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Designing Training Sequences for Carrier Frequency
Estimation in Frequency-Selective Channels

Young-Doo Kim, Student Member, IEEE, Jae Kun Lim, Changho Suh, Member, IEEE, and
Yong H. Lee, Senior Member, IEEE

Abstract—A procedure for selecting a training sequence (TS) is
developed for frequency estimation in frequency-selective chan-
nels. An expression for the unconditional Cramér–Rao bound
(UCRB) is obtained by averaging the CRB for frequency estimation
over the probability density function of Gaussian random channels.
In addition, a necessary and sufficient condition for minimizing the
UCRB is derived. Based on these results, a procedure for select-
ing a TS is developed. Through a computer search, binary TSs up
to length 24 are found and tabulated. It is observed that periodic
TSs tend to be selected when the TS length is twice the channel
duration. Simulation results demonstrate that the proposed TSs
can enhance the performance of the maximum likelihood (ML)
frequency estimate.

Index Terms—Frequency estimation, frequency-selective chan-
nels, training sequence (TS) design.

I. INTRODUCTION

FREQUENCY OFFSET compensation and channel estima-
tion are important functions of recent radio receivers. By re-

covering the carrier frequency at a receiver via signal processing,
stringent requirements on the frequency stability of the trans-
mitter and receiver oscillators can be relieved. The estimation
of channel parameters is essential for systems with maximum
likelihood (ML)-type detection. A typical data packet consists
of user data and a training sequence (TS), which is used for syn-
chronization and channel estimation. For such packets, much
effort has been devoted to finding an optimal TS. In [1]–[6], TSs
minimizing the variance of least squares (LS)-type and discrete
Fourier transform (DFT)-based channel estimation are obtained.
Also, using a lower bound on the capacity of training-based
schemes enables the optimal placement and power allocation
for the training symbols to be found [7], [8], and the length of
the training interval for channel estimation to be optimized [9].
Optimal TSs for frequency estimation in frequency-selective
channels are found in [10] and [11] based on the use of the
Cramér–Rao Bound (CRB). Here, the optimal (minmax) condi-
tion for minimizing the maximum CRB resulting from the worst
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channel is derived [10], and a white sequence is shown to be
optimal in the minmax sense for an asymptotic CRB [10], [11].

In this paper, we consider an alternative approach to selecting
TSs for frequency estimation in frequency-selective channels.
The proposed method is based on the use of an unconditional
CRB (UCRB) derived by averaging the CRB for frequency esti-
mation [12] over the probability density function (pdf) of Gaus-
sian random channels. The conditions for minimizing the UCRB
are thus derived, and a procedure is developed for finding TSs.
The result is then applied to finding TSs for the ML frequency
estimation. Through computer simulation, the advantage of the
proposed TS is demonstrated over existing TSs, including white
sequences.

The organization of this paper is as follows. Section II presents
the system model. In Section III, a procedure for selecting TSs
is developed based on the UCRB. Section IV outlines simula-
tion results demonstrating the advantage of the proposed TSs.
Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

The baseband system model considered in this paper is shown
in Fig. 1. Here, a(j) denotes linearly modulated [phase shift key-
ing (PSK) or quadrature amplitude modulation (QAM)] sym-
bols; g(t) is the baseband pulse shape; w(t) is additive white
Gaussian noise (AWGN); and ∆f represents the carrier fre-
quency offset. The output of the receiver filter sampled at t = kT
can be written as

r(k) = ej2πνk
L−1∑
l=0

a(k − l)hk (l) + w(k) (1)

where ν = ∆fT denotes the normalized frequency offset, and
hk (l) is the impulse response of the equivalent channel at time
k due to an impulse that is applied l time units earlier. As such,
it describes g(t), c(t), and the receiver filter in the discrete time
domain, and its duration is L. w(k) is assumed to be AWGN
with a variance of σ2

n .
Suppose that N + L − 1 training symbols {a(k)|k = −L +

1, . . . , N − 1} are transmitted, and that {hk (l)} is fixed over the
training period; i.e., hk (l) = h(l) for k = −L + 1, . . . , N − 1.
Ignoring the first L − 1 samples, we define the received vector
r = [r(0), r(1), . . . , r(N − 1)]T that corresponds to the train-
ing sequence and channel vector h = [h(0), h(1), . . . , h(L −
1)]T . Then, (1) can be rewritten in vector form as

r = Γ(ν)Ah + w (2)

where Γ(ν) is a diagonal matrix given by Γ(ν) = diag
[1, ej2πν , . . . , ej2π (N −1)ν ];A is a N -by-L matrix with entries
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Fig. 1. Baseband system model.

[A]i,j = a(i − j), 0 ≤ i ≤ N − 1, 0 ≤ j ≤ L − 1; and w =
[w(0), w(1), . . . , w(N − 1)]T . The training matrix A in (2)
becomes a circulant matrix when a(−L + j) = a(N − L + j)
for 1 ≤ j ≤ L − 1. Throughout the paper, A is assumed to be
circulant.

III. TRAINING SEQUENCE DESIGN BASED ON UCRB

If we are considering the joint estimation of ν and h, the CRB
in the estimation of ν is given by [12], [13]

CRB =
σ2

n

2yH (IN − B)y
(3)

where y = 2πMAh, M = diag [0, 1, . . . , N − 1],B = A
(AH A)−1AH , and IN is the N -by-N identity matrix.1 The
UCRB is defined as UCRB = Eh[CRB], where Eh[ · ] denotes
the expectation with respect to the a priori pdf of h. It is
shown in [13] that the UCRB provides a tighter bound than the
modified CRB in [14].

Suppose that h is a zero-mean complex Gaussian random
vector with the covariance matrix Ch = E[hhH ], which is as-
sumed to be positive definite. The normalized channel vector x
is given by x := C−1/2

h h, where Ch = C1/2
h C1/2

h . Then x is
a standard complex Gaussian random vector with a zero-mean,
and E[xxH ] = IL . Using h = C1/2

h x, (3) can be rewritten as

CRB =
σ2

n/8π2

xH (C1/2
h )H AH M(IN − B)MAC1/2

h x

=
σ2

n/8π2

xH Px
(4)

where P is an L-by-L matrix given by

P = (C1/2
h )H AH M(IN − B)MAC1/2

h (5)

which is positive definite, because (IN − B)H (IN − B) =
(IN − B). To evaluate the UCRB, the CRB in (4) is averaged
over the pdf of x, as shown in the following lemma.

Lemma 1: Let x = [x1, x2, . . . , xL ]T and ‖x‖2 =
∑L

i=1

|xi |2 =
∑L

i=1(|xi,1|2 + |xi,2|2), where xi,1 and xi,2 are the real
and imaginary parts of xi , respectively. Then

UCRB =
σ2

n

8π2
f(λ) (6a)

where

f(λ) =
∫

R2L

Φ(x)
λ1|x1|2 + · · · + λL |xL |2

dx (6b)

1The CRB in (3) is referred to as the joint estimation CRB (JCRB) in [13].

and λ = [λ1, λ2, . . . , λL ]T ;λis are eigenvalues of P; dx =
dx1,1 . . . dxL,1dx1,2 . . . dxL,2;R denotes the real line; and
Φ(x) is the joint pdf of x, given by Φ(x) = (2π)−L

exp(−‖x‖2/2).
The proof of this lemma is presented in Appendix A. From

the UCRB expression in (6), the following conjecture can be
made.

Conjecture 1: The UCRB can be minimized by increasing
each eigenvalue λi while maintaining

λ1 = λ2 = · · · = λL . (7)

The equality condition in (7) comes from the symmetry of f(λ)
in (6b) for all permutations of λi . The validity of this conjecture
is examined through Lemma 2 and Theorem 1, as follows:

Lemma 2: Let Ωm be a set of λ given by Ωm = {λ ∈
(0,∞)L |

∑L
i=1 λi = m} for some positive integer m. Then

f(λ) in (6) is strictly convex over Ωm .
This lemma is proved in Appendix B. Due to Lemma 2, there

exists a unique optimum, say λ0, that minimizes f(λ) over Ωm .
The optimum vector λ0 and corresponding P matrix are found
in the following theorem.

Theorem 1: Let S(m) be the set of all L-by-L positive defi-
nite matrices whose trace is equal to m, and P ∈ S(m). Suppose
that L > 1. Then, among the matrices in S(m),P yields the
smallest UCRB if and only if P = (m/L)IL (or equivalently
λ0 = (m/L)[1, 1, . . . , 1]T ).

Proof: If λ is in Ωm , then the trace of P is fixed by
m. As such, it is sufficient to show that f(λ) has a unique
minimum at λo = m/L[1, 1, . . . , 1]T in the clearly convex set
Ωm . This is because when λ = m/L[1, 1, . . . , 1]T , the eigen-
values of Q (and hence P) are all m/L, and thus P be-
comes (m/L)IL . Let λ(i) be the ith cyclic shift of an ar-
bitrary point λ ∈ Ωm . Then, λ(i) ∈ Ωm for each i. Since
(m/L)[1, 1, . . . , 1]T =

∑L−1
i=0 (1/L)λ(i), then the convexity of

f implies that

f
(m

L
[1, . . . , 1]T

)
= f(

L−1∑
i=0

1
L

λ(i)) ≤
L−1∑
i=0

1
L

f(λ(i))

=
L−1∑
i=0

1
L

f(λ) = f(λ)

where the second equality comes from the fact that f(λ) is
symmetric for all permutations of the coordinates of λ. This
completes the proof. �

Theorem 1 indicates that Conjecture 1 is indeed valid: to min-
imize the UCRB, each λi is maximized by maximizing the trace
m (m =

∑L
i=1 λi) while maintaining λ1 = λ2 = · · · = λL .
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Although Theorem 1 provides conditions for minimizing the
UCRB, it is difficult to use this theorem in practice because P
in (5) can hardly be a scaled identity matrix (P = (m/L)IL )—
it often happens that the optimal TSs do not exist, as shown in
the following examples:

Example 1: Let N = 8, L = 2, and C−1/2
h =

√
2I2. As-

sume that TSs consist of quaternary-PSK (QPSK) symbols.
Then there are 48 possible TSs. Through a computer search,
it was found that 768 TSs maximized m and among them,
16 TSs yielded P = (42/2)IL . One of the optimal TS is
{a(k)|k = 0, 1, . . . , 7} = {−1, j, 1, j, 1, j,−1, j}.

Example 2: Let N = 8, L = 2, and C−1/2
h = diag

[1.1696, 1.9283]. Assuming QPSK symbols, 768 TSs
maximized m; however, none of them resulted in the desired P
matrix (P �= (m/L)IL ).

Example 3: Let N = 16, L = 4, and C−1/2
h =

√
4I4. As-

suming binary-PSK (BPSK) symbols, four TSs maximized
m; however, none of them resulted in the desired P matrix
(P �= (m/L)IL ).

Examples 2 and 3 illustrate the cases where optimal TSs do
not exist. For such cases, an alternative approach is developed
as follows:

Lemma 3: Let P ∈ S(m) and det(P) and tr(P) denote the
determinant and trace of P, respectively. Then, det(P) is the
maximum of the determinants of the matrices in S(m) if and
only if P = (m/L)IL .

Proof:

det(P) ≤
L∏

i=1

[P]i,i ≤
(

1
L

L∑
i=1

[P]i,i

)L

=
(

1
L

tr(P)
)L

=
(m

L

)L

where the first inequality is the Hadamard inequality [15, p. 477]
and the second inequality is the arithmetic-geometric mean in-
equality [15, p. 535]. Therefore, det(P) ≤ (m/L)L with equal-
ity for P = (m/L)IL . �

Now, Theorem 1 can be rewritten as follows:
Corollary 1: Among the matrices in S(m),P yields the

smallest UCRB if and only if det(P) is the maximum of the
determinants associated with S(m).

This corollary suggests the following process for TS selection.
Process 1: Identify S(mmax), where mmax is the maximum

of the traces of all possible P matrices in (5). Then, among P
matrices in S(mmax), find the one with the largest det(P) and
the corresponding TS.

A TS can always be found by Process 1; in particular, an
optimal TS is selected whenever such a sequence exists. Next,
an ad hoc scheme that is a simplified version of Process 1 is
presented.

Process 2: Select a TS such that det(P) is maximized.
This process cannot guarantee to select an optimal TS. How-

ever, Process 2 performs better than Process 1 when optimal
TSs do not exist. This can be shown by applying Processes 1
and 2 to Examples 2 and 3, for which optimal TSs do not exist.
Table I shows the resulting TSs, corresponding traces, determi-

TABLE I
TSs FOUND BY PROCESSES 1 AND 2 FOR EXAMPLES 2 AND 3, AND

CORRESPONDING TRACES, DETERMINANTS, AND CRBs. HERE, CRBs WERE

OBTAINED THROUGH 104 SIMULATION RUNS AT Eb /N0 = 20 dB, USING (4)

nants, and CRBs (The binary TSs are expressed in hexadecimal
form). Processes 1 and 2 yielded an identical TS for the case
of Example 2. However, for Example 3, Process 2 resulted in
a considerably smaller CRB value than Process 1. This hap-
pened because maximizing the traces prior to maximizing the
determinants caused the determinant of the resulting P matrix
to be approximately equal to zero, indicating that the equality
condition in (7) was severely violated. Some additional experi-
ments, which are not reported here, also showed the superiority
of Process 2 over Process 1. The performance of Process 1 is
sensitive to the existence of optimal TSs, while that of Pro-
cess 2 is not. Furthermore, Process 2 does not require knowl-
edge of the channel covariance matrix Ch . This is because
det(P) = det(Ch)det(AH M(IN − B)MA), and maximizing
det(P) is equal to maximizing det(AH M(IN − B)MA). From
these results, the following method, which is identical to
Process 2, is proposed for TS selection.

Proposed Method: Select a TS such that

det(AH M(IN − B)MA) (8)

is maximized.
In [10], a scheme that is similar to the proposed method is

derived by a minmax approach. Specifically, it maximizes

λmin[AH M(IN − B)MA] (9)

where λmin[X] is the minimum eigenvalue of X , and will be
referred to as the minmax method. Since the determinant of a
square matrix is equal to the product of its eigenvalues, (8) can
be thought of as a modification of (9).

A computer search was performed to find TSs satisfying the
proposed and minmax conditions for a given TS length N and
channel duration L. Table II lists the binary TSs found up to
length 24. The TSs are expressed in hexadecimal form. The
proposed and minmax methods produced identical sequences
when N = 8 and (N,L) = (12, 4), yet yielded different TSs
for larger values of N (N = 16, 20, and 24). When L = N/2,
the TSs found by the proposed method were either periodic with
period L, or composed of a sequence of length L followed by
its complement (the latter will be referred to as a complemen-
tarily periodic TSs). These TSs are particularly useful for the
ML frequency estimate, because the computational complexity
for implementing the estimate can be reduced dramatically by
employing such TSs.
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TABLE II
TSs FOUND BY PROPOSED AND MINMAX METHODS, WHERE N AND L

DENOTE TS LENGTH AND CHANNEL DURATION, RESPECTIVELY

IV. SIMULATION RESULTS

Computer simulations were conducted to examine the influ-
ence of the TS selection on the CRB and performance of the
ML frequency estimate in [12], given by

ν̂ = arg max
ν̃

{
−ρ(0) + 2Re

[
βN −1∑
m=0

ρ(m)e−j2πmν̃

]}
(10)

where we have the equation shown at the bottom of the page,
B(k, l) is the (k, l)th entry of the N -by-N matrix B in (3), and
β is a positive integer. This ML estimate requires an exhaustive
search over the range |ν| ≤ 0.5. For a periodic TS consisting of
two identical sequences (N = 2L), the ML estimate reduces to

ν̂ =
1

πN
arg




N −1∑
k=N/2

r(k)r∗(k − N/2)


 (11)

which is a blockwise differential decoding-based operator that
does not require any computer search. For the complementarily
periodic TSs in Table II, the ML estimate is identical to the
right-hand side (RHS) of (11) with the exception that
“r(k)r∗(k − N/2)” is replaced with “−r(k)r∗(k − N/2).”
When the signal-to-noise ratio (SNR) is large, the mean square
error (MSE) of ν̂ can be approximated by

E[(ν̂ − ν)2|h] ∼= σ2
n

2yH (IN − B)y
. (12)

Note that the RHS of (12) is identical to the CRB in (3). This
fact indicates that the TS designed by the proposed method tends
to minimize the MSE of the ML estimate for high SNR values.

In the simulation, two types of channel models were consid-
ered: a channel composed of independent identically distributed
(i.i.d.) complex Gaussian random variables with a zero mean and
variance 1/L, and a typical urban (TU) channel model of the
Global System for Mobile Communications (GSM) system with
six paths, which was considered in [12]. The matrix C−1/2

h for
the i.i.d. channel was

√
LIL . The GSM channel response was

Fig. 2. Performance comparison (Eb /N0 = 20 dB). (a) L = N/4. (b) L =
N/2.

represented as

h(l) =
5∑

i=0

ξigT (lTs − τi − t0) (13)

where gT (t) is the impulse response of the raised-cosine filter
with a rolloff of 0.5; {ξi} and {τi} are the attenuation and
path delays, respectively; and t0 is the timing phase. All the
parameters for generating h(l) in (13) were equal to those in
[12]. For this GSM channel, L can be set at eight. The parameter
β in (10) was 16. Three kinds of TSs were used: the proposed

ρ(m) =
{ ∑N

k=m+1 B(k − m, k)r(k)r∗(k − m), 0 ≤ m ≤ N − 1
0, otherwise.
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Fig. 3. Performance comparison (N = 16, L = 8). (a) i.i.d. Gaussian chan-
nels. (b) GSM TU channels.

and minmax TSs in Table II, and a white TS.2 These TSs will be
referred to as Type 1 (proposed), Type 2 (minmax), and Type 3
(white) TSs. The CRB and MSE values were obtained through
104 trials. For each trial, different channels and a different white
TS were generated, and the normalized frequency offset ν was
taken randomly from the interval [−0.04, 0.04].

Fig. 2 shows the CRBs and MSEs of ν̂ against N when the
channel was i.i.d. Gaussian and the SNR per bit (Eb/N0) was
20 dB. Here, the CRB is the average of the CRBs obtained from
104 simulation runs. For the given N,L, and Eb/N0, CRBT 1 ≤
CRBT 2 ≤ CRBT 3, where CRBT i denotes the CRB for Type i
TSs. For Eb/N0 = 20 dB, the MSEs were almost identical to
the corresponding CRBs, as expected from (3) and (12), and
the Type 1 TSs (proposed) performed somewhat better than the

2In [10], a white TS is shown to be optimal in the minmax sense for an
asymptotic CRB; applying the minmax method of (9) is not recommended due
to its high computational complexity.

Fig. 4. Performance comparison (N = 24, L = 8). (a) i.i.d. Gaussian chan-
nels. (b) GSM TU channels.

others. The CRBs and MSEs decreased monotonically as N
increased.

Figs. 3 and 4 show the CRBs and MSEs of ν̂ against the SNR
per bit when (N,L) = (16, 8) and (N,L) = (24, 8), respec-
tively. Both i.i.d. Gaussian and GSM channels were considered.
As in Fig. 2, CRBT 1 ≤ CRBT 2 ≤ CRBT 3. For high SNR val-
ues, say Eb/N0 ≥ 20 dB, the MSEs were almost identical to the
corresponding CRBs. The ML estimate employing Type 1 TSs
(proposed) performed better than the others; the estimate with
Type 3 TSs (white) exhibited the worst performance; however,
the difference between their MSE values was not significant. The
advantage of Type 1 TSs over the others became more appar-
ent when the SNR was low. In Fig. 3, where (N,L) = (16, 8),
the MSEs for Type 1 TSs were reasonably close to their corre-
sponding CRBs, even for Eb/N0 = 5 dB, while a considerable
deviation was observed for the other types of TS. Although in
Fig. 4 the MSEs for the Type 1 TSs also exhibited a devia-
tion from the CRBs, the deviation tended to start at lower SNR
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values, and the degree of deviation tended to be less than that
for the other TSs. (In Fig. 4, the Type 3 TSs outperformed the
Type 2 TSs for a low SNR.) It was observed that all the peri-
odic (and complementarily periodic) TSs with N = 2L, shown
in Table II, resulted in desirable MSE values for a low SNR
that were close to the corresponding CRBs. Therefore, to im-
prove the performance of the ML estimate for a low SNR, it
is generally recommended to set N = 2L so that periodic or
complementarily periodic TSs can be found.

V. CONCLUSION

A necessary and sufficient condition for minimizing the
UCRB for frequency estimation was derived, and a process
for selecting TSs developed. The channel information required
by the proposed approach is minimal: only the channel dura-
tion is needed. The proposed method was applied to selecting
TSs for the ML frequency offset estimation, and useful binary
TSs were found up to length 24. The advantage of the pro-
posed TSs over some existing TSs was demonstrated through
computer simulation.

The proposed method requires an exhaustive search, and its
complexity exponentially increases with the TS length N . As
such, this limits the use of the proposed method to selecting short
TSs (say, N < 30 for binary TSs). Developing an algorithm for
finding longer TSs and expanding the proposed TS selection to
consider a joint ML frequency and channel estimation remain
as future research topics.

APPENDIX A

DERIVATION OF LEMMA 1

Let Q = diag[λ1, . . . , λL ], where λis are eigenvalues of
P in (5). Then there exists a unitary matrix U such that
P = UH QU by the spectral theorem. Since P is positive def-
inite, λi > 0 for each i. Notice that Ux is also a standard
complex Gaussian random vector; therefore, E[(xH Px)−1] =
E[(xH UH QUx)−1] = E[(xH Qx)−1]. It is straightforward to
show that E[(xH Qx)−1] is given by

E

(
1

xH Qx

)
=

∫
R2L

Φ(x)
λ1|x1|2 + · · · + λL |xL |2

dx. (A1)

The convergence of (A1) is examined as follows. If λ1 is
the smallest positive number among λi , changing into spherical
coordinates means that the RHS of (A1) is dominated by

(2π)−L

λ1
Σ2L−1

∫ ∞

0

e−r2/2r2L−3 dr (A2)

where Σ2L−1 denotes the volume of the (2L − 1)-dimensional
sphere. The preceding integral converges if and only if L > 1.�

APPENDIX B

DERIVATION OF LEMMA 2

Let Hf(λ) be the Hessian matrix of f at λ ∈ Ωm ; i.e., its
(i, j)th entry is

∂2

∂λi∂λj
f(λ) = 2

∫
R2L

|xi |2|xj |2Φ(x)(∑L
k=1 λk |xk |2

)3 dx. (B1)

Let b = [b1, b2, . . . , bL ]T ∈ RL \ {[0, 0, . . . , 0]T }. Then the in-
ner product of Hf(λ)b with b is

〈Hf(λ)b,b〉 = 2
∫

R2L

(∑L
i=1 bi |xi |2

)2

Φ(x)(∑L
k=1 λk |xk |2

)3 dx > 0.

(B2)

This shows that Hf(λ) is positive definite for each λ ∈ (0,∞)L .
Now, [16, Theorem 3.6] implies that f is strictly convex in
(0,∞)L . In particular, it is strictly convex in Ωm . �
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