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ABSTRACT | Distributed storage systems often introduce

redundancy to increase reliability. When coding is used, the

repair problem arises: if a node storing encoded information

fails, in order to maintain the same level of reliability we need

to create encoded information at a new node. This amounts to a

partial recovery of the code, whereas conventional erasure

coding focuses on the complete recovery of the information

from a subset of encoded packets. The consideration of the

repair network traffic gives rise to new design challenges.

Recently, network coding techniques have been instrumental

in addressing these challenges, establishing that maintenance

bandwidth can be reduced by orders of magnitude compared

to standard erasure codes. This paper provides an overview of

the research results on this topic.
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I . INTRODUCTION

In recent years, the demand for large-scale data storage has

increased significantly, with applications like social net-

works, file, and video sharing demanding seamless storage,

access and security for massive amounts of data. When the

deployed storage nodes are individually unreliable, as is

the case in modern data centers and peer-to-peer net-

works, redundancy must be introduced into the system to

improve reliability against node failures. The simplest and

most commonly used form of redundancy is straightfor-

ward replication of the data in multiple storage nodes.

However, erasure coding techniques can potentially

achieve orders of magnitude more reliability for the

same redundancy compared to replication (see, e.g., [2]).

To realize the increased reliability of coding however, one
has to address the challenge of maintaining an erasure

encoded representation.

Given two positive integers k and n > k, an ðn; kÞ
maximum distance separable (MDS) code can be used for

reliability: initially the data to be stored are separated into

k information packets. Subsequently, using the MDS code,

these are encoded into n packets (of the same size) such

that any k out of these n suffice to recover the original data
(see Fig. 1 for an example).

MDS codes are optimal in terms of the redundancy–

reliability tradeoff because k packets contain the minimum

amount of information required to recover the original

data. In a distributed storage system, the n encoded packets

are stored at different storage nodes (e.g., disks, servers, or

peers) spread over a network, and the system can tolerate

any ðn� kÞ node failures without data loss. Note that
throughout this paper we will assume a storage system of n
storage nodes that can tolerate ðn� kÞ node failures and

use the idea of subpacketization: each storage node can
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Fig. 1. A ð4; 2ÞMDS binary erasure code (evenodd code [10]).

Each storage node (box) is storing two blocks that are linear binary

combinations of the original data blocks A1;A2;B1;B2. In this example,

the total stored size isM¼ 4 blocks. Observe that any k ¼ 2 out

of the n ¼ 4 storage nodes contain enough information to recover

all the data.
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store multiple subpackets that will be referred to as blocks
(essentially using the idea of array codes [10], [11]).

The benefits of coding for storage are well known and

there has been a substantial amount of work in the area.

Reed–Solomon codes [6] are perhaps the most popular

MDS codes and together with the very similar information

dispersal algorithm (IDA) [7] have been investigated in

distributed storage applications (e.g., [3] and [5]).

Fountain codes [8] and low-density parity-check (LDPC)
codes [9] are recent code designs that offer approximate

MDS properties and fast encoding-and-decoding complex-

ity. Finally, there has been a large body of related work on

codes for RAID systems and magnetic recording (e.g., see

[10]–[13] and references therein).

In this tutorial, we focus on a new problem that arises

when storage nodes are distributed and connected in a net-
work. The issue of repairing a code arises when a storage
node of the system fails. The problem is best illustrated

through the example of Fig. 2. Assume a file of total size

M¼ 4 blocks is stored using the ð4; 2Þ evenodd code of

the previous example and the first node fails. A new node

(to be called the newcomer) needs to construct and store

two new blocks so that the three existing nodes combined

with the newcomer still form a ð4; 2Þ MDS code. We call

this the repair problem and focus on the required repair
bandwidth. Clearly, repairing a single failure is easier than

reconstructing all the data: since by assumption any two

nodes contain enough information to recover all the data,

the newcomer could download four blocks (from any two

surviving nodes), reconstruct all four blocks, and store

A1; A2. However, as the example shows, it is possible to

repair the failure by communicating only three blocks

B2; A2 þ B2; A1 þ A2 þ B2, which can be used to solve for
A1; A2.

Fig. 3 shows the repair of the fourth storage node. This

can be achieved by using only three blocks [14] but one key

difference is that the second node needs to compute a

linear combination of the stored packets B1; B2 and the

actual communicated block is B1 þ B2. This shows clearly

the necessity of network coding, creating linear combina-

tions in intermediate nodes during the repair process. If

the network bandwidth is more critical resource compared

to disk access, as is often the case, an important consid-

eration is to find what is the minimum required bandwidth
and which codes can achieve it.

The repair problem and the corresponding regenerat-

ing codes were introduced in [24] and received some

attention in the recent literature [25]–[27], [31]–[38].

Somehow surprisingly these new code constructions can

achieve a rather significant reduction in repair network

bandwidth, compared with the straightforward application

of Reed–Solomon or other existing codes. In this paper, we
provide an overview of this recent work and discuss several

related research problems that remain open.

A. Various Repair Models
In the repair examples shown in Figs. 2 and 3, the

newcomer constructs exactly the two blocks that were in

failed node. Note, however, that our definition of repair

only requires that the new node forms an ðn; kÞMDS code

property (that any k nodes out of n suffice to recover the
original whole data), when combined with existing nodes.

In other words, the new node could be forming new linear

combinations that were different from the ones in the lost

node; a requirement that is strictly easier to satisfy.

Three versions of repair have been considered in the

literature: exact repair, functional repair, and exact repair of
systematic parts. In exact repair, the failed blocks are

exactly regenerated, thus restoring exactly the lost en-
coded blocks with their exact replicas. In functional repair,

the requirement is relaxed: the newly generated blocks can

contain different data from that of the failed node as long

as the repaired system maintains the MDS-code property.

The exact repair of the systematic part is a hybrid repair

model lying between exact repair and functional repair. In

this hybrid model, the storage code is always a systematic

Fig. 2. Example of an (exact) repair. Assume that the first node

in the previous storage system failed. The issue is to repair the

failure by creating a new node (the newcomer) that still forms a

ð4; 2ÞMDS code. In this example, it is possible to obtain exact repair

by communicating three blocks, which is the information-theoretic

minimum cutset bound.

Fig. 3. Repairing the last node: in some cases, it is necessary for

storage nodes to compute functions of their stored data before

communicating, as shown in the second node.
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code (meaning that one copy of the data exists in uncoded
form). The systematic part is exactly repaired upon failures

and the nonsystematic part follows a functional repair

model where the repaired version may be different from

the original copy. See Fig. 4 for an illustration.

There is one important benefit in keeping the code in

systematic form: as shown in Fig. 1, if the code contains the

original data as a subset, reading parts of the data can be

performed very quickly by just accessing the corresponding
storage node without requiring decoding. Interestingly, as we

will see, exact repair, which is the most interesting problem

in practice, is also the most challenging one and determining

a large part of the achievable region remains open.

The functional repair problem is completely under-

stood because, as shown in [24], it can be reduced to a

multicasting problem on an appropriately constructed

graph called the information flow graph. The pioneering
work of Ahlswede et al. [15] characterized the multicasting

rates by showing that cutset bounds are achievable.

Further work showed that linear network coding suffices

[16], [18] and random linear combinations construct good

network codes with high probability [19]. See also the

survey [21] and references therein. Since functional repair

is reduced to multicasting, we can completely characterize

the minimum repair bandwidth by evaluating the min-cut
bounds and network coding provides effective and con-

structive solutions. In Section II, we present the results

that characterize the achievable functional repair region

and show a tradeoff between storage and repair bandwidth.

The exact repair problem is strictly harder than functional

repair. In exact repair, the new node accesses some existing

storage nodes and exactly reproduces the lost coded blocks. As

will be described subsequently, repair codes come with
fundamental tradeoffs between storage cost and repair

bandwidth. The two important special cases involve operating

points corresponding to maximal storage and minimal

bandwidth versus minimal storage with maximal bandwidth

point. Exact repair for the minimal bandwidth operating point

is described in Section II-B) and describes the recent work of

[33], which develops optimal exact repair codes for this
operating point without any loss of optimality with respect to

only functional repair.

The special case of the operating point that corre-

sponds to minimal storage, which also corresponds to

minimizing the repair bandwidth while keeping the same

storage cost of MDS codes, turns out to be more challeng-

ing. It turns out that, in this case, the new node needs to

recover part of the data that are interfering with other data
packets. When an information sink receives a set of linear

equations and tries to decode for some variables, we call

undesired variables, mixed into these equations, interfer-

ence. It is the need to carefully handle interference that

makes the problem difficult. The constructive techniques

perform algebraic alignment so that the effective dimen-

sion of unwanted information is reduced, thus reducing

the repair traffic. These constructive techniques achieve
perfect alignment and characterize the repair bandwidth

for low-rate MDS codes ðk=n � 1=2Þ. Achieving the cut-set

bound for high-rate MDS codes is only known to be

achievable by asymptotic nonpractical techniques as we

discuss subsequently.

The exact repair of systematic parts model is a relaxation

of the exact repair model. As in the exact repair model, the

core constructive techniques are interference alignment and
network coding. In Section IV, we will see that this relaxation

addresses some problem space not covered by exact repair.

II . MODEL I: FUNCTIONAL REPAIR

As shown in [24], the functional repair problem can be

represented as multicasting over an information flow graph.

The information flow graph represents the evolution of in-
formation flow as nodes join and leave the storage network

(see also [23] for a similar construction). Fig. 5 gives an

example of an information flow graph. In this graph, each

storage node is represented by a pair of nodes xi
in and xi

out

connected by an edge whose capacity is the storage capa-

city of the node. There is a virtual source node s corre-

sponding to the origin of the data object. Suppose initially

we store a file of sizeM¼ 4 blocks at four nodes, where
each node stores � ¼ 2 blocks and the file can be recon-

structed from any two nodes. Virtual sink nodes called data
collectors connect to any k node subsets and ensure that the

code has the MDS property (that any k out of n suffices to

recover). Suppose storage node 4 fails, then the goal is to

create a new storage node, node 5, which communicates

the minimum amount of information and then stores � ¼
2 blocks. This is represented in Fig. 5 by the unit-capacity
edges x1

outx
5
in, x2

outx
5
in, and x3

outx
5
in that enter node x5

in.

The functional repair problem for distributed storage

can be interpreted as a multicast communication problem

defined over the information flow graph, where the source

s wants to multicast the file to the set of all possible data

collectors. For multicasting, it is known that the maximum

multicast rate is equal to the minimum-cut capacity

Fig. 4. Various repair models and the key constructive techniques.
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separating the source from a receiver and it can be

achieved using linear network coding [16]. Since the cur-

rent problem can be viewed as a multicast problem, the

fundamental limit can be characterized by the min-cuts in
the information flow graph and network coding provides

effective constructive solutions. One complication is that

since the number of failures/repairs is unbounded, the

resulting information flow graph can grow unbounded in

size. Hence, we have to deal with cuts, flows, and network

codes in graphs that are potentially infinite.

In Section II-A, we present the cut analysis of informa-

tion flow graphs [24], [25]. In Section II-B, we discuss the
two extreme points corresponding to minimum repair

bandwidth and minimum storage cost.

A. Cut Analysis of Information Flow Graphs
By analyzing the connectivity in the information flow

graph, we can derive fundamental performance bounds

about codes. In particular, if the minimum cut between s
and a data collector is less than the size of original file,

then we can conclude that it is impossible for the data

collector to reconstruct the original file. In this section, we

review the cut analysis of [24] and [25]. The setup is as

follows: there are always n active storage nodes. Each node
can store � bits. An information flow graph (as illustrated

by Fig. 5) corresponds to a particular evolution of the

storage system after a certain number of failures/repairs.

We call each failure/repair a Bstage[; in each stage, a single

storage node fails and the code gets repaired by down-

loading � bits each from any d surviving nodes. Therefore,

the total repair bandwidth is � ¼ d�.

See Fig. 5 for an example. In the initial stage, the sys-
tem consists of nodes 1, 2, 3, and 4; in the second stage, the

system consists of nodes 2, 3, 4, and 5. For each set of

parameters ðn; d; �; � ¼ d�Þ, there is a family of finite or

infinite information flow graphs, each of which corre-

sponds to a particular evolution of node failures/repairs.

We denote this family of directed acyclic graphs by

Gðn; d; �; �Þ. We restrict our attention to the symmetric

setup where it is required that any k storage nodes can
recover the original file, and a newcomer receives the same

amount of information from each of the existing nodes. An

ðn; k; d; �; �Þ tuple will be feasible, if a code with storage �
and repair bandwidth � exists. For the example in Fig. 2,

the total file has sizeM¼ 4 blocks and the point (n ¼ 4,

k ¼ 2, d ¼ 3, � ¼ 2 blocks, � ¼ 3 blocks) is feasible. On

the contrary, a standard erasure code that communicates

the whole data object would correspond to � ¼ 4 blocks
instead. Note that n; k; d must be integers. If there is one

failure, the newcomer can connect to at most all the n� 1

surviving nodes, so d � n� 1 and �; �; � ¼ d� are the

nonnegative real-valued parameters of the repair process.

Theorem 1: For any � � ��ðn; k; d; �Þ, the points ðn; k;
d; �; �Þ are feasible and linear network codes suffice to

achieve them. It is information theoretically impossible to
achieve points with � G ��ðn; k; d; �Þ. The threshold

function ��ðn; k; d; �Þ is the following:

��ðn; k; d; �Þ ¼
M
k
; � 2 fð0Þ;þ1½ Þ

M� gðiÞ�
k� i

; � 2 fðiÞ; fði� 1Þ½ Þ

8><
>: (1)

where

fðiÞ ¼� 2Md

ð2k� i� 1Þiþ 2kðd� kþ 1Þ (2)

gðiÞ ¼� ð2d� 2kþ iþ 1Þi
2d

(3)

where d � n� 1. Given ðn; k; dÞ, the minimum repair

bandwidth � is

�min ¼ fðk� 1Þ ¼ 2Md

2kd� k2 þ k
: (4)

One important observation is that the minimum repair

bandwidth � ¼ d� is a decreasing function of the number

d of nodes that participate in the repair. While the new-

comer communicates with more nodes, the size of each

communicated packet � becomes smaller fast enough to

Fig. 5. Illustration of the information flow graph G corresponding to

the ð4;2Þ code of Fig. 1. A distributed storage scheme uses an ð4; 2Þ
erasure code in which any two nodes suffice to recover the original

data. If node x4 becomes unavailable and a new node joins the system,

we need to construct new encoded blocks in x5. To do so, node x5in is

connected to the d ¼ 3 active storage nodes. Assuming � bits

communicated from each active storage node, of interest is the

minimum � required. The min-cut separating the source and the data

collector must be larger thanM¼ 4 blocks for regeneration to be

possible. For this graph, the min-cut value is given by �þ 2�, implying

that communicating � � 1 block is sufficient and necessary. The total

repair bandwidth to repair one failure is therefore � ¼ d� ¼ 3 blocks.
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make the product d� decrease. Therefore, the minimum

repair bandwidth can be achieved when d ¼ n� 1.

As we mentioned, code repair can be achieved if and

only if the underlying information flow graph has suffi-

ciently large min-cuts. This condition leads to the repair
rates computed in Theorem 1, and when these conditions

are met, simple random linear combinations will suffice

with high probability as the field size over which coding is

performed grows, as shown by Ho et al. [19]. The optimal

tradeoff curve for k ¼ 5, n ¼ 10, and d ¼ 9 is shown in

Fig. 6.

B. Two Special Cases
It is of interest to study the two extremal points on the

optimal tradeoff curve, which correspond to the best

storage efficiency and the minimum repair bandwidth,

respectively. We call codes that attain these points

minimum-storage regenerating (MSR) codes and
minimum-bandwidth regenerating (MBR) codes,

respectively.

From Theorem 1, it can be verified that the minimum

storage point is achieved

ð�MSR; �MSRÞ ¼
M
k
;

Md

kðd� kþ 1Þ

� �
: (5)

As discussed, the repair bandwidth �MSR ¼ d�MSR is a

decreasing function of the number of nodes d that par-

ticipate in the repair. Since the MSR codes storeM=k bits

at each node while ensuring the MDS-code property, they

are equivalent to standard MDS codes. Observe that when

d ¼ k, the total communication for repair isM (the size of
the original file). Therefore, if a newcomer is allowed to

contact only k nodes, it is inevitable to download the whole

data object to repair one new failure and this is the naive

repair method that can be performed for any MDS codes.

However, allowing a newcomer to contact more than

k nodes, MSR codes can reduce the repair bandwidth �MSR,

which is minimized when d ¼ n� 1

�MSR; �
min
MSR

� �
¼ M

k
;
M
k
� n� 1

n� k

� �
: (6)

We have separated the M=k factor in �min
MSR to illustrate

that MSR codes communicate an ðn� 1Þ=ðn� kÞ factor

more than what they store. This represents a fundamental
expansion necessary for MDS constructions that are opti-

mal on the reliability–redundancy tradeoff. For example,

consider a ðn; kÞ ¼ ð14; 7Þ code. In this case, the new-

comer needs to download onlyM/49 bits from each of the

d ¼ n� 1 ¼ 13 active storage nodes, making the repair

bandwidth equal to ðM=7Þ � ð13=7Þ. Notice that we need

only an expansion factor of 13/7, while a factor of 7 is

required for the naive repair method.
At the other end of the tradeoff are MBR codes, which

have minimum repair bandwidth. It can be verified that

the minimum repair bandwidth point is achieved by

ð�MBR; �MBRÞ ¼
2Md

2kd� k2 þ k
;

2Md

2kd� k2 þ k

� �
: (7)

Note that in the minimum bandwidth regenerating codes,

the storage size � is equal to �, the total number of bits

communicated during repair. If we set the optimal value

d ¼ n� 1, we obtain

�min
MBR; �

min
MBR

� �
¼ M

k
� 2n� 2

2n� k� 1
;
M
k
� 2n� 2

2n� k� 1

� �
: (8)

Notice that �min
MBR ¼ �min

MBR: MBR codes incur no repair

bandwidth expansion at all, just like a replication system

does, downloading exactly the amount of information

stored during a repair. However, MBR codes require an

expansion factor of ð2n� 2Þ=ð2n� k� 1Þ in the amount
of stored information and are no longer optimal in terms of

their reliability for the given redundancy.

III . MODEL II: EXACT REPAIR

As we discussed, the repair–storage tradeoff for functional

repair can be completely characterized by analyzing the

cutset of the information flow graphs. However, as

Fig. 6. Optimal tradeoff curve between storage � and repair

bandwidth �, for k ¼ 5 and n ¼ 10. HereM¼ 1 and d ¼ n� 1. Note that

traditional erasure coding corresponds to the point (� ¼ 1, � ¼ 0:2).
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mentioned earlier, functional repair is of limited practical
interest since there is a need to maintain the code in sys-

tematic form. Also, under functional repair, significant

system overhead is incurred in order to continually update

repairing-and-decoding rules whenever a failure occurs.

Moreover, the random-network-coding-based solution for

the function repair can require a huge finite-field size to

support a dynamically expanding graph size (due to conti-

nual repair). This can significantly increase the computa-
tional complexity of encoding and decoding. Furthermore,

functional repair is undesirable in storage security appli-

cations in the face of eavesdroppers. In this case, infor-

mation leakage occurs continually due to the dynamics of

repairing-and-decoding rules that can be potentially ob-

served by eavesdroppers [40]. These drawbacks motivate

the need for exact repair of failed nodes. This leads to the

following question: Is it possible to achieve the cutset
lower bound region presented, with the extra constraint of

exact repair?

Recently, significant progress has been made on the

two extreme points of the family of regenerating codes

(and arguably most interesting): the MBR point [33] and

the MSR point [31], [34], [35]. Rashmi et al. [33] showed

that for d ¼ n� 1, the optimal MBR point can be

achieved with a deterministic scheme requiring a small
finite-field size and repair bandwidth matching the cutset

bound of (8).

For the MSR point, Wu and Dimakis [31] showed that

it can be attained for the cases of k ¼ 2 and k ¼ n� 1

when d ¼ n� 1. Subsequently, Shah et al. [34] established

that, for ðk=nÞ > ð1=2Þ þ ð2=nÞ, cutset bounds cannot be

achieved for exact repair under scalar linear codes (i.e.,

� ¼ 1) where symbols are not allowed to be split into
arbitrarily small subsymbols as with vector linear codes.1

For large n, this case boils down to ðk=nÞ > ð1=2Þ. Suh and

Ramchandran [35] showed that exact-MSR codes can

match the cutset bound of (5) for the case of ðk=nÞ � ð1=2Þ
and d � 2k� 1.2 For the in-between regime ðk=nÞ 2
ð1=2; ð1=2Þ þ ð2=nÞ�, Cullina et al. [32] and Suh and

Ramchandran [35] showed that cutset bounds are achiev-

able for the case of k ¼ 3. A construction that can match
the cutset bound for the MBR point for all n; k; d and for

MSR codes if the rate ðk=nÞ � ð1=2Þ was presented by

Rashmi et al. [46].

Finally, it was very recently established that MSR codes

that can match the repair communication cutset bound for

all n; k exist asymptotically. This surprising result was

independently obtained in [35] and [45] by using the

breakthrough technique of symbol extension introduced by

Cadambe and Jafar [29]. It is surprising how symbol
extension, a technique developed to exploit independent

fading of wireless channels, maps exactly to problem of exact

repair at the MSR point. Recent work of Papailiopoulos et al.
[43], [44] explores this connection further. We note that

while this work shows that high-rate exact MSR codes exist,

the constructions of [35] and [45] are not practical since they

require exponential field size and subpacketization.

Concerning the intermediate points beyond MSR and
MBR, finding the fundamental limits of storage and repair

communication remains a challenging open problem. We

now briefly summarize some of these recent results.

A. Exact-MBR Codes

Theorem 2 (Exact-MBR Codes [33]): For d ¼ n� 1, the

cutset lower bound of (8) can be achieved with a deter-

ministic scheme that requires a finite-field alphabet size of

at most ðn� 1Þn=2.

Fig. 7 illustrates an idea through the example of
ðn; k; d; �; �Þ ¼ ð5; 3; 4; 4; 4Þ where the maximum file size

ofM¼ 9 (matching the cutset bound) can be stored. Let

a be nine-dimensional data file. Each node stores four

blocks with the form of atvi, where vi can be interpreted

as a 1-D subspace of data file. We simply write only

subspace vector to represent an actually stored block.

Notice that the degree d is equal to the number of storage

blocks to be repaired, i.e., the number of available equa-
tions matches the number of desired variables for exact

repair of a single node. Hence, for exact repair, there must

be at least one duplicated block between node 1 and node i
for all i 6¼ 1.

This observation motivates the following idea. The idea

is to have other nodes i ði 6¼ 1Þ store each block of node 1,

respectively: nodes 2, 3, 4, and 5 store atv1, atv2, atv3,

and atv4 in its own place, respectively. Notice that for
ensuring repair, it suffices to have only one duplicated

block between any two storage nodes. Hence, node 2 can

store another new three blocks of atv5, atv6, and atv7 in

1This is equivalent to having large block lengths in the classical setting.
Under nonlinear and vector linear codes, tightness of cutset bounds remains
open.

2The idea was inspired by the code structure in [34] where exact repair
is guaranteed for the systematic part only. Indeed, it is shown in [35] that
the code introduced in [34] for exact repair of only the systematic nodes can
also be used to repair the nonsystematic (parity) node failures exactly
provided repair construction schemes are appropriately designed.

Fig. 7. Repairing node 1 for a ð5;3Þ-MBR code. Note that the number of

desired blocks (that need to be repaired) is equal to the number of

available equations (that can be downloaded). Hence, the code should

be designed such that undesired blocks (interference) are totally

avoided.
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the remaining other places. In accordance with the above
procedure, nodes 3, 4, and 5 then copy each of three blocks

in their space, respectively. We repeat this procedure until

10 ð¼ 4þ 3þ 2þ 1Þ blocks are stored in total. One can

see that this construction guarantees exact repair of any

failed node, since at least one block is duplicated between

any two storage nodes and also the duplicated block is

distinct. See the example in Fig. 7.

The remaining issue is now to design these ten
subspace vectors vi, i ¼ 1; . . . ; 10. The detailed construc-

tion comes from the MDS-code property that any three

nodes out of five need to recover the whole data file. Ob-

serve in Fig. 7 that nine distinct vectors can be downloaded

from any three nodes. Hence, any ð10; 9Þ MDS code can

construct these vi’s. In this example, using the parity-

check code defined over GFð2Þ, we can design the vi’s as

follows: vi ¼ ei, 8i ¼ 1; . . . ; 9 and v10 ¼ ½1; . . . ; 1�t. It has
been shown in [33] that this idea can be extended to an

arbitrary ðn; kÞ case.

This construction can be interpreted as an optimal

interference avoidance technique. To see this, observe in

the figure that the number of desired blocks for exact

repair matches the number of available equations that can

be downloaded. Hence, the involvement of any undesired

blocks (interference) precludes exact repair. A natural
question arises: Can this interference–avoidance tech-

nique provide solutions to the other extreme MSR point? It

turns out that a new idea is needed to cover this point.

B. Exact-MSR Codes
The new idea is interference alignment [28], [29]. The

idea of interference alignment is to align multiple inter-

ference signals in a signal subspace whose dimension is

smaller than the number of interferers. Specifically, con-

sider the following setup where a decoder has to decode

one desired signal that is linearly interfered with by two

separate undesired signals. How many linear equations

(relating to the number of channel uses) does the decoder
need to recover its desired input signal? As the aggregate

signal dimension spanned by desired and undesired signals

is at most three, the decoder can naively recover its signal
of interest with access to three linearly independent equa-

tions in the three unknown signals. However, as the de-

coder is interested in only one of the three signals, it can

decode its desired unknown signal even if it has access to

only two equations, provided the two undesired signals are

judiciously aligned in a 1-D subspace. See [28]–[30] for

details.

This concept relates intimately to our repair problem
that involves recovery of a subset (related to the subspace

spanned by a failed node) of the overall aggregate signal

space (related to the entire user data dimension). This

attribute was first observed in [31], where it was shown

that interference alignment could be exploited for exact-

MSR codes.

Fig. 8 illustrates interference alignment for exact

repair of failed node 1 for ðn; k; d; �; �Þ ¼ ð4; 2; 3; 2; 2Þ
where the maximum file size ofM¼ 4 can be stored. We

introduce matrix notation for illustration purposes. Let

a ¼ ða1; a2Þt and b ¼ ðb1; b2Þt be 2-D information-unit

vectors. Let Ai and Bi be 2-by-2 encoding matrices for

parity node i ði ¼ 1; 2Þ, which contain encoding coeffi-

cients for the linear combination of ða1; a2Þ and ðb1; b2Þ,
respectively. For example, parity node 1 stores blocks in

the form of atA1 þ btB1, as shown in Fig. 8. The encoding
matrices for systematic nodes are not explicitly defined

since those are trivially inferred. Finally, we define 2-D

projection vectors v�i’s ði ¼ 1; 2; 3Þ because of � ¼ 1.

Let us explain the interference–alignment scheme.

First, two blocks in each storage node are projected

into a scalar with projection vectors v�i’s. By connect-

ing to three nodes, we get: vt
�1b; ðA1v�2Þtaþ ðB1v�2Þtb;

ðA2v�3Þtaþ ðB2v�3Þtb. Here the goal is to decode two
desired unknowns out of three equations including four

unknowns. To achieve this goal, we need

rank ðA1v�2Þt
ðA2v�3Þt
� �� �

¼ 2 rank
vt
�1

ðB1v�2Þt
ðB2v�3Þt

2
4

3
5

0
@

1
A ¼ 1:

Fig. 8. Repairing a ð4;2Þ-MSR code, when node 1 fails [31].
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The second condition can be met by setting v�2 ¼ B�1
1 v�1

and v�3 ¼ B�1
2 v�1. This choice forces the interference

space to be collapsed into a 1-D linear subspace, thereby

achieving interference alignment. On the other hand, we

can satisfy the first condition as well by carefully choosing

the Ai’s and Bi’s. For exact repair of node 2, we can apply

the same idea. For parity node repair, we can remap parity

node information and then apply the same technique.

It turned out that this idea cannot be generalized to
arbitrary ðn; kÞ case: it provides the optimal codes only for

the case of k ¼ 2. Recently, significant progress has been

made: for the case of ðk=nÞ � ð1=2Þ, it has been shown

that there is no price with exact repair for attaining the

cutset lower bound of (5).

Theorem 3 (Exact-MSR Codes [35]): Suppose the MDS

code rate is at most 1/2, i.e., ðk=nÞ � ð1=2Þ and the degree
d � 2k� 1. Then, the cutset bound of (5) can be achieved

with interference alignment. The achievable scheme is

deterministic and requires a finite-field alphabet size of at

most 2ðn� kÞ.
A more sophisticated idea arises to cover this case:

simultaneous interference alignment. Fig. 9 illustrates the

interference–alignment technique through the example of

ðn; k; d; �; �Þ ¼ ð6; 3; 5; 3; 3Þ where M¼ 9. Let a ¼
ða1; a2; a3Þt, b ¼ ðb1; b2; b3Þt, and c ¼ ðc1; c2; c3Þt be 3-D

information-unit vectors. Let Ai, Bi, and Ci be 3-by-3

encoding matrices for parity node i ði ¼ 1; 2; 3Þ. We define

3-D projection vectors v�i’s ði ¼ 1; . . . ; 5Þ.
By connecting to five nodes, we get five equations

shown in the figure. In order to successfully recover the

desired signal components of a, the matrix associated with

a should have full rank of 3, while the other matrices
corresponding to b and c should have rank 1, respectively.

In accordance with the ð4; 2Þ code example in Fig. 8, if one
were to set v�3 ¼ B�1

1 v�1, v�4 ¼ B�1
2 v�2, and v�5 ¼

B�1
3 v�1, then it is possible to achieve interference align-

ment with respect to b. However, this choice also specifies

the interference space of c. If the Bi’s and Ci’s are not

designed judiciously, interference alignment is not guar-

anteed for c. Hence, it is not evident how to achieve

interference alignment at the same time.

In order to address the challenge of simultaneous in-
terference alignment, a common eigenvector concept is

invoked. The idea consists of two parts: 1) designing the

ðAi;Bi;CiÞ’s such that v1 is a common eigenvector of the

Bi’s and Ci’s, but not of Ai’s
3; and 2) repairing by having

survivor nodes project their data onto a linear subspace

spanned by this common eigenvector v1. We can then

achieve interference alignment for b and c at the same

time, by setting v�i ¼ v1; 8i. As long as ½A1v1;A2v1;
A3v1� is invertible, we can also guarantee the decodability

of a. See Fig. 9.

The challenge is now to design encoding matrices to

guarantee the existence of a common eigenvector while

also satisfying the decodability of desired signals. The

difficulty comes from the fact that in the ð6; 3; 5Þ code

example, these constraints need to be satisfied for all six

possible failure configurations. The structure of elementary
matrices (generalized matrices of Householder and Gauss

matrices) gives insights into this. To see this, consider a

3-by-3 elementary matrix A

A ¼ uvt þ �I (9)

Fig. 9. Repairing the ð6;3Þ-MSR code when a systematic node fails. A common eigenvector concept is employed to achieve interference

alignment simultaneously.

3Of course, five additional constraints also need to be satisfied for the
other five failure configurations for this ð6; 3; 5Þ code example.
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where u and v are 3-D vectors. Note that the dimension of
the null space of v is 2 and the null vector v? is an

eigenvector of A, i.e., Av? ¼ �v?. This motivates the

following structure:

A1 ¼u1v
t
1 þ �1I

B1 ¼u1v
t
2 þ �1I

C1 ¼u1v
t
3 þ �1I

A2 ¼u2v
t
1 þ �2I

B2 ¼u2v
t
2 þ �2I

C2 ¼u2v
t
3 þ �2I

A3 ¼u3v
t
1 þ �3I

B3 ¼u3v
t
2 þ �3I

C3 ¼u3v
t
3 þ �3I (10)

where vi’s are 3-D linearly independent vectors and so are

ui’s. The values of the �i’s, �i’s, and �i’s can be arbitrary

nonzero values. For simplicity, we consider the simple case

where the vi’s are orthonormal, although these need not be

orthogonal, but only linearly independent. We then see
that 8i ¼ 1; 2; 3

Aiv1 ¼�iv1 þ ui

Biv1 ¼ �iv1

Civ1 ¼ �iv1: (11)

Importantly, notice that v1 is a common eigenvector of the

Bi’s and Ci’s, while simultaneously ensuring that the

vectors of Aiv1 are linearly independent. Hence, setting

v�i ¼ v1 for all i, it is possible to achieve simultaneous
interference alignment while also guaranteeing the de-

codability of the desired signals. On the other hand, this

structure also guarantees exact repair for b and c. We use

v2 for exact repair of b. It is a common eigenvector of the

Ci’s and Ai’s, while ensuring ½B1v2;B2v2;B3v2� invert-

ible. Similarly, v3 is used for c.

Parity nodes can be repaired by drawing a dual rela-

tionship with systematic nodes. The procedure has two
steps. The first is to remap parity nodes with a0, b0, and c0,
respectively. Systematic nodes can then be rewritten in

terms of the prime notations

at ¼a0tA01 þ b0tB01 þ c0tC01

bt ¼a0tA02 þ b0tB02 þ c0tC02

ct ¼a0tA03 þ b0tB03 þ c0tC03 (12)

where the newly mapped encoding matrices ðA0i;B0i;CiÞ’s
are defined as

A01 A02 A03
B01 B02 B03
C01 C02 C03

2
4

3
5 :¼

A1 A2 A3

B1 B2 B3

C1 C2 C3

2
4

3
5
�1

: (13)

With this remapping, one can dualize the relationship

between systematic and parity node repair. Specifically, if

all of the A0i ’s, B0i ’s, and C0i ’s are elementary matrices and

form a similar code structure as in (10), exact repair of the

parity nodes becomes transparent. It was shown that a
special relationship between ½u1;u2;u3� and ½v1;v2;v3�
through the correct choice of ð�i; �i; �iÞ’s can also

guarantee the dual structure of (10) [35].

Fig. 10 shows a numerical example for exact repair of

systematic node 1 [Fig. 10(a)] and parity node 1

[Fig. 10(b)] where ½v1;v2;v3� ¼ ½2; 2; 2; 2; 3; 1; 2; 1; 3�.
This example illustrates the code structure that generalizes

the code introduced in [34]. See [35] for details. This
generalized code structure allows for a much larger design

space for exact repair.

Notice that the projection vector solution for system-

atic node repair is simple: v�i ¼ 2�1v1 ¼ ð1; 1; 1Þt; 8i.
Note that this choice enables simultaneous interference

alignment, while guaranteeing the decodability of a.

Notice that ðb1; b2; b3Þ and ðc1; c2; c3Þ are aligned into

b1 þ b2 þ b3 and c1 þ c2 þ c3, respectively, while three
equations associated with a are linearly independent.

The dual structure also guarantees exact repair of parity

nodes. Importantly, we have chosen code parameters from

the generalized code structure of [35] such that parity node

repair is quite simple. As shown in Fig. 10(b), downloading

only the first equation from each survivor node ensures

exact repair. Notice that the five downloaded equations

contain only five unknown variables of ða01; a02; a03; b01; c01Þ
and three equations associated with a0 are linearly inde-

pendent. Hence, we can successfully recover a0.
It has been shown in [35] that this alignment technique

can be easily generalized to arbitrary ðn; k; dÞ where

n � 2k and d � 2k� 1.

IV. MODEL III: EXACT REPAIR OF THE
SYSTEMATIC PART

In this section, we review the constructive scheme given in

[36], which gives a construction of systematic ðn; kÞ-MDS
codes for 2k � n that achieves the minimum repair

bandwidth when repairing from kþ 1 nodes.

The scheme is illustrated in Fig. 11. Let F denote the

finite field where the code is defined in. In Fig. 11, x 2 F2k

is a vector consisting of the 2k original information

symbols. Each node stores two symbols xTui and xTv i. The

vectors fuig do not change over time but fv ig change as
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the code repairs. We maintain the invariant property that
the 2n length-2k vectors fui; v ig form an ð2n; 2kÞ-MDS

code; that is, any 2k vectors in the set fui; v ig have full

rank 2k. This certainly implies that the n nodes form an

ðn; kÞ-MDS code. We initialize the code using any ð2n; 2kÞ
systematic MDS code over F.

Now we consider the situation of a repair. Without loss

of generality, suppose node n failed and is repaired by

accessing nodes 1; . . . ; kþ 1. As illustrated in Fig. 11, the
replacement node downloads �ix

Tui þ �ix
Tv i from each

node of f1; . . . ; kþ 1g. Using these kþ 1 downloaded
symbols, the replacement node computes two symbols

xTun and xTv 0n as follows:

Xkþ1

i¼1

�ix
Tui þ �ix

Tv i

� �
¼ xTun (14)

Xkþ1

i¼1

�i �ix
Tui þ �ix

Tv i

� �
¼ xTv 0n: (15)

Note that v 0n is allowed to be different from vn; the pro-
perty that we maintain is that the repaired code continues

to be an ð2n; 2kÞ-MDS code. Here f�i; �i; �ig and v 0n are

the variables that we can control. The following theorem

shows that we can choose these variables so that (14) and

(15) are satisfied and the repaired code continues to be an

ð2n; 2kÞ-MDS code.

Theorem 4 [36]: Let F be a finite field whose size is
greater than

d0 ¼ 2
2n� 1

2k� 1

� �
: (16)

Fig. 10. Illustration of exact repair for a ð6;3;5Þ E-MSR code defined over GFð4Þ where a generator polynomial gðxÞ ¼ x2 þ x þ 1. The solution

for systematic node repair is simple: setting all of the projection vectors as ð1; 1; 1Þt . This enables simultaneous interference alignment,

while guaranteeing the decodability of a. For our carefully chosen parameters, parity node repair is much simpler. For the repair, we download

only the first equation from each survivor node to solve five linear equations containing only five unknowns. (a) Exact repair of systematic

node 1. (b) Exact repair of parity node 1.

Fig. 11. Illustration of the scheme in [36].
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Suppose the old code specified by fui; v ig is an ð2n; 2kÞ-
MDS code defined over F. When node n fails, there exists

an assignment of the variables f�i; �i; �ig such that (14)

and (15) are satisfied and the repaired code continues to be

an ð2n; 2kÞ-MDS code.

Corollary 1 [A Systematic ðn; kÞ-MDS Code]: The above

scheme gives a construction of systematic ðn; kÞ-MDS

codes for 2k � n that achieves the minimum repair
bandwidth when repairing from kþ 1 nodes.

Proof: Consider n � 2k. Note that in the above

scheme, we can initialize the code fu1; . . . ; un; v1; . . . ; vng
with any ð2n; 2kÞ-MDS code. In particular, we can use a

systematic code and assign the 2k systematic code vectors

to fu1; . . . ; u2kg. Since fu1; . . . ; ung do not change over

time, the code remains a systematic ð2n; 2kÞ-MDS code.

Thus, the n nodes form a systematic ðn; kÞ-MDS code. The
code repairs a failure by downloading kþ 1 blocks from

d ¼ kþ 1 nodes, with the total file sizeM¼ 2k, achieving

the cutset bounds derived in Section II. h

V. DISCUSSION AND OPEN PROBLEMS

We provided an overview of recent results about the prob-

lem of reducing repair traffic in distributed storage systems

based on erasure coding. Three versions of the repair prob-

lems are considered: exact repair, functional repair, and exact
repair of systematic parts. In the exact repair model, the lost

content is exactly regenerated; in the functional repair

model, only the same MDS-code property is maintained
before and after repairing; in the exact repair of systematic

parts, the systematic part is exactly reconstructed but the

nonsystematic part follows a functional repair model.

The functional repair problem is in essence a problem

of multicasting from a source to an unbounded number of

receivers over an unbounded graph. As we showed there is

a tradeoff between storage and repair bandwidth and the

two extremal points are achieved by MBR and MSR codes.
The repair bandwidth is characterized by the min-cut

bounds and therefore the functional repair problem is well

understood.

Problems that require exact repair correspond to net-
work coding problems having sinks with overlapping sub-

set demands. For such problems, cutset bounds are not

tight in general and linear codes might not even suffice

[22]. The recent work we discussed [33] showed that for

MBR codes the repair bandwidth given by the cutset bound

is achievable for the interesting case of d ¼ n� 1. The

minimum-storage point seems harder to understand.

The best known constructions [35] we presented match
the cutset bound for k=n � 1=2 for the interesting regime

of connectivity d 2 ½2k� 1; n� 1�. A corresponding neg-

ative result [34] established that, for ðk=nÞ > ð1=2Þ þ
ð2=nÞ, the cutset bound cannot be achieved by scalar

interference–alignment-based linear schemes. However,

the symbol extension [35], [45] method showed that the

cutset bound can be asymptotically approached for very

large subpacketization �.
Table 1 summarizes what is known for the repair

bandwidth region and an online editable bibliography

(Wiki) can be found online [1]. All the cases marked

correspond to regimes where the cutset bound is known to

be achievable. To the best of our knowledge there are no

information-theoretic upper bounds other than the cutset

bound and it would be very interesting to see if the region

could be universally achievable. A reasonable conjecture is
that the whole tradeoff region can be asymptotically ap-

proached with sufficient subpacketization and field size.

In addition to the complete characterization of the

repair rate region for storage, there are several other

interesting open problems.

OP1: The first problem is to investigate the influence of

network topology, as initiated recently [38] for trees. All

the prior work so far has been assuming a complete con-
nectivity topology for the storage network. However, most

networks of interest will have different communication

capacities and sparse topologies. For these cases, commu-

nication will have a different cost and it would be

interesting to formulate this as an optimization problem.

OP2: While most of this work has focused on the size of

communicated packets, to create these packets the amount

of information that must be read from the storage nodes is

Table 1 Known Results for Exact MBR and MSR Codes. All Points Correspond to Regimes Where the Cutset Bound Region Is Known to be Achievable

Dimakis et al. : A Survey on Network Codes for Distributed Storage

486 Proceedings of the IEEE | Vol. 99, No. 3, March 2011



large. It would be very interesting to characterize the min-
imum communication that must be read to repair a code.

Most research on distributed storage has focused on

designing MDS (or near-MDS) codes that are easily re-

pairable. A different approach is to find ways to repair

existing codes beyond the naive approach of reconstructing

all the information. This is especially useful to leverage the

benefits of known constructions such as reduced update

complexity and efficient decoding under errors. The
practical relevance of repairing a family of codes with a

given structure depends on the applicability of this family

in distributed storage problems. While the problem can be

studied for any family of error correcting codes, two cases

that are of special interest are array codes and Reed–

Solomon codes.

OP3 (Repairing array codes): Array codes are widely

used in data storage systems [11], [12], [42]. For the special
case of evenodd codes [10], a repair method that improves

on the naive method of reconstructing the whole data

object by a factor of 0.75 was established in [14]. There is

still a gap from the cutset lower bound and it remains open

if the minimal repair communication can be achieved if we

enforce the Evenodd code structure.

OP4 (Repairing Reed–Solomon codes): Another impor-

tant family is Reed–Solomon codes [6]. A repair strategy
that improves on the naive method of reconstructing the

whole data object for each single failure would be directly

applicable to storage systems that use Reed–Solomon

codes. The repair of Reed–Solomon codes poses some

challenges: since each encoded block corresponds to the

evaluation of a polynomial, during repair, a partial evalua-
tion would have to be communicated from each surviving

node. This step would require a nonlinear operation and it

is unclear how to create the missing evaluation from par-

tial evaluations at the other n� 1 points. One way around

this would be to use the idea of subpacketization to allow

the communication of units smaller than the stored packet

and stay within the framework of linear codes.

OP5: A coding theory problem that has been studied in
depth is that of locally decodable codes [41]. The issue

there is to recover a symbol by reading a small subset of

other (noisy) symbols. This is very similar to exact repair

with the important difference that during repair the

newcomer is accessing many nodes and receives small

parts of symbols. In addition, repair is assuming noiseless

access to other encoded symbols. Connecting exact repair

to the deep theory of locally decodable codes seems like an
interesting research direction.

OP6: The issues of security and privacy are important

for distributed storage. When coding is used, errors can be

propagated in several mixed blocks through the repair

process [39] and an error-control mechanism is required.

A related issue is that of privacy of the data by information

leakage to eavesdroppers during repairs [40]. h
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