K̃

2

)
=

[
I
(

SK
1 ; SK

2 , Y N
1 , Y N

2 |S̃ K̃
1 , S̃ K̃

2

)

− I
(

SK
1 ; Y N

1 , Y N
2 |S̃ K̃

1 , S̃ K̃
2

) ]

=
[

I
(

SK
1 ; Y N

1 , Y N
2 |S̃ K̃

1 , S̃ K̃
2 , SK

2

)

− I
(

SK
1 ; Y N

1 , Y N
2 |S̃ K̃

1 , S̃ K̃
2

) ]

=
[

− H
(

Y N
1 , Y N

2 |S̃ K̃
1 , S̃ K̃

2

)
+ H

(
Y N

1 , Y N
2 |S̃ K̃

1 , S̃ K̃
2 , SK

1

)

+ H
(

Y N
1 , Y N

2 |S̃ K̃
1 , S̃ K̃

2 , SK
2

) ]
(a)=

[
− H

(
X N

1 , X N
2 |S̃ K̃

1 , S̃ K̃
2

)
+ H

(
X N

1 , X N
2 |S̃ K̃

1 , S̃ K̃
2 , SK

1

)

+ H
(

X N
1 , X N

2 |S̃ K̃
1 , S̃ K̃

2 , SK
2

) ]

(b)=
[

−
N∑

i=1

H
(

X1i , X2i |S̃ K̃
1 , S̃ K̃

2 , Xi−1
1 , Xi−1

2

)

+
N∑

i=1

H
(

X1i , X2i |S̃ K̃
1 , S̃ K̃

2 , SK
1 , Xi−1

1 , Xi−1
2 , Ỹ i−1

1 , Ỹ i−1
2

)

+
N∑

i=1

H
(

X1i , X2i |S̃ K̃
1 , S̃ K̃

2 , SK
2 , Xi−1

1 , Xi−1
2 , Ỹ i−1

1 , Ỹ i−1
2

)]

(c)=
[

−
N∑

i=1

H
(

X1i , X2i |S̃ K̃
1 , S̃ K̃

2 , Xi−1
1 , Xi−1

2

)

+
N∑

i=1

H
(

X2i |S̃ K̃
1 , S̃ K̃

2 , SK
1 , Xi−1

1 , Xi−1
2

)

+
N∑

i=1

H
(

X1i |S̃ K̃
1 , S̃ K̃

2 , SK
2 , Xi−1

1 , Xi−1
2

) ]

(d)=
[

−
N∑

i=1

[
H

(
X1i |S̃ K̃

1 , S̃ K̃
2 , Xi−1

1 , Xi−1
2

)

− H
(

X1i |S̃ K̃
1 , S̃ K̃

2 , SK
2 , Xi−1

1 , Xi−1
2

) ]

−
N∑

i=1

[
H

(
X2i |S̃ K̃

1 , S̃ K̃
2 , Xi

1, Xi−1
2

)

− H
(

X2i |S̃ K̃
1 , S̃ K̃

2 , SK
1 , Xi−1

1 , Xi−1
2 , X1i

) ]]
≤ 0

where (a) follows from the fact that (X1, X2) is a function
of (Y1, Y2) (see Claim 1 below); (b) follows from the fact
that (Y i−1

1 , Y i−1
2 ) is a function of (Xi−1

1 , Xi−1
2 ), (X̃ i−1

1 , X̃ i−1
2 )

is a function of (S̃ K̃
1 , S̃ K̃

2 , Y i−1
1 , Y i−1

2 ), and (Ỹ i−1
1 , Ỹ i−1

2 ) is a
function of (X̃ i−1

1 , X̃ i−1
2 ); (c) and (d) follow from the fact

that Xki is a function of (SK
k , Ỹ i−1

k ), k = 1, 2. This completes
the converse proof.

Claim 1. For α �= 1 (i.e., m �= n), (X1, X2) is a function
of (Y1, Y2).

Proof: It suffices to consider the case of m < n,
as the other case follows by symmetry. From (1), we get:
Y1 ⊕ (

Y2Gn−m
) = X1

(
In ⊕ G2(n−m)

)
. Note that In ⊕G2(n−m)

is invertible when m �= n. Hence, X1 is a function of (Y1, Y2).
By symmetry, X2 is a function of (Y1, Y2).



826 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

VI. DISCUSSION

A. Role of Interaction in General Networks

Although there have been results which show interac-
tion gain in many traditional communication settings [24],
[32]–[34], an explicit comparison between non-interactive
vs. interactive scenarios in the context of computation settings
was not made yet. Note that as suggested in Remark 3,
the nature of the interaction gain comes from exploiting the
past received signals, partially decoded symbols and nodes’
own information as side information. This nature is not limited
to the ADT set-up. Hence, we believe that these insights can
carry over a variety of other configurations. With the idea of
our achievability, it would be interesting to explore the role
of interaction for a variety of channels in computation scenar-
ios such as multi-hop networks or fully-connected multicast
channels in which the two nodes in each side can cooperate
with each other.

B. Translation to the Gaussian Channel

Although the capacity of point-to-point memoryless
Gaussian two-way networks are established [4], we are still
lacking in our understanding of how to characterize capaci-
ties of multi-node Gaussian two-way networks. Nevertheless,
the deterministic-channel achievability proposed in this work
gives insights into an achievable scheme in the noisy case.
This is inspired by several observations that can be made
in our achievability. First, extracting the desired functions or
feedback signals from the whole received signals motivates us
to consider quantize-and-binning [29], [35] in the Gaussian
channel. Furthermore, interference neutralization via XORing
motivates us to consider structured coding [36] and superposi-
tion coding with dirty paper coding [37] for nulling. We also
believe that Han-Kobayashi message splitting [38] can play
a significant role in implementing retrospective decoding for
the Gaussian channel since the decoding strategy includes a
sophisticated decoding order as well as sets proper symbols
to decode for each time slot. One future work of interest
is extending our capacity results to the Gaussian channel by
employing such techniques carefully.

C. Extension to Non-orthogonal Two-Way Networks

Our model assumes orthogonal forward and backward chan-
nels. In section IV-A, we mentioned that a careful adop-
tion of superposition coding, interference neutralization, and
retrospective decoding is the key to achieve the optimal
performance.

For non-orthogonal two-way networks, one needs to further
mitigate the interference between the two opposite trans-
missions. Since the interference management in addition
to the above key techniques requires an additional non-
straightforward step to employ the techniques, we consider
the complete extension as a separate piece of work, leaving
it as a future work. However, in general, one can expect to
achieve a smaller computation capacity region compared to
the orthogonal case (i.e., Cnon ⊆ C).

VII. CONCLUSION

We investigated the role of interaction for computation
problem settings. Our main contribution lies in the complete
characterization of the two-way computation capacity region
for the four-node ADT deterministic network. As a conse-
quence of this result, we showed that interaction not only
offers a net increase in computation capacity, but also it
leads us to get all the way to perfect-feedback computation
capacities simultaneously in both directions.

APPENDIX A
ACHIEVABILITY FOR (m, n) = (1, 2), (m̃, ñ) = (2, 1),

AND ARBITRARY L

The achievability consists of two parts:
1) Stage 1: For time � = 1, . . . , 2L, the transmission signals

at nodes 1 and 2 are as follows:
node 1: (18)[

a2�−1
a2�

]
⊕

[
F̃2(�−2) ⊕ a2(�−2)

b̃2(�−2)−1 ⊕ F2(�−2)−1 ⊕ a2(�−2)−1 ⊕ ã2(�−4)

]
,

node 2: (19)[
b2�

b2�−1

]
⊕

[
F̃2(�−2)−1 ⊕ b2(�−2)−1

ã2(�−2) ⊕ F2(�−2) ⊕ b2(�−2) ⊕ b̃2(�−4)−1

]
.

Similarly, for time � = 1, . . . , 2L − 2, nodes 1̃ and 2̃ deliver:
node 1̃: (20)[

ã2�

ã2�−1

]
⊕

[
F2� ⊕ ã2(�−2)−1

a2�−1 ⊕ F̃2(�−2) ⊕ a2(�−2) ⊕ ã2(�−2) ⊕ F2(�−2)

]
,

node 2̃: (21)[
b̃2�−1

b̃2�

]

⊕
[

F2�−1 ⊕ b̃2(�−2)

b2� ⊕ F̃2(�−2)−1 ⊕ b2(�−2)−1 ⊕ b̃2(�−2)−1 ⊕ F2(�−2)−1

]
.

There are a few points to note. First, the transmitted sig-
nal of each node includes two parts: Fresh symbols, e.g.,
(a2�−1, a2�) at node 1, and feedback signals, e.g., (F̃2(�−2) ⊕
a2(�−2), b̃2(�−2)−1⊕F2(�−2)−1⊕a2(�−2)−1⊕ã2(�−4)). Moreover,
the feedback signals sent through the bottom levels ensure
modulo-2 sum function computations at the bottom levels as
these null out interference. Finally, we assume that if the index
of a symbol is non-positive, we set the symbol as null.

For the last two time slots, nodes 1̃ and 2̃ do not send
any fresh backward symbols. Instead, they mimic the perfect-
feedback scheme; at time � (� = 2L − 1, 2L), node 1̃ feeds
back F2� on the top level, while node 2̃ feeds back F2�−1 on
the top level.

One can readily check that nodes 1̃ and 2̃ can obtain
{F2�}2L

�=1 and {F2�−1}2L
�=1 respectively. Similarly, nodes 1 and

2 can correspondingly obtain {F̃2�}2(L−1)
�=1 and {F̃2�−1}2(L−1)

�=1 .
2) Stage 2: During the next L time slots at the sec-

ond stage, we accomplish the computation of the desired
functions not yet obtained by each node. The succes-
sive refinement is done in a retrospective manner, allow-
ing us to resolve the aforementioned issue. Specifically



SHIN AND SUH: TWO-WAY FUNCTION COMPUTATION 827

the decoding order reads: (F4L−3, F4L−2, F4L−1, F4L) →
(F̃4(L−1)−3, F̃4(L−1)−2, F̃4(L−1)−1, F̃4(L−1)) → · · · →
(F5, F6, F7, F8) → (F̃1, F̃2, F̃3, F̃4) → (F1, F2, F3, F4).
With the refinement at time 2L+� (� = 1, . . . , L) (i.e., the �th
time of Stage 2), each node can decode the following:

node 1̃: (F4(L−(�−1))−3, F4(L−(�−1))−1), (22)

node 2̃: (F4(L−(�−1))−2, F4(L−(�−1))), (23)

node 1: (F̃4(L−�)−3, F̃4(L−�)−1 ⊕ F̃4(L−(�+1))−3), (24)

node 2: (F̃4(L−�)−2, F̃4(L−�) ⊕ F̃4(L−(�+1))−2). (25)

Note that after one more refinement at time 2L + � + 1,
F̃4(L−(�+1))−3 and F̃4(L−(�+1))−2 from F̃4(L−�)−1 ⊕
F̃4(L−(�+1))−3 and F̃4(L−�) ⊕ F̃4(L−(�+1))−2 can be canceled
out at nodes 1 and 2, and therefore finally decode F̃4(L−�)−1
and F̃4(L−�) respectively.

We start Stage 2 by taking the perfect-feedback strategy
so that nodes 1̃ and 2̃ can decode (F4L−3, F4L−1) and
(F4L−2, F4L) respectively. At time 2L + � (� = 2, . . . , L),
a successive refinement is done to achieve reliable function
computations both at the top and bottom levels. Exploiting
newly decoded functions at time 2L + � − 1, the signals
transmitted at nodes 1 and 2 at time 2L +� (� = 2, ..., L) are:

node 1:

[
F̃4(L−(�−1))−3

F̃4(L−(�−1))−1 ⊕ F̃4(L−�)−3

]

⊕
[

b̃4(L−(�−1))−3 ⊕ F4(L−(�−1))−3 ⊕ b̃4(L−�)−2

b̃4(L−(�−1))−1 ⊕ F4(L−(�−1))−1 ⊕ b̃4(L−�)

]

⊕
[

F̃4(L−�)−2

F̃4(L−�) ⊕ F̃4(L−(�−1))−2

]
, (26)

node 2:

[
F̃4(L−(�−1))−2

F̃4(L−(�−1)) ⊕ F̃4(L−�)−2

]

⊕
[

ã4(L−(�−1))−2 ⊕ F4(L−(�−1))−2 ⊕ ã4(L−�)−3
ã4(L−(�−1)) ⊕ F4(L−(�−1)) ⊕ ã4(L−�)−1

]

⊕
[

F̃4(L−�)−3

F̃4(L−�)−1 ⊕ F̃4(L−(�−1))−3

]
. (27)

Notice that the signals in the first bracket are newly
decoded functions; the signals in the second bracket are
those received at time 2(L − (� − 1)) − 1, 2(L − (� − 1))
on the top level; and those in the third bracket are modulo-2
sum functions decoded at Stage 1 (e.g., even-index
functions for node 1). This transmission allows nodes
1̃ and 2̃ to decode (F4(L−(�−1))−3, F4(L−(�−1))−1) and
(F4(L−(�−1))−2, F4(L−(�−1))) using their own symbols and
previously decoded functions.

Similarly, for time 2L + � (� = 1, . . . , L), nodes 1̃ and 2̃
deliver (28) and (29) respectively, shown at the bottom of the
page. Note that the signals in the third bracket are modulo-2
sum functions decoded at Stage 1 and the summation of
those and the received signals on the top level. In particular,
a4(L−�)−3 ⊕ F̃4(L−(�+1))−2 ⊕ a4(L−(�+1))−2 and b4(L−�)−2 ⊕
F̃4(L−(�+1))−3 ⊕ b4(L−(�+1))−3 (in the third bracket of (28)
and (29)) are the received signals at time 2(L − �) − 1. As
a result, nodes 1 and 2 can compute (F̃4(L−�)−3, F̃4(L−�)−1 ⊕
F̃4(L−(�+1))−3) and (F̃4(L−�)−2, F̃4(L−�)⊕F̃4(L−(�+1))−2) using
their own symbols and past decoded functions. Consequently,
for � = 1, ..., L, nodes 1̃ and 2̃ can compute the previously
missing functions {F2�−1}2L

�=1 and {F2�}2L
�=1, while nodes 1

and 2 can compute {F̃2�−1}2(L−1)
�=1 and {F̃2�}2(L−1)

�=1 respectively.
Through the entire stages, our scheme can therefore achieve
(R, R̃) = ( 4L

3L , 4L−4
3L ) = ( 4

3 , 4L−4
3L ) is achievable. Note that

as L → ∞, we get the desired computation rate pair:
(R, R̃) → ( 4

3 , 4
3 ) = (Cpf, C̃pf).

APPENDIX B
ACHIEVABILITY FOR (m, n) = (1, 2), (m̃, ñ) = (1, 0),

AND ARBITRARY (L, M)

The achievability consists of four parts:
1) Time (3L+1)(i−1)+2� at Stage 2i−1: For time

� = 1, . . . , L, the transmission strategy at nodes 1 and 2 is
to send fresh forward symbols along with the past received
signals. Note that the signals in the first bracket below refer
to fresh forward symbols; and the signals in the remaining

node 1̃:

[
F4(L−(�−1))−3
F4(L−(�−1))−1

]
⊕

[
a4(L−(�−1))−3 ⊕ F̃4(L−�)−2 ⊕ a4(L−�)−2

a4(L−(�−1))−1 ⊕ F̃4(L−�) ⊕ a4(L−�)

]
(28)

⊕
[

F4(L−�)−2

F4(L−�) ⊕ F4(L−(�−1))−2 ⊕ a4(L−�)−3 ⊕ F̃4(L−(�+1))−2 ⊕ a4(L−(�+1))−2 ⊕ F4(L−(�+1))−2

]
,

node 2̃:

[
F4(L−(�−1))−2
F4(L−(�−1))

]
⊕

[
b4(L−(�−1))−2 ⊕ F̃4(L−�)−3 ⊕ b4(L−�)−3

b4(L−(�−1)) ⊕ F̃4(L−�)−1 ⊕ b4(L−�)−1

]
(29)

⊕
[

F4(L−�)−3

F4(L−�)−1 ⊕ F4(L−(�−1))−3 ⊕ b4(L−�)−2 ⊕ F̃4(L−(�+1))−3 ⊕ b4(L−(�+1))−3 ⊕ F4(L−(�+1))−3

]
.

node 1:

[
a4((i−1)L+�)−1
a4((i−1)L+�)

]
⊕

[
b4(((i−1)L+�)−1)−3 ⊕ b4(((i−1)L+�)−1) ⊕ a4(((i−1)L+�)−2)−2
a4(((i−1)L+�)−1)−2 ⊕ a4(((i−1)L+�)−2) ⊕ a4(((i−1)L+�)−3)−2

]

⊕
[

b̃2(((i−1)L+�)−1) ⊕ ã2(((i−1)L+�)−2)−1
0

]
, (30)

node 2:

[
b4((i−1)L+�)

b4((i−1)L+�)−1

]
⊕

[
a4(((i−1)L+�)−1)−2 ⊕ a4(((i−1)L+�)−1)−1 ⊕ b4(((i−1)L+�)−2)−3
b4(((i−1)L+�)−1)−3 ⊕ b4(((i−1)L+�)−2)−1 ⊕ b4(((i−1)L+�)−3)−3

]

⊕
[

ã2(((i−1)L+�)−1)−1 ⊕ b̃2(((i−1)L+�)−2)

0

]
. (31)



828 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

node 1̃:
[
ã2((i−1)L+�)−1

] ⊕ [
F4((i−1)L+�)−2

] ⊕ [
a4((i−1)L+�)−1 ⊕ b4(((i−1)L+�)−1)−3 ⊕ b4(((i−1)L+�)−1)

]
⊕ [

b4(((i−1)L+�)−2)−2 ⊕ b̃2(((i−1)L+�)−1)

]
, (32)

node 2̃:
[
b̃2((i−1)L+�)

] ⊕ [
F4((i−1)L+�)−3

] ⊕ [
b4((i−1)L+�) ⊕ a4(((i−1)L+�)−1)−2 ⊕ a4(((i−1)L+�)−1)−1

]
⊕ [

a4(((i−1)L+�)−2)−3 ⊕ ã2(((i−1)L+�)−1)−1
]
. (33)

node 1:

[
a4((i−1)L+�)−3
a4((i−1)L+�)−2

]
⊕

[
a4(((i−1)−(2L−�+1−2))L−(L−�)) ⊕ a4(((i−1)−(2L−�+1−2))L−(L−�+1))−2

a4(((i−1)−(2L−�+1−2))L−(L−�+1)) ⊕ a4(((i−1)−(2L−�+1−2))L−(L−�+2))−2

]

⊕
[

F̃2(((i−1)−(2L−�+1−2))L−(L−�+1))−1
0

]
, (34)

node 2:

[
b4((i−1)L+�)−2
b4((i−1)L+�)−3

]
⊕

[
b4(((i−1)−(2L−�+1−2))L−(L−�))−1 ⊕ b4(((i−1)−(2L−�+1−2))L−(L−�+1))−3

b4(((i−1)−(2L−�+1−2))L−(L−�+1))−1 ⊕ b4(((i−1)−(2L−�+1−2))L−(L−�+2))−3

]

⊕
[

F̃2(((i−1)−(2L−�+1−2))L−(L−�+1))

0

]
. (35)

brackets refer to those received previously from (33) and
(32) in the current layer. We note that the idea of interfer-
ence neutralization is also employed by adapting each node’s
transmitted signal to own symbols. This ensures modulo-2
sum function computations on the bottom level of nodes 1̃
and 2̃ for each time. Here we assume that if the index of a
symbol is non-positive, we set the symbol as null. Specifically
nodes 1 and 2 send (30) and (31) respectively, shown at the
bottom of the previous page. With fresh backward symbols,
past computed functions, and the received signals from the
above, nodes 1̃ and 2̃ deliver (32) and (33) respectively, shown
at the top of this page.

2) Time (3L+1)(i−1)+2�−1 at Stage 2i−1: For time
� = 1, . . . , L, the transmission strategy at nodes 1 and 2
is as follows. The idea is similar to that in part 1), but
here the formulae in the second bracket below refer to
the signals received from (57) and (56) at part 4) of
Layer i − 1. Again, modulo-2 sum function computations
on the bottom level of nodes 1̃ and 2̃ are possible for each
time. Specifically, nodes 1 and 2 transmit (34) and (35)
respectively, shown at the top of this page. In addition,
using the newly decoded F4(((i−1)−(2�−2))L−(�−1))−3 (60) and
F4(((i−1)−(2�−2))L−(�−1))−2 (61) at part 4) of Layer i − 1
and some of the previously received signals, nodes 1̃ and 2̃
transmit:

node 1̃: (36)[
b4(((i−1)−(2�−2))L−(�−1))−3

]
⊕ [

b4((i−(2�+1−2))L−(�−1)) ⊕ b4((i−(2�+1−2))L−�)−2
]

⊕ [
F̃2((i−(2�+1−2))L−�)−1

]
,

node 2̃: (37)[
a4(((i−1)−(2�−2))L−(�−1))−2

]
⊕ [

a4((i−(2�+1−2))L−(�−1))−1 ⊕ a4((i−(2�+1−2))L−�)−3
]

⊕ [
F̃2((i−(2�+1−2))L−�)

]
.

Here, one can see that unless the indices of signals (36)
and (37) are positive, the newly decoded functions enable
nodes 1 and 2 to obtain additional F̃2((i−(2�+1−2))L−�)

and F̃2((i−(2�+1−2))L−�)−1 using their own symbols.

Throughout part 1) and 2), the available function computations
are as follows:

node 1:{F̃2((i−(2�+1−2))L−�)}L
�=1, (38)

node 2:{F̃2((i−(2�+1−2))L−�)−1}L
�=1, (39)

node 1̃:{(F4((i−1)L+�)−2, F4((i−1)L+�))}L
�=1, (40)

node 2̃:{(F4((i−1)L+�)−3, F4((i−1)L+�)−1)}L
�=1. (41)

3-1) Time (3L+1)(i−1)+2L+1 at Stage 2i: With the
received signals at time (3L +1)(i −1)+2L, the transmission
scheme is as follows.

node 1: (42)[
F4i L ⊕ b4i L−3 ⊕ a4(i L−1)−2 ⊕

[
b̃2i L ⊕ ã2(i L−1)−1

]
a4i L−1 ⊕ a4i L−2 ⊕ a4(i L−1) ⊕ a4(i L−2)−2

]
,

node 2: (43)[
F4i L−1 ⊕ a4i L−2 ⊕ b4(i L−1)−3 ⊕

[
ã2i L−1 ⊕ b̃2(i L−1)

]
b4i L ⊕ b4i L−3 ⊕ b4(i L−1)−1 ⊕ b4(i L−2)−3

]
,

node 1̃:
[
b4i L−3 ⊕ b4(i L−1)−2 ⊕ F̃2i L

]
, (44)

node 2̃:
[
a4i L−2 ⊕ b4(i L−1)−3 ⊕ F̃2i L−1

]
. (45)

Together with the past received signals at time (3L + 1)
(i − 1) + 2L, nodes 1̃ and 2̃ can obtain F4i L−1 and F4i L

from the above strategy.
3-2) Time (3L+1)(i−1)+2L+2 at Stage 2i: With the

received signals at time (3L + 1)(i − 1) + 2L + 1, the trans-
mission scheme is as follows.

node 1:

[
F̃2i L−1

a4i L−3 ⊕ a4(i L−1)−2

]
, (46)

node 2:

[
F̃2i L

b4i L−2 ⊕ b4(i L−1)−3

]
, (47)

node 1̃:
[
F̃2i L−1

]
, (48)

node 2̃:
[
F̃2i L

]
. (49)

Exploiting the signals on the top level at time (3L + 1)
(i −1)+2L +1, nodes 1̃ and 2̃ can obtain F4i L−3 and F4i L−2.
In turn, the available function computations from parts 3-1)



SHIN AND SUH: TWO-WAY FUNCTION COMPUTATION 829

and 3-2) are as follows:
node 1:(F̃2i L−1, F̃2i L ), (50)

node 2:(F̃2i L−1, F̃2i L ), (51)

node 1̃:(F4i L−3, F4i L−1), (52)

node 2̃:(F4i L−2, F4i L ). (53)

4) Time (3L+1)(i−1)+2L+� at Stage 2i: For time
� = 3, . . . , L + 1, the transmission strategy at nodes 1 and
2 is described as below. The idea is to exploit newly decoded
F̃2((i−(2�−1−2))L−(�−2)) (38) and F̃2((i−(2�−1−2))L−(�−2))−1 (39)

from part 2) of the current layer. In turn, nodes 1̃ and 2̃ can
obtain two additional functions of interest for each time.

node 1: (54)[
F4((i−(2�−1−2))L−(�−2))−3 ⊕ F4((i−(2�−1−2))L−(�−2))

0

]

⊕
[

ã2((i−(2�−1−2))L−(�−2)) ⊕ ã2((i−(2�−1−2))L−(�−1))−1
F̃2((i−(2�−1−2))L−(�−2))−1

]
,

node 2: (55)[
F4((i−(2�−1−2))L−(�−2))−2 ⊕ F4((i−(2�−1−2))L−(�−2))−1

0

]

⊕
[

b̃2((i−(2�−1−2))L−(�−2))−1 ⊕ b̃2((i−(2�−1−2))L−(�−1))

F̃2((i−(2�−1−2))L−(�−2))

]
.

With the newly decoded F4((i−(2�−2−2))L−(�−3))−1 and
F4((i−(2�−2−2))L−(�−3)), nodes 1̃ and 2̃ deliver:

node 1̃: (56)[
b4((i−(2�−2−2))L−(�−3))−1

]
⊕ [

b4((i−(2�−2−2))L−(�−2))−3 ⊕ b4((i−(2�−2−2))L−(�−2))

]
⊕ [

b4((i−(2�−2−2))L−(�−1))−2 ⊕ F̃2((i−(2�−2−2))L−(�−2))

]
,

node 2̃: (57)[
a4((i−(2�−2−2))L−(�−3))

]
⊕ [

a4((i−(2�−2−2))L−(�−2))−2 ⊕ a4((i−(2�−2−2))L−(�−2))−1
]

⊕ [
a4((i−(2�−2−2))L−(�−1))−3 ⊕ F̃2((i−(2�−2−2))L−(�−2))−1

]
.

One can readily see that for each time, nodes 1 and 2
can obtain an additional interested function using their own
symbols. Consequently, the available function computations
in part 4) are as follows:

node 1:{F̃2((i−(2�−2−2))L−(�−2))−1}L+1
�=3 , (58)

node 2:{F̃2((i−(2�−2−2))L−(�−2))}L+1
�=3 , (59)

node 1̃: (60)

{(F4((i−(2�−1−2))L−(�−2))−3, F4((i−(2�−1−2))L−(�−2))−1)}L+1
�=3 ,

node 2̃: (61)

{(F4((i−(2�−1−2))L−(�−2))−2, F4((i−(2�−1−2))L−(�−2)))}L+1
�=3 .

Recall Remark 4 that unoccupied time slots (where each
node keeps silent as the indices of signals from (54) to (57)
above are less than or equal to zero) at the second stage of
a layer cause inefficiency in the performance. However, one
can see at certain moments, the second stage of a layer will
eventually be fully packed. From (60) and (61), we can verify

this by putting � = L+1 into the indices of (60) and (61), e.g.,
4((i −(2�−1−2))L −(�−2))−3, and check what condition of
i provides the indices greater than zero. As long as i ≥ 2L −1,
each layer’s second stage remains to be fully packed.

Essentially, we can calculate the total number of vacant time
slots. First, we examine the condition for which the number
of unoccupied time slots is less than or equal to 1. Similar to
the above, putting � = L into the indices of (60) and (61)
allows us to see that as long as i ≥ 2L−1 − 1, the number of
unoccupied time slots is less than or equal to 1. Hence the
number of layers in which the vacant time slot of the layer is 1,
is: (2L − 1)− (2L−1 − 1) = 2L−1. Applying a similar method,
one can check that there are 2L−� layers whose unoccupied
time slots are � (� = 2, . . . , L − 1). Note that the maximum
number of unoccupied time slots at the second stage of each
layer is L − 1, as the first two time slots of the second stage
are allocated for computing functions; see parts 3-1) and 3-2).
Now using the formula of

∑L−1
�=1 (L − �)2� = 2L+1 − 2L − 2,

we see that the total number of unoccupied time slots
is 2L+1 − 2L − 2. At the end of Layer M , we observe
that our scheme ensures 4L(M − (2L+1 − 2L − 2))
forward and 2L(M − (2L+1 − 2L − 2)) backward message
computations during (3L + 1)M time slots, and thus can
achieve (R, R̃) =

(
4L(M−(2L+1−2L−2))

(3L+1)M , 2L(M−(2L+1−2L−2))
(3L+1)M

)
.

By setting M = (2 + ε)L where ε > 0, and letting
L → ∞, the computation rate pair becomes
(R, R̃) = ( 4

3 , 2
3

) = (Cpf, C̃pf). This completes the proof.

APPENDIX C
PROOF OF GENERALIZATION TO

ARBITRARY (m, n), (m̃, ñ)

We now prove the achievability for arbitrary (m, n) and
(m̃, ñ). The idea is to use the network decomposition in [30]
(also illustrated in Fig. 9). This idea provides a conceptu-
ally simpler proof by decomposing a general (m, n), (m̃, ñ)
channel into multiple elementary subchannels and taking a
proper matching across forward and backward subchannels.
See Theorem 2 (stated below) for the identified elementary
subchannels. As this approach is well established in our earlier
work, while requiring tedious calculations, we will provide the
proofs for some representative cases.

Theorem 2 (Network Decomposition). For an arbitrary
(m, n) channel, the following network decomposition holds:

(m, n) −→ (0, 1)n−2m × (1, 2)m, α ∈ [0, 1/2]; (62)

(m, n) −→ (1, 2)2n−3m × (2, 3)2m−n, α ∈ [1/2, 2/3]; (63)

(m, n) −→ (2, 1)2m−3n × (3, 2)2n−m , α ∈ [3/2, 2]; (64)

(m, n) −→ (1, 0)m−2n × (2, 1)n, α ≥ 2. (65)

Here we use the symbol × for the concatenation of orthogonal
channels, with (i, j)� denoting the �-fold concatenation of the
(i, j) channel.

A. Proof of (R1) α ≤ 2
3 , α̃ ≤ 2

3

The claimed achievable computation rate region is{
R ≤ 2

3 n.R̃ ≤ 2
3 ñ, R + R̃ ≤ m + m̃

}
. The below achievability



830 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

Fig. 10. Three types of shapes of an achievable computation rate region for the regime (R1) α ≤ 2
3 , α̃ ≤ 2

3 .

w.r.t. the elementary subchannels identified in Theorem 2
forms the basis of the proof.

Lemma 3. The following computation rates are achievable:
(i) For the pair of (m, n) = (1, 2)i and (m̃, ñ) = (1, 2) j :
(R, R̃) = ( 4

3 i, j − 1
3 i). Here 1

3 i ≤ j .
(ii) For the pair of (m, n) = (1, 2)i and (m̃, ñ) = (2, 3) j :
(R, R̃) = ( 4

3 i, 2 j − 1
3 i). Here 1

3 i ≤ 2 j .

Proof: The proof builds upon a simple combination of
the non-feedback scheme [30] and the interactive scheme in
our earlier work [2]. While it requires detailed calculations,
it contains no new ingredients, hence, we do not provide a
detailed proof here.
We see that there is no interaction gain in sum computation
capacity. This means that one bit of a computation capacity
increase due to feedback costs exactly one bit. Depending on
whether or not Cpf (or C̃pf) exceeds Cno + C̃no, we have four
subcases, each of which forms a different shape of the region.
See Fig. 10.

(I) Cpf − Cno ≤ C̃no, C̃pf − C̃no ≤ Cno: The first
case is one in which the amount of feedback for maximal
improvement, reflected in Cpf −Cno (or C̃pf − C̃no), is smaller
than the available resources offered by the backward channel
(or forward channel respectively). In other words, in this
case, we have a sufficient amount of resources such that
one can achieve the perfect-feedback bound in one direc-
tion. By symmetry, it suffices to focus on one corner point
that favors the computation rate of forward transmission:
(R, R̃) = (Cpf, C̃no − (Cpf − Cno)).

For efficient use of (62) and (63) in Theorem 2 and
Lemma 3, we divide the regime (R1) α ≤ 2

3 , α̃ ≤ 2
3 into the

following four sub-regimes: (R1-1) α ∈ [ 1
2 , 2

3 ], α̃ ∈ [ 1
2 , 2

3 ];
(R1-2) α ∈ [ 1

2 , 2
3 ], α̃ ∈ [0, 1

2 ]; (R1-3) α ∈ [0, 1
2 ], α̃ ∈ [ 1

2 , 2
3 ];

and (R1-4) α ∈ [0, 1
2 ], α̃ ∈ [0, 1

2 ].
(R1-1) α ∈ [ 1

2 , 2
3 ], α̃ ∈ [ 1

2 , 2
3 ]: In this sub-regime, we note

that either 1
3 (2n − 3m) = Cpf − Cno ≤ 2ñ − 3m̃ or

Cpf − Cno ≤ 2(2m̃ − ñ); otherwise, we encounter the con-
tradiction of Cpf − Cno ≤ C̃no (= m̃).

Consider the case where 1
3 (2n − 3m) ≤ 2ñ − 3m̃. In such

a case, we apply Lemma 3 (i) for the pair of (1, 2)2n−3m and
(1, 2)2ñ−3m̃ . Note that the condition of (i) holds. Applying the
non-feedback schemes for the remaining subchannels gives:

R =4

3
× (2n − 3m) + 2 × (2m − n) = Cpf,

R̃ =
(

1 × (2ñ − 3m̃) − 1

3
(2n − 3m)

)
+ 2 × (2m̃ − ñ) = C̃no − (Cpf − Cno).

Now consider the case where Cpf − Cno = 1
3 (2n − 3m) ≤

2(2m̃ − ñ). In this case, we apply Lemma 3 (ii) for the
pair of (1, 2)2n−3m and (2, 3)2m̃−ñ . Note that the condition
of (ii) holds. One can see that applying the non-feedback
schemes for the remaining subchannels gives (R, R̃) = (Cpf,

C̃no − (Cpf − Cno)).
For the proofs of the remaining regimes (R1-2), (R1-3) and

(R1-4), we omit details as the proofs follow similarly. As seen
from all the cases above, one key observation is that the
computation capacity increase due to feedback Cpf −Cno plus
the backward computation rate is always C̃no, meaning that
there is one-to-one tradeoff between feedback and independent
message computation.

(II) Cpf − Cno > C̃no, C̃pf − C̃no ≤ Cno: Similar to
the first case, one can readily prove that the same one-to-
one tradeoff relationship exists when achieving one corner
point (R, R̃) = (Cno − (C̃pf − C̃no), C̃pf). Hence, we omit
the detailed proof. On the other hand, we note that there is
a limitation in achieving the other counterpart. Note that the
maximal feedback gain Cpf − Cno for forward computation
does exceed the resource limit C̃no offered by the backward
channel. This limits the maximal achievable computation rate
for forward computation to be saturated by R ≤ Cno + C̃no.
Hence the other corner point reads (Cno + C̃no, 0) instead.
We will show this is indeed the case as below. Similar to the
previous case, we provide the proof only for (R1-1). We omit
the proofs for the regimes (R1-2), (R1-3) and (R1-4). Also,
by symmetry, we omit the case of (II’).



SHIN AND SUH: TWO-WAY FUNCTION COMPUTATION 831

Fig. 11. Three types of shapes of an achievable computation rate region for the regime (R2) (α ∈ [ 2
3 , 1), α ∈ (1, 3

2 ]), α̃ ≥ 3
2 .

Fig. 12. Illustration of achievability for the regime (R2-1) via an example of (m, n) = (2, 3), (m̃, ñ) = (2, 1). This is an instance in which we have a
sufficient amount of resources that enables achieving the perfect-feedback bound in the backward channel: C̃pf − C̃no = 1

3 ≤ 1 = n − Cno. Hence we achieve
(R, R̃) = (Cno, C̃pf) = (2, 4

3 ).

(R1-1) α ∈ [ 1
2 , 2

3 ], α̃ ∈ [ 1
2 , 2

3 ]: We apply Lemma 3 (i) for
the pair of (1, 2)3(2ñ−3m̃) and (1, 2)2ñ−3m̃ . Also, we apply
Lemma 3 (ii) for the pair of (1, 2)6(2m̃−ñ) and (2, 3)2m̃−ñ .
Applying the non-feedback schemes for the remain-
ing subchannels (1, 2)(2n−3m)−3m̃ and (2, 3)2m−n gives:
(Cno + C̃no, 0).

(III) Cpf − Cno > C̃no, C̃pf − C̃no > Cno: This is the case
in which there are limitations now in achieving both R = Cpf
and R̃ = C̃pf. With the same argument as above, what we
can maximally achieve for R (or R̃) in exchange of the other
channel is Cno + C̃no which implies that (R, R̃) = (Cno +
C̃no, 0) or (0, Cno + C̃no) is achievable. The proof follows
exactly the same as above, so we omit details.

B. Proof of (R2) (α ∈ [ 2
3 , 1), α ∈ (1, 3

2 ]), α̃ ≥ 3
2 .

For the regime of (R2), we note that Cpf = Cno

and Cno + C̃pf = 2
3 max(m, n) + 2

3 m̃ ≤ m + m̃,
so the claimed achievable computation rate region is:{

R ≤ 2
3 n, R̃ ≤ 2

3 m̃, R + R̃ ≤ n + ñ
}

. Unlike the previous
regime, there is an interaction gain for this regime. Note that

the sum computation rate bound exceeds Cno + C̃no; however,
there is no feedback gain in the forward channel. The network
decompositions (64) and (65) together with 3(C̃pf − C̃no) =
2m̃ − 3ñ give:

(m̃, ñ) −→
{

(2, 1)3(C̃pf−C̃no) × (3, 2)2ñ−m̃ , α̃ ∈ [3/2, 2];
(1, 0)m̃−2ñ × (2, 1)ñ, α̃ ≥ 2.

We find that the shape of the region depends on where
C̃pf − C̃no lies in between n − Cno and n. See Fig. 11.

(I) C̃pf − C̃no ≤ n − Cno: The first case is one in
which the amount of feedback for maximal improvement,
reflected in C̃pf − C̃no, is small enough to achieve the max-
imal feedback gain without sacrificing the performance of
the forward computation. Now let us show how to achieve
(R, R̃) = (Cno, C̃pf). To do this, we divide the backward
channel regime into the two sub-regimes: (R2-1) α̃ ∈ [ 3

2 , 2];
and (R2-2) α̃ ≥ 2. Here we provide details for (R2-1).

(R2-1) α̃ ∈ [ 3
2 , 2]: For the first sub-regime, the idea is to

pair up (m, n) and (2, 1)3(C̃pf−C̃no), while applying the non-
feedback schemes for the remaining backward subchannels
(3, 2)2ñ−m̃ . To give an achievability idea for the first pair,



832 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

we exploit a simple scheme described in Fig. 12 where
(m, n) = (2, 3) and (m̃, ñ) = (2, 1). As the idea of the scheme
is the same as that of our aforementioned toy examples,
we omit the detailed explanation. Eventually, one can see
that nodes 1̃ and 2̃ obtain F� (� = 1, . . . , 6) during three
time slots, thus achieving R = 2 (= Cno). Furthermore,
nodes 1 and 2 obtain F̃� (� = 1, . . . , 4), thus achieving
R̃ = 4

3 (= C̃pf). Here one can make two observations. First,
at time 3, Cno = m (= 2, which is the second and third) levels
are utilized to perform forward-message computation in each
time. Through the remaining first direct-link level, feedback
transmissions are performed. Observe that feedback signals are
interfered by fresh forward symbols through the m levels, but
it turns out that the interference does not cause any problem
in computing functions. In general, one can maximally utilize
available resource levels: The total number of direct-link levels
for forward channel is n, accordingly, n − Cno levels can be
exploited for feedback. In the general case of (2, 1)3(C̃pf−C̃no),
the maximal feedback gain is (C̃(2,1)

pf − C̃(2,1)
no ) × 3(C̃pf −

C̃no) = C̃pf − C̃no, which does not exceed the limit on the
exploitable levels n − Cno under the considered regime. Here
C̃(2,1)

no denotes the non-feedback computation capacity of (2, 1)
model. Hence, we achieve:

R̃(1) = C̃(2,1)
pf × 3(C̃pf − C̃no) = 4(C̃pf − C̃no). (66)

Now the second observation is that the feedback transmis-
sion does not cause any interference to nodes 1̃ and 2̃. This
ensures that R(1) = Cno. On the other hand, for the remaining
subchannels (3, 2)2ñ−m̃ , we apply the non-feedback schemes
to achieve:

R̃(2) = C̃(3,2)
no × (2ñ − m̃) = 2(2ñ − m̃). (67)

Combining all of the above, we get: (R, R̃) = (Cno, C̃pf).
(II) C̃pf − C̃no > n: In this case, we do not have a sufficient

amount of resources for achieving R̃ = C̃pf. The maximally
achievable backward computation rate is saturated by C̃no + n
and this occurs when R = 0. On the other hand, under
the constraint of R = Cno, what one can achieve for R̃ is
C̃no + n − Cno.

(III) n−Cno < C̃pf−C̃no ≤ n: This is the case in which we
have a sufficient amount of resources for achieving R̃ = C̃pf,
but not enough to achieve R = Cno at the same time. Hence
aiming at R̃ = C̃pf, R is saturated by n − (C̃pf − C̃no).

C. Proof of (R3) α ≤ 2
3 , (α̃ ∈ [ 2

3 , 1), α̃ ∈ (1, 3
2 ])

This computation rate region is almost the same as that
of (R2). The only difference is that the sum computation rate
bound now reads Cno+m̃ instead of C̃no+n. Hence, the shape
of the region depends now on where Cpf −Cno lies in between
m̃ − C̃no and m̃. As one can make similar arguments as those
in the regime (R2), we omit the proof.

D. Proof of (R4) α ≤ 2
3 , α̃ ≥ 3

2

Recall in Remark 1 that Cpf − Cno indicates the amount
of feedback that needs to be sent for achieving Cpf and we
interpret m̃ − C̃pf as the remaining resource levels that can

potentially be utilized to aid forward computation. Whether or
not Cpf −Cno ≤ m̃ − C̃pf (i.e., we have enough resource levels
to achieve R = Cpf), the shape of the above claimed region is
changed. Note that the third inequality in the computation rate
region becomes inactive when Cpf −Cno ≤ m̃−C̃pf. Similarly,
the last inequality is inactive when C̃pf − C̃no ≤ n − Cpf.
Depending on these two conditions, we consider the following
four subcases: (I) Cpf −Cno ≤ m̃ − C̃pf, C̃pf − C̃no ≤ n −Cpf;
(II) Cpf − Cno > m̃ − C̃pf, C̃pf − C̃no ≤ n − Cpf; (III) Cpf −
Cno ≤ m̃ − C̃pf, C̃pf − C̃no > n − Cpf; and (IV) Cpf − Cno >

m̃ − C̃pf, C̃pf − C̃no > n − Cpf.
The following achievability w.r.t. the elementary subchan-

nels identified in Theorem 2 forms the basis.

Lemma 4. The following computation rates are achievable:
(i) For the pair of (m, n) = (1, 2)i and (m̃, ñ) = (2, 1) j :
(R, R̃) = ( 4

3 i, 4
3 j) = (Cpf · i, C̃pf · j). Here 2i ≥ j and 2 j ≥ i .

(ii) For the pair of (m, n) = (2, 3)i and (m̃, ñ) = (2, 1) j :
(R, R̃) = (2i, 4

3 j) = (Cpf · i, C̃pf · j). Here 3i ≥ j .

Proof: See Appendix D.
(I) Cpf − Cno ≤ m̃ − C̃pf, C̃pf − C̃no ≤ n − Cpf:

The first case is one in which there are enough resources
available for enhancing the computation capacity up to perfect-
feedback computation capacities in both directions. Hence we
claim that the following computation rate region is achievable:
(R, R̃) = (Cpf, C̃pf). For efficient use of Theorem 2 and
Lemma 4, we divide the regime (R4) into the following
four sub-regimes: (R4-1) α ∈ [ 1

2 , 2
3 ], α̃ ∈ [ 3

2 , 2]; (R4-2)
α ∈ [ 1

2 , 2
3 ], α̃ ≥ 2; (R4-3) α ∈ [0, 1

2 ], α̃ ∈ [ 3
2 , 2]; and (R4-4)

α ∈ [0, 1
2 ], α̃ ≥ 2. Here we provide details for (R4-1) and for

the remaining sub-regimes, one can make a similar argument
to show (R, R̃) = (Cpf, C̃pf).

(R4-1) α ∈ [ 1
2 , 2

3 ], α̃ ∈ [ 3
2 , 2]: Here we use the fact that

Cpf − Cno ≤ m̃ − C̃pf is equivalent to 2n − 3m ≤ m̃ and
that C̃pf − C̃no ≤ n − Cpf is equivalent to 2m̃ − 3ñ ≤ n.
Without loss of generality, let us assume 2n − 3m ≤ 2m̃ − 3ñ.
We now apply Lemma 4 (i) for the pair of (1, 2)2n−3m and
(2, 1)min{2m̃−3ñ,2(2n−3m)}. Also we apply Lemma 4 (ii) for
the pair of (2, 3)2m−n and (2, 1)2m̃−3ñ−min{2m̃−3ñ,2(2n−3m)}.
Note that a tedious calculation guarantees the condition of
(v): 3(2m − n) ≥ 2m̃ − 3ñ − min{2m̃ − 3ñ, 2(2n − 3m)}.
Lastly we apply the non-feedback schemes for the remaining
subchannels (3, 2)2ñ−m̃ . A straightforward calculation yields:
(R, R̃) = (Cpf, C̃pf).

(II) Cpf − Cno > m̃ − C̃pf, C̃pf − C̃no ≤ n − Cpf: In
this case, there are two corner points to achieve. The first
corner point is (R, R̃) = (Cno + m̃ − C̃pf, C̃pf). The second
corner point depends on where Cpf − Cno lies in between
m̃ − C̃no, m̃ and beyond. See Fig. 13. For the cases of (II-1)
and (II-2), the corner point reads (R, R̃) = (R, R̃) =
(Cpf, m̃ − (Cpf − Cno)), while for the case of (II-3), (R, R̃) =
(Cno + m̃, 0). Let us first focus on the first corner point where
(R, R̃) = (Cno + m̃ − C̃pf, C̃pf). Similar to (I), we provide
details only for (R4-1).

(R4-1) α ∈ [ 1
2 , 2

3 ], α̃ ∈ [ 3
2 , 2]: Note that it suffices to con-

sider the case where 2(2m̃ − 3ñ) ≤ 2n − 3m since the other
case implies that 2(2m̃ − 3ñ) > 2n − 3m = 3(Cpf − Cno) >



SHIN AND SUH: TWO-WAY FUNCTION COMPUTATION 833

Fig. 13. Three types of shapes of an achievable computation rate region for the regime (R4) α ≤ 2
3 , α̃ ≥ 3

2 and the case (II) Cpf − Cno > m̃ − C̃pf,

C̃pf − C̃no ≤ n − Cpf .

3(m̃ − C̃pf) = m̃. This condition holds when α̃ > 2, and
therefore contradicts the condition α̃ ∈ [ 3

2 , 2].
We now apply Lemma 4 (i) for the pair of (1, 2)2(2m̃−3ñ)

and (2, 1)2m̃−3ñ . Also, we apply Lemma 4 (ii) for the
pair of (1, 2)m̃−2(2m̃−3ñ) and (3, 2)2ñ−m̃ . Lastly we apply
the non-feedback schemes for the remaining subchannels
(1, 2)2n−3m−m̃ and (2, 3)2m−n . Then we get:

R =4

3
× 2 (2m̃ − 3ñ) + 4

3
× (m̃ − 2 (2m̃ − 3ñ))

+ 1 × (2n − 3m − m̃) + 2 × (2m − n)

=m + 1

3
m̃ = Cno + m̃ − C̃pf,

R̃ =4

3
× (2m̃ − 3ñ) + 2 × (2ñ − m̃) = 2

3
m̃ = C̃pf.

We are now ready to prove the second corner point which
favors R̃. Depending on the quantity of Cpf − Cno, we have
three subcases.

(II-1) m̃ − C̃pf < Cpf − Cno ≤ m̃ − C̃no: For the regime
of (R4-1), we showed that the following computation rate
pair is achievable: (Cno + m̃ − C̃pf, C̃pf). Now the idea is
to tune the scheme which yields the above computation rate
to prove the achievability of the second corner point. We use
part of the backward channel for aiding forward computation
instead of its own backward traffic. Specifically we utilize
2n − 3m − m̃ number of top levels in the backward channel
once in three time slots in an effort to relay forward-message
signal feedback. This naive change incurs one-to-one tradeoff,
thus yielding:

R =Cno + m̃ − C̃pf + 1

3
(2n − 3m − m̃) = Cpf,

R̃ =C̃pf − 1

3
(2n − 3m − m̃) = m̃ − (Cpf − Cno).

(II-2) m̃ − C̃no < Cpf − Cno ≤ m̃: Applying the same
strategy as in (II-1), we get (Cpf, m̃ − (Cpf − Cno)).

(II-3) Cpf−Cno > m̃: If we sacrifice all of the m̃ direct links
in the backward channel only for the purpose of assisting the
forward computation, we can see that (R, R̃) = (Cno + m̃, 0)
is achievable.

(III) Cpf − Cno ≤ m̃ − C̃pf, C̃pf − C̃no > n − Cpf: Similar
to the previous case, this case requires the proof of two corner
points. The first corner point is (R, R̃) = (Cpf, C̃no +n−Cpf).
The second corner point is depends on where C̃pf − C̃no lies
in between n − Cno, n and beyond. We omit details.

(IV) Cpf − Cno > m̃ − C̃pf, C̃pf − C̃no > n − Cpf:
For the following case, it suffices to consider only (R4-4)
α ∈ [0, 1

2 ], α̃ ≥ 2 given that 2n − 3m = 3(Cpf − Cno) >

3(m̃ − C̃pf) = m̃ ≥ m̃ − 3
2 ñ

(a)
> 1

2 n, where (a) follows because
we consider 2m̃ − 3ñ > n (or equivalently, C̃pf − C̃no >
n − Cpf). With the first and the last formulae, this clearly
implies that α < 1

2 . Similarly, 2m̃ − 3ñ = 3(C̃pf − C̃no) >

3(n − Cpf) = n ≥ n − 3
2 m

(b)
> 1

2 m̃, where (b) follows as we
consider 2n − 3m > m̃. This implies that α̃ > 2. For the
regime of (R4-4), one can make arguments similar to those
in (II) and (III). Specifically, the first corner point (as well as
the second corner point) depends on where Cpf − Cno (and
C̃pf − C̃no) lies in between m̃ − C̃no (and n − Cno); m̃ (and n
respectively) and beyond. As each condition takes three types,
there can be nine cases in total. However, of the nine cases,
the case in which Cpf − Cno > m̃, C̃pf − C̃no > n implies
that (2n − 3m) + (2m̃ − 3ñ) > 3m̃ + 3n. This is equivalent to
0 > −n − 3m > m̃ + 3ñ > 0, which results in a contradiction.
Therefore, we can conclude that there are eight cases in total.
Of the eight cases, it is found that this case takes two types
of corner point: Either (R, R̃) = (Cno + m̃ − C̃pf, C̃pf) or
(R, R̃) = (Cpf, C̃no + n − Cpf). If the first corner point is
(Cno + m̃ − C̃pf, C̃pf), the second corner point corresponds
to that in (II); otherwise the corner point corresponds to that
in (III). As we already described the idea of showing first
and second corner point explicitly, we omit details.

APPENDIX D
PROOF OF LEMMA 4

We now provide the proof of Lemma 4. Note that we
demonstrated the case of (i) IV-B, and a slight modification
of the scheme in Section allows us to achieve the desired
computation rate pair. Hence we will provide the achievability
for (ii).



834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

(ii) (m, n) = (2, 3)i , (m̃, ñ) = (2, 1) j : We see
in Fig. 12 that (R, R̃) = (2, 4

3 ) is achievable for the case of
(m, n) = (2, 3), (m̃, ñ) = (2, 1). Consider the case of
(m, n) = (2, 3), (m̃, ñ) = (2, 1)3. For the remaining
two (2, 1) backward channels, we repeat the above pro-
cedure w.r.t. new backward symbols. Note that feedback
transmissions can be performed at time 1 and 2. This gives
(R, R̃) = (2, 4

3 × 3) = (2, 3). In this case, it suffices to show
the scheme for (m, n) = (2, 3), (m̃, ñ) = (2, 1)3. Note that
(m, n) = (2, 3)i , (m̃, ñ) = (2, 1)3i is a simple multiplication
with i . Note that as long as 3i ≥ j , the claimed computation
rate pair is still achievable. This completes the proof.

REFERENCES

[1] S. Shin and C. Suh, “Capacity of a two-way function multicast chan-
nel,” in Proc. Allerton Conf. Commun., Control, Comput., Oct. 2017,
pp. 125–133.

[2] S. Shin and C. Suh, “Two-way function computation,” in Proc. Allerton
Conf. Commun., Control, Comput., Oct. 2014, pp. 1309–1316.

[3] C. E. Shannon, “Two-way communication channels,” in Proc. 4th
Berkeley Symp. Math, Stat. Prob., Jun. 1961, pp. 611–644.

[4] T. S. Han, “A general coding scheme for the two-way channel,” IEEE
Trans. Inf. Theory, vol. IT-30, no. 1, pp. 35–44, Jan. 1984.

[5] G. Dueck, “The capacity region of the two-way channel can exceed the
inner bound,” Inf. Control, vol. 40, no. 3, pp. 258–266, Mar. 1979.

[6] J. Schalkwijk, “On an extension of an achievable rate region for the
binary multiplying channel,” IEEE Trans. Inf. Theory, vol. 29, no. 3,
pp. 445–448, May 1983.

[7] Z. Zhang, T. Berger, and J. Schalkwijk, “New outer bounds to capacity
regions of two-way channels,” IEEE Trans. Inf. Theory, vol. 32, no. 3,
pp. 383–386, May 1986.

[8] A. P. Hekstra and F. M. J. Willems, “Dependence balance bounds for
single-output two-way channels,” IEEE Trans. Inf. Theory, vol. 35, no. 1,
pp. 44–53, Jan. 1989.

[9] C. E. Shannon, “The zero error capacity of a noisy channel,” IRE Trans.
Inf. Theory, vol. 2, no. 3, pp. 8–19, Sep. 1956.

[10] S. Ihara, “Capacity of discrete time Gaussian channel with and without
feedback, I,” Mem. Fac. Sci. Kochi Univ. (Math.), vol. 9, pp. 21–36,
Sep. 1988.

[11] S. Ihara and K. Yanagi, “Capacity of discrete time Gaussian channel
with and without feedback, II,” Jpn. J. Appl. Math., vol. 6, pp. 245–258,
Jun. 1989.

[12] T. M. Cover and S. Pombra, “Gaussian feedback capacity,” IEEE Trans.
Inf. Theory, vol. 35, no. 1, pp. 37–43, Jan. 1989.

[13] Y.-H. Kim, “Feedback capacity of the first-order moving aver-
age Gaussian channel,” IEEE Trans. Inf. Theory, vol. 52, no. 7,
pp. 3063–3079, Jul. 2006.

[14] H. H. Permuter, H. Asnani, and T. Weissman, “Capacity of a post
channel with and without feedback,” IEEE Trans. Inf. Theory, vol. 60,
no. 10, pp. 6041–6057, Oct. 2014.

[15] N. Gaarder and J. Wolf, “The capacity region of a multiple-access
discrete memoryless channel can increase with feedback,” IEEE Trans.
Inf. Theory, vol. 21, no. 1, pp. 100–102, Jan. 1975.

[16] L. H. Ozarow, “The capacity of the white Gaussian multiple access
channel with feedback,” IEEE Trans. Inf. Theory, vol. 30, no. 4,
pp. 623–629, Jul. 1984.

[17] L. H. Ozarow and S. K. Leung-Yan-Cheong, “An achievable region and
outer bound for the Gaussian broadcast channel with feedback,” IEEE
Trans. Inf. Theory, vol. 30, no. 4, pp. 667–671, Jul. 1984.

[18] G. Kramer, “Feedback strategies for white Gaussian interference net-
works,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1423–1438,
Jun. 2002.

[19] C. Suh and D. N. C. Tse, “Feedback capacity of the Gaussian interfer-
ence channel to within 2 bits,” IEEE Trans. Inf. Theory, vol. 57, no. 5,
pp. 2667–2685, May 2011.

[20] S. Yang and D. Tuninetti, “Interference channel with generalized feed-
back (a.k.a. With source cooperation): Part I: Achievable region,” IEEE
Trans. Inf. Theory, vol. 57, no. 5, pp. 2686–2710, May 2011.

[21] C. Suh, I. Wang, and D. Tse, “Two-way interference channels,” in Proc.
IEEE Int. Symp. Inf. Theory, Jul. 2012, pp. 2801–2805.

[22] Z. Cheng and N. Devroye, “Two-way networks: When adaptation is
useless,” IEEE Trans. Inf. Theory, vol. 60, no. 3, pp. 1793–1813,
Mar. 2014.

[23] S. M. Perlaza, R. Tandon, H. V. Poor, and Z. Han, “Perfect output
feedback in the two-user decentralized interference channel,” IEEE
Trans. Inf. Theory, vol. 61, no. 10, pp. 5441–5462, Oct. 2015.

[24] C. Suh, J. Cho, and D. Tse, “Two-way interference channel capacity:
How to have the cake and eat it too,” IEEE Trans. Inf. Theory, vol. 64,
no. 6, pp. 4259–4281, Mar. 2018.

[25] A. Giridhar and P. R. Kumar, “Computing and communicating functions
over sensor networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 23,
pp. 755–764, Apr. 2005.

[26] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[27] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” Proc. IEEE, vol. 99, no. 3,
pp. 476–489, Mar. 2011.

[28] C. Suh and M. Gastpar, “Interactive function computation,” in Proc.
IEEE Int. Symp. Inf. Theory, Jul. 2013, pp. 896–900.

[29] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, “Wireless network
information flow: A deterministic approach,” IEEE Trans. Inf. Theory,
vol. 57, no. 4, pp. 1872–1905, Apr. 2011.

[30] C. Suh, N. Goela, and M. Gastpar, “Computation in multicast networks:
Function alignment and converse theorems,” IEEE Trans. Inf. Theory,
vol. 62, no. 4, pp. 1866–1877, Apr. 2016.

[31] S. Mohajer, S. N. Diggavi, C. Fragouli, and D. N. C. Tse,
“Approximate capacity of a class of Gaussian interference-relay net-
works,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 2837–2864,
May 2011.

[32] S. Rini, D. Tuninetti, and N. Devroye, “New inner and outer bounds for
the memoryless cognitive interference channel and some new capacity
results,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4087–4109,
Jul. 2011.

[33] V. Prabhakaran and P. Viswanath, “Interference channels with source
cooperation,” IEEE Trans. Inf. Theory, vol. 57, no. 1, pp. 156–186,
Jan. 2011.

[34] J. Chen, A. Ozgur, and S. Diggavi, “Feedback through overhear-
ing,” in Proc. Allerton Conf. Commun., Control, Comput., Oct. 2014,
pp. 358–365.

[35] S. H. Lim, Y.-H. Kim, A. El Gamal, and S.-Y. Chung, “Noisy network
coding,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3132–3152,
May 2011.

[36] B. Nazer and M. Gastpar, “Compute-and forward: Harnessing interfer-
ence through structured codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10,
pp. 6463–6486, Oct. 2011.

[37] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory,
vol. IT-29, no. 3, pp. 439–441, May 1983.

[38] T. S. Han and K. Kobayashi, “A new achievable rate region for
the interference channel,” IEEE Trans. Inf. Theory, vol. IT-27, no. 1,
pp. 49–60, Jan. 1981.

Seiyun Shin is currently pursuing a Ph.D. degree in Electrical and Computer
Engineering at University of Illinois, Urbana–Champaign (UIUC). He received
the B.S. and M.S. degrees in Electrical Engineering from Korea Advanced
Institute of Science and Technology (KAIST) in 2012 and 2015, respectively.
He is a recipient of Kwanjeong Educational Foundation Fellowship from 2019.
His research interests lie in information theory and machine learning.

Changho Suh (S’10–M’12) is an Associate Professor in the School of
Electrical Engineering at Korea Advanced Institute of Science and Technology
(KAIST). He received the B.S. and M.S. degrees in Electrical Engineering
from KAIST in 2000 and 2002 respectively, and the Ph.D. degree in Electrical
Engineering and Computer Sciences from University of California, Berkeley
in 2011. From 2011 to 2012, he was a postdoctoral associate at the Research
Laboratory of Electronics in Massachusetts Institute of Technology. From
2002 to 2006, he had been with the Telecommunication R&D Center, Samsung
Electronics.

Dr. Suh received the 2018 IEIE/IEEE Joint Award, the 2015 IEIE Haedong
Young Engineer Award, a 2015 Bell Labs Prize finalist, the 2013 IEEE
Communications Society Stephen O. Rice Prize, the 2011 David J. Sakrison
Memorial Prize, and the 2009 IEEE International Symposium on Information
Theory Best Student Paper Award.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


