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Abstract. The goal of neural reprogramming is to alter the function-
ality of a fixed neural network just by preprocessing the input. In this
work, we show that Generative Adversarial Networks (GANs) can be re-
programmed by shaping the input noise distribution. One application of
our algorithm is to convert an unconditional GAN to a conditional GAN.
We also empirically study the applicability, feasibility, and limitation of
GAN reprogramming.
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1 Introduction

While deep neural networks have revolutionized a wide range of areas, their
flexibility is limited as they cannot perform other tasks that are not taken into
account during training. Various techniques have been proposed for general-
purpose neural networks. Multi-task learning designs a versatile neural network
that can perform multiple tasks at the same time when the target tasks are
known at training time [25]. Transfer learning can help adapt to another task if
the new task is similar enough to the original task [22]. For instance, given a new
task, one can slightly modify the parameters of a pre-trained neural network so
that it can perform well on the new task [31].

Recently, [5] proposes a new approach to design general-purpose neural net-
works, which they call neural reprogramming. The goal of neural reprogramming
is to modify the functionality of a pre-trained neural network just by prepro-
cessing the input. For instance, one can turn an ImageNet classifier into an
MNIST classifier just by preprocessing input images. Compared to the standard
approaches (multi-task learning and transfer learning), neural reprogramming
does not assume any prior knowledge about target tasks and allows for modular
design of a large neural network.

? This material is based upon work supported by the Air Force Office of Scientific
Research under award number FA2386-19-1-4050.
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Fig. 1: GAN reprogramming. (a) Given a GAN g(·) that generates Xsource (e.g.,
CIFAR10 images) with the latent random variable Zsource ∼ Fsource, reprogram-
ming GAN aims to design another distribution Ftarget such that the generator
fed by Ztarget ∼ Ftarget yields Xtarget (e.g., FMNIST images). (b) GAN repro-
gramming algorithm.

This motivates us to investigate reprogramming ideas beyond the classifi-
cation setting. Specifically we focus on unsupervised learning that has recently
been revolutionized via Generative Adversarial Networks (GANs) [8]. A GAN is
trained with a latent variable (input noise) with a certain distribution, e.g., uni-
form or Gaussian distributions. Denote the trained generator by g(·), the random
latent variable by Zsource, and its distribution by Fsource. For a well-trained GAN,
g(Zsource) follows a similar distribution to that of the original training data, say
Xsource. That is, g(Zsource) ≈ Xsource if Zsource ∼ Fsource, where the notion of
‘≈’ will be defined formally soon. The goal of GAN reprogramming is finding
another latent variable distribution Ftarget such that g(Ztarget) ≈ Xtarget when
Ztarget ∼ Ftarget. See Fig. 1a for visual illustration. Consider a GAN trained with
CIFAR10 images. Assume that the trained generator is able to produce diverse
CIFAR10-like images when Zsource follows Fsource = Uniform. Reprogramming
GAN wishes to find a new latent variable distribution Ftarget so that the samples
of g(Ztarget) look like Fashion-MNIST images.

In this work, we propose a simple GAN reprogramming algorithm and show
that it can convert unconditional GANs to conditional GANs without labeled
datasets. We also study its applicability, feasibility, and limitation via a variety
of controlled experiments.

2 Related Work

GANs Goodfellow et al. [8] propose the first GAN algorithm, in which two
neural networks called generator and discriminator are alternatively trained.
The goal of the generator is to produce realistic fake samples, while the goal
of the discriminator is to discriminate fake samples from real ones. It has been
shown that the original GAN algorithm minimizes the Jensen-Shannon (JS)
divergence between the distribution of fake samples and that of real samples.
The Wasserstein GAN (WGAN) is similar to the original GAN, but its goal is to
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minimize the Wasserstein distance instead of the JS divergence [1]. It is shown
that the WGAN algorithm is more stable than the original GAN algorithm.
In the WGAN algorithm, two neural networks, called generator and critic, are
trained. The role of the generator is the same as before while the role of critic is
to approximate the Wasserstein distance. WGAN-GP (WGAN gradient penalty)
uses a gradient-based regularization method to satisfy a certain constraint on
the Lipshitz constant [10].

Multi-task learning Multi-task learning (MTL) has been successful in many ap-
plications of machine learning [25]. MTL is particularly useful when multiple
tasks are similar to each other. The most basic algorithm is based on parameter
sharing. That is, one may train a neural network with multiple last layers for
different tasks using a combined dataset [2]. This approach is also called ‘hard
parameter sharing’ since it shares exactly the same parameters (except for the
last layer) between multiple tasks. On the other hand, in soft parameter sharing,
each task maintains its own neural network while keeping multiple neural net-
works close to each other according to a certain metric [4, 30]. Differently from
MTL, neural reprogramming can be applied to a new task without needing to
know the new task at training time.

Transfer learning Transfer learning exploits the knowledge from previous learn-
ing experiences to better solve future tasks [22]. The most popular algorithm
is based on sharing the weights of a neural network [12, 21]. That is, given a
neural network trained on one task, one simply takes the lower part of the neu-
ral network (closer to the input end), treating it as a generic feature extractor.
One then trains the remaining part of the neural network. If the original and
new tasks are similar enough, such algorithms would perform well. On the other
hand, neural reprogramming does not modify the parameters of the given neural
network and only prepends the input processing module, allowing for modular
design of a general-purpose neural network. To see this, consider N GANs that
generate similar outputs. With reprogramming, one can just store the core GAN
with N (small) input processors, significantly saving the memory/storage cost.

Neural reprogramming The concept of neural reprogramming was introduced
by Elsayed et al. [5]. Specifically, they design an input preprocessor so that a
neural network trained for classifying certain types of images can be used to
classify other types of images. For instance, they show that it is possible to
reprogram an ImageNet classifier as an MNIST classifier. A few recent studies
are somewhat related to GAN reprogramming. Nguyen et al. propose an MCMC-
based algorithm that can be used to maximize the activation of a carefully chosen
neuron [20]. While this algorithm is shown to generate novel images using a fixed
GAN, it only works with a specific type of GAN and cannot be applied to GANs
trained with standard methodologies. Furthermore, it requires a classifier pre-
trained on the target dataset and computationally expensive as it involves the
joint training of three neural networks. Engel et al. propose an algorithm for
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conditioning an unconditional Variational Autoencoder (VAE) [6]. On the other
hand, our algorithm can reprogram a GAN even across different datasets.

Adversarial robustness Recently, it is shown that deep neural networks can be
easily fooled when the input is perturbed even with imperceptibly small noise,
bringing adversarial robustness of deep neural networks into question [26, 9].
Through the lens of robust optimization, Madry et al. [18] propose an adver-
sarial training algorithm that can make machine learning models robust against
adversarial attacks. While most of the studies focus on the robustness of classi-
fiers, a notable exception is made in recent studies [13, 23], where attack scenarios
for GANs have been discussed. They show that one can manipulate the latent
variable so that a conditional GAN’s generated output becomes inconsistent with
the specified label. Moreover, they show that one can manipulate the latent code
so that the generated sample is similar to a single target. Using our notation,
this is equivalent to finding a value of ztarget such that g(ztarget) looks like a
target sample. This is similar to our work in that it finds latent codes that make
the generator produce different types of data. A key distinction, however, is that
instead of finding a single value of ztarget, we find a distribution of Ztarget so that
one can generate an arbitrary number of such samples by drawing latent codes
from Ztarget ∼ Ftarget.

3 Reprogramming GANs

3.1 Preliminaries

In this section, we first recall the definition of elementary divergences between
two probability measures Pr and Pg. The JS divergence is defined asDJS(Pr, Pg) :=
1
2DKL(Pr‖Pm) + 1

2DKL(Pg‖Pm), where DKL is the Kullback-Leibler (KL) diver-
gence and Pm = (Pr + Pg)/2. The first-order Wasserstein distance is

W (Pr, Pg) := inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [‖x− y‖],

where Π(Pr, Pg) is the set of all joint distributions whose marginals are respec-
tively Pr and Pg. Slightly abusing notation, we write W (X,Y ) for W (PX , PY )
if X ∼ PX and Y ∼ PY . By the Kantrovich-Rubinstein duality [27],

W (Pr, Pg) = sup
‖f‖L≤1

Ex∼Pr
[f(x)]− Ex∼Pg

[f(x)], (1)

where ‖f‖L is the Lipschitz constant of f .

3.2 Problem Formulation and Algorithm

We formally define the problem of GAN reprogramming and describe our algo-
rithm. Assume that a generator g : Rdi → Rdo , which produces do-dimensional
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data from di-dimensional latent codes is given. Consider a latent variable dis-
tribution Fsource used for training. Given an unlabeled dataset Xtarget, we solve
the following optimization problem

min
Ftarget

W (g(Ztarget), Xtarget), (2)

where Ztarget ∼ Ftarget is a di-dimensional random vector. If we can find Ftarget

such that W (g(Ztarget), Xtarget) ' 0, it implies that the given GAN can be
reprogrammed to produce Xtarget instead of Xsource by drawing latent codes
according to Ftarget instead of Fsource.

We now describe our reprogramming algorithm. Due to the Kantrovich-
Rubinstein duality, we have

min
Ftarget

sup
‖f‖L≤1

EX∼Xtarget
[f(X)]− EZ∼Ztarget

[f(g(Z))], (3)

where ‖f‖L is the Lipschitz constant of f . In order to parameterize the distri-
bution of Ztarget and to obtain samples from it, we apply a deep neural network
to transform a uniform random variable into another random variable. That
is, we first draw a uniform random variable Zseed ∼ U [0, 1]d (Zseed ∼ U , for
short), and then apply a code generator hθ, hθ : Rd → Rdi , parameterized by θ.
Here, d denotes the dimensionality of a random vector used to generate latent
codes. Similarly, define a parameterized family of all functions {fw}w∈W that
are 1-Lipschitz. Using these, (3) becomes

min
θ

sup
fw∈W

EX∼Xtarget
[fw(X)]− EZseed∼U [fw(g(hθ(Zseed)))]. (4)

Since hθ and fw are parameterized via neural networks, one can solve the
above optimization problem via gradient-based methods. Our algorithm is es-
sentially a simple variation of WGAN-GP [10], where the key difference is that
the outer optimization problem is optimized over hθ instead of g, which is fixed
in our setting.

We now describe our algorithm with further details for the sake of complete-
ness. We first draw a minibatch of m pairs of a real data point x and a random
number z for generating a latent code. Denote the generated output g(hθ(x))
by x̃. We now define the loss function for the i-th pair, denoted by L(i). The
loss function contains the negative of the objective function since our goal is to
maximize it. Moreover, in order to satisfy the constraint fw ∈ W, we use the
gradient penalty. Specifically, we choose a random data point, say x̂, lying in
between the real data point x and the fake data point x̃. This can be done by
taking a weighted sum of x and x̃, i.e., x̂ = εx+ (1− ε)x̃, where ε ∼ U [0, 1]. We
then compute the gradient of f measured at x = x̂. Using λ as the coefficient
for gradient penalty, the total loss function for the i-th pair is

L(i) := fw(g(hθ(z)))− fw(x) + λ(‖∇xfw‖ − 1)2. (5)

Using the minibatch of m pairs, we can compute the batch average loss
1
m

∑m
i=1 L

(i). We then compute the gradient of the batch loss with respect to
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w and use the Adam optimizer to update w. We run this for ncritic iterations
to closely approximate the Wasserstein distance. We then solve the outer opti-
mization problem by treating that the current cost function is close to the true
Wasserstein distance, i.e., the first-order Wasserstein distance is well approxi-
mated with the current choice of fw. While fw being fixed, we draw a minibatch
of m generated data points, and then back-prop the cost function to find the
gradient with respect to θ. We then apply the Adam optimizer to update θ.
See Fig. 1b for the visual illustration of our algorithm. The pseudocode of GAN
reprogramming algorithm is given in Algorithm 1.

Algorithm 1: GAN Reprogramming

Data: pretrained generator g(·) and target data Xtarget

Result: code generator hθ(·)
initialize w and θ;
while θ not converged do

for t← 1 to ncritic do
for i← 1 to m do

sample x ∼ Xtarget, z ∼ U , and ε ∼ U [0, 1];
x̃← g(hθ(z)), x̂← εx+ (1− ε)x̃;

L(i) ← fw(g(hθ(z)))− fw(x) + λ(‖(∇xfw)x̂‖ − 1)2;

w ← Adam(∇w 1
m

∑m
i=1 L

(i));

sample a batch of noise z(i)
m
i=1, z(i) ∼ U, ∀i;

θ ← Adam(−∇w 1
m

∑m
i=1 fw(g(hθ(z)));

3.3 Toy Example

Consider a fixed generator

g(Z) = σ(10(Z − 0.8))− (1− σ(10(Z − 0.8))),

where σ(·) is the sigmoid function. Assume that our goal is to reprogram this
generator given a target random variable

Xtarget = σ(10(X ′ − 0.5))− (1− σ(10(X ′ − 0.5))),

where X ′ ∼ U [0, 1]. See Fig. 2b for its density function, which has two modes
at X = ±1. Consider Zseed ∼ U [0, 1] and hθ(Z) = Z + b, where b is a learnable
bias. When b = 0, g(hθ(Zseed)) ' −(1 − σ(10(Z − 0.8))). That is, the output
of the reprogrammed does not properly capture the mode at X = 1. However,

when b = b? = 0.3, we have g(hθ(Zseed))
d
=Xtarget, i.e., it perfectly recovers the

target distribution.
Shown in Fig. 2 are the results of our GAN reprogramming algorithm applied

to this setting. We can see that b→ b? from Fig. 2a, and the distribution of the



Reprogramming GANs via Input Noise Design 7

0 10 20 30 40 50 60
Reprogramming epochs

0.0
0.1
0.2
0.3
0.4

b t

(a) Evolution of b

Initial 10 epochs 20 epochs 30 epochs

40 epochs 50 epochs 60 epochs

Target

(b) Evolution of output distribution

Fig. 2: GAN reprogramming results for the toy example.

reprogrammed GAN’s outputs converges to that of the target distribution as
reprogramming algorithm proceeds from Fig. 2b.

4 Experiments and Analysis

4.1 Setting

For all of our experiments, we use Adam with (α, β1, β2) = (10−4, 0, 0.9) and set
ncritic = 10, m = 32, and λ = 1. The algorithm is run for 100 to 500 epochs.

We consider the following image datasets: MNIST [15], Fashion-MNIST (or
FMNIST) [29], SVHN [19], CIFAR10 [14], CelebA [17], Cartoon Set (a collection
of 2D cartoon avatar images) [24], and the Mel-Frequency Cepstrum (MFC) of
drum sound clips [3]. When we reprogram a GAN between color images and
grayscale images, we transform the grayscale images into RGB ones. For each
labeled dataset D, we denote by Di the subset of D containing of images whose
label is i. Thus, we have MNISTi, FMNISTi, SVHNi, and CIFAR10i for i ∈
{0, 1, . . . , 9}.

We denote the generator g trained with dataset D by gD and call it ‘D-
GAN’. Each D-GAN is obtained via the standard WGAN-GP algorithm. We
use standard neural network architectures for generator and discriminator. For
the generator, we pass a 62-dimensional latent code (di = 62) through two fully
connected layers followed by two transposed convolution layers: 1) fc1024, 2)
fc8WH, 3) TrConv-4x4 (64 feature maps) 4) TrConv-4x4 (1 feature map), where
(W,H) denotes the image dimensions. For the discriminator, we pass an image of
size W by H through two convolution layers followed by two fully connected lay-
ers: 1) Conv-4x4 (64 feature maps), 2) Conv-4x4 (128 feature maps), 3) fc1024,
4) fc1. For CelebA and Cartoon Set, we use deeper architectures with four Tr-
Conv’s and Conv’s each. In order to generate a latent code from d-dimensional
random seed, we use a six-layer neural network: 1) fc500, 2) fc500, 3) fc500, 4)
fc500, 5) fc500, 6) fc62.

Case 1: GAN conditioning via reprogramming The first scenario we consider is
GAN conditioning via reprogramming. That is, we reprogram a D-GAN as a
Di-GAN for D ∈ {MNIST,FMNIST,SVHN} and i ∈ {0, 1, . . . , 9}. For instance,
when D = MNIST and i = 0, the goal is to convert an MNIST-GAN into an
MNIST0-GAN, which only produces 0 images.
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Case 2: GAN reprogramming across different datasets We also apply our repro-
gramming algorithm across different datasets: SVHN to MNISTi, FMNIST to
MNISTi, CIFAR10 to MNISTi, CIFAR10 to FMNISTi, CIFAR10 to CelebA,
CelebA to Cartoon Set, and CIFAR10 to Drum Sound Clips.

4.2 Qualitative Results

i = 0 1 2 3 4 5 6 7 8 99

MNIST
) MNISTi

FMNIST
) FMNISTi

SVHN
) SVHNi

Fig. 3: GAN conditioning via reprogramming. Row corresponds to training data,
and column corresponds to the target label.

Fig. 4: The latent code distribution of reprogrammed GANs. We visualize the
empirical distribution of the first two dimensions of latent code (Z1 and Z2).
Column i is for FMNISTi. Note that the original latent code is uniformly dis-
tributed in [0, 1]× [0, 1].

Shown in Fig. 3 are the experimental results for case 1. Each row repre-
sents source/target dataset D and each column represents different label i for
i ∈ {0, 1, . . . , 3}. Note that our algorithm successfully reprogram unconditional
GANs as conditional GANs. To further confirm that each reprogrammed GAN
successfully learned its corresponding input noise distribution, we sample 1000
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random input noise according to Ftarget and visualize the distribution of the first
two entries in Fig. 4. Column i is for Ftarget learned with FMNIST-i. Observe
that Ftarget is not a uniform distribution while Fsource is.

i = 0 1 2 3 4 5 6 7 8 99

SVHN
) MNISTi

FMNIST
) MNISTi

CIFAR10
) MNISTi

CIFAR10
) FMNISTi

Fig. 5: GAN reprogramming across different datasets. Row corresponds to
source/target data, and column corresponds to the label.

Shown in Fig. 5 are the experimental results for case 2. The reprogrammed
GANs generate reasonable images but also show some inherent limitations. First,
the texture remains the same as the original GAN. Also, if the given GAN learned
a limited set of structures, the reprogrammed GAN attempts to generate target
images by distorting the learned structures. For instance, consider the second row
(FMNIST to MNIST) of Fig. 5. Since the FMNIST-GAN is able to draw fashion
items only, the reprogrammed GAN draws digit images maintaining fashion item
structures. For instance, it generates digit-2 images by distorting shoes.

Fig. 6: MFC of real and synthetic audio clips.

We also apply reprogramming algorithm to a CIFAR10-GAN so that it can
generate drum sound clips. The Mel-Frequency Cepstrum of the real drum sound
clips (left) and those of the synthetic ones generated by a reprogrammed GAN
(right) are shown in Fig. 6. Even though the MFC images look very differ-
ently from typical CIFAR10 images, our reprogramming algorithm successfully
generates realistic MFC images. As an additional experiment, we reprogram a
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Fig. 7: CIFAR10 to CelebA (left) and a CelebA to Cartoon (right).

CIFAR10-GAN as a CelebA-GAN and a CelebA-GAN to a Cartoon-GAN. From
the left panel of Fig. 7, one can see that a reprogrammed GAN is able to gen-
erate human-face-like images even though it is originally trained with CIFAR10
images. On the right hand side, the reprogrammed GAN generates cartoon-like
face images with white background, resembling the Cartoon dataset.

Comparison with an existing method We also evaluate the latent code sampling
algorithm, called PPGN [20], to generate MNIST0 images with a pre-trained
FMNIST-GAN. Shown in Fig. 8 are the sample outputs of PPGN. Compared
to the images generated by our reprogramming algorithm, the examples gener-
ated by PPGN barely resemble the digit 0. The poor performance of PPGN
can be attributed to the fact that PPGN is designed specifically for GANs
trained under a particular method called Joint PPGN. Furthermore, the sam-
pling procedure of PPGN involves an iterative procedure, requiring many rounds
of forward/backward-passes to generate a sample, while our sampling operation
requires a single forward-pass.

Fig. 8: MNIST0 generated from FMNIST-GAN + PPGN [20].
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Fig. 9: Practical analysis of GAN reprogramming. Xsource is MNIST and Xtarget

is MNIST0. (a) The FID between g(hθ(Zseed)) and Xtarget (blue) and the FID
between g(hθ(Zseed)) and Xsource (orange). (b) Reprogramming vs transfer. (c)
Reprogrammability as a function of d. (d) Reprogrammability as a function of
the number of hidden neurons in each layer of hθ.

4.3 Fréchet Inception Distance (FID)

In Fig. 10a, we plot the Fréchet Inception Distance (FID) [11] between the output
generated by a reprogrammed GAN (g(hθ(Zseed))) and the target distribution
(Xtarget). One can observe that the FID decreases as the reprogramming algo-
rithm proceeds, showing the validity of GAN reprogramming. We also observe a
much larger value for the FID between the output generated by a reprogrammed
GAN (g(hθ(Zseed))) and the original distribution (Xsource).

4.4 Reprogramming vs Transfer learning

We compare the convergence performance of GAN reprogramming algorithm and
that of transfer learning. A standard approach to transfer knowledge between
generative models is based on fine tuning [28]. That is, (i) one first trains a
GAN (both G and D) with the original dataset; (ii) then fine-tunes G and D
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with the target dataset. Shown in Fig. 10b are the comparison results. For the
transfer learning curve, we report the performance of ‘fine-tuning all layers’ as
we observed ‘fine-tuning last layers’ only performs worse. We first note that both
‘transfer learning’ and ‘train from scratch’ suffer from the notorious oscillation
phenomena [16]. More importantly, the convergence of transfer learning is much
slower than reprogramming.

4.5 Capacity of Code Generator

To evaluate the reprogrammability as a function of the capacity of code generator
hθ(·), we vary d, the dimensionality of Zseed. We also repeat the same experiment
while varying the number of neurons in each layer, i.e., the capacity of hθ(·). Here,
we use a three-layer FC network, whose hidden layers have w neurons each, where
w ∈ {5, 6, . . . , 14}. For each point, we then measure the FID five times and report
the average. The experimental results are summarized in Fig. 9c and Fig. 9d,
respectively. In both figures, we can observe that reprogramming is infeasible
when the capacity of code generator is low and that the reprogrammability
saturates as the capacity increases.

5 Theoretical Analysis

Clearly, reprogrammed generators cannot generate samples beyond the origi-
nal range. Thus, the performance of GAN reprogramming is characterized by
the range of the original generator. The following theorem formally states this
phenomenon under a simplified linear setting [7].

Theorem 1. Let Xtarget be a zero-mean non-degenerate do-dimensional Gaus-
sian random vector. Assume a linear generator g(Z) = AZ, where A ∈ Rdo×di ,
and denote the projection of Xtarget on the subspace spanned by matrix A by
XA

target. Then, the minimum second-order Wasserstein distance that can be achieved

via any GAN reprogramming method is lower bounded by E[‖Xtarget−XA
target‖2].

Moreover, if Zseed is a zero-mean non-degenerate di-dimensional Gaussian ran-
dom vector, the optimal reprogramming is achievable with a linear code generator
h(Zseed) = BZseed for some B ∈ Rdi×di .

Proof. (lower bound) The second-order Wasserstein distance is W 2
2 (Pr, Pg) :=

infγ E(x,y)∼γ [‖x−y‖2], where γ ∈ Π(Pr, Pg), and Π(Pr, Pg) is the set of all joint
distributions whose marginals are respectively Pr and Pg. Under the second-
order Wasserstein distance as an underlying metric, the GAN reprogramming
problem can be written as minFtarget

W 2
2 (g(Ztarget), Xtarget), where Ztarget ∼

Ftarget is a di-dimensional random vector. Assuming our code generator struc-
ture (Ztarget = h(Zseed)) and the linear generator assumed in the theorem, we
have infhW

2
2 (Ah(Zseed), Xtarget), where Xtarget is a zero-mean non-degenerate

do-dimensional Gaussian random vector, and A ∈ Rdo×di is a given generator
matrix. By the definition of the second-order Wasserstein distance, it reduces to

inf
h

inf
γ

E(Zseed,Xtarget)∼γ‖Ah(Zseed)−Xtarget‖2, (6)
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where γ ∼ Π(PZseed
, PXtarget).

As Ah(Zseed)−XA
target ⊥ XA

target −Xtarget, we have

‖Ah(Zseed)−Xtarget‖2 = ‖Ah(Zseed)−XA
target‖2 + ‖XA

target −Xtarget‖2. (7)

Since the second term in the RHS is independent of h and γ, the second-order
Wasserstein distance is always lower bounded by E‖XA

target − Xtarget‖2. This
proves the first part of the theorem.

(achievability) We now show that the lower bound can be achieved with
a linear code generator. Consider a linear code generator h(Zseed) = BZseed

for some matrix B ∈ Rdi×di and a zero-mean non-degenerate di-dimensional
Gaussian random vector Zseed, i.e., Zseed ∼ N (0,Ks) for some positive definite
matrix Ks.

Let the economic singular value decomposition (SVD) of A by A = UAΣAV
ᵀ
A .

Then, the projection on the subspace spanned by A is a linear operator P :=
UAU

ᵀ
A. Since Xtarget is a zero-mean non-degenerate Gaussian random vector,

Xtarget ∼ N (0,Kt) for some positive definite matrixKt. Thus,XA
target ∼ N (0, PKtP

ᵀ).
Similarly, Ah(Zseed) = ABZseed ∼ N (0, ABKsB

ᵀAᵀ). Then,

PKtP
ᵀ = ABKsB

ᵀAᵀ

⇒ UAU
ᵀ
AKtUAU

ᵀ
A = UAΣAV

ᵀ
ABKsB

ᵀVAΣAU
ᵀ
A

⇒ Uᵀ
AKtUA = ΣAV

ᵀ
ABKsB

ᵀVAΣA

⇒ Uᵀ
A

√
Kt = ΣAV

ᵀ
AB

√
Ks (8)

⇒ VAΣ
−1
A Uᵀ

A

√
Kt

√
Ks

−1
= B, (9)

where (8) holds since Kt and Ks are positive definite, and (9) holds since
√
Kt

and
√
Ks are also positive definite. Thus, by choosing

B = B? := VAΣ
−1
A Uᵀ

A

√
Kt

√
Ks

−1
,

the marginal distribution of XA
target and that of AB?Zseed are identical. There-

fore, one can choose B and γ such that XA
target = AB?Zseed w.p. 1. Together

with (7), it implies

E‖AB?Zseed −Xtarget‖2 = E‖XA
target −Xtarget‖2, (10)

proving the theorem. ut

Experiments To further demonstrate that reprogrammed generators cannot gen-
erate samples beyond the range of the original generator, we conduct the fol-
lowing experiments with synthetic datasets. We first train a generator using
images of three randomly positioned circles (Set 0) and then reprogram it re-
spectively with images of one randomly positioned circle (Set 1), images of three
co-located circles (Set 2), and images of two randomly positioned squares (Set
3). See Fig. 10a for sample images. In Fig. 10b, we plot normalized FIDs, i.e.,
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FID divided by the initial FID measured before we apply our reprogramming
algorithm. We can observe that reprogramming succeeds only for the first two
datasets (Set 1 and Set 2), which consist of circles, and fails for the last dataset
(Set 3), which consist of different shapes. This is expected as the square shapes
are beyond the range of the original generator that can only draw curvy edges.

(a) Sample synthetic images
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(b) Normalized FID

Fig. 10: Reprogramming a generator with restricted range.

6 Conclusion

In this work, we studied the problem of GAN reprogramming. We showed that
our algorithm can reprogram a GAN as another GAN that generates different
datasets and studied the applicability, feasibility, and limitation. We concluded
the paper with discussing related open questions.

Unexpected Behaviors of a GAN and Adversarial Reprogramming of GANs The
fact that GANs can be reprogrammed implies that a GAN trained with a cer-
tain dataset is not guaranteed to generate valid samples only. Even though this
observation is already made in a recent study [13], our work implies even a
stronger message: There exist infinitely many latent codes which result in in-
consistent samples with the original dataset. We believe that these inconsistent
samples are generated with very low probability if latent codes are drawn at
random according to Foriginal. However, for some critical applications, such an
unexpected behavior might not be allowed. Thus, it still implies that the usage
of GAN for highly critical applications should be avoided until we have a formal
guarantee that GANs generate valid samples only. Moreover, it is an interesting
open question whether or not one can design a GAN that provably generates
valid samples for every latent code.

An Alternative for GAN Transfer Learning In Sec. 4.4, we observed that GAN
reprogramming outperforms the standard fine-tuning learning algorithm in a
transfer learning setting. This implies that reprogramming-based approach might
be a useful alternative to GAN transfer learning, but this requires a more in-
depth study.
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