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Community Detection and Matrix Completion With
Social and Item Similarity Graphs

Qiaosheng Zhang , Vincent Y. F. Tan , Senior Member, IEEE, and Changho Suh , Senior Member, IEEE

Abstract—We consider the problem of recovering a binary rating
matrix as well as clusters of users and items based on a partially
observed matrix together with side-information in the form of social
and item similarity graphs. These two graphs are both generated
according to the celebrated stochastic block model (SBM). We
develop lower and upper bounds on sample complexity that match
for various scenarios. Our information-theoretic results quantify
the benefits of the availability of the social and item similarity
graphs. Further analysis reveals that under certain scenarios, the
social and item similarity graphs produce an interesting synergistic
effect. This means that observing two graphs is strictly better than
observing just one in terms of reducing the sample complexity.

Index Terms—Matrix completion, Community detection,
Stochastic block model, Graph side-information.

I. INTRODUCTION

R ECOMMENDER systems aim to accurately predict users’
preferences and recommend appropriate items for users

based on available data that is usually scant and/or of low qual-
ity. For example, Nexflix’s movie recommender system relies
heavily on a partially filled rating matrix that comprises users’
evaluations of movies, and various recommendation algorithms
(such as collaborative filtering [1]–[4]) have been developed.
However, merely exploiting the available ratings may not be
sufficient for producing high-quality recommendations, espe-
cially when we would like to (i) recommend items to new users
who have not rated any items (i.e., the cold start problem); and
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(ii) promote new items that have not received any ratings yet
(i.e., the dual cold start problem).

An effective approach to overcome the aforementioned chal-
lenges is to make proper use of the side-information [5]–[10]
such as the similarities of users (e.g., the friendships in Face-
book) or similarities of items (e.g., the categories/genres of
movies in the Netflix database). The rationale is that users in
the same community tends to share similar preferences (called
homophily [11] in the social sciences), and items of similar
features are more likely to have similar attractiveness to users.

Most of the prior works studied the algorithmic developments
of the graph-aided recommender systems (see [12] for a review
of social recommender systems); however, a relatively fewer
number of works focused on the fundamental limits of such
problems, which, we believe, are equally pertinent. Ahn et al. [8]
considered the problem of recovering the binary rating matrix
based on a partially observed matrix and a social graph. The
authors characterized a sharp threshold on the sample com-
plexity for recovery, and also quantified the gains due to the
graph side-information. In addition to the social graph, an item
similarity graph is also often readily available, especially in this
era of massive data. For instance,

1) One can make use of high-dimensional feature vectors
of items (e.g., genre or language for movies or level of
calories and carbonation for beverages [13]) to construct
item graphs via clustering algorithms [14];

2) One can also leverage users’ behavior history to construct
item graphs as has been done by Taobao [15].

A natural question is whether the item similarity graph yields
a strict benefit for recovery, and whether observing two pieces of
graph side-information has a synergistic effect in reducing the
sample complexity. This work addresses these questions and
uncovers the roles and benefits of the social and item similarity
graphs.

We consider a movie recommender system with n users and
m movies, and users’ ratings to movies are either 0 (dislike) or 1
(like). For simplicity, users are partitioned into men and women,
while movies are partitioned into action movies and romance
movies. From anecdotal evidence, action movies usually attract
more men than women, while the reverse is true for romance
movies. To capture this phenomenon, we put forth the following
two models.

i) We assume that men’s nominal ratings to action and
romance movies are respectively ‘1’ and ‘0,’ and women’s
nominal ratings to action and romance movies are respec-
tively ‘0’ and ‘1’. This assumption is shown in Table I.
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TABLE I
NOMINAL RATINGS FROM USERS TO MOVIES (MODEL 1)

TABLE II
NOMINAL RATINGS FROM USERS TO MOVIES (MODEL 2)

Fig. 1. Sample complexity versus I1 (Model 1).

The corresponding model is referred to as the basic model
(Model 1).

ii) In reality, there may often exist atypical movies such that
their attractiveness is different from the typical ones (such
as the popular action movie Captain America, which has a
large following of female fans, arguably more so than male
fans). To capture this, we introduce another model that we
call Model 2 wherein we allow the existence of atypical
action and romance movies, and assume that atypical
action (resp. romance) movies attract more women (resp.
men). The nominal ratings for Model 2 are shown in
Table II.

Given clusters of users and movies, one can form an n×m
nominal rating matrix that comprisesn users’ ratings to all them
movies, according to either Model 1 or Model 2. Each user may
have distinct taste such that his/her actual ratings may differ
from the nominal ratings of the associated cluster. To model
this flexibility, we assume the actual rating from each user to
each movie is a perturbed version of the nominal rating. The
perturbation can be viewed as personalization, and the perturbed
matrix is called the personalized rating matrix.

In summary, three pieces of information are observed: (i)
entries in the personalized rating matrix that are sampled in-
dependently with a certain probability, (ii) the social graph, and
(iii) the movie graph (see Fig. 2 for a pictorial representation of
our setting). The task here is to exactly recover the clusters of
users and movies and to reconstruct the nominal rating matrix.

Fig. 2. An illustration of (U,G1,G2) that is generated according to the model
parameterized by ξ, where ξM = {1, 2, 3} (gray), ξW = {4, 5, 6} (orange),
ξA = {1, 2, 3, 4} (blue), ξR = {5, 6, 7, 8} (red).

A. Main Contributions

In this work, we model the social and movie graphs by a
celebrated generative model for random graphs—the stochastic
block model (SBM) [16]. For Model 1, we develop a sharp
threshold on the sample complexity for recovery. For Model 2,
lower and upper bounds on the sample complexity are derived—
they match for a wide range of parameters of interest, and
match up to a factor of two for the remaining regime. Both
the threshold (characterized under Model 1) and the upper
and lower bounds (intended for Model 2) are functions of the
qualities of the social and movie graph. Roughly speaking, the
qualities can be quantified by the difference between the intra-
and inter-cluster probabilities of the SBMs that govern them.
Our theoretical studies show that the sample complexity gains
due to the social and movie graphs appear for a wide range
of parameters. More interestingly, we show that there exists a
certain regime in which there is a synergistic effect generated
by the two graphs—observing both graphs is strictly better than
observing only one graph.

This synergistic effect can be seen from Fig. 1(a), which
considers Model 1 with equal numbers of users and movies (i.e.,
n = m). It plots the sample complexity as a function of I1 (the
quality of social graph to be defined in Section III) under three
different values of I2 (the quality of movie graph to be defined
similarly). I1 > 0 and I1 = 0 respectively mean that the social
graph is available and unavailable. Compared to the case when
no graph is available (i.e., I1 = I2 = 0), the sample complexity
is reduced only when both I1 and I2 are positive, while the gain
disappears when either I1 or I2 becomes zero. On the other
hand, if the number of users exceeds the number of movies
(e.g., n = 2 m, as illustrated in Fig. 1(b)), the availability of
social graph is always helpful in reducing the sample complexity
regardless of the availability of movie graph; while the movie
graph is helpful only when the quality of social graph is good
enough (i.e., I1 > I∗). Thus, observing two graphs with I1 > I∗

and I2 > 0 also produces a synergistic effect. The reasons are
provided in Section III-A.

B. Related Works

This work is closely related to community detection and
matrix completion. While there is a vast literature on these two
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topics (especially from algorithmic and experimental perspec-
tives), in the following, we mainly discuss theoretical works that
provide provable guarantees.

The theoretical underpinnings of community detection have
been well-studied and sharp thresholds for exact recovery
of communities have been successively established [17]–[21].
Moreover, it has been shown that side-information (e.g., node
values [22]–[26], edge weights [27], similarity information be-
tween data points [28]) is also helpful in recovering communi-
ties. In our setting, given realizations from two SBMs together
with a partially observed matrix, we are required to recover the
communities of users and movies and the rating matrix. We note
that the task in [29] (joint recovery of rows and columns com-
munities) is similar to ours, but therein, graph information is not
available. Another relevant problem is the labelled or weighted
SBM problem [30]–[34]; we provide a detailed discussion on
this point in Remark 4 in Section III.

Various efficient algorithms have been developed for low-
rank matrix completion [35]–[40]. In addition to the low-rank
property, some other works considered applications in which the
matrix to be recovered has certain extra properties. In particu-
lar, [8]–[10] assumed that the social graph imposes dependencies
amongst the rows of low-rank matrix. The task in this work can
also be regarded as a matrix completion problem in which the
social and movie graphs impose dependencies on both rows and
columns of matrix.

Finally, we point out that the objective of this work is to
gain a theoretical understanding of the benefits of graph side-
information by investigating the fundamental limits of the re-
covery problem of interest. In contrast, a follow-up work [41]
considers the same problem, but the main focus there is the
design and analysis of efficient algorithms.

C. Outline

We describe our model in Section II. In Section III, we present
the main results for both Model 1 (Theorem 1) and Model
2 (Theorems 2 and 3), and reveal the benefits of the social
and movie graphs. Section IV provides the detailed proofs of
Theorem 1, while Section V provides the proof sketches of
Theorems 2 and 3. Section VI concludes this work and proposes
directions for future research.

II. PROBLEM STATEMENT

For any integer a ≥ 1, [a] represents the set {1, . . . , a}. For
any integers a, b such that a < b, [a : b] represents {a, a+
1, . . . , b}. For any event E , the conditional probability P(·|E)
is abbreviated as PE(·). Throughout this paper we use standard
asymptotic notations [42, Ch. 3.1] to describe the limiting be-
haviour of functions/sequences.

A. Models

Consider n users and m movies. To convey the main message
(i.e., uncover the benefits of the social and movie graphs) as
concisely as possible, we assume both users and movies are
partitioned into equal-sized clusters. The sets of men and women

are respectively denoted by M and W , where M,W ⊂ [n],
|M| = |W| = n/2, and M∩W = ∅. The sets of action and
romance movies are respectively denoted by A and R, where
A,R ⊂ [m], |A| = |R| = m/2, and A ∩R = ∅. Without loss
of generality,1 we assume that the majority of the first n/2 users
are men (i.e., |M ∩ [n/2]| ≥ n/4), and the majority of the first
m/2 movies are action movies (i.e., |A ∩ [m/2]| ≥ m/4).

1) Model 1 (The Basic Model): We assume that men’s nomi-
nal rating to action and romance movies are respectively ‘1’ and
‘0,’ and women’s nominal rating to action and romance movies
are respectively ‘0’ and ‘1’. See Table I. For each user, the actual
rating to each movie is perturbation of the nominal rating as per
Bern(θ), where θ ∈ (0, 1

2 ) is referred to as the personalization
parameter and is independent of m and n.

Let ξM,W,A,R be an aggregation of the parameters; these
include the sets of users M and W , and the sets of movies
A and R. We sometimes abbreviate ξM,W,A,R as ξ for nota-
tional convenience. The sets of men, women, action and ro-
mance movies (associated with ξ) are respectively denoted by
ξM, ξW , ξA, and ξR. The parameter space Ξ is the collection of
valid parameters ξM,W,A,R. Given any ξ ∈ Ξ, one can construct
the n×m nominal rating matrix Bξ based on ξM, ξW , ξA, ξR
and Table I. The n×m personalized rating matrix Vξ denotes
users’ actual ratings to all the movies. Specifically, the i-th
row of Vξ represents the i-th user’s ratings to all the movies
and the j-th column of Vξ represents all the users’ rating to
the j-th movie. Each element (Vξ)ij = (Bξ)ij ⊕Θij , where

{Θij} i.i.d.∼ Bern(θ).
2) Model 2 (The Model With Atypical Movies): This model

assumes that there exist an unknown-sized subset of atypical
action movies Aa ⊆ A and an unknown-sized subset of atypical
romance movies Ra ⊆ R. We refer to At � A \ Aa and Rt �
R \Ra as typical action and romance movies, respectively. The
nominal ratings from users to movies are shown in Table II,
which reflects our assumption that typical action movies and
atypical romance movies attract more men than women, while
typical romance movies and atypical action movies attract more
women than men.

For each user, it is assumed that the actual rating to each
action movie is a perturbation of the nominal rating by Bern(θa),
and the actual rating to each romance movie is perturbation
of the nominal rating by Bern(θr), where θa, θr ∈ (0, 1

2 ) are
independent of m and n. We find the difference between θa and
θr is an important statistic for distinguishing action and romance
movies in Model 2—this will be apparent in Theorems 2 and 3.

Let ξM,W,At,Aa,Rt,Ra
(abbreviated as ξ) be an aggregation

of the parameters of interest, and the sets of typical/atypical
action and romance movies (associated with ξ) are denoted
by ξAt

, ξAa
, ξRt

, ξRa
. The parameter space Ξ is the collection

of valid parameters ξM,W,At,Aa,Rt,Ra
. Given any ξ ∈ Ξ, one

can construct the n×m nominal rating matrix Bξ based on

ξM, ξW , ξAt
, ξAa

, ξRt
, ξRa

and Table II. Let {Θa
ij}

i.i.d.∼ Bern(θa)

1Without this assumption, for any instance (MW,A,R), one can always find
another instance (M,′ W,′ A,′ R′) with W′ = M and R′ = A (i.e., simulta-
neously flipping the clusters of users and movies) such that these two instances
are statistically indistinguishable.
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and {Θr
ij}

i.i.d.∼ Bern(θr). Each element of the n×m personal-
ized rating matrix Vξ takes the form (Vξ)ij = (Bξ)ij ⊕Θa

ij if
movie j is an action movie, and (Vξ)ij = (Bξ)ij ⊕Θr

ij if movie
j is a romance movie.

B. Observations

In both models, for any ξ ∈ Ξ, the learner observes the fol-
lowing three pieces of information.

1) The partially observed matrix U. Let {Zij} i.i.d.∼ Bern(p).
For each (i, j) ∈ [n]× [m], the (i, j)-th entry of U is

Uij =

{
(Vξ)ij , if Zij = 1,

⊥, if Zij = 0,

where ⊥ is the erasure symbol, and p is the sample
probability.

2) The social graph G1 = (V1, E1) with V1 = [n] being the
set of n user nodes. For any pairs of nodes i = i′, it is
connected with probability α1 if both i and i′ are in the
same cluster (either in ξM or ξW ), and is connected with
probability β1 otherwise.

3) The movie graph G2 = (V2, E2) with V2 = [m] being the
set of m movie nodes. For any pairs of nodes j = j′, it is
connected with probability α2 if both j and j ′ are in the
same cluster (either in ξA or ξR), and is connected with
probability β2 otherwise.

An example of the three pieces of information (U, G1, G2)
is illustrated in Fig. 2. Throughout this work, we assume m =
ω(log n) and n = ω(logm) such that m → ∞ as n → ∞.

Remark 1: In Model 2, one may alternatively treat typical
action movies At, atypical action movies Aa, typical romance
movies Rt, and atypical romance movies Ra as four distinct
clusters. However, the movie graph cannot be represented as
a general SBM [19] with these four clusters. This is because
the relative sizes At,Aa,Rt,Ra are unknown(as the number
of atypical movies is unknown), while in a general SBM the
relative sizes of the clusters are predefined.

Besides, if At and Aa (resp. Rt and Ra) are viewed as two
sub-clusters of the cluster of action movies A (resp. romance
moviesR), then there would be a hierarchy. However, it is worth
pointing out some subtleties: (i) As mentioned above, the relative
sizes of the sub-clusters are not known; (ii) The intra-cluster
probability is exactly the same as the inter-cluster probability
between At and Aa (or between Rt and Ra), which seems to be
an unrealistic assumption for random graphs with hierarchical
structures. For hierarchical graph side information in the matrix
completion problem, the reader may wish to refer to the recent
work [43].

C. Objective

Given (U, G1, G2), the learner constructs an estimator φ =
φ(U, G1, G2) to recover ξ, which includes the clusters of users
(ξM and ξW ) and the clusters of movies (ξA and ξR in Model 1;
ξAt

, ξAa
, ξRt

, ξRa
in Model 2). If an estimator is able to recover

ξ reliably, it is also able to reliably recover the nominal rating
matrix Bξ. That is, matrix completion comes as a consequence

of recovering ξ, since one can construct the n×m matrix Bξ

based on clusters of users and movies.
Definition 1 (Exact recovery): For any estimator φ, the max-

imum error probability is defined as

Perr(φ) � max
ξ∈Ξ

Pξ(φ(U, G1, G2) = ξ), (1)

where Pξ(·) is the error probability when (U, G1, G2) is gen-
erated as per the model parameterized by ξ. A sequence of
estimators Φ = {φn}∞n=1 ensures exact recovery if

lim
n→∞

Perr(φn) = 0. (2)

Remark 2: For Model 1, recovering the nominal rating matrix
is also sufficient for the recovery of ξ. However, this is not true
for Model 2, since movies that attract more men may be regarded
as either typical action or atypical romance movies.

Definition 2 (Sample complexity): The sample complexity is
the infimum of the expected number of entries in the matrix U
such that there exists Φ for which (2) holds.

We remark that the sample complexity can also be expressed
as nmp∗ where p∗ is the minimum sample probability (MSP)
such that Perr(φn) → 0 as n grows.

III. MAIN RESULTS

As mentioned in Section I, our main contribution is to char-
acterize the sample complexity. These quantities are functions
of the qualities of graphs, which are defined as follows.
� Let I1 � n(

√
α1 −

√
β1)

2/ log n be a measure of the qual-
ity of the social graph G1. Intuitively, a larger I1 implies
a larger difference between α1 and β1; this means that
the structure of communities are more transparent. Thus,
increasing I1 makes it easier to recover the communities
of users. A well-known result [17], [18] states that it is
possible to recover M and W (based on the observation of
G1 only) if I1 > 2, and impossible if I1 < 2.

� Analogously, let I2 � m(
√
α2 −

√
β2)

2/ logm be the
quality of the movie graph G2.

For ease of presentation, we state our results in terms of the
sample probability p, instead of the sample complexity.

A. Model 1 (The Basic Model)

Theorem 1 provides a sharp threshold on the sample proba-
bility p, as a function of n,m, I1, I2, and the personalization
parameter θ. Let h(x) � (

√
1− x−√

x)2.
Theorem 1: Consider any ε > 0. If

p≥max

{
(2(1+ε)− I1) log n

2h(θ)m
,
(2(1+ε)− I2) logm

2h(θ)n

}
, (3)

then there exists a sequence of estimators Φ = {φn}∞n=1 satis-
fying limn→∞ Perr(φn) = 0. If

p≤max

{
(2(1−ε)− I1) log n

2h(θ)m
,
(2(1−ε)− I2) logm

2h(θ)n

}
, (4)

then limn→∞ Perr(φn) = 1 for any sequence of estimators Φ.
The proof of Theorem 1 is presented in Section IV. For

the achievability part in (3), the estimator Φ is chosen to be
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the maximum likelihood (ML) estimator φML. The converse
presented in (4) is the so-called strong converse [44]. It states
that as long as p is smaller than the threshold in (5), the error
probability of any estimator asymptotically goes to one.

Some additional remarks are in order.
1) Theorem 1 implies that the MSP is

p∗ = max

{
(2− I1) log n

2h(θ)m
,
(2− I2) logm

2h(θ)n

}
. (5)

When 2− I1 and 2− I2 are positive and do not scale with
m and n respectively, the sample complexity is of the
order Θ(max{n log n,m logm}). Intuitively speaking,
the first term in the right-hand side (RHS) of (5) is the
threshold for recovering clusters of users, while the second
term in the RHS of (5) is the threshold for recovering
clusters of movies. In fact, from (3) and (4), we see that
if n log n = cm logm for some c > 1,2 the normalized
sample complexity is

nmp∗

n log n
= max

{
2− I1
2h(θ)

,
2− I2
2 c h(θ)

}
. (6)

2) Recall from standard results in community detection [17],
[18] that one can recover the clusters of users (resp.
movies) based on the social (resp. movie) graph only
when I1 > 2 (resp. I2 > 2). Hence, when both I1 > 2 and
I2 > 2, samples of the rating matrix are no longer needed.
This is also reflected in our result—the MSP p∗ = 0 when
both I1 > 2 and I2 > 2.

3) The MSP in (5) is an increasing function of the person-
alization parameter θ. This dovetails with our intuition
since more samples are needed if there are more ratings
deviating from the nominal ones.

4) The availability of graphs (manifested in positive I1 and
I2) in general helps to reduce the sample complexity.

i) When n = m, we highlighted in Section I-A that observ-
ing both graphs helps to reduce the MSP, while observing
only one graph is equivalent to observing neither; thus the
availability of both graphs produces a synergistic effect.
This is because in the absence of graphs (i.e., I1 = I2 =
0), the first and the second terms in (5) are equal, implying
that recovering the clusters of users and movies require
the same number of samples. Thus, observing both graphs
reduces the MSP, which makes intuitive sense because the
social graph (resp. movie graph) is helpful in clustering
users (resp. movie). In contrast, only having the social
graph fails to reduce the number of samples needed for
clustering movies.

ii) When n > m (as illustrated in Fig. 1(b)), the availability
of the social graph G1 always helps to reduce the MSP.
This is because in the absence of graphs, the MSP in (5)
is dominated by the first term (i.e., more samples are
needed to recover the clusters of users than to recover the
clusters of movies). Thus, having a positive I1 reduces

2This is a practically relevant regime since the number of users usually exceeds
the number of movies.

the MSP, and the MSP decreases linearly with I1 when
I1 ≤ I∗ (i.e., I1 is sufficiently small such that the first
term in (5) is dominant). We also note that when I1 > I∗

and I2 = 0 (i.e., G1 is of sufficiently high quality but the
movie graph G2 is unavailable), the sample complexity
gain is “saturated”. This is because recovering the clusters
of users is no longer the dominant task; instead, more
samples are required to recover the clusters of movies (or
equivalently, the second term in (5) becomes dominant).
As a consequence, the movie graph helps to further reduce
the MSP. Therefore, observing two graphs (with I1 >
I∗ and I2 > 0) is strictly better than observing only one
graph.

iii) When m > n, observing the movie graph G2 helps to
reduce the MSP, and the social graph is helpful only when
G2 is of sufficiently high quality. The reason is similar
and symmetric to case (ii).

Remark 3: As mentioned in the introduction, Ahn et al. [8]
considered a binary matrix completion problem with a single
social graph. A key message therein is that the social graph helps
to reduce the sample complexity when the number of users is
relatively large compared to that of the items, and does not help
otherwise. We note that Model 1 is similar (but not identical)
to the model in [8] when the movie graph is unavailable (i.e.,
I2 = 0). As discussed earlier and illustrated in Fig. 1, the social
graph is helpful only when the number of users is larger than
that of movies; this coincides with the key message in [8] at a
high level.

Remark 4: Model 1 is related to the so-called labelled or
weighted SBM problem [30]–[34], in which different labels are
assigned to different edges probabilistically. To see this, one
can map the two symmetric SBMs into a single unified SBM
that consists of all the user nodes and movie nodes, and rating
information can be viewed as labels between user and movie
nodes. One major distinction is that prior works assume that the
sizes of communities scale linearly with one another, whereas
this work assumes the communities are of sizesΘ(n) andΘ(m),
and n and m are allowed to tend to infinity at different rates,
subject to m = ω(log n) and n = ω(logm). Model 2 below,
however, is completely different from the labelled or weighted
SBM problem and, as we mentioned, motivated by our desire to
situate our models closer to real world settings.

B. Model 2 (The Model With Atypical Movies)

Recall that the personalization parameters for action and
romance movies are respectively θa and θr. We first define two
functions of θa and θr as follows:

τuv � 1−
√

θuθv−
√

(1− θu)(1− θv), for u, v∈{a, r},

νuv � 1−
√

θu(1− θv)−
√
θv(1− θu), for u, v∈{a, r}.

Theorems 2 and 3 below respectively provide an upper bound
and a lower bound on p, as a function of I1, I2, θa, θr. In
particular, the expressions for two different regimes (θa = θr
and θa = θr) are different.
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Theorem 2:
a) Consider the regime in which θa = θr. For any ε > 0, if

p ≥ max

{
(2(1 + ε)− I1) log n

(νaa + νrr)m
,
(1 + ε) logm

min{νaa, νrr}n
,

(2(1 + ε)− I2) logm

2τarn

}
, (7)

then there exists a sequence of estimators Φ = {φn}∞n=1 satis-
fying limn→∞ Perr(φn) = 0.

b) Consider the regime in which θa = θr. For any ε > 0, if
I2 ≥ 2(1 + ε) and

p≥max

{
(2(1 + ε)− I1) log n

(νaa + νrr)m
,
(1 + ε) logm

min{νaa, νrr}n

}
, (8)

then there exists Φ={φn}∞n=1 satisfying limn→∞ Perr(φn)=0.
Again, the estimator Φ can be chosen as the ML estimator,

and the proof sketch is provided in Section V-A. A few remarks
concerning Theorem 2 are in order.

1) Intuitively speaking, the first term in the RHS of (7) is
the threshold for recovering clusters of users, the second
term is the threshold for identifying atypical movies, and
the third term is the threshold for recovering clusters of
movies. When θa = θr, recovery of the clusters of movies
is guaranteed by requiring the movie graph to satisfy I2 >
2 (see point 4 below), thus the RHS of (8) only contains
two terms.

2) The difference between θa and θr is an important statistic
for distinguishing action and romance movies. As the
distance between θa and θr decreases (i.e., it is harder
to distinguish action and romance movies), the third term
of (7) becomes larger (since τar decreases correspond-
ingly). This means that it may require more samples for
recovery.

3) When θa = θr, the expression in (7) (which is intended
for θa = θr) is invalid since τar = 0; instead, the success
criterion is given by Theorem 2(b). It is interesting to
note that the success criterion in Theorem 2(b) can be
interpreted as a limiting consequence of (7) as θa → θr.
That is, as τar → 0, we require I2 > 2(1 + ε) so that the
third term of (7) is non-positive. This yields the success
criterion in Theorem 2(b). On the other hand, when I2 < 2,
no achievability result is provided—indeed, Theorem 3(b)
below shows that exact recovery is impossible.

4) The reason why I2 > 2 is necessary for θa = θr is as fol-
lows. Without the movie graph G2, typical action movies
and atypical romance movies are statistically indistin-
guishable, since both of them attract (on average) (1−θa)n

2

men and θan
2 women. The same is true for atypical action

movies and typical romance movies. Thus, G2 is the
only piece of information that can be exploited to recover
clusters of movies. This leads to the necessity of I2 > 2
as per [17], [18].
In contrast, when θa = θr, the rating information can
be exploited (together with G2) to distinguish typical
action movies and atypical romance movies, since the
former attracts (on average) (1−θa)n

2 men and θan
2 women,

whereas the latter attracts (on average) (1−θr)n
2 men and

θrn
2 women. This is why I2 > 2 is not necessary, as

reflected in Theorem 2(a).
5) When both I1 > 2 and I2 > 2, the observation of the rating

matrix is still needed for exact recovery; this is in contrast
to Model 1. This is because recovering the nominal rating
matrix in Model 2 additionally requires the learner to
identify atypical movies, and observing the sub-sampled
rating matrix is crucial for identifying atypical movies.

6) When both graphs are available (i.e., I1 > 0 and I2 > 0),
our follow-up work [41] proposes and analyzes a com-
putationally efficient algorithm that works in a sequential
manner and meets the information-theoretic achievability
bound in Theorem 2. Extensive numerical experiments
therein also help to validate the correctness and predictive
abilities of Theorem 2.

Theorem 3:
a) Consider the regime in which θa = θr. For any ε > 0, if

p < max

{
(2(1− ε)− I1) log n

(νaa + νrr)m
,
(1− ε) logm

min{νaa, νrr}n
,

((1− ε)− I2) logm

2τarn

}
, (9)

then limn→∞ Perr(φn) = 1 for any estimator Φ.
b) Consider the regime in which θa = θr. For any ε > 0, if

I2 < 2(1− ε) or

p<max

{
(2(1− ε)− I1) log n

(νaa + νrr)m
,
(1− ε) logm

min{νaa, νrr}n

}
, (10)

then limn→∞ Perr(φn) = 1 for any estimator Φ.
The proof sketch is provided in Section V-D. When θa = θr,

as we have matching upper and lower bounds, a sharp threshold
of p∗ is established. When θa = θr, the characterization of p∗ is
order optimal—in particular, the upper and lower bounds match
exactly for a wide range of parameter space, and match up to
a constant factor of two for the remaining parameter space. We
discuss the reason for this gap and the challenges involved in the
converse proof; see Remark 6.

The following example considers the case n = 5 m, and
quantifies the benefits of graph side-information by analyzing
the achievability bound in Theorem 2.

Example 1: First note that the achievability bound in The-
orem 2 depends critically on the values of (θa, θr). Fig. 3
(a) considers the achievability part in (7) and partitions the
collections of (θa, θr)-pairs into three different regimes—the
social graph-sensitive regime (the yellow region), movie graph-
sensitive regime (the green-shaded region), and atypicality-
sensitive regime (the blue-dotted region).

1) When (θa, θr) belongs to the social graph-sensitive
regime, observing the social graph G1 is helpful in reduc-
ing the upper bound on the MSP (which is abbreviated as
MSP in the following, with a slight abuse of terminology).
This is because in this regime and in the absence of graphs
(i.e., I1 = I2 = 0), the MSP is dominated by the first term
in (7) (i.e., the dominant task is to recover the clusters of
users, rather than to recover the clusters of movies and
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Fig. 3. The sample complexity gains due to the social and movie graphs for
n = 5 m = 10000.

to identify atypical movies). Thus, having a positive I1
reduces the MSP. This is reflected in Fig. 3(b), which plots
the MSP as a function of I1 for (θa, θr) = (0.3, 0.03) and
three different values of I2. When I1 > I∗ and I2 = 0,
the sample complexity gain due to the social graph is
“saturated,” and the movie graph G2 helps to further
reduce the MSP. Therefore, observing two graphs (with
I2 > 0 and I1 > I∗) is strictly better than observing only
one graph; showing a synergistic effect of the two graphs.
The reason is similar to that for Fig. 1(b).

2) When (θa, θr) belongs to the movie graph-sensitive
regime, observing the movie graph G2 is helpful to reduce
the MSP. This is reflected in Fig. 3(c), which plots the MSP
as a function of I2 for (θa, θr) = (0.3, 0.15) and three
different values of I1. This regime is symmetric to the
social graph-sensitive regime.

3) When (θa, θr) belongs to the boundary between social
graph-sensitive and movie graph-sensitive regimes, ob-
serving both graphs reduces the MSP, while observing
only one graph is equivalent to observing neither. The
reason for this synergistic effect is similar to that for
Fig. 1(a). This observation is also illustrated in Fig. 3(d),
which plots the MSP as functions of I1 for a boundary
point (θa, θr) = (0.35, 0.1156).

4) When (θa, θr) belongs to the atypicality-sensitive regime,
neither the social graph G1 nor the movie graph G2 helps
to reduce the MSP. This is because the MSP is dominated
by the second term in (7) (i.e., more samples are required
to identify atypical movies than to detect clusters of users
and movies), thus having positive I1 and/or I2 does not
provide any gains.

5) When θa=θr, the movie graph G2 is helpful only if
I2 > 2.

IV. PROOF OF THEOREM 1

We first introduce an important technical lemma.
Lemma 1 (Chernoff bound): Consider a random variable X .

For any a ∈ R,

P(X > a) ≤ min
t>0

e−ta · E(etX).

A. Proof of Achievability

Suppose the sample probability p satisfies (3). The proof
relies on the ML estimator φML. For any ξ ∈ Ξ, the negative
log-likelihood of ξ is defined as L(ξ) � − logPξ(U, G1, G2).
The ML estimator φML takes (U, G1, G2) as input, and outputs
the most likely instance ξ from the parameter space Ξ, i.e.,

φML(U, G1, G2) = argmin
ξ∈Ξ

L(ξ). (11)

For any instance ξ ∈ Ξ, the independence of the observations
U, G1, G2 yields:

Pξ(U, G1, G2) = Pξ(U)Pξ(G1)Pξ(G2).

Let Ω � {(i, j) ∈ [n]× [m] : Uij =⊥} be the set of (i, j)-pairs
such that Uij is not erased, and Πξ � {(i, j) ∈ Ω : (Bξ)ij =
Uij} be the set of (i, j)-pairs such that the observed actual rating
equals the nominal rating. Thus,

Pξ(U) = p|Ω|(1− p)mn−|Ω|(1− θ)|Πξ |θ|Ω|−|Πξ |.

Recall that the social graph G1 = (V1, E1) is generated as

per a binary symmetric SBM. Let {Xii′ } i.i.d.∼ Bern(α1) and

{Yii′ } i.i.d.∼ Bern(β1). Then, a pair of users (i, i′) ∈ E1 if one of
the following two is true:
� Xii′ = 1, and (i, i′) belong to the same cluster.
� Yii′ = 1, and (i, i′) belong to different clusters.

Similarly, let {X̃jj′ } i.i.d.∼ Bern(α2) and {Ỹjj′ } i.i.d.∼ Bern(β2).
For the movie graphG2 = (V2, E2), a pair of movies (j, j′) ∈ E2
if one of the following two is true:
� X̃jj′ = 1, and (j, j′) belong to the same cluster.
� Ỹjj′ = 1, and (j, j′) belong to different clusters.
We also define the number of edges crossing clusters ξM

and ξW in G1 as e(ξM, ξW), and the number of edges crossing
clusters ξA and ξR in G2 as e(ξA, ξR). The probabilities of
observing G1 and G2 are respectively

Pξ(G1) = β
e(ξM,ξW)
1 (1− β1)

(n
2 )2−e(ξM,ξW)

× α
|E1|−e(ξM,ξW)
1 (1− α1)

2(n/2
2 )−|E1|+e(ξM,ξW),

Pξ(G2) = β
e(ξA,ξR)
2 (1− β2)

(m
2 )2−e(ξA,ξR)

× α
|E2|−e(ξA,ξR)
2 (1− α2)

2(m/2
2 )−|E2|+e(ξA,ξR).

Let d1 � log(α1(1−β1)
β1(1−α1)

), d2 � log(α2(1−β2)
β2(1−α2)

), and f(x) �
log((1− x)/x). One can then rewrite L(ξ) as

L(ξ) = −(logPξ(U) + logPξ(G1) + logPξ(G2))

=−f(θ)|Πξ|+d1e(ξM, ξW)+d2e(ξA, ξR)+C0, (12)

where C0 is a constant that is independent of ξ.
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Error Analysis: Recall from (1) that Perr(φML) is defined
as the maximum error probability with respect to all possible
ground truth parameters ξ ∈ Ξ. We first consider a specific
instance ξ ∈ Ξ, and upper-bound the corresponding error prob-
ability Pξ(φML(U, G1, G2) = ξ). By union bound, we have

Pξ(φML(U, G1, G2) =ξ)≤
∑

ξ′∈Ξ:ξ′ =ξ

Pξ(L(ξ
′)≤L(ξ)). (13)

In order to analyze Pξ(L(ξ
′) ≤ L(ξ)) for different ξ′ = ξ, we

first calculate L(ξ)− L(ξ′) based on the expression in (12).
We partition the set of users V1 into four disjoint subsets

Imm � ξM ∩ ξ′M, Imw � ξM ∩ ξ′W ,

Iww � ξW ∩ ξ′W , Iwm � ξW ∩ ξ′M.

Under the ground truth ξ, we have

e(ξM, ξW) =
∑

(i,i′)∈ξM×ξW

Yii′ , and

e(ξ′M, ξ′W) =
∑

i∈Imm

∑
i′∈Iww

Yii′ +
∑

i∈Iwm

∑
i′∈Iww

Xii′

+
∑

i∈Imm

∑
i′∈Imw

Xii′ +
∑

i∈Iwm

∑
i′∈Imw

Yii′ .

Thus, e(ξM, ξW)− e(ξ′M, ξ′W) equals∑
(i,i′)∈Imm×Iwm

Yii′ −
∑

(i,i′)∈Imm×Imw

Xii′

+
∑

(i,i′)∈Iww×Imw

Yii′ −
∑

(i,i′)∈Iww×Iwm

Xii′ � Γ1. (14)

Note that for any ξ′ ∈ Ξ, |Imm| = |Iww| and |Imw| = |Iwm|.
We define k1 � |Imw| as the parameter that quantifies the
amount of overlap between the communities of men and women
in ξ and ξ′, where k1 ∈ [0 : n/4]. It can be shown that Γ1 in (14)
contains g1 � nk1 − 2k21 copies of (Yii′ −Xii′).

Similarly, we partition the set of movies V2 into subsets

Iaa � ξA ∩ ξ′A, Iar � ξA ∩ ξ′R, (15)

Irr � ξR ∩ ξ′R, Ira � ξR ∩ ξ′A, (16)

and one can show that e(ξA, ξR)− e(ξ′A, ξ
′
R) equals∑

(j,j′)∈Iaa×Ira

Ỹjj′ −
∑

(j,j′)∈Iaa×Iar

X̃jj′

+
∑

(j,j′)∈Irr×Iar

Ỹjj′ −
∑

(j,j′)∈Irr×Ira

X̃jj′ � Γ2. (17)

Let k2 � |Iar| be the parameter that quantifies the amount of
overlap between the communities of action and romance movies
in ξ and ξ′, where k2 ∈ [0 : m/4]. It can be shown thatΓ2 in (17)
contains g2 � mk2 − 2k22 copies of (Ỹjj′ − X̃jj′).

Let S � {(i, j) ∈ [n]× [m] : (Bξ)ij = (Bξ′)ij} be the set of
(i, j)-pairs such that the (i, j)-th entry in Bξ and the (i, j)-th
entry in Bξ′ coincide. We then have

|Πξ| =
∑

(i,j)∈S
� {Uij = (Bξ)ij}+

∑
(i,j)∈Sc

� {Uij = (Bξ)ij} ,

|Πξ′ | =
∑

(i,j)∈S
� {Uij = (Bξ′)ij}+

∑
(i,j)∈Sc

� {Uij = (Bξ′)ij}

=
∑

(i,j)∈S
�{Uij = (Bξ)ij}+

∑
(i,j)∈Sc

�{Uij = 1− (Bξ)ij} .

By noting that �{Uij = (Bξ)ij} = Zij(1−Θij), we obtain

|Πξ| − |Πξ′ | =
∑

(i,j)∈Sc

Zij(1− 2Θij) � Γ3, (18)

where |Sc| = g3 � 2mk1 + 2nk2 − 8k1k2. Thus, Γ3 in (18)
contains g3 copies of Zij(1− 2Θij).

Combining (12), (14), (17), and (18), we have

L(ξ)− L(ξ′) = d1Γ1 + d2Γ2 − f(θ)Γ3. (19)

By applying Chernoff bound (Lemma 1) with t = 1
2 , we have

Pξ(L(ξ
′) ≤ L(ξ))

≤ exp

{
−g1I1

log n

n
− g2I2

logm

m
− g3ph(θ)

}
.

(20)

Note that the expression above depends on k1 and k2, since
g1, g2, g3 are all functions of k1 and k2. Let Ξξ(k1, k2) be the
set of ξ′ with the same error probability Pξ(L(ξ

′) ≤ L(ξ)), and
T be the set of valid (k1, k2)-pairs, i.e.,

T �
{
(k1, k2) =(0, 0) : k1 ∈

[
0 :

n

4

]
, k2 ∈

[
0 :

m

4

]}
. (21)

Following (13), we then decompose the parameter space Ξ into
different type classes Ξξ(k1, k2):∑

ξ′∈Ξ:ξ′ =ξ

Pξ(L(ξ
′) ≤ L(ξ))

=
∑

(k1,k2)∈T
|Ξξ(k1, k2)| · Pξ(L(ξ

′) ≤ L(ξ)). (22)

For any ε > 0, we define an auxiliary parameter δε � ε/(4 +
4ε). We also define four subsets of T as

T1 � {(k1, k2) : k1 ∈ [1 : δεn], k2 ∈ [0 : δεm]} , (23)

T2 � {(k1, k2) : k1 = 0, k2 ∈ [1 : δεm]} , (24)

T3 � {(k1, k2) : k1 ∈ [δεn+ 1 : n/4], k2 ∈ [0 : m/4]} , (25)

T4 � {(k1, k2) : k1 ∈ [0 :n/4] , k2 ∈ [δεm+ 1 : m/4]} . (26)

Note that T ⊂ ∪4
i=1Ti. Thus, (22) is upper-bounded by∑

(k1,k2)∈(∪4
i=1Ti)

|Ξξ(k1, k2)| · Pξ(L(ξ
′) ≤ L(ξ)). (27)

We now show that the error probabilities induced by each of the
four subsets T1, T2, T3, T4 vanish as n tends to infinity.

1) Case 1: k1 ≤ δεn and k2 ≤ δεm: In this case, g1 =
k1(n− 2k1) ≥ k1n(1− 2δε) and g2 ≥ k2m(1− 2δε). Given
(k1, k2), one can bound the RHS of (20) from above by

exp{−k1(1−2δε) I1(log n)−k2 (1−2δε) I2(logm)−g3ph(θ)}
= exp {−k1 [(1− 2δε) I1(log n) + (2m− 4k2)ph(θ)]}
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× exp {−k2 [(1− 2δε) I2(logm) + (2n− 4k1)ph(θ)]}
≤ exp {−k1 (1− 2δε) [I1(log n) + 2mph(θ)]}

× exp {−k2 (1− 2δε) [I2(logm) + 2nph(θ)]} . (28)

Since the sample probability p satisfies (3), we have

k1 (1− 2δε) [I1(log n) + 2mph(θ)]≥k1 (2 + ε) log n, (29)

k2 (1− 2δε) [I2(logm) + 2nph(θ)]≥k2 (2 + ε) logm. (30)

Combining (28), (29), and (30), we get

Pξ(L(ξ
′) ≤ L(ξ)) ≤ exp {(2 + ε) (k1 log n+ k2 logm)} .

Also note that the size of Ξξ(k1, k2) satisfies( n
2

k1

)( n
2

k1

)(m
2

k2

)(m
2

k2

)
≤ n2k1 ·m2k2 . (31)

Thus, the error probability induced by T1 is upper-bounded as∑
(k1,k2)∈T1

|Ξξ(k1, k2)| · Pξ(L(ξ
′) ≤ L(ξ))

≤
∑

(k1,k2)∈T1

n2k1m2k2 · exp {(2 + ε) (k1 log n+ k2 logm)}

≤
∑

k1∈[1:δεn]
n−εk1

∑
k2∈[0:δεm]

m−εk2

≤ 4n−ε.

Similarly, the error probability induced by T2 satisfies∑
(k1,k2)∈T2

|Ξξ(k1, k2)| · Pξ(L(ξ
′) ≤ L(ξ)) ≤ 2 m−ε.

2) Case 2: k1 > δεn or k2 > δεm: When k1 > δεn,

g3 ≥ 2δεmn+ 2nk2 − 8k1k2 ≥ 2δεmn,

where the last step holds since k1 ≤ n/4. Similarly, when k2 >
δεm, we have g3 ≥ 2δεmn as well. Thus, in both cases,

Pξ(L(ξ
′) ≤ L(ξ)) ≤ exp {−Ω(pmn)} = e−Ω(m logm+n logn).

Since the number of partitions of the set of n users into n/2
men and n/2 women is upper-bounded by 2n, the number of
partitions of the set of m movies into m/2 action movies and
m/2 romance movies is upper-bounded by 2m, the size of the
parameter space Ξ is at most 2n+m. Therefore, one can show
that the error probability induced by T3 ∪ T4 satisfies∑

(k1,k2)∈T3∪T4

|Ξξ(k1, k2)| · Pξ(L(ξ
′) ≤ L(ξ))

≤ 2n+m · e−Ω(m logm+n logn) = o(1). (32)

Combining (13), (22), (27), and the analyses in Case 1 and
Case 2, we obtain that Pξ(φML(U, G1, G2) =ξ) = o(1).

Finally, it is worth noting that the error probability bound
derived above is valid regardless of which ξ ∈ Ξ is set to be the
ground truth. Thus, we conclude

Perr(φML) = max
ξ∈Ξ

Pξ(φML(U, G1, G2) =ξ) = o(1).

B. Proof of Converse

In this subsection, we show that for any ε > 0, the error
probability Perr → 1 as n → ∞ if p satisfies (4). First, we state a
technical lemma concerning the tightness of the Chernoff bound
on the exponential scale.

Lemma 2 (Adapted from Lemma 4 of [45]): Consider integers

K,L1, L2 ∈ N and θ1, θ2 ∈ [0, 1]. Let {Yi}Ki=1
i.i.d.∼ Bern(β1),

{Xi}Ki=1
i.i.d.∼ Bern(α1), {Z(1)

j }L1
j=1, {Z

(2)
j }L2

j=1
i.i.d.∼ Bern(p),

{Θ(1)
j }L1

j=1
i.i.d.∼ Bern(θ2), {Θ(2)

j }L2
j=1

i.i.d.∼ Bern(θ2), and as-
sume that α1, β1, p = o(1) and max{

√
α1β1K, pL1, pL2} =

ω(1). Then,

P

(
g1

K∑
i=1

(Yi −Xi) +

2∑
k=1

f(θk)

Lk∑
j=1

Z
(k)
j (2Θ

(k)
j − 1) ≥ 0

)

≥ 1

4
exp

{
− (1+o(1))KI1

log n

n
−

2∑
k=1

(1+o(1))pLkh(θk)

}
.

Following the definition of Perr(φ), we have

inf
φ

Perr(φ) ≥ inf
φ

1

|Ξ|
∑
ξ∈Ξ

Pξ(φ(U, G1, G2) = ξ)

=
1

|Ξ|
∑
ξ∈Ξ

Pξ(φML(U, G1, G2) = ξ), (33)

where (33) holds since the ML estimator is optimal when the
prior is uniform. In the following, we analyze the error proba-
bility with respect to φML and a specific ground truth ξ ∈ Ξ. The
crux of the proof is to focus on a subset of events (corresponding
to a particular type classΞξ(k1, k2)) that are most likely to cause
errors, and show that the error probability tends to one even if
we restrict the error analysis to this type class Ξξ(k1, k2).

Note that the ML estimator φML succeeds if L(ξ′) > L(ξ)
holds for all ξ = ξ′. Thus, the success probability Psuc(ξ),
which equals 1− Pξ(φML(U, G1, G2) = ξ), takes the form
Pξ(
⋂

ξ′ =ξ{L(ξ′)>L(ξ)}). Clearly, we also have

Psuc(ξ) ≤ Pξ

( ⋂
ξ′∈Ξξ(k1,k2)

{L(ξ′)>L(ξ)}
)
, (34)

where Ξξ(k1, k2) can be chosen as any type class such that
(k1, k2) ∈ T . Lemma 3 below focuses on the type classes
Ξξ(1, 0) and Ξξ(0, 1), and shows that the success probability
tends to zero if p satisfies (4).

Lemma 3: Consider any ground truth ξ ∈ Ξ and sufficiently
large n. (i) When p ≤ (2(1−ε)−I1) logn

2h(θ)m , we have

Pξ

( ⋂
ξ′∈Ξξ(1,0)

{L(ξ′)>L(ξ)}
)

≤ 5 exp

(
−1

4
n

ε
2

)
. (35)

(ii) When p ≤ (2(1−ε)−I2) logm
2h(θ)n , we have

Pξ

( ⋂
ξ′∈Ξξ(0,1)

{L(ξ′)>L(ξ)}
)

≤ 5 exp

(
−1

4
m

ε
2

)
. (36)
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The converse part of Theorem 1 follows directly
from (33), (34), and Lemma 3. In the following, we provide
a detailed proof of Lemma 3.

Proof of Lemma 3: Suppose the ground truth ξ satisfies ξM =
[1 : n/2], ξW = [(n/2) + 1 : n]. The instantiation of ξ is merely
for ease of presentation, and it will be clear that the following
proof is valid for every ξ ∈ Ξ.

Let r1 � n/ log2 n, V′
1 � [1 : 2r1] ∪ [(n/2) + 1 : (n/2) +

2r1] ⊆ V1 be a subset of user nodes, and Δ1 be the event that
the number of isolated nodes in V′

1 (i.e., the nodes that are not
connected to any other nodes in V′

1) is at least 3r1. Lemma 4
below shows that Δ1 occurs with high probability over the
generation of the social graph G1.

Lemma 4: The probability that event Δ1 occurs is at least
1− exp(−η2(α1+β1)n

2

log4 n
), where η ∈ (0, 1) is arbitrary.

For each i ∈ ξM and i′ ∈ ξW , we define variants of ξ as
follows:

1) ξ
(i)
row is identical to ξ except that (ξ(i)row)M = ξM \ {i} and
(ξ

(i)
row)W = ξW ∪ {i}, i.e., user i in ξ

(i)
row is female;

2) ξ
(i′)
row is identical to ξ except that (ξ(i

′)
row )M = ξM ∪ {i′} and

(ξ
(i′)
row )W = ξW \ {i′}, i.e., user i′ in ξ

(i)
row is male;

3) ξ
(i,i′)
row is identical to ξ except that user i and user i′ in ξ

(i,i′)
row

are respectively female and male.
By definition, the type class Ξξ(1, 0) is equivalent to the

set {ξ(i,i
′)

row : i ∈ ξM, i′ ∈ ξW}. Conditioned on Δ1, one can find
a subset ξP1

⊂ ξM and a subset ξQ1
⊂ ξW such that |ξP1

| =
|ξQ1

| = r1 and all the nodes in ξP1
∪ ξQ1

are not connected to
one another. Thus,

Pξ

( ⋂
ξ′∈Ξξ(1,0)

{L(ξ′) > L(ξ)}
)

≤ Pξ

( ⋂
i∈ξP1

,i′∈ξQ1

{
L
(
ξ(i,i

′)
row

)
> L(ξ)

})

= Pξ(Δ1)P

( ⋂
i∈ξP1

,i′∈ξQ1

{
L
(
ξ(i,i

′)
row

)
> L(ξ)

} ∣∣∣∣Δ1

)

+ Pξ(Δ
c
1)P

( ⋂
i∈ξP1

,i′∈ξQ1

{
L
(
ξ(i,i

′)
row

)
> L(ξ)

} ∣∣∣∣Δc
1

)

≤ Pξ

( ⋂
i∈ξP1

,i′∈ξP1

{
L
(
ξ(i,i

′)
row

)
> L(ξ)

} ∣∣∣∣Δ1

)
+ Pξ(Δ

c
1)

≤ Pξ

( ⋂
i∈ξP1

{
L(ξ(i)row) > L(ξ)

} ∣∣∣∣Δ1

)

+ Pξ

⎛⎝ ⋂
i′∈ξQ1

{
L(ξ(i

′)
row ) > L(ξ)

} ∣∣∣∣Δ1

⎞⎠+ Pξ(Δ
c
1), (37)

where (37) is due to Lemma 5 below, which is borrowed
from [45, Lemma 6].

Lemma 5: Conditioned on ξ and Δ1, if L(ξ(i)row) ≤ L(ξ) and

L(ξ
(i′)
row) ≤ L(ξ) for some i ∈ ξP1

and i′ ∈ ξQ1
, then we have

L(ξ
(i,i′)
row ) ≤ L(ξ).

Without loss of generality, we assume 1 ∈ ξP1
and (n/2) +

1 ∈ ξQ1
. It is worth noting that conditioned on Δ1 and ξ,

the events {L(ξ(i)row) > L(ξ)} for different i ∈ ξP1
are mutually

independent, thus the first term of (37) equals

Pξ

(
L(ξ(1)row)>L(ξ)

∣∣Δ1

)|ξP1
|
=Pξ

(
L(ξ(1)row)>L(ξ)

∣∣Δ1

)r1
. (38)

Similarly, the events {L(ξ(i
′)

row ) > L(ξ)} for different i′ ∈ ξQ1

are mutually independent, thus the second term of (37) equals

Pξ

(
L(ξ

(n
2 +1)

row ) > L(ξ)
∣∣Δ1

)r1
. (39)

Remark 5: The main purpose of introducing ξP1
and ξQ1

is to

ensure that the events {L(ξ(i)row) > L(ξ)}i∈ξP1
are mutually in-

dependent and the events {L(ξ(i
′)

row ) > L(ξ)}i′∈ξQ1
are mutually

independent.
By noting that Pξ(Δ1) ≥ 1− exp(−η2(α1+β1)n

2

log4 n
) and

Pξ

(
L(ξ(1)row) > L(ξ)

)
≥ Pξ

(
L(ξ(1)row) > L(ξ)

∣∣Δ1

)
Pξ(Δ1),

we have

Pξ

(
L(ξ(1)row) > L(ξ)

∣∣Δ1

)
≤

Pξ

(
L(ξ

(1)
row) > L(ξ)

)
1−exp

(
−η2(α1+β1)n2

log4 n

) . (40)

It then remains to provide an upper bound on Pξ(L(ξ
(1)
row) >

L(ξ)). By substituting ξ′ with ξ
(1)
row in (19), one can formulate

L(ξ)− L(ξ
(1)
row) as per (19), wherein Γ1,Γ2,Γ3 are represented

in terms of Sc = {(1, j)}mj=1 and

Imm =
[
2 :

n

2

]
, Iww =

[n
2
+ 1 : n

]
, Imw = ∅, Iwm = {1}.

We apply Lemma 2 (with K = (n/2)− 1, L1 = m, θ1 = θ,
L2 = 0) to bound Pξ(L(ξ

(1)
row) ≤ L(ξ)) from below by

1

4
exp

{
−(1 + o(1))

(n
2
−1
)
I1

log n

n
−(1 + o(1))mph(θ)

}
.

For sufficiently large n, we have

Pξ

(
L(ξ(1)row) > L(ξ)

)r1
=
(
1− Pξ

(
L(ξ(1)row) ≤ L(ξ)

))r1
≤ exp

{
−1

4
e−(1+o(1))(n

2 −1)I1 logn
n −(1+o(1))mph(θ)

}r1

≤ exp(−n
ε
2 /4), (41)

where the last step holds since p ≤ (2(1−ε)−I1) logn
2h(θ)m . Combin-

ing (40) and (41), one can upper-bound (38) as

Pξ

(
L(ξ(1)row) > L(ξ)

∣∣Δ1

)r1
≤ 2 exp(−n

ε
2 /4). (42)
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Similarly, one can upper-bound (39) as

Pξ

(
L(ξ

(n
2 +1)

row ) > L(ξ)
∣∣Δ1

)r1
≤ 2 exp(−n

ε
2 /4). (43)

Finally, by (37), (38), (39), (42), (43), and Lemma 4, we have
that for sufficiently large n, the left-hand side (LHS) of (35) is
upper-bounded by 5 exp(−n

ε
2 /4).

In a completely similar and symmetric fashion, one can also
prove inequality (36) in Lemma 3 (which focuses on the type
class Ξξ(0, 1)). We omit it here for brevity. �

V. PROOF SKETCHES OF THEOREMS 2 AND 3

Due to the existence of atypical movies and different per-
sonalization parameters θa and θr, proving the lower and upper
bounds for Model 2 is more challenging. Fortunately, the key
techniques used in Section IV for both lower and upper bounds
are still applicable to this more complicated model. Hence, for
brevity, we respectively sketch the proofs of Theorems 2 and 3
in Subsection V-A and V-D by highlighting the steps that are
different from Section IV.

A. Proof Sketch of Achievability (Theorem 2)

Suppose the sample probability p satisfies inequality (7) when
θa = θr or inequality (8) when θa = θr. The achievability proof
for Theorem 2 also relies on the ML estimator φML(U, G1, G2)
defined in (11). Recall from (1) that

Perr(φML) = max
ξ∈Ξ

Pξ(φML(U, G1, G2) = ξ). (44)

We first consider a specific ground truth ξ ∈ Ξ, and upper-bound
the error probability Pξ(φML(U, G1, G2) = ξ). The fraction of
atypical movies in ξ can be arbitrary.

Analogous to (13) in Section IV-A, we have

Pξ(φML(U, G1, G2) =ξ)≤
∑

ξ′∈Ξ:ξ′ =ξ

Pξ(L(ξ
′)≤L(ξ)). (45)

Consider another instance ξ′ ∈ Ξ such that ξ′ = ξ, and recall the
definitions of Iaa, Iar, Ira, Irr in (15) and (16). Let

Saa � [n]× Iaa, Sar � [n]× Iar,

Sra � [n]× Ira, Srr � [n]× Irr,

respectively be the set of (i, j)-pairs such that movie j belongs
to Iaa, Iar, Ira, Irr. For u, v ∈ {a, r}, we further partition Suv

into two subsets:

Se
uv � {(i, j) ∈ Suv : (Bξ)ij = (Bξ′)ij},

Sue
uv � {(i, j) ∈ Suv : (Bξ)ij = (Bξ′)ij},

where Se
uv (resp. Sue

uv) contains all the pairs (i, j) ∈ Suv such
that the (i, j)-th entry in Bξ and the (i, j)-th entry in Bξ′

are coincident (resp. different). One can adapt the calculations
in (14)-(18) to Model 2 to obtain

L(ξ)− L(ξ′) = d1Γ1 + d2Γ2 −
∑

u,v∈{a,r}
(Γe

uv + Γue
uv) ,

where Γe
uv�

∑
(i,j)∈Se

uv

[f(θu)−f(θv)]Zij(1−Θu
ij) + Zij log

θu
θv

,

Γue
uv�

∑
(i,j)∈Sue

uv

−[f(θu)+f(θv)]ZijΘ
u
ij + Zij log

1−θu
θv

, (46)

andΓ1 andΓ2 are respectively defined in (14) and (18). Note that
the expression above is parallel to (19) for Model 1. Applying
Chernoff bound (Lemma 1) with t = 1/2, we can upper-bound
Pξ(L(ξ

′) ≤ L(ξ)) by

exp

{
−g1I1

log n

n
−g2I2

logm

m
−
∑

u,v∈{a,r}
|Se

uv| pτuv+|Sue
uv| pνuv

}
.

(47)

To calculate the |Se
uv| and |Sue

uv|, we define

tuv �
∑
j∈Iuv

�{(Bξ)ij = (Bξ′)ij}, for u, v ∈ {a, r},

where i ∈ [n] is arbitrary. Then, one can show that

|Suv| =
{
n(m2 − k2), if (u, v) = (a, a), (r, r),

nk2, if (u, v) = (a, r), (r, a),

|Sue
uv| = (n− 2k1) tuv + 2k1 (|Suv| − tuv) ,

and |Se
uv| = |Suv| − |Sue

uv|. By routine calculations and using
the fact that νar ≥ τar for any θa, θr ∈ (0, 1

2 ), we further upper-
bound (47) by

exp

{
− g1I1

log n

n
− g2I2

logm

m
− Φ(k1, k2, taa, trr)

}
,

where Φ(k1, k2, taa, trr)=2τarnk2+k1 (m−2k2) (νaa+νrr)

+ (taa + trr)(n− 4k1)min{νaa, νrr}. (48)

Note that (48) depends only on k1, k2, taa, trr. Analogous to the
type class decomposition technique used in (21)-(26), we define
Ξξ(k1, k2, taa, trr) as the set of ξ′ with the same error probability
Pξ(L(ξ

′) ≤ L(ξ)), and

T ′ � {(taa, trr) : taa ∈ [0 : (m/2)− k2] ,

trr ∈ [0 : (m/2)− k2]}.

For any ε > 0, let the auxiliary parameter δε �
min{ ε

2I2
, ε
8(1+ε)}. Recalling the definitions of T1, T2, T3, T4

in (23)-(26), we can bound the error probability in (45) by

4∑
i=1

∑
(k1,k2)∈Ti

∑
(taa,trr)∈T ′

|Ξξ(k1, k2, taa, trr)|Pξ(L(ξ
′) ≤ L(ξ)).

It then remains to show that the error probabilities induced by
each of the four subsets T1, T2, T3, and T4 vanish.

1) Case 1. k1 ≤ δεn and k2 ≤ δεm: Let

Υ1 � (1− 2δε) I1(log n) + pm (1− 2δε) (νaa + νrr), and

Υ2 � (1− 2δε) I2(logm) + 2pnτar.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on February 07,2021 at 01:47:36 UTC from IEEE Xplore.  Restrictions apply. 



928 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

In this case, the bound (48) for Pξ(L(ξ
′) ≤ L(ξ)) can be further

bounded by

exp {−k1Υ1−k2Υ2−pn(taa+trr)(1−4δε)min{νaa, νrr}} .
Since p satisfies the conditions in Theorem 2, we have

k1Υ1 ≥ k1 (2 + ε) log n, and

k2Υ2 + pn(taa + trr)(1− 4δε)min{νaa, νrr}
≥ (1 + (ε/2)) (2k2 + taa + trr) logm.

Moreover, by noting that the size of Ξξ(k1, k2, taa, trr) is( n
2

k1

)2(m
2

k2

)2(m
2 − k2
taa

)(m
2 − k2
trr

) k2∑
tar=0

k2∑
tra=0

(
k2
tar

)(
k2
tra

)
≤ exp (2k1 log n) exp ((2k2 + taa + trr) logm+ 2k2) ,

we eventually obtain that∑
(k1,k2)
∈T1

∑
(taa,trr)

∈T ′

|Ξξ(k1, k2, taa, trr)|Pξ(L(ξ
′) ≤ L(ξ))≤16 m−ε,

∑
(k1,k2)
∈T2

∑
(taa,trr)

∈T ′

|Ξξ(k1, k2, taa, trr)|Pξ(L(ξ
′) ≤ L(ξ))≤32n−ε.

1) Case 2. k1 > δεn or k2 > δεm: In this case, one can apply
similar techniques used in (32) to show that the error probability
Pξ(L(ξ

′) ≤ L(ξ)) ≤ e−Ω(m logm+n logn) and the size of Ξ is
bounded by 2n+3 m. Thus,∑
(k1,k2)∈T3∪T4

∑
(taa,trr)∈T ′

|Ξξ(k1, k2, taa, trr)| · Pξ(L(ξ
′)≤L(ξ))

= o(1). (49)

Combining the analysis from (45) to (49), we obtain that
Pξ(φML(U, G1, G2) =ξ) = o(1). By noting that the analysis
from (45) to (49) is valid for any ξ ∈ Ξ with an arbitrary fraction
of atypical movies, one can eventually show that

Perr(φML) = max
ξ∈Ξ

Pξ(φML(U, G1, G2) = ξ) = o(1).

B. Proof Sketch of Converse (Theorem 3)

The following shows that for any ε > 0, the error probability
Perr → 1 as n → ∞ if the sample probability p satisfies the
conditions in Theorem 3.

Similar to (33) in Subsection IV-D, we first consider the
ML estimator φML with respect to a specific ground truth
ξ. Note that the success probability Psuc(ξ) is upper-bounded
by Pξ(

⋂
ξ′∈Ξξ(k1,k2,taa,trr)

{L(ξ′) > L(ξ)}) for any type class
Ξξ(k1, k2, taa, trr). The following lemma implies that the suc-
cess probability Psuc(ξ) → 0 even if we restrict our analysis to
a specific type class Ξξ(k1, k2, taa, trr).

Lemma 6: Consider any ground truth ξ ∈ Ξ and sufficiently
large n. (i) When p < (2(1−ε)−I1) logn

(νaa+νrr)m
, we have

Pξ

( ⋂
ξ′∈Ξξ(1,0,0,0)

{L(ξ′)>L(ξ)}
)

≤ 5 exp

(
−1

4
n

ε
2

)
. (50)

(ii) When p < (1−ε) logm
νaan

, we have

Pξ

( ⋂
ξ′∈Ξξ(0,0,1,0)

{L(ξ′)>L(ξ)}
)

≤ exp

(
−1

8
m

ε
2

)
. (51)

(iii) When p < (1−ε) logm
νrrn

, we have

Pξ

( ⋂
ξ′∈Ξξ(0,0,0,1)

{L(ξ′)>L(ξ)}
)

≤ exp

(
−1

8
m

ε
2

)
. (52)

(iv) When (a) θa = θr and p < ((1−ε)−I2) logm
2τarn

or (b) θa = θr
and I2 ≤ 2(1− ε), we have

Pξ

( ⋂
ξ′∈Ξξ(0,1,0,0)

{L(ξ′)>L(ξ)}
)

≤ 5 exp

(
−1

4
m

ε
2

)
. (53)

Note that Theorem 3 follows directly from Lemma 6. Thus,
it remains to prove Eqns. (50)-(53) in Lemma 6.

Proof of Eqn. (50): Consider the type classΞξ(1, 0, 0, 0)with

k1 = 1 andk2 = taa = trr = 0. Recalling the definitions of ξ(i)row,
r1,Δ1, and following the steps in (37)-(39), we can upper-bound
the LHS of (50) by

Pξ(Δ
c
1) + Pξ

(
L(ξ(1)row) > L(ξ)

∣∣Δ1

)r1
+ Pξ

(
L(ξ

(n
2 +1)

row ) > L(ξ)
∣∣Δ1

)r1
. (54)

One can formulate L(ξ)− L(ξ
(1)
row) as per (46), wherein

Γ1,Γ2,Γ
ue
uv are represented in terms of

Sue
aa = {(1, j)}m/2

j=1 , Sue
rr = {(1, j)}mj=(m/2)+1, and

Imm=
[
2 :

n

2

]
, Imw=∅, Iwm={1}, Iww=

[n
2
+ 1 : n

]
.

We apply Lemma 2 (with K = (n/2)− 1, L1 = L2 = m/2,
θ1 = θa, θ2 = θr) to lower-bound Pξ(L(ξ

(1)
row) ≤ L(ξ)) by

1

4
exp

{
−(1 + o(1))

(n
2
− 1
)
I1

log n

n

−
2∑

k=1

(1 + o(1))
m

2
ph(θk)

}
,

where h(θ1) = h(θa) = νaa and h(θ2) = h(θr) = νrr. Follow-
ing the derivations in (41) and (42) and noting that p <
(2(1−ε)−I1) logn

(νaa+νrr)m
, we have

Pξ

(
L(ξ(1)row) > L(ξ)

∣∣Δ1

)r1
≤ 2 exp

(
−n

ε
2 /4
)
.

One can similarly bound Pξ(L(ξ
(n
2 +1)

row ) > L(ξ)
∣∣Δ1)

r1

by 2 exp(−n
ε
2 /4). Thus, (54) can be upper-bounded by

5 exp(−n
ε
2 /4). This completes the proof of Eqn. (50). �

Proof of Eqns. (51) and (52): Consider the type class
Ξξ(0, 0, 1, 0) with taa = 1 and k1 = k2 = trr = 0. For each
ξ′ ∈ Ξξ(0, 0, 1, 0), one can formulate L(ξ)− L(ξ′) as per (46),
wherein |Sue

aa | = n and |Sue
rr | = 0. Applying Lemma 2 (with
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L1 = n,K = L2 = 0, θ1 = θa), we have

Pξ(L(ξ
′) ≤ L(ξ)) ≥ 1

4
exp {−(1 + o(1))nph(θa)} . (55)

Conditioned on the ground truth ξ, the events {L(ξ′) > L(ξ)}
for different ξ′ ∈ Ξξ(0, 0, 1, 0) are mutually independent. Thus,
the LHS of (51) equals∏

ξ′∈Ξξ(0,0,1,0)

Pξ (L(ξ
′) > L(ξ)) ≤ exp

(
−m

ε
2 /8
)
,

where the last inequality follows from (55) and the facts that
p < (1−ε) logm

νaan
and |Ξξ(0, 0, 1, 0)| = m/2.

The proof of Eqn. (52) in Lemma 6 is similar to that of
Eqn. (51), hence we omit it here for brevity. �

Proof of Eqn. (53): Consider the type class Ξξ(0, 1, 0, 0) with
k2 = 1 and k1 = taa = trr = 0. For ease of presentation, we
suppose the ground truth ξ satisfies ξA = [1 : m/2] and ξR =
[(m/2) + 1 : m].

Let r2 � m/ log2 m, V′
2� [1 : 2r2]∪[(m/2)+1 : (m/2) +

2r2] ⊆ V2 be a subset of movie nodes, and Δ2 be the event
that the number of isolated nodes in V′

2 is at least 3r2.
Lemma 7 (Parallel to Lemma 4): The probability that Δ2

occurs is at least 1− exp(−η2(α2+β2)m
2

log4 m
), where η ∈ (0, 1) is

arbitrary.
For each j ∈ ξA and j ′ ∈ ξR, we define several variants of ξ

as follows:
1) ξ

(j)
col is identical to ξ except that (ξ(j)col )A = ξA \ {j} and

(ξ
(i)
col )R = ξR ∪ {j}, i.e., movie j in ξ

(j)
col is a romance movie.

2) ξ(j
′)

col to be identical to ξ except that (ξ(j
′)

col )A=ξA ∪ {j ′}
and (ξ

(j′)
col )R=ξR\{j ′}, i.e., movie j ′ in ξ

(j′)
col is an action movie.

3) ξ(j,j
′)

col is identical to ξ except that movie j and movie j′ in

ξ
(j,j′)
col are respectively romance and action movies.

By definition, the type class Ξξ(0, 1, 0, 0) is equivalent to

the set {ξ(j,j
′)

col : j ∈ ξA, j
′ ∈ ξR}. Conditioned on Δ2, one can

find a subset ξP2
⊂ ξA and a subset ξQ2

⊂ ξR such that |ξP2
| =

|ξQ2
| = r2 and all the nodes in ξP2

∪ ξQ2
are not connected to

one another.
(i) When θa = θr: Let [ξP2

]k and [ξQ2
]k respectively be the

k-th elements of ξP2
and ξQ2

, where k ∈ [1 : r2]. We define

ξP2,Q2
= {([ξP2

]k, [ξQ2
]j)}r2k=1 .

Note that the LHS of (53) can be upper-bounded by

Pξ

( ⋂
(j,j′)∈ξP2,Q2

{
L
(
ξ
(j,j′)
col

)
> L(ξ)

})

≤ Pξ

( ⋂
(j,j′)∈ξP2,Q2

{
L
(
ξ
(j,j′)
col

)
> L(ξ)

} ∣∣∣∣Δ2

)
+ Pξ(Δ

c
2).

(56)

Without loss of generality, we assume (1, (m/2) + 1) ∈ ξP2,Q2
.

The key observation is that conditioned on Δ2, the events
{L(ξ(j,

′j)
col ) > L(ξ)} for different (j, j′) ∈ ξP2,Q2

are mutually

independent, thus the first term in (56) equals

Pξ

(
L(ξ

(1,m2 +1)
col ) > L(ξ)

∣∣∣Δ2

)r2
. (57)

Since k2 = 1, the parameters tar and tra can be chosen to
equal either 0 or 1, but in the following we consider the
scenario in which both tar and tra equal zero. Recall that

L(ξ)− L(ξ
(1,m2 +1)
col ) can be formulated as per (46), wherein

Γ1,Γ2,Γ
e
uv,Γ

ue
uv are represented in terms of

Se
ar={(i, 1)}ni=1, Se

ra={(i, (m/2) + 1)}ni=1, Sue
ar =Sue

ra =∅,

Iaa=
[
2 :

n

2

]
, Iar={1}, Ira=

{m
2
+1
}
,

Irr=
[m
2
+2 : m

]
.

Applying similar techniques used for Lemma 2, we have

Pξ

(
L(ξ

(1,m2 +1)
col ) ≤ L(ξ)

)
≥ 1

4
exp {−(1+o(1))I2(logm)−(1+o(1))2npτar} . (58)

Combining (57), (58), Lemma 7, and the fact that p <
((1−ε)−I2) logm

2τarn
, we have that (56) is upper-bounded by

Pξ

(
L(ξ

(1,m2 +1)
col ) > L(ξ)

)r2
Pξ(Δ2)r2

+ Pξ(Δ
c
2) ≤ 3 exp

(
−m

ε
2

4

)
.

Remark 6: Note that the above analysis for θa = θr is sub-
optimal—the number of events that are most likely to cause
errors is |ξP2

| × |ξQ2
| = O(m2/(logm)4); however, among

them only O(m/(logm)2) independent events are extracted
to ξP2,Q2

, as shown in equation (56). Hence, a factor of two
is lost in the converse part. Furthermore, due to the fact that
θa = θr, the approach used in the proof of Lemma 6 (i.e., split
Pξ(∩j∈ξP2

,j′∈ξQ2
{L(ξ(j,j

′)
col ) > L(ξ)}

∣∣Δ2) into two individual
terms as per (54)) does not yield a tight converse either.

(ii) When θa = θr: Without loss of generality, we assume
1 ∈ ξP2

and (m/2) + 1 ∈ ξQ2
. Similar to (54), one can bound

the LHS of (53) by

Pξ(Δ
c
2) + Pξ

(
L(ξ

(1)
col ) > L(ξ)

∣∣Δ2

)r2
+ Pξ

(
L(ξ

(m
2 +1)

col ) > L(ξ)
∣∣Δ2

)r2
. (59)

This is because conditioned onΔ2, the events {L(ξ(j)col ) > L(ξ)}
for different j ∈ ξP2

are mutually independent, and the events

{L(ξ(j
′)

col ) > L(ξ)} for different j′ ∈ ξQ2
are also mutually inde-

pendent. Also, by noting that L(ξ)− L(ξ
(1)
col ) can be formulated

as per (46), wherein Γ1,Γ2,Γ
e
uv,Γ

ue
uv are represented in terms

of

Se
ar={(i, 1)}ni=1, Se

ra=Sue
ar =Sue

ra =∅, and

Iaa=
[
2 :

n

2

]
, Iar={1}, Ira=∅, Irr=

[m
2
+2 : m

]
,

we obtain

Pξ

(
L(ξ

(1)
col )≤L(ξ)

)
≥ 1

4
exp

{
−(1+o(1))

I2 logm

2

}
. (60)
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Similarly, we have

Pξ

(
L(ξ

(m2+1)
col )≤L(ξ)

)
≥ 1

4
exp

{
−(1+o(1))

I2 logm

2

}
.

(61)

Combining (59)-(61), Lemma 7, and the fact that I2 ≤ 2(1− ε),
one can eventually show that the LHS of (53) is bounded by
5 exp(−m

ε
2 /4). This completes the proof of Eqn. (53). �

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper investigates two variants of a novel community
recovery problem based on a partially observed rating matrix
and social and movie graphs. Our information-theoretic char-
acterizations on the sample complexity quantify the gains due
to graph side-information; in particular, there exists a certain
regime in which simultaneously observing two pieces of graph
side-information is critical to reduce the sample complexity.

While the information-theoretic characterization for Model 2
is optimal in a certain parameter regime and order-optimal in the
remaining parameter regime, one would expect that overcoming
the challenge discussed in Remark 6 and establishing a sharp
threshold by filling the small gap for the regime in which our
bounds do not match would be a fruitful endeavour.

APPENDIX

PROOF OF LEMMA 4

Let N � 2
(
2r1
2

)
= 4r21 − 2r1, N ′ � 4r21 , {Xi}Ni=1

i.i.d.∼
Bern(α1), {Yi}N

′
i=1

i.i.d.∼ Bern(β1), and X �
∑N

i=1 Xi +∑N ′

i=1 Yi be the number of edges inG1. Thus, the number of non-
isolated nodes is at most 2X . Note that E(X) = Nα1 +N ′β1,
which lies in the interval [3r21(α1 + β1), 4r

2
1(α1 + β1)] for

sufficiently large n. For any η ∈ (0, 1), by applying the
multiplicative Chernoff bound, we have

P
(
X ≥ (1 + η) 4r21(α1 + β1)

)
≤ P (X ≥ (1 + η)E(X))

≤ exp

(
−η2(α1 + β1)n

2

log4 n

)
.

Therefore, with probability at least 1− exp(−η2(α1+β1)n
2

log4 n
),

X ≤ (1 + η)4r21(α1 + β1) < r1/2, and the number of non-
isolated nodes is at most r1.
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