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Abstract—Suppose one aims to identify only the top-K among
a large collection of n items provided M -wise comparison data,
where a set of M items in each data sample are ranked in order of
individual preference. Natural questions that arise are as follows:
1) how one can reliably achieve the top-K rank aggregation task;
and 2) how many M -wise samples one needs to achieve it. In this
paper, we answer these two questions. First, we devise an algorithm
that effectively converts M -wise samples into pairwise ones and
employs a spectral method using the refined data. Second, we con-
sider the Plackett–Luce (PL) model, a well-established statistical
model, and characterize the minimal number of M -wise samples
(i.e., sample complexity) required for reliable top-K ranking. It
turns out to be inversely proportional to M . To characterize it,
we derive a lower bound on the sample complexity and prove that
our algorithm achieves the bound. Moreover, we conduct extensive
numerical experiments to demonstrate that our algorithm not only
attains the fundamental limit under the PL model but also provides
robust ranking performance for a variety of applications that may
not precisely fit the model. We corroborate our theoretical result
using synthetic datasets, confirming that the sample complexity
decreases at the rate of 1

M
. Also, we verify the applicability of our

algorithm in practice, showing that it performs well on various
real-world datasets.

Index Terms—Optimal sample complexity, M-wise measure-
ments, top-K ranking, Plackett-Luce models, spectral methods.

I. INTRODUCTION

RANK aggregation has been explored in a variety of con-
texts such as social choice [1], [2], web search and infor-

mation retrieval [3], recommendation systems [4], and crowd
sourcing [5], just to name a few examples. It aims to bring a
consistent ordering to a collection of items, given partial pref-
erence information.

Preference information can take various forms depending on
the context. One such form, which we examine in this paper,
is ordinal; preferences for alternatives are represented as an
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ordering. Consider crowdsourced data collected by annotators
asked to rank a few given alternatives based on their preference.
The aggregated data can be used to identify the most preferred.
One example can be a review process for conference papers
where reviewers are asked to not only review papers, but also
order them based on how much they enjoy them. The collected
data could be used to highlight papers that may interest a large
audience. Alternatively, consider sports (races or the like) and
online games where a number of players compete. One may
wish to rank them according to skill and identify top players.

It is then natural for one to first ask how: “Given partial
comparison data, which are orderings of only a handful of M
items (corresponding to papers and players above), how can
we reliably identify the top-K among a large collection of n
items?” One may also further ask how partial such data could
be: “Is there any fundamental limit on the number of such M -
wise comparison data samples below which we cannot reliably
complete the top-K rank aggregation task?”

Main contributions: In this paper, we present comprehensive
answers to these questions. We consider anM -wise comparison
setting where in each sample, a group of M items are ranked
in order of individual preference, possibly multiple times by a
few annotators. In this setting, we investigate the top-K rank
aggregation task which aims to recover the correct set of K
top-ranked items only. Our main contributions are three-fold:
(1) we devise an efficient two-stage top-K rank aggregation al-
gorithm, which first converts M -wise comparison data samples
into pairwise ones and then employs a spectral method using
the refined data; (2) we characterize the fundamental limit on
the number ofM -wise samples required for reliable top-K rank
aggregation under a well-established statistical model, namely
the Plackett-Luce (PL) model; (3) we conduct numerical exper-
iments on both synthetic and real-world datasets to corroborate
our theoretical result and to verify the practical applicability of
our algorithm in a variety of applications that may not necessar-
ily fit the PL model.

To be more specific, our proposed algorithm consists of sam-
ple breaking and Rank Centrality [6], one spectral method we
choose among other variants [6]–[9]. First, it converts M -wise
samples into many more pairwise ones, and in doing so it care-
fully chooses only M out of all

(
M
2

)
pairwise samples obtain-

able from eachM -wise sample. Subsequently, using the refined
pairwise data, it employs Rank Centrality to identify top-ranked
items. Our sample breaking method (see Section II-B for de-
tails) turns out to extract only the essential information from
given M -wise comparison data, which leads us to achieve the
minimax limit on the sample size (i.e., sample complexity) of
such data under the PL model.

The optimal sample complexity turns out to be inversely pro-
portional toM [see (11) in Section II-C for its expression]. That
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is, the amount of essential information contained in an ordering
ofM items increases linearly with the growth ofM . To the best
of our knowledge, this is the first result that characterizes the
fundamental limit under an M -wise comparison model.

Toward this progress under the PL model, a well-established
benchmark model which postulates true underlying utilities of
items, thus enables one to compute estimation errors, a novel
technique we develop to attain tight �∞ error bounds on the true
underlying utilities is instrumental. Analyzing �∞ error bounds
is a critical step to characterizing the minimax sample complex-
ity for top-K ranking as presented in past work [10], but has
been technically challenging. After decades of research since
the introduction of spectral methods and maximum likelihood
estimation (MLE), two dominant approaches in the literature,
we lack notable results for tight �∞ error bounds. This is largely
because techniques proven useful to obtain good �2 error bounds
do not translate into obtaining good �∞ error bounds. In this re-
gard, our result also contributes to progress on �∞ estimation
error analysis (see Section IV for a remark and Section V for
the proof outline).

The PL model is a well-known statistical model that has been
extensively explored [9], [11]–[17]. It is a special case of random
utility models [18] where true utilities of items are presumed
and a user’s revealed preference is a partial ordering according
to noisy manifestations of the utilities. It satisfies the ‘indepen-
dence of irrelevant alternatives’ property in social choice theory
[19], [20] and is the most popular model in studying human
choice behavior given multiple alternatives (see Section II-C
for its description). However, not all applications in practice
necessarily follow the PL model. Then, the performance of our
algorithm in such applications, although proven optimal in the
PL model, may be questionable.

In light of this, we conduct numerical experiments to verify
the practical applicability of our algorithm for a variety of ap-
plications as well as to corroborate our theoretical result. First,
using synthetic datasets generated according to the PL model,
we confirm that the sample complexity in fact decreases at the
rate of 1

M as theoretically predicted (see Section III-A). More
importantly, to investigate if our algorithm can be applied to
other settings which may not necessarily follow the PL model,
we run it on various real-world datasets. We collect three datasets
in total: one is collected from a popular online game (League
of Legends), another is a sushi preference dataset made public
on the web, and the other is a dataset where samples are crowd-
sourced by web users. We run our algorithm along with others
such as a heuristic extension of Spectral MLE developed in [10]
for the pairwise setting, a state-of-the-art MLE algorithm [21],
an algorithm based on least-squares [22] and a counting-based
algorithm [23], [24] on these datasets. We examine an accuracy
aspect of the algorithms when benchmark ranks can be obtained
thus can serve as ground-truths, and also a robustness aspect
against partial comparison data. We show that our algorithm
performs well on these datasets, demonstrating that its practical
applicability can extend to settings beyond the PL model (see
Section III-B).

Related work: To the best of our knowledge, [10] investigated
top-K identification under the random comparison model of in-
terest for the first time. A key distinction here is that we examine
the random listwise comparison model based on the PL model.
Rank Centrality was developed in [6] for pairwise data, which
we adopt as one choice of various spectral methods to employ
in our algorithm devised for general listwise comparison data.

In the context of the PL model, some researchers view ranking
as parameter estimation. Maystre and Grossglauser [9] devel-
oped an algorithm which is similar in spirit to spectral ranking
and showed its performance is the same as MLE for estimating
underlying preference scores. Hajek et al. [14] derived mini-
max lower bounds of parameter estimation error, and examined
gaps with the upper bounds of MLE as well as MLE with a rank-
breaking scheme that decomposes partial rankings into pairwise
comparisons.

Some works examine several sample breaking methods that
convert listwise data into pairwise data in the PL model. Azari
Soufiani et al. [13] considered various methods to see if they
sustain some statistical property in parameter estimation. It ex-
amined full breaking that converts an M -wise sample into

(
M
2

)

pairwise ones, and adjacent breaking that converts an ordinalM -
wise sample into M − 1 pairwise ones whose associated items
are adjacent in the sample. Khetan and Oh [17] considered a
method that converts an M -wise sample into multiple pairwise
ones and assigns different importance weights to each, and ex-
amined the method on several types of comparison graphs.

There are a number of works that explore ranking problems in
different models and with different interests. Some works [16],
[25] adopt PAC (probably approximately correct) [26] or regret
[27]–[29] as their metric to allow some margin of error, in con-
trast to our work where 0/1 loss (the most stringent criterion) is
considered to investigate the worst-case scenario (see Section II-
C). Rajkumar and Agarwal [30] put forth statistical assumptions
that ensure the convergence of rank aggregation methods in-
cluding Rank Centrality and MLE to an optimal ranking. Active
ranking where samples are obtained adaptively has received
attention as well. Jamieson and Nowak [31] considered perfect
total ranking and characterized the query co1mplexity gain of
adaptive sampling in the noise-free case, and the works of [31],
[32] explored the query complexity in the presence of noise
aiming at approximate total rankings. Recently, Braverman
et al. [33] considered three noisy models, examining if their
algorithm can achieve reliable top-K ranking. Heckel et al.
[34] considered a model where noisy pairwise observations are
given, with a goal to partition the items into sets of pre-specified
sizes based on their scores, which includes top-K ranking as
a special case. Mohajer et al. [35] considered a fairly general
noisy model which subsumes as special cases various models.
They derived upper bounds on the sample size required for
reliable top-K sorting as well as top-K partitioning, and
showed that active ranking can provide significant gains over
passive ranking.

II. PROPOSED ALGORITHM

A. Problem Setting and Notation

First, let us explain our problem setting and introduce some
notation for the sake of clarity. We consider a setting where
each comparison data sample ranks a set ofM items in order of
preference. The same set of items may be repeatedly compared
by several annotators, resulting in multiple samples obtained for
the set, each of which may rank the items differently. One may
view this setting as a graph where the vertices represent the items
and each hyper-edge represents whether the items connected by
it are compared.

We denote by [n] = {1, 2, . . . , n} to represent the set of all
items. We denote by G = ([n], E (M )) the comparison graph
where a set of M items I = {i1 , i2 , . . . , iM } are compared
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if and only if I belongs to the hyper-edge set E (M ) . We de-
note by y(�)

I = (i1 , i2 , . . . , iM ) to represent the outcome of the
�th comparison sample out of total LI samples for given I,
where item ia is preferred over item ib in I if ia appears to
the left of ib , which we also denote by ia � ib . We denote
by y = {yI : I ∈ E (M )} the collection of all samples, where
yI = {y(1)

I , y
(2)
I , . . . , y

(LI )
I }. We denote by di to represent the

number of hyper-edges which includes vertex i.

B. Algorithm Description

Given M -wise comparison data, one may wish to reliably
identify the set of top-K ranked items. We propose a two-stage
algorithm that first converts each M -wise comparison sample
into multiple pairwise ones, and then employs a spectral method
called Rank Centrality developed for pairwise comparison data
[6]. Let us describe our proposed algorithm in detail.

1st stage. Sample breaking: Rank Centrality aims to estimate
rankings from pairwise comparison data. Thus, to make use
of M -wise comparison data for Rank Centrality, we apply
a sample breaking method that converts M -wise data into
pairwise data. To be more specific, if there is a hyper-edge
I = {1, 2, . . . ,M}, we choose a circular permutation of the
items in I uniformly at random1 Suppose we pick a circular
permutation σ = (1, 2, . . . ,M − 1,M, 1). Then, we break it
intoM pairs of items in the order specified by the permutation:2

{σ(1), σ(2)} = {1, 2}, {σ(2), σ(3)} = {2, 3}, . . . , {σ(M −
1), σ(M)} = {M − 1,M}, {σ(M), σ(M + 1)} = {M, 1}.
Let us denote by φ(I) this set of pairs.

2nd stage. Spectral method: We use the converted pairwise
comparison data associated with the pairs in φ(I) as follows.

y
(�)
ij,I =

{
1 if{i, j} ∈ φ(I) and i � j;
0 otherwise

,

yij =
∑

I:{i,j}∈φ(I)

1
LI

LI∑

�=1

y
(�)
ij,I . (1)

From (1), we construct a transition matrix P̂ as in Algorithm 1
below, and obtain its stationary distribution. We declare the K
items with highest probability masses as our estimated top-K
items.

C. Theoretical Performance Guarantee

To investigate theoretical performance guarantees of our al-
gorithm, we focus on a model that builds on the well-established
PL model [36]. Before presenting its performance guarantees,
let us describe the model of interest in detail and make a few
assumptions, and specify our performance metric.

1Let us leave a remark on sample breaking. Unlike the proposed method,
the adjacent breaking method in [13] directly follows the ordering evaluated
in each sample; if it is 1 ≺ 2 ≺ · · · ≺M − 1 ≺M , it is broken into pairs of
adjacent items: 1 ≺ 2 up toM − 1 ≺M . Our method turns out to be consistent,

i.e.,
Pr[y i j =1]
Pr[y j i =0] = w i

w j
, where wi and wj are the true utilities of items i and j

respectively postulated in the PL model (see Section II-C for details), while the
adjacent breaking method is not [13].

2In Section II-C, we focus on the PL model that governs the probability
distribution of all possibleM -wise comparison outcomes, and demonstrate that
our sample breaking method, combined with the following spectral method, can
lead to optimality. In Section IV, we leave a remark on why we do not lose
optimality by our sample breaking method.

Algorithm 1: Rank Centrality [6].

Input the collection of statistics y =
{
yI : I ∈ E (M )

}
.

Convert the M -wise sample for each hyper-edge I into M
pairwise samples:

1. Choose a circular permutation of the items in I
uniformly at random,

2. Break it into the M pairs of adjacent items, and
denote the set of pairs by φ(I),

3. Use the (pairwise) data of the pairs in φ(I).
Compute the transition matrix P̂ = [P̂ij ]1≤i,j≤n :

P̂ij =

⎧
⎪⎨

⎪⎩

1
2dm a x

yij if i �= j;

1−∑k :k �=j P̂kj if i = j;
0 otherwise,

where

dmax = maxi∈[n ] di .

Output the stationary distribution of matrix P̂ .

Model and assumptions: We consider models where the com-
parison outcomes are obtained in the form of a preference order-
ing of M items, whose probabilities follow the PL model [36].

Preference scores: The PL model postulates the existence
of underlying preferences w := {w1 , w2 , . . . , wn}, where wi
represents the preference score of item i. The outcome of each
comparison depends solely on the latent scores of the items
being compared. Without loss of generality, we assume that
w1 ≥ w2 ≥ · · · ≥ wn > 0. We assume the range of scores to be
fixed irrespective of n. For some positive constants wmin and
wmax , wi ∈ [wmin , wmax], 1 ≤ i ≤ n. We note that the case
where the range wm a x

wm in
grows with n can be translated into the

above fixed-range regime by separating out those items with
vanishing scores (e.g. via a voting method like Borda count
[24], [37]).

Random comparison model: We examine random compari-
son graphs, constructed in a similar manner according to the
Erdős-Rényi random graph model; each set of M vertices is
connected by a hyper-edge independently with probability p.
Notice that when M = 2, such random graphs we consider fol-
low precisely the Erdős-Rényi random model.
M -wise comparison outcomes: We assume we obtain L sam-

ples for all sets of M items chosen to be observed according
to the random model described above, i.e., L = LI in (1). The
outcome of the �th sample y(�)

I is generated according to the PL
model as follows.

y
(�)
I = (i1 , i2 , . . . , iM ), w.p.

M∏

m=1

wim∑M
r=m wir

. (2)

We assume that conditional on G, y(�)
I ’s are jointly independent

over I and �.
Performance metric and goal; We consider the probability of

error Pe in identifying the correct set of the top-K ranked items:

Pe(ψ) := P {ψ(y) �= [K]} , (3)

where ψ is any ranking scheme that returns a set of K indices
and [K] is the set of the firstK indices. Our goal in the PL-based
random comparison model is to characterize the admissible re-
gionRw of (p, L) in which top-K ranking is feasible for a given
PL parameter w, in other words, Pe can be vanishingly small as
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n grows. The admissible regionRw is defined as follows.

Rw :=
{

(p, L) : lim
n→∞Pe(ψ) = 0

}
. (4)

In particular, we are interested in the minimax sample complex-
ity of an estimator defined as follows.

Sδ := inf
p∈[0,1],L∈Z +

sup
v∈Ωδ

{(
n

M

)
pL : (p, L) ∈ Rv

}
,

Ωδ :=
{

v ∈ Rn :
vK − vK+1

vmax
≥ δ
}
. (5)

Note that this definition shows that we conservatively examine
minimax scenarios where nature behaves adversely with the
worst-case w.

Under our model of interest that builds on the PL model,
our algorithm has an intuitive interpretation. To see this, let us
revisit Algorithm 1.

Algorithm 1 revisited: In an ideal scenario where we obtain
an infinite number of samples per M -wise comparison, i.e.,
L→∞, sufficient statistics 1

L

∑L
�=1 y

(�)
ij,I converge to wi

wi +wj

in probability. Then, the constructed matrix P̂ in Algorithm 1
becomes a matrix P whose entries [Pij ]1≤i,j≤n are defined as

Pij =

⎧
⎪⎨

⎪⎩

1
2dm a x

∑
I:{i,j}∈φ(I)

wi

wi +wj
for I ∈ E (M ) ;

1−∑k :k �=j Pkj if i = j;
0 otherwise.

(6)

The entries for observed item pairs represent the relative like-
lihood of item i being preferred over item j. Intuitively, random
walks of P in the long run visit some states more often, if
they have been preferred over other frequently-visited states
and/or preferred over many other states. The random walks are
reversible as wiPji = wjPij holds, and irreducible under the
connectivity assumption. Once we obtain the unique stationary
distribution, say, by computing ŵ(t+1) = P̂ ŵ(t) until conver-
gence, it is equal to w = {w1 , . . . , wn} up to some constant
scaling. It is clear that random walks of P̂ , a noisy version of
P , will give us an approximation of w.

Intuitively, one can imagine that separating the two items
near the decision boundary (i.e., the Kth and (K + 1)th ranked
items) will be key in top-K ranking. Unless the gap is large
enough, noise in the observations leads to erroneous estimates
which no ranking scheme can overcome. In view of it, we pin-
point a separation measure, which turns out to be crucial in
establishing the fundamental limit, as follows.

ΔK :=
wK − wK+1

wmax
. (7)

As noted in [38], if a comparison graph G is not connected, it
is impossible to determine the relative preferences between two
disconnected entities. Thus, we assume all comparison graphs
to be connected. To guarantee it, for a hyper-random graph with
edge size M , we assume the following:3

p >
log n
(
n−1
M−1

) . (8)

3p > log n
( n
M −1 )

is derived in [39] as a sharp threshold for connectivity of hyper-

graphs. We assume a slightly more strict condition for ease of analysis. This
does not make a big difference in our result, as the two conditions are almost
identical order-wise given M < n

2 , a reasonable condition for regimes where
n is large.

Now, let us formally state our theoretical results. First, for
comparison graphs under M -wise observations, we establish a
necessary condition for top-K ranking.

Theorem 1: Fix ε ∈ (0, 1
2 ). Given an M -wise comparison

graph G = ([n], E (M )), if
(
n

M

)
pL ≤ c0(1− ε)n log n

Δ2
K

1
M
, (9)

for some numerical constant c0 , then for any ranking scheme ψ,
there exists a preference score vector w with separation measure
ΔK such that Pe(ψ) ≥ ε.

The proof is a generalization of Theorem 2 in [10]. We provide
the proof in Appendix VI. Next, for comparison graphs under
M -wise observations, we establish a sufficient condition for
top-K ranking.

Theorem 2: Given an M -wise comparison graph G =

([n], E (M )) and p ≥ c1(M − 1)
√

log n
( n −1
M −1)

, if

(
n

M

)
pL ≥ c2 n log n

Δ2
K

1
M
, (10)

for some numerical constants c1 and c2 , then Rank Centrality
correctly identifies the top-K ranked items with probability at
least 1− 10n−

1
1 5 .

We provide the proof of Theorem 2 in Section V. The con-
dition on p in Theorem 2 is slightly more restrictive compared
to (8). Thus, our result concerns dense regimes where more dis-
tinct groups of items are compared. We will discuss this matter
in Section IV.

Theorem 1 gives a necessary condition of the sample com-
plexity:SΔK

� n log n
Δ2

K

1
M , and Theorem 2 gives a corresponding

sufficient condition: SΔK
� n log n

Δ2
K

1
M . Note that the two match.

That is, we establish the minimax optimality for the top-K rank
aggregation task given M -wise comparisons:

SΔK

 n log n

Δ2
K

1
M
. (11)

The inverse relationship betweenSΔK
andM in (11) is notewor-

thy. Our sample breaking method provides an intuition behind
this relationship. We will discuss this matter in Section IV.

III. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments4 on both
synthetic and real-world datasets. Using synthetic datasets gen-
erated based on the PL model, we first corroborate our theo-
retical result presented in Section II-C. Next, we examine the
performance of our algorithm in comparison to other algorithms.
Last, we compare our result in the special case of M = 2 with
the result in past work [10] where the optimal sample com-
plexity has been characterized for M = 2. Using real-world
datasets, we verify that our algorithm can be applied to settings
that may not necessarily follow the PL model. First, we investi-
gate the robustness aspect of the algorithms; for each algorithm
in question, we consider the ranking result obtained by using
all available data samples as the ground-truth, and compare the
result obtained by using only partial data samples with it. More-
over, since benchmark ranks are available from some datasets

4Code available: https://github.com/Jang-min-je/Top-K-rank-aggregation-
from-M-wise-comparisons.
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Fig. 1. Empirical minimal sample complexity vs. M (first), ΔK (second), and n log n (third). We increase the number of samples by increasing p until the
success rate reaches 95% for each M (respectively, ΔK or n) and consider it as the empirical minimal sample complexity for given M (respectively, ΔK or n).

we use, we consider them as the ground-truths and compare the
ranking results with them.

A. Synthetic Data Simulations

Theoretical result corroboration: First, we corroborate our
optimal sample complexity result in (11) in Section II-C. We
increase the number of samples by increasing p until the success
rate reaches 95% for each parameter in (11):M , ΔK and n. We
consider it as the empirical minimal sample complexity for
each parameter of interest. We examine whether the empirical
minimal sample complexity decreases at the rate of 1

M and 1
Δ2

K
,

and increases at the rate of n log n. To verify its reduction at
the rate of 1

M , we run experiments for M ranging from 3 to 15.
We set the other parameters as n = 100, L = 20, K = 5 and
ΔK = 0.3. The result for each M in all simulations is obtained
by averaging over 1000 Monte Carlo trials. To verify the other
two relations, we follow similar procedures. As for 1

Δ2
K

, we set

n = 200, M = 2, L = 20 and K = 5. As for n log n, we set
M = 2, L = 4, K = 5 and ΔK = 0.4.

The first figure in Fig. 1 shows the reduction in empirical min-
imal sample complexity with a blue solid curve. The red dashed
curve is obtained by curve-fitting. We can see that the empirical
minimal sample complexity drops inversely proportional to M .
From the second and third figures, we can see that in terms of
ΔK and n log n, it also behaves in accordance with our result
in Section II-C.

Performance comparison: Next, we evaluate the success rates
of various algorithms onM -wise comparison data generated ac-
cording to the PL model. We consider our algorithm, Spectral
MLE, MM (majorization-minimization, MM in short, an iter-
ative algorithm adopted to carry out MLE [21]), least squares
(HodgeRank [22]), and counting. Since Spectral MLE has been
developed for pairwise data, we heuristically extend it. We apply
our sample breaking method to obtain pairwise data needed. For
any parameters required to run Spectral MLE, we heuristically
find the best ones which give rise to the highest success rate.
Since MM is a state-of-the-art iterative MLE algorithm devel-
oped in the PL model, we directly adopt it. In running the other
two algorithms, we first apply our sample breaking method as
well. Then, for least squares, we find a score vector ŵ such that

the squared error
∑

(i,j )∈E
(
log( ŵ i

ŵ j
)− log( yi jyj i

)
)2

, where E is

the edge set for the converted pairwise data, is minimized. For
counting, we count each item’s number of wins in all involved

Fig. 2. (First) Empirical success rates of five algorithms: our algorithm (blue
circle), heuristic Spectral MLE (red cross), MM (brown dot); least squares (green
plus), and counting (purple triangle). (Second) Empirical normalized overlaps
of the five algorithms.

pairwise data. We use n = 100,M = 4, p = (M − 1)
√

log n
( n −1
M −1)

,

K = 5 and ΔK = 0.1. Each result in all simulations is obtained
by averaging over 1000 Monte Carlo trials.

In the first of Fig. 2, we plot empirical success rate vs.
L graphs. It shows that MM performs best, followed by our
algorithm and heuristic Spectral MLE (Spectral MLE being
marginally better), approaching near-100% success rates for
large L. It also shows that the other two algorithms do not
approach near-100% success rates even for large L.

In the second of Fig. 2, we plot normalized overlap vs. L
graphs to consider a less stringent performance metric. The
normalized overlap is defined as |Sesti∩Strue|

K , where Sesti is the
set of top-K users identified using each algorithm and Strue
is the set of true top-K users according to the synthetic data
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used. It also shows a pattern similar to the empirical success
rate vs. L graphs, while the gap between MM and our algorithm
is narrower.

Although MM may perform slightly better than our algorithm
(MM essentially achieves maximum likelihood thus is meant to
perform well), ours has a clear advantage over it which can be
useful in practice. Let us consider computational cost.5 Here,
we view the computational cost as the number of multiplications
required at each iteration. It turns out that our algorithm requires
O
(
M
(
n
M

)
p
)

while MM requires O
(
M(M + 1)!

(
n
M

)
p
)

(see
Appendix D for the proof). Notice a multiplicative gain of (M +
1)! by our algorithm over MM. This comparison implies that
in practice, our algorithm can be regarded more favorable over
MM at the expense of accuracy.

Comparison with past work for the special case of M = 2:
Last, we conduct a synthetic data experiment for M = 2,
the pairwise comparison model, to compare our result in
Section II-C to that in past work [10] where the optimal sample
complexity has been characterized in the pairwise model for

a wider range of p. We consider both dense (p �
√

log n
n ) and

sparse ( log n
n � p �

√
log n
n ) regimes. We set constant c1 = 2,

and set pdense = 0.25 and psparse = 0.025, to make each be in its
proper range. We use n = 500, K = 10, and ΔK = 0.1. Each
result in all numerical simulations is obtained by averaging over
10 000 Monte Carlo trials.

In Fig. 3, the first two figures show the experiments in the
dense regime. We see that as L increases, meaning as we obtain
pairwise samples beyond the minimal sample complexity, (1)
the �∞ error of Rank Centrality decreases and meets that of
Spectral MLE (first); (2) the success rate of Rank Centrality
increases and soon hits 100% along with Spectral MLE (second).

The curves support our result; in the dense regime p �
√

log n
n ,

Rank Centrality alone can achieve reliable top-K ranking. The
last two figures show the experiments in the sparse regime.
We see that as L increases, (1) the �∞ error of Rank Centrality
decreases but does not meet that of Spectral MLE (third); (2) the
success rate of Rank Centrality increases but does not reach that
of Spectral MLE which hits nearly 100% (fourth). Recently, it
has been shown in [40] that in the pairwise case, Rank Centrality
alone can achieve optimality in the entire regime p � log n

n .
Thus, the curves lead us to speculate that there may exist a
constant factor gap between the regime where Rank Centrality
achieves reliable top-K ranking and the regimewhere Spectral
MLE achieves it (see Section IV for a remark).

B. Real-World Data Simulations

League of Legends dataset: One natural setting where we
can obtain M -wise comparison data is an online game. Users
randomly get together and play, and the results depend on their
skills. We have identified League of Legends as an appropriate
dataset for this particular setting.6 In extracting M -wise data,

5Since we consider random comparison models, the number of samples we
observe is also random. Thus, what we compare are in fact expected computa-
tional cost.

6Two teams of 5 users compete. Each user kills an opponent, assists a mate
to kill one, and dies from an attack. At the end, one team wins, and different
points are given to the users. We use users’ kill/assist/death data (non-negative
integers), which can be considered as noisy measurements of their skill, and
rank them by skill.

Fig. 3. Dense regime (pdense = 0.25, first two figures): empirical �∞ error vs.
L (first); empirical success rate vs.L (second). Sparse regime (psparse = 0.025,
last two figures): empirical �∞ error vs. L (third); empirical success rate vs. L
(fourth).

we adopt a measure widely accepted as a factor that rates users’
skill in the user community.7

We incorporate this measure into our model as follows. For
each match (M -wise sample), we have 10 users, each associated
with its measure. In breakingM -wise samples, for each user pair
(i, j), we compare their measures and declare user i wins if its
measure is larger than user j’s. This corresponds to y(�)

ij in our
model. We assign 1 if user iwins and 0 otherwise. They may play

7We define a measure as (# of kills+ # of assists)
(1+ # of deaths) × weight. We adopt this mea-

sure since it is similar to the one officially provided (called KDA statistics [41]).
We assign winning users a weight of 1.1 and losing users a weight of 1.0, to
give extra credit (10%) to users who lead their team’s winning.
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Fig. 4. (First) Top-5 ranked users: normalized overlap vs. fraction of samples
used. (Second) Top-5 users’ (sorted by average League of Legends points earned
per match) percentile in the ranks by our algorithm, heuristic Spectral MLE, least
squares, MM and counting. For instance, the user who earns largest points per
match (first entry) is at around the 80-th percentile according to our algorithm
and heuristic Spectral MLE, the 60-th percentile according to least squares,
the 40-th percentile according to MM, and the 10-th percentile according to
counting.

together in multiple, say Lij , matches. We can compute yij :=
1
Li j

∑Li j

�=1 y
(�)
ij to use for Rank Centrality. AsM -wise data is ex-

tracted from team competitions, League of Legends does not per-
fectly fit our model. Yet one main reason to run this experiment
is to see whether our algorithm works well in other settings that
do not necessarily fit the PL model, being broadly applicable.

We first investigate the robustness aspect by evaluating the
performance against partial information. To this end, we use
all collected data and obtain a ranking result for each algorithm
which we consider as its ground-truth. Then, for each algo-
rithm, we reduce sample sizes by discarding some of the data,
and compare the results to the ground-truth to see how robust
each algorithm is against partial information. We conduct this
experiment for five algorithms: our algorithm, heuristic Spectral
MLE, MM, least squares and counting.

We choose our metric as a normalized overlap: |Scomp∩Spart|
K ,

where K = 5, Scomp is the set of top-K users identified using
the complete dataset and Spart is that identified using partial
datasets. In choosing partial data, we set f ∈ (0.5, 1), and dis-
card each match result with probability f independently. We
compute the metric for each f by averaging over 1000 Monte
Carlo trials.

The first figure of Fig. 4 shows that over the range of f
where overlaps above 60% are retained, our algorithm, along
with some others, demonstrates good robustness against partial
information.

In addition, we compare the ranks estimated by the five algo-
rithms to the rank provided by League of Legends, which can

serve a ground-truth. By computing the average points earned
per match for each user, we infer the rank of the users deter-
mined by official standards. In the second figure of Fig. 4, the
x-axis indicates the top-5 users identified by computing average
League of Legends points earned per match and sorting them in
descending order. The y-axis indicates the percentile of these
top-5 users according to the ranks by the algorithms of interest.
Notice that the top-5 ranked users by League of Legends stan-
dards are also highly ranked using our algorithm and heuristic
Spectral MLE; all of them are placed at the 80-th percentile
or above. On the other hand, most of them (4 users out of the
top-5 users) are placed at noticeably lower ranks (below the
60-th percentile at best) when ranked by least squares, MM and
counting.

For further performance demonstration, we conduct addi-
tional experiments on two other real-world datasets. We exam-
ine the accuracy aspect of the algorithms using a dataset where
a benchmark rank is available, and their robustness aspect using
the other dataset where a benchmark rank is not available.

Sushi dataset: This dataset is made public in [42]. 5000 re-
spondents are given n = 100 types of sushi and rank them in
order of their preference. In this dataset, M = n. To simulate
M -wise comparison data where M is implicitly assumed much
smaller than n as in our model of interest, we pick each group of
M types of sushi independently with probability p and extract
L = 5000 orderings concerning them from the 5000 responses.
As in the experiment using League of Legends dataset, we ex-
amine the robustness of the algorithms. Using all samples from
this refined dataset, we run each algorithm to obtain its rank-
ing result and consider it as the ground-truth. Then, for each
algorithm, we use a fraction of the 5000 responses (say f ) to
make a partial dataset per Monte Carlo trial. We compare the
ranking result using this partial dataset to the ground-truth of
the algorithm in question to measure its robustness. We average
over 100 Monte Carlo trials. We set the required parameters as
follows. n = 100, K = 3, M = 4 and p = 6.5× 10−5 .

The left of Fig. 5 illustrates the robustness of the algorithms
being compared. One can see that our algorithm, along with
some others such as Spectral MLE and least squares, demon-
strates good robustness. This is also observed in the result from
the League of Legends dataset.

GIFGIF dataset: This dataset is collected by a crowdsourcing
project called the GIFGIF project [43]. A web user who partici-
pates in the crowdsourcing project is presented with two images
and asked to choose one that better describes a given emotion.8

Since this dataset concerns pairwise comparison data, it belongs
to a special case of our interest. The data statistics are as fol-
lows. We consider the emotion of happiness. In total, the dataset
includes 5858 images and 100 574 pairwise comparison data
samples.

The right of Fig. 5 illustrates the accuracy of the algorithms
being compared. As in the experiment using the League of Leg-
ends dataset, we investigate the accuracy of the algorithms. The
x-axis indicates the top-5 users according to the official rank
provided by the GIFGIF project, and the y-axis indicates the
percentile of these top-5 users according to the ranks by the
algorithms of interest. Notice that the top-5 ranked users by
the standards of the GIFGIF project are also placed consis-
tently at highest ranks when ranked by our algorithm, heuristic
Spectral MLE and MM; all of them are very closely placed

8One is also given an option to choose “neither”, but we exclude such data.
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Fig. 5. (First, sushi dataset) Top-3 ranked sushi types: normalized overlap
vs. fraction of samples used. (Second, GIFGIF dataset) Top-5 images’ (which
depict happiness ranked by the GIFGIF project) percentile in the ranks by our
algorithm, heuristic Spectral MLE, least squares, MM and counting.

at the 100-th percentile. Compared to these three algorithms,
least squares does not achieve such high accuracy, and counting
performs visibly worse.

IV. DISCUSSIONS

In this section, let us further touch upon some theoretical
aspects of our results.

Optimality versus M—intuition behind our sample break-
ing method: For each M -wise sample, we form a circular
permutation uniformly at random, and extract M pairwise
samples each of which concerns two adjacent items in it.
Suppose we have an M -wise sample 1 ≺ 2 ≺ · · · ≺M , and
for simplicity we happen to form a circular permutation as
(1, 2, . . . ,M − 1,M, 1); we extract M pairwise samples as
1 ≺ 2, 2 ≺ 3, . . . , (M − 1) ≺M , 1 ≺M . Let us provide the
intuition behind why this leads us to the optimal sample com-
plexity. For the case of M = 2, Rank Centrality achieves the
optimal order-wise sample complexity of n log n

Δ2
K

as character-
ized in [10]. In addition, one M -wise sample in the PL model
can be broken into M − 1 independent pairwise ones, since
pairwise data of two arbitrary items among theM items depend
on the true scores of the two items only. In our example, one can
convert the M -wise sample into M − 1 independent pairwise
ones as 1 ≺ 2, 2 ≺ 3, . . . , (M − 1) ≺M . From these, it is in-
tuitive to see that we can achieve reliable top-K ranking with an
order-wise sample complexity of n log n

Δ2
K

1
M−1 by converting each

M -wise sample into M − 1 independent pairwise ones. Notice
a close gap to the optimal sample complexity in Section II-C.

Tight �∞ error bounds on w: As we will show soon in
Section V, deriving a tight �∞ error bound of w is critical
to analyzing the performance of a top-K ranking algorithm.

Past work [10] has relied on combining an additional stage
of local refinement in series with Rank Centrality to derive it,
and characterized the optimal sample complexity for the pair-
wise model. Recent work [40] has employed Rank Centrality
alone to attain the same result, however, it holds only for the pair-
wise model. Although it is valid in a slightly restricted regime
(see the next remark), we also employ only Rank Centrality
and still succeed in achieving optimality for the M -wise model
which includes the pairwise model. Deriving tight �∞ error
bounds of w being crucial, it is hard for one to attain this result
without a fine analytical technique. It is our main theoretical
contribution to develop one. For details, see the proof of Lemma
3 in Appendix B-C that establishes a tight connection between
an �∞ error bound and an �2 error bound. Rank Centrality has
been shown to achieve the performance nearly as good as MM
(MLE in general) in terms of �2 error, but little has been known in
terms of �∞ error, until now. Our result has made clear progress.

Analytical technique: Our analysis is not limited to Rank Cen-
trality. Whenever one wishes to compute the difference between
the leading eigenvector of any matrix and that of its noisy ver-
sion, one can obtain (13), (61) and (69) (see Section V below),
which are key inequalities in linking �2 and �∞ error bounds.
Thus, for any spectral method, our analysis can be adopted to
link the two error bounds.

Dense regimes: Our main result concerns a slightly denser

regime, indicated by the condition p � (M − 1)
√

log n
( n −1
M −1)

, where

many distinct groups of items are likely to be compared. One can
see that this dense regime condition is not necessary for top-K
ranking; for the pairwise caseM = 2, it is p � log n

n as shown in
[10]. Recently, it has been shown in [40] that in the pairwise case,
Rank Centrality alone can achieve optimality in the entire regime
of p � log n

n . Whether or not it alone can achieve optimality
also in the M -wise case is still open. Moreover, we speculate
from numerical experiments that there may exists a constant
gap between the regime where the spectral method alone can
achieve reliable top-K ranking and the regime specified by the
connectivity condition (8) (see Section III).

V. PROOF OUTLINE

Let us provide the proof of Theorem 2. We first show that
proving Theorem 3 is equivalent to proving Theorem 2, and
then proceed to prove Theorem 3.

Theorem 3: When Rank Centrality is employed, the �∞ norm
estimation error is upper-bounded as

‖ŵ −w‖∞
‖w‖∞ �

√
n log n
(
n
M

)
pL

√
1
M
, (12)

with probability at least 1− 10n−
1

1 5 , where p ≥ c1(M − 1)√
log n
( n −1
M −1)

, and c1 is some numerical constant.

Let ‖w‖∞ = wmax = 1 for ease of presentation. Suppose

ΔK = wK − wK+1 �
√

log n
( n
M )pL

√
1
M . Then, ŵi − ŵj ≥ wi −

wj − |ŵi − wi | − |ŵj − wj |≥wK − wK+1 − 2‖ŵ −w‖∞ >
0, for all 1 ≤ i ≤ K and j ≥ K + 1. That is, the top-K items are

identified as desired. Hence, as long as ΔK �
√

log n
( n
M )pL

√
1
M ,
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i.e.,
(
n
M

)
pL � n log n

Δ2
K

1
M , reliable top-K ranking is achieved

with the sample size of n log n
Δ2

K

1
M .

Now, let us prove Theorem 3. To find an �∞ error bound, we
first derive an upper bound on the point-wise error between the
score estimate of item i and its true score, which consists of
three terms:

|ŵi − wi | ≤ |ŵi − wi | P̂ii +
∑

j :j �=i
|ŵj − wj | P̂ij

+
∣
∣
∣
∣
∑

j :j �=i
(wi + wj )

(
P̂j i − Pji

) ∣∣
∣
∣. (13)

We can obtain (13) from ŵ = P̂ ŵ and w = Pw. We then
obtain upper bounds on the three terms:

P̂ii < 1, (14)
∣
∣
∣
∣
∑

j :j �=i
(wi + wj )

(
P̂j i − Pji

) ∣∣
∣
∣ �
√
n log n
(
n
M

)
pL

√
1
M
, (15)

∑

j :j �=i
|ŵj − wj | P̂ij �

√
n log n
(
n
M

)
pL

√
1
M
, (16)

with high probability (see Lemmas 1, 2 and 3 in Appendix B).
Equ. (14)–(16) end the proof. We obtain the first two from
Hoeffding’s inequality.

The last is key; this is where we establish a tight connection

between the �2 error bound of
√

n log n
( n
M )pL

√
1
M and the desired

�∞ error bound (12). The �2 error bound can be obtained by
modifying the work of [6]. We provide the proof of this bound
(formally stated in Theorem 4) in Appendix C.

Theorem 4: The �2 norm estimation error can be upper-
bounded as

‖ŵ −w‖2
‖w‖2

�
√
n log n
(
n
M

)
pL

√
1
M
, (17)

with probability at least 1− 4n−
1

1 5 , where L ≥
⌈
c3

log n
( n −1
M −1)p

⌉
,

p > c4
log n
( n −1
M −1)

and c3 and c4 are some numerical constants.

On the left hand side of (16), the point-wise error of item
j which affects that of item i as expressed in (13), may not
be captured for some j, since there may be no hyper-edge that
includes items i and j. This makes it hard to draw a link from
the obtained �2 error bound to the inequality, since �2 errors can
be seen as the sum of all point-wise errors. To include them all,
we recursively apply (13) to |ŵj − wj | in the third inequality
and then apply the rest two properly (for a detailed derivation,
see the proof of Lemma 3 in Appendix B-C). Then, we get

∑

j :j �=i
|ŵj − wj | P̂ij �

∑

j :j �=i

∑

k :k �=j
|ŵk − wk | P̂jk P̂ij

+

√
n log n
(
n
M

)
pL

√
1
M
. (18)

Manipulating the first term of the right hand side (for a detailed
derivation, see the proof of Lemma 3), we get

n∑

k = 1

|ŵk − wk |
∑

j :j /∈{i,k}
P̂jk P̂ij

≤ ‖ŵ −w‖2

√√
√
√

n∑

k = 1

( ∑

j :j /∈{i,k}
P̂jk P̂ij

)2

. (19)

We show that
∑

j :j /∈{i,k} P̂jk P̂ij concentrates on the order of 1
n

for all k’s in the proof of Lemma 3. Since ‖w‖2 ≤
√
n‖w‖∞ =√

n, we get ‖ŵ−w‖2√
n
≤ ‖ŵ−w‖2

‖w‖2 . We derive this �2 error bound

to be
√

n log n
( n
M )pL

√
1
M (Theorem 4), matching (12).

To describe the concentration of
∑

j :j /∈{i,k} P̂jk P̂ij , we need
to consider dependencies in it. To see them, we upper-bound
it as follows (for details, see the proof of Lemma 3 in
Appendix B-C).

∑

j :j /∈{i,k}
P̂ij P̂jk ≤ 1

4d2
max

∑

j :j /∈{i,k}

∑

I1 :i,j∈I1 ,I2 :j,k∈I2
XI1 I2 ,

(20)

where XI1 I2 :=I [{i, j} ∈ φ(I1)] I [{j, k} ∈ φ(I2)] . For M >
2, there can exist ja and jb such that {i, ja , jb} ∈ I1 , ja ∈ I2
and jb /∈ I2 . Then, summing over j, XI1 I2 and XI1 I3 , where
I3 is another hyper-edge that includes jb and k, are dependent
concerning the same hyper-edge I1 . To handle this, we use
Janson’s inquality [44], a concentration inequality that considers
dependencies between variables.

To derive a necessary condition matching our sufficient con-
dition, i.e., to prove Theorem 1, we use a generalized version of
Fano’s inequality [45] as in the proof of Theorem 3 in [10]. We
provide the proof of Theorem 1 in Appendix VI.

VI. CONCLUSION AND FUTURE WORK

We characterized the minimax (order-wise) optimal sample
complexity for top-K rank aggregation in the M -wise compar-
ison model that builds on the PL model. We corroborated our
result using synthetic data experiments and verified the appli-
cability of our algorithm on real-world data. For future work,
one interesting direction would be to consider a setting where
two teams compete, and each team consists of multiple players.
In this setting, one may aim to investigate a cooperation fac-
tor (synergy) among players that can make a team greater than
the sum of its players. Alternatively, it would be interesting to
explore models where the number of comparisons for each M -
wise sample is not constant as in many real-world applications,
and the data collector is allowed to actively decide which subset
to be compared in an online fashion.

APPENDIX A
PROOF OF THEOREM 1

Outline: As in [10], we intend to bound the minimax prob-
ability of error to characterize the conditions under which the
probability cannot be made arbitrarily close to zero, using a
generalized version of Fano’s inequality [45].

We first construct a set of hypotheses, and impose a uniform
distribution over them. We then apply the generalized Fano’s in-
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equality to obtain a lower bound on the probability of error. This
lets us able to identify conditions under which the probability
of error cannot be made arbitrarily zero.

In particular, let us elaborate more on how we construct the
set of hypotheses. To obtain a tight lower bound of minimax
estimation errors, we construct it in such a way that it considers
the worst-case scenario where top-K ranking is most difficult.
First, given a fixed value of score separation ΔK , the scores of
the top K items are set equal, say, as wK , and also those of
the rest, say, as wK+1 . Second, we let any pair of hypotheses
differ by one element regarding their top-K items. Since the
score gaps among items are made smallest and any pair of
alternative hypotheses are made hardest to distinguish, top-K
ranking becomes most challenging.

At the end of the process, we obtain a sum of Kullback-Leibler
(KL) divergences (for details, see (32)). Computing its upper
bound provides a lower bound of the probability of error, and it
ends the proof. Depending on the hypotheses, the summand can
be computed in four different ways. We divide-and-conquer and
compute the sum of KL divergences in Cases 1–4 and denote it
by D1 , D2 , D3 and D4 respectively.

Finally, we showD4 = 0, obtain an upper bound ofD1 +D2
in (for details, see (134) in [46]) and that of D3 in (see (135) in
[46]), and end the proof.

Proof: We construct a finite set of hypotheses H and carry
out an analysis based on classical Fano-type arguments. Each
hypothesis is represented by a permutation σh ∈ H over [n] and
we denote by σh(i) and σh([K]) the index of the ith ranked
item and the index set of all top-K items respectively. �

We choose a set of hypotheses and some prior to be imposed
on them. Suppose that the values of w are fixed up to permuta-
tion in such a way that

∀σh ∈ H, wσh (i) =

{
wK if 1 ≤ i ≤ K
wK+1 if K < i ≤ n, (21)

where we abuse the notation wK , wK+1 to represent any two
values satisfying

wK − wK+1

wmax
= ΔK > 0. (22)

Additionally, we impose a uniform prior over a collection
H of |H| = max(K,n−K) + 1 hypotheses regarding the per-
mutation: if K < n

2 , then

∀σh ∈ H, P [σh ] =
1
|H| , σh ([K]) = Kh ,

for Kh = {2, . . . ,K} ∪ {h}, (h = 1,K + 1, . . . , n), (23)

and if K ≥ n
2 , then

∀σh ∈ H, P [σh ] =
1
|H| , σh ([K]) = Kh ,

for Kh = {1, . . . ,K + 1}\{h}, (h = 1, . . . ,K + 1). (24)

Note that |H| ≥ n
2 .

In words, each alternative hypothesis is made by interchang-
ing two indices of the hypothesis complying to σh([K]) = [K].
Denoting by Pe,H the average probability of error with respect
to the constructed prior, one can verify the minimax probability
of error Pe to be at least Pe,H.

Let us begin our proof that modifies the arguments in [10]
for the model of our interest. To take partial M -wise ob-
servations into account, we introduce an erased version of
yI := (y(1)

I , y
(2)
I , . . . , y

(L)
I ) such that

zI =

{
yI w.p. p;

erasure otherwise.
, (25)

where we denote by Z := {zI : for all possible I’s} the collec-
tion of observed samples.

Then, applying the generalized Fano’s inequality [45], we
obtain

Pe≥1− 1
log |H|

{∑
σa ,σb ∈HD(PZ|σ=σa ‖PZ|σ=σb )

|H|2 +log 2
}
.

(26)

Let us compute the sum of KL divergences in (26).
∑

σa ,σb ∈H
D(PZ|σ=σa ‖PZ|σ=σb ) (27)

(a)
=

∑

σa ,σb ∈H

∑

I
D(PzI |σ=σa ‖PzI |σ=σb ) (28)

(b)
= p

∑

σa ,σb ∈H

∑

I
D(PyI |σ=σa ‖PyI |σ=σb ) (29)

(c)
= pL

∑

σa ,σb ∈H

∑

I
D(P

y
( 1 )
I |σ=σa

‖P
y

( 1 )
I |σ=σb

) (30)

(d)
= |H|2pL

∑

I
D(P

y
( 1 )
I |σ=σ1

‖P
y

( 1 )
I |σ=σK + 1

), (31)

where (a) follows by the independence between two hyper-
edges; (b) follows by the distribution of zI ; (c) follows by the
independence of y(�)

I over �; (d) follows by the fact that for any
pair of hypotheses they differ by one item and this leads the
summation over all possible I’s to the same KL divergence.

To identify conditions under which Pe cannot be made arbi-
trarily close to zero, meaning top-K ranking is infeasible, we
seek to obtain a lower bound on Pe . To that end, we derive an
upper bound on (31). It turns out that (31) is upper-bounded as
follows.
∑

I
D
(
P
y

( 1 )
I |σ=σ1

‖P
y

( 1 )
I |σ=σK + 1

)
≤
(
n

M

)
M

n
c0Δ2

K , (32)

where c0 is some numerical constant.
For the time being, let us proceed to characterize a necessary

condition for reliable top-K ranking, assuming (32) is true.
Applying (32) to (31), and in turn to (26), we obtain

Pe ≥ 1− 1
log |H|

{
pL

((
n

M

)
M

n
c0Δ2

K

)
+ log 2

}
(33)

= 1− 1
log |H|

{
c0

(
n

M

)
pL

M

n
Δ2
K + log 2

}
. (34)

Fix ε ∈ (0, 1
2 ). Then, Pe > ε if c0

(
n
M

)
pLM

n Δ2
K < (1−

ε) log |H| − log 2. From this, we can obtain a necessary con-
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dition for reliable top-K ranking:

c0

(
n

M

)
pL

M

n
Δ2
K ≥ log |H| − log 2 (35)

⇐⇒
(
n

M

)
pL ≥ n(log(n2 )− log 2)

Δ2
K

1
M

1
c0

(36)

⇐⇒
(
n

M

)
pL � n log n

Δ2
K

1
M
. (37)

We can see that this proves Theorem 1. As shown above, a key
step to identifying the necessary condition is to show (32). The
details of the proof of (32) can be found in [46].

APPENDIX B
PROOF OF THEOREM 3

Outline: The proof of Theorem 3 is, as emphasized, where we
make our theoretical contribution; we establish a link between
the �2 error bound (derived in Theorem 4) and the �∞ error
bound, showing that they are of the same order. The proof of
Theorem 3 consists of Lemmas 1, 2 and 3. Lemmas 1 and 2 are
straightforward to obtain by applying Hoeffding’s inequality.
Lemma 3 plays a key role in establishing the link. In prov-
ing it, Janson’s inequality [44] stated in Lemma 4 to describe
the concentration behavior of sums of dependent random vari-
ables, and the �2 error bound derived in Theorem 4. In proving
Theorem 3, we often use some basic inequalities such as Ho-
effding’s inequality and Bernstein’s inequality.

Proof dependencies:

Theorem 3←− Lemma 1, Lemma 2, Lemma 3
Lemmas 1 and 2←− Hoeffding’s equality
Lemma 3←− Janson’s equality (Lemma 4), Theorem 4

Lemma 1: Suppose L ≥ 25(1 + b)2 log n
( n −1
M −1)p

, where b :=
wm a x
wm in

. Then,

P̂ii < 1 (38)

with probability at least 1− 2n−2 .
Lemma 2: For a comparison graph G =

(
[n], E (M )

)
,

∣
∣
∣
∣
∣
∣

∑

j :j �=i
(wi + wj )

(
P̂j i − Pji

)
∣
∣
∣
∣
∣
∣
≤ 4wmax

√
log n

(
n−1
M−1

)
pL

(39)

with probability at least 1− 2n−2 .

Lemma 3: Suppose p ≥ c1(M − 1)
√

log n
( n −1
M −1)

and M ≥ 3.

Then, in the regime where n is sufficiently large,

∑

j :j �=i
|ŵj − wj | P̂ij ≤ c5wmax

√
log n

(
n−1
M−1

)
pL

(40)

with probability at least 1− 2n−
3 c 2

1
5 0 , where c1 and c5 are some

universal constants.
We first assume that these lemmas hold, and proceed to

prove Theorem 3. We provide the proofs of these lemmas in
Sections B-A, B-B and B-C. Now, let us begin to prove
Theorem 3.

Proof: As outlined in Section V, we start from (13). Then,
we use the three lemmas stated above. We consider the regime

where n is sufficiently large. For L ≥
⌈
25(1 + b)2 log n

( n −1
M −1)p

⌉
, ap-

plying Lemmas 1, 2 and 3 to (13) and solving it, we obtain

|ŵi − wi | ≤ 1
1− P̂ii

(4 + c5)

×
√

log n
(
n−1
M−1

)
pL

+ c6wmax

√
n log n
(
n
M

)
pL

√
1
M
,

(41)

where c6 is a constant. This completes the proof of
Theorem 3. �

Proof of (13): Since ŵ is the stationary distribution of matrix
P̂ , ŵ = P̂ ŵ holds. Thus, for fixed i, we obtain

ŵi = ŵiP̂ii +
∑

j :j �=i
ŵj P̂ij . (42)

�
Using the fact that random walks on an ideal population

version of matrix P̂ (matrix P ) are reversible, we obtain

wi = wi

⎛

⎝1−
∑

j :j �=i
Pji

⎞

⎠+ wi
∑

j :j �=i
Pji (43)

= wi

⎛

⎝1−
∑

j :j �=i
Pji

⎞

⎠+
∑

j :j �=i
wjPij (44)

=

{

wiP̂ii +
∑

j :j �=i
wi

(
P̂j i − Pji

)
}

+

{
∑

j :j �=i
wj P̂ij −

∑

j :j �=i
wj

(
P̂ij − Pij

)
}

. (45)

Using (42) and (43), we obtain

ŵi − wi = (ŵi − wi) P̂ii −
∑

j :j �=i
wi

(
P̂j i − Pji

)

+
∑

j :j �=i
(ŵj − wj ) P̂ij +

∑

j :j �=i
wj

(
P̂ij − Pij

)
.

(46)

We note that P̂j i = 1
2dm a x

∑
I:i,j∈I I

[I ∈ E (M )
]− P̂ij

from yji = 1− yij . Similarly, Pji = 1
2dm a x

∑
I:i,j∈I I[I ∈

E (M ) ]− Pij . Thus, P̂j i − Pji = −(P̂ij − Pij ). Applying this
equality and the triangle inequality to (46), we obtain the
relation (13).

A. Proof of Lemma 1

First, by using Hoeffding’s inequality, we obtain
∣
∣
∣
∣
∣
∣

∑

j :j �=i

(
P̂j i − Pji

)
∣
∣
∣
∣
∣
∣
≤ 2

√
log n

(
n−1
M−1

)
pL

(47)
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with probability at least 1− 2n−2 . To show this, we represent∣
∣
∣
∑

j :j �=i
(
P̂j i − Pji

)∣∣
∣ as a sum of random variables as follows.

∑

j :j �=i

(
Pji − P̂j i

)

=
∑

j :j �=i

∑

I:{i,j}∈φ(I)

L∑

�=1

1
2Ldmax

(
wj

wi + wj
− y(�)

j i,I

)
(48)

=
1

2Ldmax

∑

j :j �=i

∑

I:{i,j}∈φ(I)

L∑

�=1

(
−y(�)

j i,I +
wj

wi + wj

)
.

(49)

Let X :=
∑
I:i∈I

∑L
�=1
∑

m :{i,m}∈φ(I)
(
y

(�)
mi,I − wm

wm +wi

)
.

Applying Hoeffding’s inequality to X , we obtain

Pr
[
|X| ≥ t|E (M )

] (a)
≤ 2 exp

(

− 2t2
∑
I:i∈I

∑L
�=1 22

)

(50)

≤ 2 exp
(
− 2t2

4diL

)
, (51)

where (a) follows by the fact that
∑

m :{i,m}∈φ(I) y
(�)
mi,I varies

from 0 to 2; the rest follows by straightforward compu-
tation. Finally, choosing t = 2

√
2Ldi log n, we can show

that
∣
∣
∣
∑

j :j �=i
(
P̂j i − Pji

)∣∣
∣ ≤
√

2 log n
Ldi

holds with probabil-

ity at least 1− 2n−4 . This leads to
∣
∣
∣
∑

j :j �=i
(
P̂j i − Pji

)∣∣
∣ ≤

2
√

log n
( n −1
M −1)pL

since 1
2

(
n−1
M−1

)
p ≤ di ≤ 3

2

(
n−1
M−1

)
p holds with prob-

ability at least 1− 2n−2 by Bernstein’s inequality for suffi-
ciently large p, which is the regime of interest.

Using (47), we obtain

P̂ii = 1−
∑

j :j �=i
P̂j i ≤ 1−

∑

j :j �=i
Pji + 2

√
log n

(
n−1
M−1

)
pL

. (52)

We let b = wm a x
wm in

. From the definition of Pji ,

∑

j :j �=i
Pji =

∑

j :j �=i

1
2dmax

∑

I:{i,j}∈φ(I)

1
1 + wj

wi

(53)

≥ 1
2dmax

∑

I:i∈I

∑

j :{i,j}∈φ(I)

1
1 + b

(54)

≥ dmin

dmax

1
1 + b

(55)

≥ 1
3(1 + b)

. (56)

Putting (53) into (52), we obtain

P̂ii ≤ 1− 1
3(1 + b)

+ 2

√
log n

(
n−1
M−1

)
pL

. (57)

Choosing L ≥ 25(1 + b)2 log n
( n −1
M −1)p

, we complete the proof of

Lemma 1.

B. Proof of Lemma 2

By using a slightly modified Hoeffding’s inequality used to
show (47), we obtain
∣
∣
∣
∣
∣
∣

∑

j :j �=i
(wi + wj )

(
P̂j i − Pji

)
∣
∣
∣
∣
∣
∣
≤ 4wmax

√
log n

(
n−1
M−1

)
pL

(58)

with probability at least 1− 2n−2 . This directly follows by re-

placing each random variable
(
−y(�)

j i,I + wj

wi +wj

)
in (49) by

(wi + wj )
(
−y(�)

j i,I + wj

wi +wj

)
. Thus, the range of each random

variable is extended by at most 2wmax . Applying a similar se-
quence of steps as those leading to (51), we obtain (58).

C. Proof of Lemma 3

Outline: As mentioned at the beginning, Lemma 3 plays a key
role in linking the �2 error bound in Theorem 4 to the �∞ error
bound in Theorem 3, leading them to be on the same order.
In doing so, we have sums of dependent random variables to
handle, thus we make use of Janson’s inequality [44] stated in
Lemma 4.

Proof: First, let us define B as follows.

B :=
∑

j :j �=i
|ŵj − wj | P̂ij . (59)

By Lemma 2, with probability at least 1− 2n−2 ,
∣
∣
∣
∣
∣
∣

∑

j :j �=i
(wi + wj )

(
P̂j i − Pji

)
∣
∣
∣
∣
∣
∣
≤ 4wmax

√
log n

(
n−1
M−1

)
pL

. (60)

Putting (13) with (60) into (59), we obtain

B ≤
∑

j :j �=i
|ŵj − wj | P̂jj P̂ij + 4wmax

√
log n

(
n−1
M−1

)
pL

∑

j :j �=i
P̂ij

+
∑

j :j �=i

∑

k :k �=j
|ŵk − wk | P̂jk P̂ij . (61)

�
We simplify the last two terms. The first of the two is straight-

forward. The definition of P̂ij gives
∑

j :j �=i P̂ij ≤ 1. The last
term requires some extra effort to analyze. For the time be-
ing, we state the following, whose proof which makes use of
Janson’s inequality stated in Lemma 4 will soon be provided.

∑

j :j �=i

∑

k :k �=j
|ŵk − wk | P̂jk P̂ij ≤ c7 ‖ŵ −w‖2

√
1
n
. (62)

Substituting
∑

j :j �=i P̂ij ≤ 1 and putting (62) into (61), we
obtain

B ≤
∑

j :j �=i
|ŵj − wj | P̂jj P̂ij + 4wmax

√
log n

(
n−1
M−1

)
pL

+ c7

√
1
n
‖ŵ −w‖2 . (63)
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By Lemma 1, we can find a constant β such that P̂jj ≤ β < 1
for all j. Using such a β, we obtain

B ≤ βB + 4wmax

√
log n

(
n−1
M−1

)
pL

+ c7

√
1
n
‖ŵ −w‖2 . (64)

Here, we use an upper bound on ‖ŵ−w‖2
‖w‖2 derived by

Theorem 4. Theorem 4 states that when L ≥ c3 log n
( n −1
M −1)p

, for a

constants c8 ,

‖ŵ −w‖2
‖w‖2

≤ c8
√

log n
(
n−1
M−1

)
pL

. (65)

Using ‖w‖2 ≤
√
n ‖w‖∞ =

√
nwmax , we obtain

‖ŵ −w‖2 ≤
√
nwmaxc8

√
log n

(
n−1
M−1

)
pL

. (66)

Putting (66) into (64) and solving it, we obtain

B ≤ 1
1− βwmax (c7c8 + 4)

√
log n

(
n−1
M−1

)
pL

(67)

= c5wmax

√
log n

(
n−1
M−1

)
pL

. (68)

From the definition ofB, we complete the proof of Lemma 3.
Proof of (62): By changing the order of the summations and

using the Cauchy-Schwarz inequality, we obtain
∑

j :j �=i

∑

k :k �=j
|ŵk − wk | P̂jk P̂ij

=
∑

k

|ŵk − wk |
∑

j :j /∈{i,k}
P̂jk P̂ij (69)

≤ ‖ŵ −w‖2

√√
√
√
√
∑

k

⎛

⎝
∑

j :j /∈{i,k}
P̂jk P̂ij

⎞

⎠

2

. (70)

When we show that
∑

j :j /∈{i,k} P̂jk P̂ij ≤ c7
n holds, we

can finally conclude that
∑

j :j �=i
∑

k :k �=j |ŵk − wk | P̂jk P̂ij ≤
c7

√
1
n . �

Now, let us prove that
∑

j :j /∈{i,k} P̂jk P̂ij ≤ c7
n holds. From

the definitions of P̂jk and P̂ij and the fact that yij,I ≤ 1, we
obtain

P̂jk ≤ 1
2dmax

∑

I:j,k∈I
I [{j, k} ∈ φ(I)] , (71)

P̂ij ≤ 1
2dmax

∑

I:i,j∈I
I [{i, j} ∈ φ(I)] . (72)

Therefore,
∑

j :j �=i,k
P̂jk P̂ij ≤ 1

4d2
max

∑

j :j �=i,k

∑

(I1 ,I2 ):
j,k∈I1 ,i,j∈I2

XI1 I2 , (73)

where XI1 I2 ∼ Bern
(

4p2

(M−1)2

)
when I1 �= I2 and XI1 I2 ∼

Bern
( 2p
M−1

)
when I1 = I2 . This follows by the fact that, for

M > 2, the probability that a hyper-edge including items i and

j is observed and the two items are adjacent in the circular
permutation formed at random is p times 2

M−1 .9

Note that XI1 I2 and XI1 I3 , concerning the same hyper-edge
I1 , are dependent random variables. Computing the expectation
of this sum of dependent random variables, we obtain

E

⎡

⎣
∑

j :j �=i,k
P̂jk P̂ij

⎤

⎦

=
1

4d2
max

∑

j :j �=i,k

∑

(I1 ,I2 ):
j,k∈I1 ,i,j∈I2

E [XI1 I2 ] (74)

=
1

4d2
max

[

(# of r.v’s : I1 �= I2)
(

2p
M − 1

)2

+ (# of r.v’s :I1 = I2)
2p

M − 1

]

(75)

(a)
≤ 1

4d2
max

[

(n− 1)
(
n− 2
M − 2

)2 ( 2p
M − 1

)2

+ (n− 1)
(
n− 2
M − 2

)
2p

M − 1

]

(76)

(b)
≤ 6

4d2
max

(n− 1)
1

(n− 1)2

(
n− 1
M − 1

)2

p2 (77)

(c)
≤ 9
n
, (78)

where (a) follows by the facts that one can bound the number

of cases where I1 �= I2 by (n− 1)
(
n−2
M−2

)2
, and that one can

bound the number of cases where I1 = I2 by (n− 1)
(
n−2
M−2

)
;

(b) follows by the fact that (n− 1)
(
n−2
M−2

)2 2p2

(M−1)2 ≥ (n− 1)
(
n−2
M−2

) 2p
M−1 for M > 2 and p ≥ c3(M − 1)

√
log n
( n −1
M −1)

; (c) fol-

lows by the fact that dmax ≥ 1
2

(
n−1
M−1

)
p, which can be shown by

Bernstein’s inequality that describes the concentration behavior
of sums of independent random variables. This bound tells us
that once

∑
j :j �=i,k P̂jk P̂ij concentrates to its expectation, we

can prove (62).
To show that

∑
j :j �=i,k P̂jk P̂ij concentrates to its expectation,

we apply the concentration inequality for a sum of dependent
random variables, called Janson’s inequality [44]. Here we pro-
vide the statement of Janson’s inequality.

Lemma 4 (Janson’s inequality [44]): Suppose that X̃ =
∑N

i=1 X̃i with
∣
∣
∣X̃i − E

[
X̃i

]∣∣
∣ ≤ C for some C > 0 and all i.

9The provided steps are tailored forM > 2 where our algorithm that features
sample breaking can be employed, but do not hold for M = 2 where sample
breaking does not come into the picture. However, following a similar line of
steps with some simple modifications, one can show that an upper bound on the
expectation is also on the order of n−1 , as in [10].
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Then, for t ≥ 0,

Pr
[∣∣
∣X̃ − E

[
X̃
]∣∣
∣ ≥ t

]

≤ 2 exp

⎛

⎝− 8t2

25d
(∑N

i=1 Var
[
X̃i

]
+ 1

3Ct
)

⎞

⎠ , (79)

where d is the maximum number of random variables dependent
on X̃i over all i.

To get an upper bound of
∑

j :j �=i,k P̂jk P̂ij by applying

Janson’s inequality, let us define X̃ , the upper bound of∑
j :j �=i,k P̂jk P̂ij shown in (73), as follows.

X̃ :=
∑

j :j �=i,k

∑

(I1 ,I2 ):
i,j∈I1 ,j,k∈I2

XI1 I2 . (80)

Once we show that
∣
∣
∣X̃ − E

[
X̃
]∣∣
∣ ≤ (n− 2)

(
n−2
M−2

)2
p2 holds

with high probability by using Janson’s inequality, we can con-
clude that

∑
j :j �=i,k P̂jk P̂ij ≤ c7

n holds with high probability.
To show this, we first derive the following inequality.

d ≤ 2(M − 1)
(
n− 2
M − 2

)
. (81)

Let us explain how we can obtain this inequality. Suppose we
have i and k given. Let us fix I1 and choose j �= i. Then for
the chosen j, there are

(
n−2
M−2

)
distinct I2’s since we can choose

M − 2 items and combine them with j and given k to form I2 .
Also, there areM − 1 ways to pick j �= i to form the previously
fixed I1 since j can be the items in I1 except given i. These
two facts amount to (M − 1)

(
n−2
M−2

)
. Similarly, when we fix I2

and choose j �= k, we obtain the same result. This leads to the
constant factor of 2.

Next, we also derive the following inequality.

∑

j :j �=i,k

∑

(I1 ,I2 ):
j,k∈I1 ,i,j∈I2

Var [XI1 I2 ] ≤
100
n

(
n− 1
M − 1

)2

p2 . (82)

This follows by the fact that Var[XI1 I2 ] = ( 2p
M−1 )2

(1− ( 2p
M−1 )2) ≤ ( 2p

M−1 )2 = E[XI1 I2 ] and we can bound the
summation of E [XI1 I2 ] in (74) as in (78).

Finally, when we choose t = (n− 2)
(
n−2
M−2

)2
p2 , we obtain

Pr
[∣∣
∣X̃ − E

[
X̃
]∣∣
∣ ≥ t

]

≤ 2 exp

⎛

⎜
⎝−

8
5000

(
1
n

(
n−1
M−1

)2
p2
)2

(M − 1)
(
n−2
M−2

) ( 1
n

(
n−1
M−1

)2
p2 + 1

3n

(
n−1
M−1

)2
p2
)

⎞

⎟
⎠

(83)

≤ 2 exp

(

− 3
(
n−1
M−1

)
p2

2500(M − 1)2

)

(84)

≤ 2n−
3 c 2

1
2 5 0 0 , (85)

where p > c1(M − 1)
√

log n
( n −1
M −1)

. This completes the proof of

Theorem 3.

APPENDIX C
PROOF OF THEOREM 4

Outline: The sequence of steps we follow to prove Theorem 4
is similar to that in [6]. To be more specific, the base inequality
from which we build on to derive an upper bound of �2 er-
rors (90) is derived in the proof of Lemma 2 in [6]. To prove
Theorem 4, we introduce two lemmas: Lemmas 5 and 6.
Lemma 5 corresponds to Lemmas 3 and 5 in [6], and Lemma 6
corresponds to Lemma 4 therein. The difference largely comes
from the fact that required calculations to derive our lemmas
need to be more involved, as we consider a more general model.
Aside from this difference, the proof of Theorem 4 mostly adopts
an existing technique that derives �2 error bounds.

Proof dependencies:

Theorem 4←− Lemma 5, Lemma 6
Lemmas 5 and 6←− Hoeffding’s inequality,

Matrix Bernstein inequality

Lemma 5: Suppose that p ≥ c4 log n
( n −1
M −1)

, where c4 is suffi-

ciently large. Then,

‖Δ‖2 ≤ 10

√
log n

(
n−1
M−1

)
pL

(86)

with probability at least 1− 2n−
3
5 .

Lemma 6: Suppose thatL ≥ c3 log n
( n −1
M −1)p

and h(P ) is the spec-

tral gap of the matrix P . Then,

h(P ) ≥ 1
270b2

(87)

with probability at least 1− 2n−
1

1 5 , where c3 is some universal
constant.

One can prove these lemmas by adopting an existing tech-
nique in [6], thus we omit the proofs. Now, let us prove
Theorem 4.

Proof: From the definition of P in Section 2 and the algo-
rithm description in Section 3.1 in the main paper, we obtain

w = Pw, ŵ = P̂ ŵ. (88)

�
Using two balance equations in (88), we obtain

ŵ −w = P̂ ŵ − Pw = P̂ (ŵ −w) +
(
P̂ − P

)
w. (89)

From (89), we can get the �2 error of estimate ŵ as follows.

‖ŵ −w‖2 ≤
(
1− h(P ) +

√
b ‖Δ‖2

)√
b ‖ŵ −w‖2

+
√
b ‖Δ‖2 ‖w‖2 , (90)

where the equality follows by letting Δ := P̂ − P . The proof
of (90) is derived in the proof of Lemma 2 in [6].

We can see that, for (90) to get a proper upper bound of
‖ŵ −w‖2 , the term 1− h(P ) +

√
b ‖Δ‖2 needs to be less

than one. To safely guarantee it, we can impose the following
condition:

√
b ‖Δ‖2 ≤

h(P )
2

. (91)
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We can obtain an upper bound on ‖Δ‖2 that holds with high
probability and a lower bound on h(P ). The first corresponds to
Lemma 5 and the second corresponds to Lemma 6. The proofs
of Lemma 5 and Lemma 6 are slight modifications of existing
techniques in [6]. The details of required calculations can be
found in [46].

From (91) and (86), we obtain

10
√
b

√
log n

(
n−1
M−1

)
pL
≤ h(P )

2
⇐⇒ L ≥ 400b

h(P )2

log n
(
n−1
M−1

)
p
,

(92)

and from (87) and (92), we obtain

L ≥
⌈

c3
log n
(
n−1
M−1

)
p

⌉

, (93)

where c3 := 29160000b5 .
Solving the equation (90) and replacing

√
b ‖Δ‖2 and ‖Δ‖2

by (91) and (86) respectively, we obtain

‖ŵ −w‖2
‖w‖2

≤ 2
h(P )

√
b

(

10

√
log n

(
n−1
M−1

)
pL

)

. (94)

Replacing h(P ) with the lower bound in (87) and by direct
computation, we obtain

‖ŵ −w‖2
‖w‖2

≤ 1350b
3
2

√
log n

(
n−1
M−1

)
pL

(95)

�
√
n log n
(
n
M

)
pL

√
1
M
, (96)

where p > c4 log n
( n −1
M −1)

andL ≥
⌈
c3

log n
( n −1
M −1)p

⌉
. This provides an upper

bound on �2 errors.

APPENDIX D
COMPUTATIONAL COST

In this appendix, we calculate the computational cost required
to employ our algorithm and the MM algorithm [21].

Since our algorithm simply multiplies a vector of length n
(estimated score vector at the iteration) with an n-by-n square
matrix (transition matrix) at each iteration, the computational
cost per each iteration is equal to the number of non-zero en-
tries of the matrix. Using the fact that each M -wise sample is
observed with probability p, for M > 2, we have

E
[
number of non-zero entries in P̂

]

= n2 Pr
[
(i, j)− entry in P̂ is observed

]
(97)

(a)
= n2

(

1−
(

1− 2p
M − 1

)( n −2
M −2)

)

(98)

(b)
≤ n2

(
1−
(

1−
(
n− 2
M − 2

)
2p

M − 1

))
(99)

≤ 2M
(
n

M

)
p, (100)

where (a) follows by the fact that the probability that a hyper-
edge including items i and j is observed and the two items
are adjacent in the circular permutation formed at random is p
times 2

M−1 , and the fact that there are
(
n−2
M−2

)
hyper-edges in total

including the two items; (b) follows by Bernoulli’s inequality.
For M = 2, the probability in (a) is p. This changes the final
result into M

(
n
M

)
p. Thus, the computational cost is at most

O
(
M
(
n
M

)
p
)
.10

In contrast to our work, MM developed in [21] does not
consider repeated L comparisons for a given set I of M items.
Thus, one needs to tailor MM proposed in [21] to our setting for
comparison. Modifying the score update of each item at each
iteration expressed in (30) in [21] to our setting, we have

w
(t+1)
i =

∑
I:i∈I,I∈E (M )

∑
π∈ΠI N

(π )
I

∑
I:i∈I,I∈E (M )

∑
π∈ΠI N

(π )
I
∑π−1 (i)

m = 1
1∑M

m ′= m w
( t )
π (m ′)

,

(101)

where w(t)
i indicates the estimated score of item i at iteration

t, ΠI indicates all possible permutations for I and N
(π )
I in-

dicates the number of permutations that are equal to π ∈ ΠI
among observations for I. In the denominator of (101), the num-

ber of multiplications is
∑
I:i∈I,I∈E (M )

∑
π∈ΠI N

(π )
I
∑π−1 (i)

m = 1 1.
Changing the order of summations,

∑

I:i∈I,I∈E (M )

∑

π∈ΠI

π−1 (i)∑

m=1

1

(a)
=

∑

I:i∈I,I∈E (M )

M∑

m = 1

∑

π :π (m )=i,π∈ΠI

m (102)

(b)
= (M − 1)!

∑

I:i∈I,I∈E (M )

M∑

m = 1

m (103)

(c)
=

(M + 1)!
2

xi, (104)

where (a) follows by the fact that the two innermost summations
on both sides of the equation calculate in effect the summation
of the positions of item i in all permutations; (b) follows by
the fact that there are (M − 1)! permutations in total when the
position of item i is fixed in them; (c) follows by the fact that
∑M

m=1 m = M (M+1)
2 ; xi is the number of hyper-edges which

include item i. Applying (101) to all n items, the computational
cost at each iteration is given as follows.

nE

[
(M + 1)!

2
xi

]
(a)
= n

(M + 1)!
2

(
n− 1
M − 1

)
p (105)

=
M(M + 1)!

2

(
n

M

)
p, (106)

10Since the number of non-zero entries in the transition matrix is bounded by
n2 , the computational cost is in fact on the order of the minimum of the two:
O
(
min{M

(
n
M

)
p, n2}

)
. However, p would mostly be small in practice. Thus,

for ease of comparison, we simply use O
(
M
(
n
M

)
p
)

.
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where (a) follows by the fact that one can choose M − 1 items
out of n− 1 items to construct a hyper-edge which includes
item i. Thus, the computational cost is O

(
M(M + 1)!

(
n
M

)
p
)
.
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