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Abstract
This paper explores the preference-based top-K
rank aggregation problem. Suppose that a collec-
tion of items is repeatedly compared in pairs, and
one wishes to recover a consistent ordering that
emphasizes the top-K ranked items, based on
partially revealed preferences. We focus on the
Bradley-Terry-Luce model that postulates a set
of latent preference scores underlying all items,
where the odds of paired comparisons depend
only on the relative scores of the items involved.

We characterize the minimax limits on identifi-
ability of top-K ranked items, in the presence
of random and non-adaptive sampling. Our re-
sults highlight a separation measure that quan-
tifies the gap of preference scores between the
K th and (K + 1)th ranked items. The minimum
sample complexity required for reliable top-K
ranking scales inversely with the separation mea-
sure. To approach this minimax limit, we pro-
pose a nearly linear-time ranking scheme, called
Spectral MLE, that returns the indices of the top-
K items in accordance to a careful score esti-
mate. In a nutshell, Spectral MLE starts with an
initial score estimate with minimal squared loss
(obtained via a spectral method), and then suc-
cessively refines each component with the assis-
tance of coordinate-wise MLEs. Encouragingly,
Spectral MLE allows perfect top-K item identi-
fication under minimal sample complexity. The
practical applicability of Spectral MLE is further
corroborated by numerical experiments.

1. Introduction and Motivation
The task of rank aggregation is encountered in a wide spec-
trum of contexts like social choice (Caplin & Nalebuff,
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1991; Soufiani et al., 2014b), web search and information
retrieval (Dwork et al., 2001), crowd sourcing (Chen et al.,
2013), recommendation systems (Baltrunas et al., 2010), to
name just a few. Given partial preference information over
a collection of items, the aim is to identify a consistent or-
dering that best respects the revealed preference. In the
high-dimensional regime, one is often faced with two chal-
lenges: 1) the number of items to be ranked is ever growing,
which makes it increasingly harder to recover a consistent
total ordering over all items; 2) the observed data is highly
incomplete and inconsistent: only a small number of noisy
pairwise / listwise preferences can be acquired.

In an effort to address such challenges, this paper explores a
popular pairwise preference-based model, which postulates
the existence of a ground-truth ranking. Specifically, con-
sider a parametric model involving n items, each assigned
a preference score that determines its rank. Concrete ex-
amples of preference scores include the overall rating of an
athlete, the academic performance and competitiveness of
a university, the dining quality of a restaurant, etc. Each
item is then repeatedly compared against a few others in
pairs, yielding a set of noisy binary comparisons generated
based on the relative preference scores. In many situations,
the number of repeated comparisons essentially reflects the
signal-to-noise ratio (SNR) / quality of the information re-
vealed for each pair of items. The goal is then to develop a
“denoising” procedure that recovers the ground-truth rank-
ing with minimal sample complexity.

There has been a proliferation of ranking schemes that sug-
gest partial solutions. While the ranking that we are seek-
ing is better treated as a function of the preference parame-
ters, most of the aforementioned schemes adopt the natural
“plug-in” procedure, that is, start by inferring the prefer-
ence scores, and then return a ranking in accordance to the
parametric estimates. The most popular paradigm is ar-
guably the maximum likelihood estimation (MLE) (Ford,
1957), where the main appeal of MLE is its inherent con-
vexity under several comparison models, e.g. the Bradley-
Terry-Luce (BTL) model (Bradley & Terry, 1952; Luce,
1959). Encouragingly, MLE often achieves low `2 estima-
tion loss while retaining efficient finite-sample complexity.
Another prominent alternative concerns a family of spectral
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ranking algorithms (e.g. PageRank (Brin & Page, 1998)).
A provably efficient choice within this family is Rank Cen-
trality (Negahban et al., 2012), which produces an estimate
with nearly minimax mean squared error (MSE). While
both MLE and Rank Centrality allow intriguing guarantees
towards finding faithful parametric estimates, the squared
loss metric considered therein does not necessarily imply
optimality of the ranking accuracy. In fact, there is no
shortage of high-dimensional situations that admit para-
metric estimates with low squared loss while precluding
reliable ranking. Furthermore, many realistic scenarios em-
phasize only a few items that receive the highest ranks. Un-
fortunately, the above MSE results fall short of ensuring
recovery of the top-ranked items.

In this work, we consider accurate identification of top-K
ranked items under the popular BTL pairwise comparison
model, assuming that the item pairs we can compare are se-
lected in a random and non-adaptive fashion (termed pas-
sive ranking). In particular, we aim to explore the follow-
ing questions: (a) what is the minimum number of repeated
comparisons necessary for reliable ranking? (b) how is
the ranking accuracy affected by the underlying preference
score distributions? We will address these two questions
from both statistical and algorithmic perspectives.

1.1. Main Contributions

This paper investigates minimax optimal procedures for
top-K rank aggregation. Our contributions are two-fold.

To begin with, we characterize the fundamental three-way
tradeoff between the number of repeated comparisons, the
sparsity of the comparison graph, and the preference score
distribution, from a minimax perspective. In particular, we
emphasize a separation measure that quantifies the gap of
preference scores between the K th and (K + 1)th ranked
items. Our results demonstrate that the minimal sample
complexity or quality of paired evaluation (reflected by
the number of repeated comparisons per an observed pair)
scales inversely with the separation measure.

Secondly, we propose a nearly linear-time two-stage algo-
rithm, called Spectral MLE, which allows perfect top-K
identification as soon as the sample complexity exceeds
the minimax limits (modulo some constant). Specifically,
Spectral MLE starts by obtaining careful initial scores that
are faithful in the `2 sense (e.g. via a spectral method), and
then iteratively sharpens the pointwise estimates by com-
paring the preceding estimates with coordinate-wise MLE.
This algorithm is designed primarily in an attempt to seek a
score estimate with minimal pointwise loss. Furthermore,
numerical experiments demonstrate that Spectral MLE out-
performs Rank Centrality by achieving higher ranking ac-
curacy and lower `∞ estimation error.

1.2. Prior Art

There are two distinct families of observation models
that receive considerable interest: (1) value-based model,
where the observation on each item is drawn only from
the distribution underlying this individual; (2) preference-
based model, where one observes the relative order among
a few items instead of revealing their individual values.
Best-K identification in the value-based model with adap-
tive sampling (termed active ranking) is closely related to
the multi-armed bandit problem, where the fundamental
identification complexity has been characterized (Gabillon
et al., 2011; Bubeck et al., 2013; Jamieson et al., 2014).
The value-based and preference-based models have also
been compared in terms of minimax error rates in estimat-
ing the latent quantities (Shah et al., 2014).

In the realm of pairwise preference settings, many active
ranking schemes (Busa-Fekete & Hüllermeier, 2014) have
been proposed in an attempt to optimize the exploration-
exploitation tradeoff. For instance, in the noise-free case,
Jamieson et al. (Jamieson & Nowak, 2011) considered per-
fect total ranking and characterized the query complexity
gain of adaptive sampling relative to random queries, pro-
vided that the items under study admit a low-dimensional
Euclidean embedding. Furthermore, the works (Ailon,
2012; Jamieson & Nowak, 2011; Braverman & Mossel,
2008; Wauthier et al., 2013) explored the query complex-
ity in the presence of noise, but focused on “approximately
correct” total rankings—a solution with loss at most a fac-
tor (1 + ε) from optimal—rather than accurate ordering.
Another path-based approach has been proposed to accom-
modate accurate top-K queries from noisy pairwise data
(Eriksson, 2013), where the observation error is assumed
to be i.i.d. instead of being item-dependent. Motivated by
the success of value-based racing algorithms, (Busa-Fekete
et al., 2013; Busa-Fekete & Hüllermeier, 2014) came up
with a generalized racing algorithm that often led to effi-
cient sample complexity. In contrast, our paper concen-
trates on top-K identification in a passive setting, assum-
ing that partial preferences are collected in a noisy, random,
and non-adaptive manner. This was previously out of reach.

Apart from Rank Centrality and MLE, the most relevant
work is (Rajkumar & Agarwal, 2014). For a variety of rank
aggregation methods, they developed intriguing sufficient
statistical hypotheses that guarantee the convergence to an
optimal ranking, which in turn leads to sample complexity
bounds for Rank Centrality and MLE. Nevertheless, they
focused on perfect total ordering instead of top-K selec-
tion, and their results fall short of a rigorous justification
as to whether or not the derived sample complexity bounds
are statistically optimal.

Finally, there are many related yet different problem set-
tings considered in the prior literature. For instance, the
work (Ammar & Shah, 2012) approached top-K ranking
using a maximum entropy principle, assuming the exis-
tence of a distribution µ over all possible permutations.
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Recent work (Soufiani et al., 2013; 2014a) investigated
consistent rank breaking under more generalized models
involving full rankings. A family of distance measures
on rankings has been studied and justified based on an
axiomatic approach (Farnoud & Milenkovic, 2014). An-
other line of works considered the popular distance-based
Mallows model (Lu & Boutilier, 2011; Busa-Fekete et al.,
2014; Awasthi et al., 2014). An online ranking setting has
also been studied (Harrington, 2003; Farnoud et al., 2014).
The minimax recovery limits under general pairwise mea-
surements have been determined by (Chen et al., 2015a).

1.3. Notation

Let [n] represent {1, 2, · · · , n}. A graph G is said to be
an Erdős–Rényi random graph, denoted by Gn,pobs

, if each
pair (i, j) is connected by an edge independently with prob-
ability pobs. Besdies, we use deg (i) to represent the degree
of vertex i in G.

2. Problem Setup
Comparison Model and Assumptions. Suppose that we
observe a few pairwise evaluations over n items. To pursue
a statistical understanding towards the ranking limits, we
assume that the pairwise comparison outcomes are gener-
ated according to the BTL model (Bradley & Terry, 1952;
Luce, 1959), a long-standing model that has been applied
in numerous applications (Agresti, 2014; Hunter, 2004).

• Preference Scores. The BTL model hypothesizes on
the existence of some hidden preference vector w =
[wi]1≤i≤n, where wi represents the underlying prefer-
ence score / weight of item i. The outcome of each
paired comparison depends only on the scores of the
items involved. Unless otherwise specified, we will as-
sume without loss of generality that

w1 ≥ w2 ≥ · · · ≥ wn > 0. (1)

• Comparison Graph. Denote by G = ([n] , E) the com-
parison graph such that items i and j are compared if
and only if (i, j) belongs to the edge set E . We will
mostly assume that G is drawn from the Erdős–Rényi
model G ∼ Gn,pobs

for some observation factor pobs.

• (Repeated) Pairwise Comparisons. For each (i, j) ∈ E ,
we observe L paired comparisons between items i and
j. The outcome of the lth comparison between them,
denoted by y(l)i,j , is generated as per the BTL model:

y
(l)
i,j =

{
1, with probability wi

wi+wj
,

0, else,
(2)

where y(l)i,j = 1 indicates a win by i over j. We adopt the

convention that y(l)j,i = 1 − y(l)i,j . It is assumed through-

out that conditional on G, y(l)i,j ’s are jointly independent

across all l and i > j. For ease of presentation, we intro-
duce the collection of sufficient statistics as

yi := {yi,j | j : (i, j) ∈ E} ; yi,j :=
1

L

L∑
l=1

y
(l)
i,j .

• Signal to Noise Ratio (SNR) / Quality of Comparisons.
The overall faithfulness of the acquired evaluation be-
tween items i and j is captured by the sufficient statistic
yi,j . Its SNR can be captured by

SNR : = E2 [yi,j ]/Var [yi,j ] � L. (3)

As a result, the number L of repeated comparisons mea-
sures the SNR or the quality of comparisons over any
observed pair of items.

• Dynamic Range of Preference Scores. It is assumed
throughout that the dynamic range of the preference
scores is fixed irrespective of n, namely,

wi ∈ [wmin, wmax] , 1 ≤ i ≤ n (4)

for some positive constants wmin and wmax bounded
away from 0, which amounts to the most challenging
regime (Negahban et al., 2012). In fact, the case in which
the range wmax

wmin
grows with n can be readily translated

into the above fixed-range regime by first separating out
those items with vanishing scores (e.g. via a simple vot-
ing method like Borda count (Ammar & Shah, 2011)).

Performance metric. Given these pairwise observations,
one wishes to see whether or not the top-K ranked items
are identifiable. To this end, we consider the probability of
error Pe in isolating the set of top-K ranked items, i.e.

Pe (ψ) := P
{
ψ (y) 6= [K]

}
, (5)

where ψ is any ranking scheme that returns a set of K in-
dices. Here, [K] denotes the (unordered) set of the first
K indices. We aim to characterize the fundamental admis-
sible region of (L, pobs) where reliable top-K ranking is
feasible, i.e. Pe can be vanishingly small as n grows.

3. Minimax Ranking Limits
We explore the fundamental ranking limits from a minimax
perspective, which centers on the design of robust ranking
schemes that guard against the worst case in probability
of error. The most challenging component of top-K rank
aggregation hinges upon distinguishing the two items near
the decision boundary, i.e. the K th and (K + 1)th ranked
items. Due to the random nature of the acquired finite-
bit comparisons, the information concerning their relative
preference could be obliterated by noise, unless their latent
preference scores are sufficiently separated. In light of this,
we single out a preference separation measure as follows

∆K :=
wK − wK+1

wmax
. (6)
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As will be seen, this measure plays a crucial role in deter-
mining information integrity for top-K identification.

To model non-adaptive sampling and partial observation,
we employ the Erdős–Rényi model G ∼ Gn,pobs

. As al-
ready noted by (Ford, 1957), if the comparison graph G is
not connected, then there is absolutely no basis to deter-
mine relative preferences between two disconnected com-
ponents. Therefore, a reasonable necessary condition that
one would expect is the connectivity of G, which requires

pobs > log n / n. (7)

All results in this paper will operate under this assumption.

A main finding of this paper is an order-wise tight sufficient
condition for top-K identifiability, as stated below.

Theorem 1 (Identifiability). Suppose that G ∼ Gn,pobs
with pobs ≥ c0 log n/n. Assume that L = O (poly (n))
and wmax

wmin
= O (1). With probability exceeding 1− c1n−2,

the set of top-K ranked items can be identified exactly by
an algorithm that runs in timeO

(
|E| log2 n

)
, provided that

L ≥ c2 log n

npobs∆2
K

. (8)

Here, c0, c1, c2 > 0 are some universal constants.

Remark 1. We assume throughout that the input fed
to each ranking algorithm is the sufficient statistic
{yi,j | (i, j) ∈ E} rather than the entire collection of y(l)i,j ,
otherwise the complexity is at least O (L · |E|).

Theorem 1 characterizes an identifiable region within
which exact identification of top-K items is plausible by
nearly linear-time algorithms. The algorithm we propose,
as detailed in Section 4, attempts recovery by computing
a score estimate whose errors can be uniformly controlled
across all entries. Afterwards, the algorithm reports the K
items that receive the highest estimated scores.

Encouragingly, the above identifiable region is minimax
optimal. Consider a given separation condition ∆K , and
suppose that nature behaves in an adversarial manner by
choosing the worst-case scores w compatible with ∆K .
This imposes a minimax lower bound on the quality of
comparisons necessary for reliable ranking, as given below.

Theorem 2 (Minimax Lower Bounds). Fix ε ∈
(
0, 12
)
,

and let G ∼ Gn,pobs
. If

L ≤ c
(1− ε) log n− 2

npobs∆2
K

(9)

holds for some constant1 c > 0, then for any ranking
scheme ψ, there exists a preference vector w with sepa-
ration ∆K such that Pe (ψ) ≥ ε.

1More precisely, c = w4
min/(2w

4
max).

Theorem 2 taken collectively with Theorem 1 determines
the scaling of the fundamental ranking boundary on L.
Since the sample size sharply concentrates around n2pobsL
in our model, this implies that the required sample com-
plexity for top-K ranking scales inversely with the prefer-
ence separation at a quadratic rate. Put another way, Theo-
rem 2 justifies the need for a minimum separation criterion
that applies to any ranking scheme:

∆K &
√

log n / (npobsL). (10)

Somewhat unexpectedly, there is no computational barrier
away from this statistical limit. Several other remarks of
Theorems 1-2 are in order.

• `2 Loss vs. `∞ Loss. A dominant fraction of prior meth-
ods focus on the mean squared error in estimating the
latent scores w. It was established by (Negahban et al.,
2012) that the minimax `2 regret is squeezed between

1√
npobsL

. inf
ŵ

sup
w

E [‖ŵ −w‖]
‖w‖

.

√
log n

npobsL
,

where the infimum is over all score estimators ŵ. This
limit is almost identical to the minimax separation cri-
terion (10) we derive for top-K identification. In fact,
if the pointwise error of ŵ is uniformly bounded by√

log n/(npobsL), then ŵ necessarily achieves the min-
imax `2 error. Moreover, the pointwise error bound
presents a fundamental bottleneck for top-K ranking—it
will be impossible to differentiate the K th and (K + 1)th

ranked items unless their score separation exceeds the
aggregate error of the corresponding score estimates for
these two items. Based on this observation, our algo-
rithm is mainly designed to control the elementwise es-
timation error. As will be seen in Section 4, the resulting
estimation error will be uniformly spread over all entries,
which is optimal in both `2 and `∞ sense.

• From Coarse to Detailed Ranking. The identifiable
region we present depends only on the preference sepa-
ration between items K and K + 1. This arises since we
only intend to identify the group of top-K items without
specifying fine details within this group (termed coarse
ranking). In fact, our results readily uncover the mini-
max separation requirements for the case where one fur-
ther expects fine ordering among these K items. Specif-
ically, this task is feasible (in the minimax sense) iff

∆i &
√

log n/(npobsL), 1 ≤ i ≤ K. (11)

• High SNR Requirement for Total Ordering. In many
situations, the separation criterion (11) immediately
demonstrates the hardness (or even impossibility) of re-
covering the ordering over all items. In fact, to figure
out the total order, one expects sufficient score separa-
tion between all pairs of consecutive items, namely,

∆i &
√

log n / (npobsL), ∀i (1 ≤ i < n).
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Since the ∆i’s are defined in a normalized way (6), they
need to satisfy

n−1∑
i=1

∆i =
w1 − wn
wmax

≤ 1.

As can be easily verified, the preceding two conditions
would be incompatible unless

L & n log n / pobs,

which imposes a fairly stringent SNR requirement. For
instance, under a sparse graph where pobs � logn

n , the
number of repeated comparisons (and hence the SNR)
needs to be at least Θ(n2), regardless of the method em-
ployed. Such a high SNR requirement could be increas-
ingly more difficult to guarantee as n grows.

• Passive Ranking vs. Active Ranking. In our pas-
sive ranking model, the sample complexity requirement
n2pobsL for reliable top-K identification is given by

n2pobsL & n log n / ∆2
K .

In comparison, when adaptive sampling is employed
for the preference-based model, the most recent upper
bound on the sample complexity (e.g. Theorem 1 of
(Busa-Fekete et al., 2013)) is about the order of∑n−1

i=1
∆−2i log n.

In the challenging regime where a dominant fraction of
consecutive pairs are minimally separated (e.g. ∆1 =
· · · = ∆n−1), the above results seem to suggest that ac-
tive ranking may not outperform passive ranking. For the
other extreme case where only a single pair is minimally
separated (e.g. ∆1 � ∆i (i ≥ 2)), active ranking is
more desirable as it will adaptively acquire more paired
evaluation over the minimally separated items.

4. Ranking Scheme: Spectral Method Meets
MLE

This section presents a nearly linear-time algorithm that at-
tempts recovery of the top-K ranked items. The algorithm
proceeds in two stages: (1) an appropriate initialization that
concentrates around the ground truth in an `2 sense, which
can be obtained via a spectral ranking method; (2) a se-
quence of iterative updates sharpening the estimates in a
pointwise manner, which consists in computing coordinate-
wise MLE solutions. The two stages operate upon different
sets of samples, while no further sample splitting is needed
within each stage. The combination of these two stages will
be referred to as Spectral MLE.

Before continuing to describe the details of our algorithm,
we introduce a few notations that will be used throughout.

• L (w;yi): the likelihood function of a latent prefer-
ence vector w, given the part of comparisons yi that
have bearing on item i.

• w\i: for any preference vector w, let w\i represent
[w1, · · · , wi−1, wi+1, · · · , wn] excluding wi.

• L
(
τ,w\i;yi

)
: with a slight abuse of notation, denote

by L
(
τ,w\i;yi

)
the likelihood of the preference vec-

tor [w1, · · · , wi−1, τ, wi+1, · · · , wn].

4.1. Algorithm: Spectral MLE

It has been established that the spectral ranking method,
particularly Rank Centrality, is able to discover a prefer-
ence vector ŵ that incurs minimal `2 loss. To enable reli-
able ranking, however, it is more desirable to obtain an es-
timate that is faithful in an elementwise sense. Fortunately,
the solution returned by the spectral method will serve as
an ideal initial guess to seed our algorithm. The two com-
ponents of the proposed Spectral MLE are described below.

1. Initialization via Spectral Ranking. We generate an
initialization w(0) via Rank Centrality. In words, Rank
Centrality proceeds by constructing a Markov chain
based on the pairwise observations, and then return-
ing its stationary distribution by computing the leading
eigenvector of the associated probability transition ma-
trix. Under the Erdős–Rényi model, the estimate w(0)

is reasonably faithful in terms of the mean squared loss
(Negahban et al., 2012), that is, with high probability,

‖w(0) −w‖/ ‖w‖ .
√

log n/(npobsL).

2. Successive Refinement via Coordinate-wise MLE.
Note that the state-of-the-art finite-sample analyses for
MLE (e.g. (Negahban et al., 2012)) involve only the `2
accuracy of the global MLE when the locations of all
samples are i.i.d. (rather than the graph-based model
considered herein). Instead of seeking a global MLE
solution, we propose to carefully utilize the coordinate-
wise MLE. Specifically, we cyclically iterate through
each component, one at a time, maximizing the log-
likelihood function with respect to that component. In
contrast to the coordinate-descent method for solving
the global MLE, we replace the preceding estimate with
the new coordinate-wise MLE only when they are far
apart. Theorem 4 (to be stated in Section 4.2) guaran-
tees the contraction of the pointwise error for each cycle,
which leads to a geometric convergence rate.

The algorithm then returns the indices of top-K items in ac-
cordance to the score estimate. A formal and more detailed
description of the procedure is summarized in Algorithm 1.

Remark 2. We split E into E init and E iter for analytical
convenience. Empirically, if we keep E init = E iter = E
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Algorithm 1 Spectral MLE.
Input: The average comparison outcome yi,j for all (i, j) ∈ E ; the score range [wmin, wmax].

Partition E randomly into two sets E init and E iter each containing 1
2 |E| edges. Denote by yinit

i (resp. yiter
i ) the

components of yi obtained over E init (resp. E iter).

Initialize w(0) to be the estimate computed by Rank Centrality on yinit
i (1 ≤ i ≤ n).

Successive Refinement: for t = 0 : T do
1) Compute the coordinate-wise MLE

wmle
i ← arg max

τ∈[wmin,wmax]
L
(
τ,w

(t)
\i ; yiter

i

)
. (12)

2) For each 1 ≤ i ≤ n, set

w
(t+1)
i ←

{
wmle
i , if

∣∣∣wmle
i − w(t)

i

∣∣∣ > ξt,

w
(t)
i , else.

(13)

Output the indices of the K largest components of w(T ).

and reuse all samples, then it will outperform the graph-
splitting procedure (but not by much). Thus, we recommend
the sample-reuse procedure for practical use.
Remark 3. Spectral MLE is inspired by recent advances in
solving non-convex programs by means of iterative meth-
ods (Keshavan et al., 2010; Candes et al., 2015; Chen &
Candes, 2015b; Jain et al., 2013; Netrapalli et al., 2013;
Balakrishnan et al., 2014). A key message conveyed from
these works is: once we arrive at an appropriate initializa-
tion (often via a spectral method), the iterative estimates
will often be rapidly attracted towards the global optimum.
Remark 4. While our analysis is restricted to Gn,pobs ,
Spectral MLE can be applied to general graphs. We cau-
tion, however, that spectral ranking is not guaranteed to
achieve minimal `2 loss, particularly for those graphs with
small spectral gaps. Therefore, Spectral MLE is not neces-
sarily minimax optimal under general graph patterns.

Notably, the successive refinement stage is based on the ob-
servation that we are able to characterize the confidence in-
tervals of the coordinate-wise MLEs at each iteration. Such
confidence intervals allow us to detect outlier components
that incur large pointwise loss. Since the initial guess is op-
timal in an overall `2 sense, a large fraction of its entries are
already faithful compared to the ground truth. As a result,
it suffices to disentangle the set of “sparse” outliers.

One appealing feature of Spectral MLE is its low com-
putational complexity. Recall that the initialization step
by Rank Centrality can be solved for ε accuracy within
O
(
|E| log 1

ε

)
time instances by means of a power method.

In addition, for each component i, the coordinate-wise like-
lihood function involves a sum of deg (i) terms. Since find-
ing the coordinate-wise MLE (12) can be cast as an one-
dimensional convex program, one can get ε accuracy via
a bisection method within O

(
deg (i) · log 1

ε

)
time. There-

fore, each iteration cycle of the successive refinement stage
can be accomplished in time O

(
|E| · log 1

ε

)
.

The following theorem establishes the ranking accuracy of
Spectral MLE under the BTL model.
Theorem 3. Let c0, c1, c2, c3 > 0 be some universal con-
stants. Suppose that L = O(poly(n)), the comparison
graph G ∼ Gn,pobs with pobs > c0 log n/n, and assume
that the separation measure (6) satisfies

∆K > c1
√

log n / (npobsL). (14)

Then with probability exceeding 1 − 1/n2, Spectral MLE
perfectly identifies the set of top-K ranked items, provided
that the parameters obey T ≥ c2 log n and

ξt := c3

{
ξmin +

1

2t
(ξmax − ξmin)

}
, (15)

where ξmin :=
√

logn
npobsL

and ξmax :=
√

logn
pobsL

.

Theorem 3 basically implies that the proposed algorithm
succeeds in separating out the high-ranking objects with
high probability, as long as the preference score satisfies
the separation condition

∆K &
√

log n / (npobsL).

Additionally, Theorem 3 asserts that the number of itera-
tion cycles required in the second stage scales at most log-
arithmically, revealing that Spectral MLE achieves the de-
sired ranking precision with nearly linear time complexity.

4.2. Successive Refinement: Convergence and
Contraction of `∞ Error

In the sequel, we would like to provide some interpreta-
tion as to why we expect the pointwise error of the score
estimates to be controllable. The argument is heuristic in
nature, since we will assume for simplicity that each itera-
tion employs a fresh set of samples y independent from the
present estimate w(t).
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Denote by `∗ (τ) the true log-likelihood function

`∗ (τ) :=
1

L
logL

(
τ,w\i;yi

)
. (16)

One can easily verify that its expectation around wi can be
controlled through a locally strongly-concave function, due
to the existence of a second-order lower bound

|Ew [`∗ (wi)− `∗ (τ)]| & |τ − wi|2 npobs. (17)

This measures the penalty when τ deviates from the ground
truth. Note, however, that we don’t have direct access to
`∗ (·) since it relies on the latent scores w. To obtain a
computable surrogate, we replace w with the present esti-
mate w(t), resulting in the plug-in likelihood function

ˆ̀
i (τ) :=

1

L
logL

(
τ,w

(t)
\i ;yi

)
.

Fortunately, the surrogate loss incurred by employing ˆ̀
i (τ)

is locally stable in the sense that∣∣∣Ew

[
ˆ̀
i (τ)− ˆ̀

i (wi)− (`∗ (τ)− `∗ (wi))
]∣∣∣

. npobs |τ − wi|
‖ŵ −w‖
‖w‖

. (18)

As a result, any candidate τ 6= wi will be viewed as less
likely than and hence distinguishable from the ground truth
wi (i.e. ˆ̀(wi) > ˆ̀(τ)) in the mean sense, provided that its
deviation penalty (17) dominates the surrogate loss (18),
namely,

|τ − wi| & ‖ŵ −w‖ / ‖w‖.

Thus, if the aforementioned likelihood functions concen-
trate around their means, then our procedure should be able
to converge to a solution whose pointwise error is as low as
the normalized `2 error of the initial guess.

Encouragingly, the `∞ estimation error not only converges,
but converges at a geometric rate as well. This rapid con-
vergence property does not rely on the “fresh-sample” as-
sumption imposed in the above heuristic argument, as for-
mally stated in the following theorem.

Theorem 4. Suppose that G ∼ Gn,pobs
with pobs >

c0 log n/n for some large constant c0, and there exists a
score vector ŵub ∈ [wmin, wmax]

n independent of G satis-
fying ∣∣ŵub

i − wi
∣∣ ≤ ξwmax, 1 ≤ i ≤ n; (19)

‖ŵub −w‖ ≤ δ ‖w‖ . (20)

Then with probability at least 1− c1n−4 for some constant
c1 > 0, the coordinate-wise MLE

wmle
i := arg max

τ∈[wmin,wmax]
L
(
τ, ŵ\i;yi

)
(21)

satisfies

∣∣wi − wmle
i

∣∣ < 20 (6 + logL/log n)w5
max

w4
min

·max

{
δ +

ξ log n

npobs
,

max

{
δ +

ξ log n

npobs
,

√
log n

npobsL

}
(22)

simultaneously for all scores ŵ ∈ [wmin, wmax]n obeying
|ŵi − wi| ≤

∣∣ŵub
i − wi

∣∣, 1 ≤ i ≤ n.

In the regime where L = O (poly (n)) and δ �
√

logn
npobsL

,
Theorem 4 asserts that given an appropriate initialization,
the coordinate-wise MLE procedure is guaranteed to drag
down the elementwise estimation error at a rate

∥∥w(t+1) −w
∥∥
∞ .

∥∥w(t) −w
∥∥

‖w‖
+

log n

npobs

∥∥w(t) −w
∥∥
∞.

The same collection of samples can be reused across all
iterations at the successive refinement stage, provided that
we can identify in each cycle another slightly looser esti-
mate that is independent from the samples. From Theorem
4, the pointwise estimation error will converge to∥∥w −w(t+1)

∥∥
∞ .

√
log n/(npobsL),

which is minimally apart from the ground truth.

4.3. Discussion

Choice of Initialization. Careful readers will remark
that the success of Spectral MLE can be guaranteed by a
broader selection of initialization procedures beyond Rank
Centrality. Indeed, Theorem 4 and subsequent analyses
lead to the following assertion: as long as the initializa-
tion method is able to produce an initial estimate w(0) that
is reasonably faithful in the `2 sense

‖w(0) −w‖/‖w‖ .
√

log n/(npobsL), (23)

then Spectral MLE will converge to a pointwise optimal
preference w(T ) obeying

‖w(T ) −w‖∞ .
√

log n / (npobsL).

Initialization via Global MLE. One would naturally won-
der whether we can employ the global MLE (computed
over yinit) to seed the iterative refinement stage (applied
over yiter). In fact, the state-of-the-art analysis (with a dif-
ferent but order-wise equivalent model) (Negahban et al.,
2012) asserts that the global MLE satisfies the desired `2
property (23) for at least two cases: (a) complete graphs,
i.e. pobs = 1, and (b) Erdős–Rnyi graphs with (almost)
no repeated comparisons, i.e. L = 1. In these two cases,
the proposed algorithm achieves minimal `∞ errors if we
initialize it via the global MLE.
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L: number of repeated comparisons
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Figure 1. (Left) Empirical `∞ loss v.s. L; (Middle) `∞ loss v.s. pobs; (Right) Rate of success in top-K identification (n = 100, 200).

Nevertheless, whether the global MLE achieves minimal `2
loss for other configurations (L, pobs) has not been estab-
lished. The analytical bottleneck seems to stem from an
underlying bias-variance tradeoff when accounting for two
successive randomness mechanisms: the random graph G
and the repeated comparisons generated over G. In gen-
eral, y(l)i,j ’s are not jointly independent unless we condition
on G. In contrast, the above two special cases amount to
two extreme situations: (a) the randomness of G goes away
when pobs = 1; (b) the condition L = 1 avoids repeated
sampling. Nevertheless, these two cases alone (as well as
the model in Theorem 4 of (Negahban et al., 2012)) are not
sufficient in characterizing the complete tradeoff between
graph sparsity and the quality of the acquired comparisons.

4.4. Numerical Experiments

A series of synthetic experiments is conducted to demon-
strate the practical applicability of Spectral MLE. The im-
portant implementation parameters in our approach is the
choice of c2 and c3 given in Theorem 3, which specify T
and ξt. In all numerical simulations performed here, we
pick c2 = 5 and c3 = 1, and do not split samples. We fo-
cus on the case where n = 100, where each reported result
is calculated by averaging over 200 Monte Carlo trials.

We first examine the `∞ error of the score estimates. The
latent scores are generated uniformly over [0.5, 1]. For each
(pobs, L), the paired comparisons are randomly generated
as per the BTL model, and we perform score inference by
means of both Rank Centrality and Spectral MLE. Fig. 1(a)
(resp. Fig. 1(b)) illustrates the empirical tradeoff between
the pointwise score estimation accuracy and the number L
of repeated comparisons (resp. graph sparsity pobs). It can
be seen from these plots that the proposed Spectral MLE
outperforms Rank Centrality uniformly over all configura-
tions, corroborating our theoretical results. Interestingly,
the performance gain is the most significant under sparse
graphs in the presence of low-resolution comparisons (i.e.
when pobs and L are small).

Next, we study the success rate of top-K identification as

the number n of items varies. We generate the latent scores
randomly over [0.5, 1], except that a separation ∆K is im-
posed between items K and K + 1. The results are shown
in Fig. 1(c) for the case where pobs = 0.2, and L = 5. As
can be seen, Spectral MLE achieves higher ranking accu-
racy compared to Rank Centrality for all these situations.
Interestingly, the benefit of Spectral MLE relative to Rank
Centrality is more apparent in the regime where the score
separation is small. In addition, it seems that Rank Cen-
trality is capable of achieving good ranking accuracy in the
randomized model we simulate, and we leave the theoreti-
cal analysis for future work.

5. Conclusion
This paper investigates rank aggregation from pairwise data
that emphasizes the top-K items. We developed a nearly
linear-time algorithm that performs as well as the best
model aware paradigm, from a minimax perspective.

This paper comes with some limitations in developing tight
sample complexity bounds under general graphs. The per-
formances of Spectral MLE under other sampling mod-
els are worth investigating (Osting et al., 2015). In addi-
tion, it remains to characterize both statistical and computa-
tional limits for other choice models (e.g. the Plackett-Luce
model (Hajek et al., 2014)). It would also be interesting to
consider the case where the paired comparisons are drawn
from a mixture of BTL models (e.g. (Oh & Shah, 2014)),
as well as the collaborative ranking setting where one ag-
gregates the item preferences from a pool of different users
in order to infer rankings for each individual user (e.g. (Lu
& Negahban, 2014; Park et al., 2015))
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