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Abstract—In this paper, we design and analyze MC2G (Matrix
Completion with 2 Graphs), an efficient algorithm that performs
matrix completion in the presence of social and item similarity
graphs. MC2G runs in quasilinear time and is parameter free.
It is based on spectral clustering and local refinement steps. For
the matrix completion problem which possesses additional block
structures in its rows and columns, we derive the expected number
of sampled entries required for MC2G to succeed, and further
show that it matches an information-theoretic lower bound up
to a constant factor for a wide range of parameters. We perform
extensive experiments on both synthetic datasets and a semi-real
dataset inspired by real graphs. The experimental results show
that MC2G outperforms other state-of-the-art matrix completion
algorithms.

Index Terms—Matrix completion, community detection,
stochastic block model, graph side information.

I. INTRODUCTION

W ITH the ubiquity of social networks such as Facebook
and Twitter, it is increasingly convenient to collect

similarity information amongst users. It has been shown that
exploiting this similarity information in the form of a social
graph can significantly improve the quality of recommender
systems [1]–[8] compared to traditional recommendation algo-
rithms (e.g., collaborative filtering [9]) that rely merely on rating
information. This improvement is particularly pronounced in the
presence of the so-called cold-start problem in which we would
like to recommend items to a user who has not rated any items,
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but we do possess his/her similarity information with other users.
Similarly, an item similarity graph is sometimes also available
for exploitation—it can be constructed either from the features of
items [10], or from users’ behavior history (as has been done by
Taobao [11]). Again, this can help in solving the dual cold-start
problem, namely the learner has no information about new items
that have not been rated by any user.

While there have been numerous studies considering how
to exploit graph side information to enhance recommender
systems, most of the algorithms developed so far exploit only
one graph (either the social or the item similarity graph). As
mentioned above, both graphs are often available in many real-
life applications, and it has been shown in a prior theoretical
study [12] that there are scenarios in which exploiting two
graphs yields strictly more benefits than exploiting only one
graph. This work builds upon [12] which focuses on fundamental
limits, but does not propose computationally efficient algorithms
that achieve the limits. Our main contribution is to design and
analyze a computationally efficient algorithm—which we name
MC2G—for a matrix completion problem, wherein both the
social and item similarity graphs are available. Our algorithm
MC2G is motivated by the observation that users and items in real
recommender systems often share similarities and are clustered.
The key idea behind MC2G is to first find the clusters of users and
items as accurately as possible, and then predict each missing en-
try based on other available entries that belong to the same clus-
ters of users and items. Thus, MC2G can be applied to modern
recommender systems that contain side information in the form
of social and item similarity graphs. On the matrix completion
problem described below, we provide theoretical guarantees on
the expected number of sampled entries for MC2G to succeed,
and further show that it meets an information-theoretic lower
bound up to a constant factor.

We consider a matrix completion problem in which there are
n users and m items. Users are partitioned into k1 ≥ 2 clusters,
while items are partitioned into k2 ≥ 2 clusters. Users’ ratings
to items are chosen from an arbitrarily pre-assigned finite set
(e.g., {1, 2, 3, 4, 5} for Netflix prize challenge [13]). The n×m
rating matrix is generated according to a generative model which
we describe in Section II. The learner observes three pieces of
information: (i) a sub-sampled rating matrix with each entry
being sampled independently with probability p; (ii) a social
graph generated according to a celebrated generative model for
random graphs—the stochastic block model (SBM) [14]; and
(iii) an item similarity graph generated according to another
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SBM. The task is to exactly recover the clusters of both users
and items, as well as to complete a matrix that represents
the nominal ratings from certain user clusters to certain item
clusters (called nominal matrix). Essentially, our problem is
about exactly recovering a matrix with hidden block structures
in the presence of noise and graph side information. Our model
significantly generalizes the models considered in related works
with theoretical guarantees [1], [2], [12], by relaxing some
constraints therein, e.g., (i) users/items are only partitioned into
two equal-sized clusters, and (ii) only binary ratings are allowed.

A. Main Contributions

Our main contributions are summarized as follows.
1) We develop a computationally efficient algorithm MC2G,

which is a multi-stage algorithm that follows the “from
global to local” principle. It first adopts a spectral clus-
tering method on graphs to obtain initial estimates of
user/item clusters, and then refines each user/item indi-
vidually based on local maximum likelihood estimation
(MLE). MC2G is also a parameter-free algorithm that
does not need the knowledge of the model parameters.
Under the symmetric setting described in Section IV-A,
we show that MC2G exactly recover the user/item clusters
as well as the nominal matrix with high probability as long
as the number of samples exceeds a bound presented in
Theorem 1.

2) We also provide an information-theoretic lower bound that
matches the bound in Theorem 1 up to a constant factor;
this demonstrates the order-wise optimality of MC2G. As
a by-product, the aforementioned theoretical results also
generalize the theory developed in the prior work [12],
which was focused on a simpler setting in which both
users and items are partitioned into two clusters.

3) We conduct extensive experiments on synthetic datasets
to verify that the results show keen agreement with the
derived theoretical guarantee of MC2G in Theorem 1. We
further demonstrate the superior performance of MC2G by
comparing it with several state-of-the-art matrix comple-
tion algorithms, such as OPTSPACE [15], SoRec [3], and
a spectral clustering method with local refinements using
only the social graph or only the item graph [1].

4) Finally, we assess MC2G on a semi-real dataset consisting
of real graphs but synthetic ratings. We adopt the LastFM
social network [16] and political blogs network [17] as
the social and item similarity graphs, respectively. Our
experimental results show that MC2G works well under the
real graphs; this further confirms that MC2G is universal, as
the real graphs do not satisfy the symmetry assumptions.
Finally, we show that MC2G outperforms the other afore-
mentioned matrix completion algorithms on this semi-real
dataset.

B. Related Works

Due to the wide applicability of matrix completion (such as
recommender systems), the past decade has witnessed the devel-
opments of many efficient matrix completion algorithms, such

as [18]–[23]. In the context of recommender systems, the design
of algorithms that exploit graph side information (especially
the social graph) has attracted much attention. For example, re-
searchers have proposed a variety of matrix factorization-based
algorithms that incorporate graph side information [3]–[8], [24],
[25], where the graph is used to design additional regularization
terms or modify the existing matrix model. Another popular
approach is via the neighborhood-based algorithms [26], [27],
where users’ ratings are predicted based on the ratings of their
neighbors, and the neighborhood is defined using social graphs.
Recently, some deep learning-based algorithms [28]–[30] (rely-
ing on convolutional neural networks) have also been proposed
for recommender systems with graph side information. Among
the aforementioned works, [6]–[8], [28], [30] also considered
simultaneously exploiting both the social and item similar-
ity graphs in their algorithms. For example, [7] proposed an
algorithm, called kernelized probabilistic matrix factorization
(KPMF), that effectively incorporates the two graphs into the
matrix factorization process. Rao et al. [8] incorporated the
two graphs as regularization terms in the matrix completion
problem, and developed a scalable algorithm based on efficient
Hessian-vector multiplication schemes. Although these algo-
rithms usually yield better empirical performance, most of them
do not provide any theoretical guarantee. Notably, [8] performed
a theoretical analysis when the observed entries are perturbed
by noise, and provided an upper bound on the estimation error
between the true matrix and recovered matrix. However, it
remains unexplored in [8] that (theoretically) by how much one
can improve the performance with the aid of graphs, while this
work quantifies the gains of exploiting social and item similarity
graphs. In Section IV-D, we provide a more detailed comparison
about the theoretical results of this work, ref. [8], and other
related works on matrix completion.

We note that another line of works focused on the fundamental
limits of matrix completion in which the matrix is generated
according to a certain generative model for the clusterings of
the users and/or items. Ahn et al. [1] considered a setting where
ratings are binary and a graph encodes the structure of two
clusters, and characterized the expected number of sampled
entries required for matrix completion. Follow-up works [2],
[31] relaxed the assumptions in [1], but are still restricted to
exploiting the use of a single graph. The recent work [12]
investigated a more general setting in which both the social and
item similarity graphs are available, and quantified the gains
of the two graphs via information-theoretic lower and upper
bounds. However, a computationally efficient algorithm that
achieves the limit promised by MLE was not developed in [12].
Given that the MLE is not computationally feasible, there is
a pressing need to develop efficient algorithms. This precisely
sets the goal of this work. Additionally, this work studies a
generalized setting that spans multiple user/item clusters and
discrete-valued rating matrices. This is in contrast to [12] which
focuses on two clusters and binary ratings. Finally, it is worth
mentioning that our algorithm MC2G is universally applicable
to all matrix completion problems with two-sided graph side
information, i.e., it is not restricted to the setting in [12] or the
setting in this work.
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TABLE I
NOMINAL RATINGS FROM USERS TO ITEMS

Another field relevant to this work is community detection,
which is the problem of partitioning nodes of an undirected
graph into different clusters/communities. When the graphs are
generated according to SBMs, the information-theoretic limits
for exact recovery of clusters [32]–[37] have been established.
These limits also play a role in establishing the theoretical guar-
antee of MC2G (see the third item in Remark 5), as our algorithm
includes the clustering step for users and items in the process
of matrix completion. It has also been shown that side infor-
mation is in general helpful for community detection [38]–[41].
Besides, our problem is also related to the labelled/weighted
SBM problem, if the two SBMs that govern the social and item
similarity graphs are merged to a single unified SBM (interested
readers are referred to [12, Remark 4] for details).

C. Outline

This paper is organized as follows. We first introduce the
problem setup in Section II, and then describe our efficient
algorithm MC2G in Section III. Section IV presents our main
theoretical results: (i) the theoretical guarantee for MC2G and
(ii) the information-theoretical lower bound. These results are
proved in Sections V and VI, respectively. Experimental results
are presented in Section VII.

II. PROBLEM STATEMENT

We consider a recommender system with n users and m
items. Ratings from users to items are chosen from an ar-
bitrary finite alphabet Z (e.g., Z = {1, 2, 3, 4, 5}). It is as-
sumed that users are partitioned into k1 ≥ 2 disjoint clusters
{U1,U2, . . . ,Uk1

}, and items are partitioned into k2 ≥ 2 disjoint
clusters {I1, I2, . . . , Ik2

}. We define1 σ : [n] → [k1] as the
label function for users such that σ(i) = a if user i belongs to
cluster Ua. On the contrary, each clutser Ua can be represented
as Ua = {i ∈ [n] : σ(i) = a}. Thus, σ can be viewed as an
alternative (and more concise) representation of the clusterings
of users {Ua}a∈[k1]. Similarly, we define τ : [m] → [k2] as the
label function for items such that τ(j) = b if item j belongs to
cluster Ib.

As users in the same cluster are more likely to share similar
preference (which is called homophily [42] in the social sci-
ences), we introduce the notion of nominal ratings to represent
the levels of interest from certain user clusters to certain item
clusters. Specifically, for all the users in clusterUa, their nominal
ratings to all the items in cluster Ib (where a ∈ [k1], b ∈ [k2])
are given by zab ∈ Z (as shown in Table I). That is, the nominal

1For any integer s ≥ 1, let [s] represent the set of integers {1, . . . , s}.

Fig. 1. An example with 6 users (partitioned into 3 clusters) and 6 items (parti-
tioned into 2 clusters). The nominal ratings are chosen from Z ∈ {1, 2, 3, 4, 5},
and are set to be z11 = 5, z12 = 1, z21 = 1, z22 = 4, z31 = 3, z32 = 2.

ratings given by users in the same clusters are the same, and the
nominal ratings received by items in the same cluster are also
identical. Thus, given σ (the labels of n users), τ (the labels of
m items), and {zab} (the nominal ratings), the corresponding
nominal matrix N ∈ Zn×m is an n×m matrix that contains the
nominal ratings from n users to m items, and each entry Nij

(the nominal rating from user i to item j) equals zσ(i)τ(j). An
example of the nominal matrix is illustrated in Fig. 1(a).

We assume the personalized rating Vij ∈ Z of user i to
item j is a stochastic function of the nominal rating Nij . More
precisely, we define QV |Z ∈ P(Z × Z) as the personalization
distribution that reflects the diversity of users in the same cluster.
For each user i, his/her personalized rating Vij ∈ Z to item j is
distributed according to QV |Z=Nij

∈ P(Z). A natural assump-
tion we adopt is that QV |Z=z(z) > QV |Z=z(z

′) for all z′ �= z;
that is, if the nominal rating is z ∈ Z , then the personalized
rating is most likely to be z. For a specific user cluster Ua and an
item clusterIb, all the personalized ratings{Vij}i∈Ua,j∈Ib follow
the same distribution QV |Z=zab

. For simplicity, we abbreviate
QV |Z=zab

as Qab. An example of the personalized rating matrix
is illustrated in Fig. 1(b).

A. Observations

The learner observes three pieces of information:
1) A sub-sampled rating matrix U, with each entry Uij = Vij

with probability (w.p.) p and Uij = e (erasure symbol)
w.p. 1− p. We refer to p as the sample probability and
mnp as the expected number of sampled entries.

2) A social graph G1 = (V1, E1), where V1 is the set of n
user nodes. Let B be a k1 × k1 symmetric connectivity
matrix that represents the probabilities of connecting two
nodes in G1. Each pair of nodes (i, i′) is connected (i.e.,
(i, i′) ∈ E1) independently w.p. Bσ(i)σ(i′).

3) An item graph G2 = (V2, E2), where V2 is the set of m
item nodes. Let B′ be a k2 × k2 symmetric connectivity
matrix that represents the probabilities of connecting two
nodes in G2. Each pair of nodes (j, j′) is connected (i.e.,
(j, j′) ∈ E2) independently w.p. B′

τ(j)τ(j′).
Note that the leaner can only observe the nodes and edges of

the graphs G1 and G2, without knowing which node belongs to
which cluster.
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Fig. 2. The partition of a complete graph H1 with n = 6 nodes into two
sub-graphs Ha

1 and Hb
1 .

B. Objective

The learner is tasked to design an estimatorφ = φ(U, G1, G2)
to exactly recover both the user clusters {Ua}a∈[k1] and item
clusters {Ib}b∈[k2] (or equivalently, the label functions σ and
τ ), as well as to reconstruct the nominal matrix N. The output
of the estimator φ is denoted by (σ̂, τ̂ , N̂).

To measure the accuracies of the estimated label functions σ̂
and τ̂ , we define the misclassification proportions as

l1(σ̂, σ) := min
π∈Sk1

1

n

∑
i∈[n]

1{σ̂(i) �= π(σ(i))}, (1)

l2(τ̂ , τ) := min
π∈Sk2

1

m

∑
j∈[m]

1{τ̂(j) �= π(τ(j))}, (2)

where Sk1
(resp. Sk2

) is the set of all permutations of [k1] (resp.
[k2]). The permutations are introduced because it is only possible
to recover the partitions of users/items, rather than the actual
labels (i.e., the best we can hope for is to ensure l1(σ̂, σ) = 0
and l2(τ̂ , τ) = 0).

Furthermore, we also define the concept of weak recovery
which plays a role in the intermediate steps of our algorithm.

Definition 1: An estimate σ̂ (resp. τ̂ ) is said to achieve weak
recovery if the misclassification proportion l1(σ̂, σ) → 0 as n
tends to infinity (resp. l2(τ̂ , τ) → 0 as m tends to infinity).

III. MC2G: A COMPUTATIONALLY EFFICIENT, STATISTICALLY

OPTIMAL ALGORITHM

In this section, we present a computationally efficient multi-
stage algorithm called MC2G for recovering the clusters of users
and items, and the nominal matrix N. Knowledge of the model
parameters (e.g., connectivity matrices B and B′ and personal-
ization distribution QV |Z) is not needed for MC2G to succeed,
as they will be estimated on-the-fly. Roughly speaking, MC2G

consists of four stages: Stage 1 achieves weak recovery of the
user/item clusters; Stage 2 estimates the model parameters B, B′,
andQV |Z ; and Stages 3 and 4 respectively refine these estimates
of users and items via local refinements steps. The inputs include
the sub-sampled rating matrix U and two graphs G1 and G2.

Before describing our algorithm in Subsection III-B, we first
point out that we use an information splitting method (inspired
by [32], [34], [43]) to circumvent the diffculty of analyzing the
error probability of our multi-stage algorithm. As a concrete
example, Fig. 2 illustrates how we split the information of the

social graph into two pieces, where the first piece is for Stage 1
and the second piece is for subsequent stages.

A. Information Splitting

The high-level idea is to split the observations (U, G1, G2)
into two parts—the first part, denoted as (Ga

1, G
a
2), is used

for weak recovery of users and items in Stage 1; while the
second part, denoted as (U, Gb

1 , G
b
2), is used for estimating the

parameters and for local refinements (exact recovery) of each
user and item in Stages 2–4. We elaborate on the information
splitting method as follows.

1) Let H1 = (V1, Ē1) be the complete graph with vertex set
V1 = [n] and edge set Ē1 which contains all the

(|V1|
2

)
edges

on V1. We randomly partition H1 into two sub-graphs
Ha

1 = (V1, Ēa
1 ) and Hb

1 = (V1, Ēb
1 ) such that Ha

1 is an
Erdős-Rényi (ER) graph on V1 with edge probability
1/
√
log n. That is, each e ∈ Ē1 is sampled (independently)

to Ēa
1 with probability 1/

√
log n, and to Ēb

1 with proba-
bility 1− 1/

√
log n, where Ēb

1 is the complement of Ēa
1 .

An example is illustrated in Fig. 2. This partition is done
independently of the generation of the SBM G1. For any
realizations Ha

1 = ha
1 and Hb

1 = hb
1 , let

Ga
1 := ha

1 ∩G1 and Gb
1 := hb

1 ∩G1. (3)

be two sub-SBMs on sub-graphs ha
1 and hb

1 , respectively.2

2) Similarly, let H2 = (V2, Ē2) be the complete graph with
vertex set V2 = [m] and edge set Ē2, Ha

2 is an ER graph
on V2 with edge probability 1/

√
logm, and Ēb

2 is the
complement of Ēa

2 . For any Ha
2 = ha

2 and Hb
2 = hb

2 , we
also define

Ga
2 := ha

2 ∩G2 and Gb
2 := hb

2 ∩G2. (4)

We refer the readers to Remark 7 for a discussion of the benefit
of using this information splitting method.

B. Algorithm Description

Stage 1 (Weak recovery of clusters): We run a spectral clus-
tering method3 (e.g., Agorithm 2 in [48]) on the social graph
Ga

1 to obtain an initial estimate of the label function σ (denoted
by σ(0)), and also run a spectral clustering method on the item
graph Ga

2 to obtain an initial estimate of the label function τ
(denoted by τ (0)). The estimated user clusters corresponding to
σ(0) are denoted by {U (0)

a }a∈[k1] (i.e., U (0)
a = (σ(0))−1(a)), and

the estimated item clusters corresponding to τ (0) are denoted by
{I(0)

b }b∈[k2]. These initial estimates σ(0) and τ (0) are expected
to serve as good approximations of the true clusters, such that

2With a slight abuse of notations, we use ha
1 ∩G1 (resp. hb

1 ∩G1) to
represent a graph with edge set being the intersection between the edge sets
of ha

1 (resp., hb
1 ) and G1. More specifically, for the sub-SBM Ga

1 (resp. Gb
1 ),

any pairs of nodes (i, i′) are connected with probability Bσiσi′ if (i, i′) ∈ Ēa
1

(resp. (i, i′) ∈ Ēb
1 ), and with probability zero otherwise.

3To achieve weak recovery of the clusterings of users and items, one can also
apply different variants of spectral clustering methods [34], [43], [44], semidef-
inite programming-based methods [45], belief propagation-based methods [46],
or non-backtracking matrix-based methods [47].
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both σ(0) and τ (0) satisfy the weak recovery criteria defined in
Definition 1.

Stage 2 (Parameters estimation): For any two sets of nodes
V and V′, the number of edges connecting V and V′ (in Gb

1

or Gb
2) is denoted as e(V,V′), and the total possible number

of edges connecting V and V′ is denoted as Υ(V,V′), which
equals either |V| · |V′| (if V �= V′) or

(|V|
2

)
(if V = V′). Based

on the initial estimates {U (0)
a }a∈[k1] and {I(0)

b }b∈[k2], we then
estimate the connectivity matrices B and B′ as follows:

B̂aa′ = e(U (0)
a ,U (0)

a′ )/Υ(U (0)
a ,U (0)

a′ ), (5)

B̂
′
bb′ = e(I(0)

b , I(0)
b′ )/Υ(I(0)

b , I(0)
b′ ). (6)

Moreover, we define Qz
ab := {(i, j) : Uij = z, i ∈ U (0)

a , j ∈
I(0)
b } for a ∈ [k1], b ∈ [k2], and z ∈ Z . Then, the estimated

personalization distribution is given by

Q̂ab(z) = |Qz
ab|/
∑
z∈Z

|Qz
ab|, ∀a ∈ [k1], b ∈ [k2]. (7)

Stage 3 (Local refinements of users): This stage refines the
classification of each user locally, based on the ratings in U,
the social graph Gb

1 , and the initial estimates {U (0)
a }a∈[k1] and

{I(0)
b }b∈[k2]. For each user i ∈ [n], we essentially adopt a local

MLE to determine which cluster it belongs to. We define the
likelihood function that reflects how likely user i belongs to
cluster Ua as:

La(i) :=
∑

a′∈[k1]

e({i},U (0)
a′ ) · log

(
B̂aa′/(1− B̂aa′)

)
+
∑
b∈[k2]

∑
j∈I(0)

b

1{Uij �=e} · log Q̂ab(Uij). (8)

Leta∗i := arg maxa∈[k1]
La(i)be the index of the most likely user

cluster for user i. MC2G then declares i ∈ Ûa∗
i
; or equivalently,

σ̂(i) = a∗i .
Stage 4 (Local refinements of items): This stage refines the

classification of each item locally, based on U,Gb
2 , and the initial

estimates {U (0)
a }a∈[k1] and {I(0)

b }b∈[k2]. For each item j ∈ [m],
we define the likelihood function that reflects how likely item j
belongs to cluster Ib as:

L′
b(j) :=

∑
b′∈[k2]

e({j}, I(0)
b′ ) · log

(
B̂
′
bb′/(1− B̂

′
bb′)
)

+
∑

a∈[k1]

∑
i∈U(0)

a

1{Uij �=e} · log Q̂ab(Uij). (9)

Let b∗j := arg maxb∈[k2]
L′
b(j)be the index of the most likely item

cluster for item j. MC2G then declares j ∈ Îb∗j ; or equivalently,
τ̂(j) = b∗j .

Finally, one can recover the nominal matrix N̂ by setting

N̂ij = arg maxz∈Z Q̂ab(z), for i ∈ Ûa, j ∈ Îb. (10)

Remark 1: It is worth pointing out that our algorithm MC2G

can be viewed as an efficient method to find an approximated
solution of the maximum likelihood (ML) estimator. To be spe-
cific, the log-likelihood function of the observations (U, G1, G2)
conditioned on the parameters ({Ua}, {Ib},B,B,′ {Qab}) is
given by

logP (U, G1, G2) = logP (U)+logP (G1)+logP (G2),

(11)

where logP (G1) =

k1∑
a=1

k1∑
a′=a

E(Ua,Ua′) logBaa′

+[Υ(Ua,Ua′)−E(Ua,Ua′)] log(1−Baa′),
(12)

logP (G2) =

k2∑
b=1

k2∑
b′=b

E(Ib, Ib′) logB′
bb′

+ [Υ(Ib, Ib′)−E(Ib, Ib′)] log(1−B′
bb′),
(13)

logP (U) =

k1∑
a=1

k2∑
b=1

∑
i∈Ua

∑
j∈Ib

1{Uij = e} log(1− p)

+1{Uij �= e} log (pQab(Uij)) . (14)

Here,E(Ua,Ua′) andE(Ib, Ib′) respectively denote the number
of edges connecting the two clusters in graphs G1 and G2,
which are close to e(Ua,Ua′) and e(Ib, Ib′) since the sub-graphs
Gb

1 and Gb
2 are almost as dense as the original graphs G1 and

G2. Based on the log-likelihood functions in (11)–(14), one
can check that each of the Stages 2–4 approximately optimizes
logP (U, G1, G2) over a specific subset of parameters while
keeping other parameters fixed. This can be viewed as an in-
tuitive interpretation of Stages 2–4.
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Remark 2: To improve the performance of MC2G in prac-
tical scenarios, one can perform parameters estimation (Stage
2) and local refinements (Stages 3–4) iteratively for multiple
rounds. After one round of local refinements, the parameters
will be estimated more accurately, which will in turn benefit the
next round of local refinements. Accordingly, the computational
complexity will increase.

From a theoretical perspective, when applying MC2G to the
symmetric setting described in Section IV, it suffices to perform
parameters estimation and local refinements only once. This is
because (i) Lemmas 2, 3, and 5 together show that the estimates
of the connectivity matrices and the personalization distributions
are accurate enough such that in the following local refinement
stages, the estimation errors are negligible; and (ii) Lemmas 4
and 6 show that one round of local refinements is sufficient for
the exact recovery of the clusters of users and items with high
probability.

Remark 3: The information splitting method is merely for the
purpose of analysis, while it may not be practical when n and
m are not sufficiently large, in which case the first part of the
graphs (Ga

1, G
a
2) may be too sparse to achieve weak recovery

of the true clusters in Stage 1. Thus, in practice, one can skip
the information splitting step in Section III-A and simply apply
every stage on the fully-observed graphs (G1, G2) for weak
recovery, parameter estimations, and local refinements—this is
referred to as the simplified version of MC2G. In our experiments
(Section VII), we use this simplified version of MC2G and show
that it also works well empirically.

C. Computational Complexity

Using the iterative power method [49], the spectral clustering
method in Stage 1 runs in times at most O(|E1| log n) and
O(|E2| logm) respectively. In each of the following steps, MC2G

requires (at most) a single pass of all the sub-sampled entries in
the rating matrix U and the edge sets E1 and E2, which amounts
to at most O(max{|E1|, |E2|,mnp}) time, where p is the sam-
ple probability. Thus, the overall computational complexity is
O(max{|E1| log n, |E2| logm,mnp}). Finally, we would like to
point out that for most scenarios of interest (including the follow-
ing theoretical setting and experimental setting), the numbers of
edges in the social and item graphs satisfy |E1| = O(n log n)
and |E2| = O(m logm) with high probability, and the sample
complexity mnp = O(max{n log n,m logm}). Therefore, the
overall complexity is quasilinear in n and m with high proba-
bility.

IV. THEORETICAL GUARANTEES OF MC2G AND

INFORMATION-THEORETIC LOWER BOUNDS

This section provides theoretical guarantees for MC2G. Under
the symmetric setting defined in Subsection IV-A, we character-
ize the expected number of sampled entries required for MC2G

to succeed; the key message there is that this quantity depends
critically on (i) the “qualities” of the social and item similarity
graphs, and (ii) the squared Hellinger distance between the rat-
ing statistics of different user/item clusters. We further establish
an information-theoretic lower bound on the expected number of

sampled entries. This bound matches the achievability bound up
to a constant factor, thus demonstrates the order-wise optimality
of MC2G.

A. The Symmetric Setting

Under the symmetric setting, it is assumed that (i) the user
clusters are of equal size (i.e., |Ua| = n/k1 for all a ∈ [k1]) and
the item clusters are of equal size (i.e., |Ib| = m/k2 for all b ∈
[k2]),4 and (ii) the connection probability for each pair of nodes
depends only on whether they belong to the same cluster, i.e.,
the connectivity matrices B and B′ satisfy

Baa′ =

{
α1, if a = a′;

β1, if a �= a′;
and B′

bb′ =

{
α2, if b = b′;

β2, if b �= b′.

Following many prior works on the SBM [32], [34], [38], [39],
we consider the logarithm average degree regime in which α1

and β1 scale as Θ((log n)/n) such that each node has expected
degree Θ(log n). This regime is of particular interest because
(i) it is known that the threshold for exact recovery of clusters
falls into this regime [32], [34]; and (ii) as we shall see in
Theorems 1 and 2, the gain of G1 can be precisely characterized
in this regime. Similarly, we also assume that α2 and β2 scale
as Θ((logm)/m). Moreover, following the prior work [12], we
assume m = ω(log n) and n = ω(logm) such that m → ∞ as
n → ∞.

We note that MC2G is not restricted to the symmetric setting;
it can be applied more generally to asymmetric scenarios. In-
deed, for the experiments in Section VII, we do not make the
symmetric assumption. In this section, however, we make this
assumption to simplify the presentation of Theorem 1 and to
clearly understand the effect of the parameters of the model on
the minimum expected number of sampled entries required for
MC2G to succeed.

In the following, we formally define the notion of exact
recovery. Note that the model is governed by the pair of label
functions (σ, τ) together with the nominal matrix N, and we
define the parameter space that contains all valid (σ, τ,N) under
the symmetric setting as

Ξ�
{
(σ, τ,N)

∣∣σ : [n]→ [k1],
∣∣{i∈ [n] : σi=a}

∣∣= n

k1
, ∀a∈ [k1];

τ : [m] → [k2],
∣∣{j ∈ [m] : τj = b}

∣∣= m

k2
, ∀b ∈ [k2];

N ∈ Zn×m,Nij=Ni′j′ if σ(i)=σ(i′) and τ(j)=τ(j′)
}
.

Let (σ, τ,N) be the ground truth, and (σ̂, τ̂ , N̂) be the output
of the estimator φ = φ(U, G1, G2). We say the event E(σ,τ,N)

occurs if the output (σ̂, τ̂ , N̂) of the estimator φ satisfies one of
the following three criterions: (i){l1(σ̂, σ) �= 0}, (ii){l2(τ̂ , τ) �=
0}, and (iii) {N̂ �= N}.

4We implicitly assume that n is divisible by k1 and m is divisible by k2. In
the case that n and m are not multiples of k1 and k2 respectively, rounding
operations required to define the set Ξ. Such rounding operations, however, do
not affect the calculations and results downstream.
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Definition 2 (Exact recovery): For any estimator φ, its corre-
sponding (maximum) error probability is defined as

Perr(φ) := max
(σ,τ,N)∈Ξ

P(σ,τ,N)

(
φ(U, G1, G2) ∈ E(σ,τ,N)

)
,

where P(σ,τ,N)(·) is the probability when (U, G1, G2) is gener-
ated according to the model governed by (σ, τ,N). A sequence
of estimators Φ = {φn}∞n=1 achieves exact recovery if

lim
n→∞

Perr(φn) = 0. (15)

Definition 3 (Sample complexity): The sample complexity is
defined as the minimum expected number of samples in the
matrix U such that there exists Φ for which (15) holds.

B. Theoretical Guarantees of MC2G

As we shall see, the “qualities” of the social and item graphs
play a key role in the performance of MC2G. Specifically, we
define a measure of the quality of the social graph G1 as
I1 := n(

√
α1 −

√
β1)

2/(log n). A larger value of I1 implies a
better quality of the graph, since the structures of the clusters
are more clearly delineated when the difference between the
intra-cluster probability α1 and the inter-cluster probability β1

is larger. Analogously, we define a measure of the quality of the
item graph G2 as I2 := m(

√
α2 −

√
β2)

2/(logm).
The performance of MC2G also depends on the statistics of the

rating matrix. Intuitively, if the rating statistics of two clusters
are further apart, it is then easier to distinguish them. It turns out
that under the symmetric setting, the distance between the rating
statistics of different clusters can be measured by the squared
Hellinger distance: H2(P,Q) := 1−

∑
z∈Z
√

P (z)Q(z), for
probability distributions P and Q. We then define d(Ua,Ua′) :=∑

b∈[k2]
H2(Qab, Qa′b) as a measure of the discrepancy be-

tween user clusters Ua and Ua′ (where a, a′ ∈ [k1]), and dU :=
mina �=a′ d(Ua,Ua′) as the minimal discrepancy over all pairs
of user clusters. A larger value of dU means that it is eas-
ier to distinguish all the user clusters. Analogously, we de-
fine the discrepancy between item clusters Ib and Ib′ (where
b, b′ ∈ [k2]) as d(Ib, Ib′) :=

∑
a∈[k1]

H2(Qab, Qab′), and dI :=

minb �=b′ d(Ib, Ib′) as the minimal discrepancy over all pairs of
item clusters.

Remark 4: The squared Hellinger distance H2(P,Q) satis-
fies H2(P,Q) ∈ [0, 1] and H2(P,Q) = 0 if and only if P = Q.

Theorem 1 states the expected number of sampled entries
needed for MC2G to succeed under the symmetric setting.

Theorem 1 (Performance of MC2G): For any ε > 0, if the
expected number of sampled entries mnp satisfies

mnp≥ max

{[
(1+ε)− I1

k1

]
n log n

dU/k2
,

[
(1+ε)− I2

k2

]
m logm

dI/k1

}
,

(16)

then MC2G ensures Perr → 0 as n → ∞.
Remark 5: Some remarks on Theorem 1 are in order.
1) Roughly speaking, the first term on the RHS of (16) is

the threshold for Stage 3 (local refinements of users) to
succeed. This is because whenmnp exceeds the first term,

the probability that a single user is misclassified to an
incorrect cluster (in Stage 3) is at mostn−� for some 
 > 1.
Thus, taking a union bound over all the n users still results
in a vanishing error probability. Similarly, the second term
on the RHS of (16) is the threshold for Stage 4 to succeed.

2) Our result in (16) confirms our intuitive belief that increas-
ing dU and dI (the minimum discrepancies between user
and item clusters) indeed helps to reduce the number of
samples required for exact recovery. Similarly, increasing
I1 and I2 (the qualities of the social and item graphs) also
helps to reduce the sample complexity.

3) It is also worth noting that when I1 > k1, the first term
in (16) becomes non-positive (thus inactive); this means
that performing local refinements of users in Stage 3 is
no longer needed, which is due to the fact that Stage 1
has already ensured exact recovery of k1 user clusters.
This observation coincides with the theoretical result of
community detection in the symmetric SBM [34], which
states that exact recovery of k1 clusters is possible when
I1 > k1. Similarly, when I2 > k2, local refinements of
items in Stage 4 is no longer needed, as Stage 1 has ensured
exact recovery of k2 item clusters.

4) While the theoretical result in Theorem 1 is dedicated
to this symmetric setting, MC2G is applicable to a more
general matrix completion problem with social and item
similarity graphs, where the sizes of user/item clusters
may be different. This is confirmed by the experiments in
Section VII.

C. Information-Theoretic Lower Bound

Theorem 2 below provides an information-theoretic lower
bound on the sample complexity under the symmetric setting.
Again, the lower bound is a function of I1, I2 (the quality of
the social/item graph), and dU and dI (the minimum discrep-
ancies measured in terms of the squared Hellinger distances of
user/item clusters).

Theorem 2 (Impossibility result): For any ε > 0, if

mnp<max

{[ 1−ε
2 − I1

k1

]
n log n

dU/k2
,

[
1−ε
2 − I2

k2

]
m logm

dI/k1

}
, (17)

then limn→∞ Perr(φ) = 1 for any estimator φ.
Theorem 2 states that any estimator must necessarily fail if the

expected number of samples is smaller than the maximal term
in (17). Thus, the sample complexity defined in Definition 3
is upper-bounded by the RHS of (16), and lower-bounded by
the RHS of (17). In particular, Theorem 2 guarantees that Perr

approaches one as n → ∞; this is the so-called strong converse
in the information theory parlance. Comparing (17) with the
achievability bound in (16), we note that they match up to a
constant factor, and this further demonstrates the order-wise
optimality of the proposed computationally efficient algorithm
MC2G.
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D. Comparisons With Other Results on Matrix Completion

The model considered in this work can be viewed as a special
noisy matrix completion [50]–[52] problem, where the nominal
matrix N is not only of low rank, but also has a block structure
imposed by the clusters of rows and columns. Here, the nominal
matrix N is analogous to the low-rank matrix to be recovered,
the personalization distributions{Qab} is analogous to the noise,
and the observed rating matrix U is analogous to the observed
perturbed matrix.

The method of weighted nuclear norm and 
1 norm min-
imization [50] can be directly applied to recover the nomi-
nal matrix N; in order to exactly recover N with high prob-
ability, the number of sampled entries should be at least
Ω(max{n log6 n,m log6 m}) [50, Theorem 1]. In contrast,
MC2G only needs to sample Θ(max{n log n,m logm}) entries
(Theorem 1), which is better than their method by a factor of
log5 n or log5 m. Moreover, Theorem 1 also shows that the
constant in Θ(max{n log n,m logm}) can further be reduced
by exploiting the available graphs.

We note that other works [15], [51]–[53] also studied matrix
completion in the presence of noise, and provided algorithms
that are applicable to our problem. However, their theoretical
results focus on bounding the estimation error between the true
matrix N and recovered matrix N̂, thus they are not directly
comparable to our result.

In the absence of noise, theoretical guarantees of exact re-
covery for various matrix completion algorithms have been well
understood. Assume the rank of the matrix is O(1). For nuclear
norm minimization-based methods [19], [54], [55], it has been
shown that O(max{n log2 n,m log2 m}) sampled entries are
sufficient for exact recovery. For gradient descent-based meth-
ods such as OPTSPACE, O(max{n log n,m logm}) sampled
entries suffice [15].

Unlike the aforementioned algorithms, there are also algo-
rithms exploiting both matrix entries and graph side information.
For example, Ahn et al. [1] developed a two-stage algorithm that
incorporates a social graph, and provided theoretical guarantees
for a simple setting with binary matrices and two user clusters.
For a fair comparison, we consider the following setting: k1 =
k2 = 2 (two user/item clusters), nominal ratings z11 = z22 = 1,
z12 = z21 = 0, Z = {0, 1}, and the personalization distribution
QV |Z(v|z) equals 1− θ if v = z, and θ otherwise. To exactly
recover the matrix, their algorithm requires g(θ) ·max{(1−
I1
2 )n log n, 2m logm} sampled entries [1, Theorem 2], while

MC2G requires g(θ) ·max{(1− I1
2 )n log n, (1− I2

2 )m logm}
sampled entries, where g(θ) = (1− 2

√
θ(1− θ))−1. When m

is relatively large, we note that MC2G reduces at least by
g(θ) · (1 + I2

2 )m logm compared to [1], and the advantage
becomes larger when the quality of the item graph (represented
by I2) becomes better. As mentioned in Section I-B, the work
by Rao et al. [8] further considered exploiting both the social
and item graphs, and they presented a novel algorithm as well as
an accompanying theoretical guarantee on the estimation error
‖N̂ − N‖F. However, their problem formulation and the form
of results are not directly comparable to ours, since they do not
aim to exactly recover N. Nevertheless, we point out that our

advantage is that we explicitly quantify the gains (by charac-
terizing the exact constant) due to exploiting social and item
similarity graphs, and we also demonstrate its order-optimality,
while in [8] the benefits of exploiting the social and item graphs
are not quantitatively characterized.

V. PROOF OF THEOREM 1

A. Analysis of Stage 1

Note that the sub-SBM Ga
1 is generated on the sub-graph ha

1;
thus the performance of the spectral clustering method on Ga

1

essentially depends on the realization ha
1. A similar argument

also applies to Ga
2.

To circumvent the difficulties of analyzing fixed ha
1 and hb

1 ,
we first consider two artificial SBMs G̃1 and G̃2, where G̃1

is generated on the n user nodes and has connectivity matrix
B/

√
log n, and G̃2 is generated on the m item nodes and has

connectivity matrix B′/
√
logm. In Appendix A, we introduce a

result (Theorem 3) that provides theoretical guarantees of weak
recovery of clusters in the SBM, which is adapted from [48,
Theorem 6]. One can also check that the two artificial SBMs G̃1

and G̃2 satisfy the conditions of applying Theorem 3, as shown
in Appendix VII-C. Thus, applying Theorem 3 yields that there
exist vanishing sequences εn,ηn, andγn (depending on B and B′)
such that with probability at least 1− εn, the spectral clustering
method running on G̃1 and G̃2 respectively ensure that

l1(σ
(0), σ) ≤ ηn and l2(τ

(0), τ) ≤ γn. (18)

Based on the good performances of spectral clustering methods
running on G̃1 and G̃2, we next show that spectral clustering
methods running on Ga

1 and Ga
2 also provide satisfactory initial-

ization results with high probability.
Definition 4: Let h = (ha

1, h
b
1 , h

a
2, h

b
2) be an aggregation of

realizations of the sub-graphs.
1) A sub-graph ha

1 is said to be good if the probability that “a
spectral clustering method running on Ga

1 (which depends
on ha

1) ensures l1(σ
(0), σ) ≤ ηn” is at least 1−√

εn. A
sub-graph hb

1 is said to be good if the degree of any node
in hb

1 is at least n(1− 2/
√
log n).

2) A sub-graph ha
2 is said to be good if the probability

that “a spectral clustering method running on Ga
2 ensures

l2(τ
(0), τ) ≤ γn” is at least 1−√

εn. A sub-graph hb
2 is

said to be good if the degree of any node in hb
2 is at least

m(1− 2/
√
logm).

3) Let G and B be two disjoint sets of h. We say h ∈ G if all
the elements in h are good, and h ∈ B otherwise.

Lemma 1: The randomly generated sub-graphs
Ha

1 , H
b
1 , H

a
2 , H

b
2 are all good with probability at least

(1− 2
√
εn)

2, i.e.,
∑

h∈G P (h) ≥ (1− 2
√
εn)

2.
Proof: See Appendix B. �
We define G′ as the set of label functions that are close to the

true label functions (σ, τ), i.e.,

G′ := {(σ,′ τ ′) : l1(σ,′ σ) ≤ ηn, l2(τ,
′ τ) ≤ γn}, (19)

and B′ := {(σ,′ σ) : (σ,′ σ) /∈ G′} as the complement of G′. By
definition, we know that when the randomly generated sub-
graphs h ∈ G, running spectral clustering methods on Ga

1 and
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Ga
2 yields (σ(0), τ (0)) ∈ G′ with high probability, i.e.,∑

(σ(0),τ (0))∈G′

P ((σ(0), τ (0))|h) ≥ (1−√
εn)

2, (20)

which is uniform in h ∈ G (i.e., {εn} does not depend on h).
Remark 6: Lemma 1 above conveys two important messages:

(i) Although the sub-graphs Ha
1 and Ha

2 are much sparser com-
pared to H1 and H2 (or equivalently, the information contained
in Ha

1 and Ha
2 is much less), they still guarantee the success of

running spectral clustering methods (with high probability). (ii)
The densities of sub-graphs Hb

1 and Hb
2 are almost the same as

those of H1 and H2, and this is critical in Stages 2–4 for proving
the theoretical guarantees of MC2G.

Remark 7: After the splitting, all the random variables (asso-
ciated with the original SBMs G1 and G2) are partitioned into
two disjoint sets—the first set of random variables is associated
with the sub-graphs ha

1 and ha
2, and is used in Stage 1, while

Stages 2–4 rely on the second set of random variables that
are associated with the sub-graph hb

1 and hb
2 . The two sets of

random variables are independent since each edge in the SBM
is generated independently. Note that the output from Stage 1
(i.e., the initial estimates of the user and item clusters) is only a
function of the first set of random variables. After obtaining the
initial estimates from Stage 1, we then implement the subsequent
stages on hb

1 and hb
2 . Since hb

1 and hb
2 only involve the second

set of random variables, the analysis of the subsequent stages
relies only on the second set of random variables, which are
completely independent of the first set of random variables (and
thus independent of the output from Stage 1).

In contrast, if there were no splitting process, the output
from Stage 1 would be a function of all the random variables
associated with the SBMsG1 andG2, while the analysis of Stage
2–4 also relies on these random variables, whose distributions
could be changed conditioned on the realization of the output
from Stage 1.

B. Analysis of Stage 2

Note that the estimates B̂, B̂,′ {Q̂ab} in (5)–(7) depend on both
h and (σ(0), τ (0)). In Stage 2, we show in Lemmas 2 and 3 below
that conditioned on h ∈ G and (σ(0), τ (0)) ∈ G′, the estimates
are accurate with high probability.

Lemma 2: Suppose h ∈ G and (σ(0), τ (0)) ∈ G′.
With probability 1− o(1), there exists a sequence εn ∈
Ω(max{γn, ηn, 1/

√
log n}) ∩ o(1) such that for all a, a′ ∈ [k1]

and b, b′ ∈ [k2],
∣∣̂Baa′−Baa′

Baa′

∣∣ ≤ εn and
∣∣̂B′

bb′−B′
bb′

B′
bb

∣∣ ≤ εn.
Proof: See Appendix C. �
Lemma 3: Suppose h ∈ G and (σ(0), τ (0)) ∈ G′.

With probability 1− o(1), there exists a sequence
ε′n ∈ Ω(max{γn, ηn, 1/

√
log n}) ∩ o(1) such that for all

a ∈ [k1], b ∈ [k2], and z ∈ Z , |(Q̂ab(z)/Qab(z))− 1| ≤ ε′n.
Proof: See Appendix D. �
Remark 8: In Lemmas 2 and 3 above, we implicitly as-

sume (without loss of generality) that the permutations min-
imizing l1(σ

(0), σ) and l2(τ
(0), τ) are both the identity per-

mutation, i.e., l1(σ
(0), σ) =

∑
i∈[n] 1{σ(0)(i) �= σ(i)}/n and

l2(τ
(0), τ) =

∑
j∈[m] 1{τ (0)(j) �= τ(j)}/m as per (1) and (2).

Without this assumption, one needs to introduce the permu-
tations π∗

1 and π∗
2 that respectively minimize l1(σ

(0), σ) and
l2(τ

(0), τ)—this unnecessarily complicates the presentations of
Lemmas 2 and 3.

C. Analysis of Stage 3

Note that the likelihood function defined in (8) depends on the
estimated values B̂ and {Q̂ab} of the model parameters. For ease
of analysis, we first ignore the imprecisions of these estimates,
and define the exact likelihood function L̃a(i), which depends
on the exact values of B and {Qab}, as

L̃a(i) :=
∑

a′∈[k1]

e({i},U (0)
a′ ) · log (Baa′/(1− Baa′))

+
∑
b∈[k2]

∑
j∈I(0)

b

1{Uij �=e} · logQab(Uij). (21)

We now consider a specific user i ∈ [n], which belongs to
cluster Ua for some a ∈ [k1]. Lemma 4 below shows that, with
probability 1− o(1/n), L̃a(i) is larger than any other likelihood
functions L̃ā(i) by at least (ε/2) log n.

Lemma 4: Suppose h ∈ G and (σ(0), τ (0)) ∈ G′. If

mnp ≥ [(1 + ε)− (I1/k1)]n log n

dU/k2
, (22)

with probability at least 1− k1n
−(1+ ε

2 ),

L̃a(i) > max
ā∈[k1]\{a}

L̃ā(i) + (ε/2) log n. (23)

Proof: In the following, it suffices to focus on the boundary
casemnp = [(1+ε)−(I1/k1)]n logn

dU/k2
, since the probability that (23)

holds would only be larger as the sample complexity mnp in-
creases. Consider a specific ā �= a. Under the symmetric setting,
the entries in the connectivity matrix B are either α1 or β1, and
we further define λ1 := log (1−β1)α1

(1−α1)β1
. From the definitions of

L̃a(i) and L̃ā(i) in (21), we have

L̃a(i)− L̃ā(i) =
∑

a′∈[k1]

e({i},U (0)
a′ ) · log Baa′(1− Bāa′)

Bāa′(1− Baa′)

+
∑
b∈[k2]

∑
j∈I(0)

b

1{Uij �=e} · log Qab(Uij)

Qāb(Uij)
,

where

log
Baa′(1−Bāa′)

Bāa′(1−Baa′)
=

⎧⎪⎨⎪⎩
log α1(1−β1)

β1(1−α1)
=λ1, if a′=a;

log β1(1−α1)
α1(1−β1)

=−λ1, if a′= ā;

log β1(1−β1)
β1(1−β1)

=0, if a′ �={a, a′}.

Thus, we have

L̃a(i)− L̃ā(i) = λ1e({i},U (0)
a )− λ1e({i},U (0)

ā )

+
∑
b∈[k2]

∑
j∈I(0)

b

1{Uij �=e} log Qab(Uij)

Qāb(Uij)
.

(24)
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For a, ā ∈ [k1], let Saā := Ua ∩ U (0)
ā be the set of users that

belong to cluster Ua and are classified to U (0)
ā after Stage

1. By introducing random variables {Xk}nk=1
i.i.d.∼ Bern(α1)

and {Yk}nk=1
i.i.d.∼ Bern(β1), one can rewrite e({i},U (0)

a )−
e({i},U (0)

ā ) as∑
k∈Saa

Xk +
∑

k∈U(0)
a \Ua

Yk −
∑

k∈U(0)
ā \Ua

Yk −
∑

k∈Saā

Xk.

For b, b̄ ∈ [k2], let Tbb̄ := Ib ∩ I(0)

b̄
be the set of items that

belong to cluster Ib and are classified to I(0)

b̄
after Stage 1. By

introducing random variables {Tij} i.i.d.∼ Bern(p) and {Zab
ij }

i.i.d.∼
Qab, one can rewrite the second part in (24) as

∑
b∈[k2]

⎡⎢⎢⎢⎢⎢⎢⎣
∑
j∈Tbb

Tij log
Qab(Z

ab
ij )

Qāb(Zab
ij )︸ ︷︷ ︸

:=Aab
ij

+
∑
b̄ �=b

∑
j∈Tb̄b

Tij log
Qab(Z

ab̄
ij )

Qāb(Zab̄
ij )︸ ︷︷ ︸

:=Āab,b̄
ij

⎤⎥⎥⎥⎥⎥⎥⎦ .

We then bound P (L̃a(i)− L̃ā(i) ≤ (ε/2) log n) from above in
(25)–(28) shown at the bottom of this page, where (26) follows
from the Chernoff bound P (X ≥ κ) ≤ mint≥0 e

−tκ · E(etX)
with t = 1/2, and (27) is due to the independence of the random
variables. We now consider the exponent in (28). Since the initial
estimate (σ(0), γ(0)) ∈ G′, by the definition of G′ we know that
the misclassification proportions satisfy l1(σ

(0), σ) ≤ ηn and
l2(τ

(0), τ) ≤ γn. As a result, we have

n

k1
−ηnn ≤ |U (0)

ā \Ua| ≤
n

k1
,
n

k1
−ηnn ≤ |Saa|≤

n

k1
, (29)

|Saā| ≤ ηnn for ā �= a, |U (0)
a \ Ua| ≤ ηnn, (30)

m

k2
−γnm ≤ |Tbb| ≤

m

k2
, |Tb̄b| ≤ γnm for b̄ �= b. (31)

Next, we note that logE(e
1
2λ1Yk) = log(1− β1 +

β1

√
(1−β1)α1

(1−α1)β1
) and logE(e−

1
2λ1Xk) = log(1− α1 +

α1

√
(1−α1)β1

(1−β1)α1
), which implies that

logE(e
1
2λ1Yk) + logE(e−

1
2λ1Xk)

= log
(√

α1β1 +
√

(1− α1)(1− β1)
)2

= 2 log

(√
α1β1+

[
1−α1

2
+O(α2

1)
][
1− β1

2
+O(β2

1)

])
(34)

= 2 log

(
1−
[
1

2
α1 +

1

2
β1 −

√
α1β1 +O(α2

1)

])
= −I1

log n

n
+O(α2

1), (35)

where I1 = n
logn (

√
α1 −

√
β1)

2 by definition. (34) holds since√
1− x = 1− 1

2x+O(x2) for x → 0, and (35) follows from
Taylor series expansion. On the other hand,

logE(e−
1
2A

ab
ij )=log

(
1−p+p

∑
z∈Z

Qab(z)e
− 1

2 log
Qab(z)

Qāb(z)

)
= log

(
1− p ·H2(Qab, Qāb)

)
= −p ·H2(Qab, Qāb) +O(p2), (36)

where H2(·, ·) is the square Hellinger distance, and p =
Θ((log n)/m) = o(1) since it is assumed that m = ω(log n).

P

[
λ1

( ∑
k∈U(0)

ā \Ua

Yk +
∑

k∈Saā

Xk −
∑

k∈Saa

Xk −
∑

k∈U(0)
a \Ua

Yk

)
−
∑
b∈[k2]

[ ∑
j∈Tbb

Aab
ij +

∑
b̄ �=b

∑
j∈Tb̄b

Āab,b̄
ij

]
≥ −(ε/2) log n

]
(25)

≤ e
ε
4 logn · E

[
exp

{ ∑
k∈U(0)

ā \Ua

λ1

2
Yk+

∑
k∈Saā

λ1

2
Xk−

∑
k∈Saa

λ1

2
Xk−

∑
k∈U(0)

a \Ua

λ1

2
Yk−

∑
b∈[k2]

[ ∑
j∈Tbb

Aab
ij

2
+
∑
b̄ �=b

∑
j∈Tb̄b

Āab,b̄
ij

2

]}]
(26)

= e
ε
4 logn ·

[ ∏
k∈U(0)

ā \Ua

E(e
1
2λ1Yk)

]
·
[ ∏

k∈Saā

E(e
1
2λ1Xk)

]
·
[ ∏

k∈Saa

E(e−
1
2λ1Xk)

]
·
[ ∏

k∈U(0)
a \Ua

E(e−
1
2λ1Yk)

]

×
∏

b∈[k2]

[ ∏
j∈Tbb

E

(
e−

1
2A

ab
ij

)]
·
[∏

b̄ �=b

∏
j∈Tb̄b

E

(
e−

1
2 Ā

ab,b̄
ij

)]
(27)

= exp

{
ε

4
log(n) + |U (0)

ā \ Ua| · logE(e
1
2λ1Yk) + |Saā| · logE(e

1
2λ1Xk) + |Saa| · logE(e−

1
2λ1Xk)

+ |U (0)
a \ Ua| · logE(e−

1
2λ1Yk) +

∑
b∈[k2]

|Tbb| · × logE
(
e−

1
2A

ab
ij

)
+
∑
b̄ �=b

|Tb̄b| logE
(
e−

1
2 Ā

ab,b̄
ij

)}
.

(28)
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Therefore, we bound the exponent in (28) from above in (32)–
(33) shown at the bottom of this page, where (33) follows from
(29)–(31), (35), and (36).

Next, one can show that

∣∣∣logE(e 1
2λ1Xk)

∣∣∣=∣∣∣∣∣log
[
1−α1+α1

√
(1−β1)α1

(1−α1)β1

]∣∣∣∣∣=O
(
log n

n

)
,

∣∣∣logE(e− 1
2λ1Yk)

∣∣∣=∣∣∣∣∣log
[
1−β1+β1

√
(1−α1)β1

(1−β1)α1

]∣∣∣∣∣=O
(
log n

n

)
,

∣∣∣logE(e− 1
2 Ā

ab,b̄
ij )
∣∣∣= ∣∣∣∣∣log

[
1−p+p ·

∑
z∈Z

Qab̄(z)e
− 1

2 log
Qab(z)

Qāb(z)

]∣∣∣∣∣
=

∣∣∣∣∣log
(
1−p+p ·

∑
z∈Z

Qab̄(z)

√
Qāb(z)

Qab(z)

)∣∣∣∣∣ = O(p).

Thus, the second line of (33) scales as O(ηn log n), while the
third line of (33) scales as O(γnmp). Therefore, we further
bound (33) from above in (37)–(39) shown at the bottom of
this page, where (38) holds since the sample probability p =
[(1+ε)− I1

k1
] logn

mdU/k2
and dU ≤

∑
b∈[k2]

H2(Qab, Qāb). Note that the
last inequality holds for sufficiently large n, since all of the last
four terms grows slower than Θ(log n), and their sum is less
than ε

4 log n for large enough n.

Therefore, we have P [L̃a(i)− L̃ā(i) ≤ (ε/2) log n] ≤
n−(1+ ε

2 ). Finally, by taking a union bound over all
the clusters Uā such that ā ∈ [k1] \ {a}, we obtained
that with probability at least 1− k1n

−(1+ ε
2 ), L̃a(i) >

maxā∈[k1]\{a} L̃ā(i) + (ε/2) log n. This completes the proof of
Lemma 4. �

Note that Lemma 4 is for a specific user i ∈ [n]. Taking a union
bound over the n users yields that with probability 1− o(1), all
the users i ∈ [n] satisfy

L̃σ(i)(i) > max
ā∈[k1]\{σ(i)}

L̃ā(i) + (ε/2) log n, (40)

where σ(i) is the user cluster that user i belongs to.
Finally, it is shown in Lemma 5 below that the difference

between the exact likelihood function L̃a(i) and the original
likelihood function La(i) is negligible.

Lemma 5: With probability 1− o(1), there exists a sequence
ξn ∈ Ω(max{εn, ε′n}) ∩ o(1) such that for all a ∈ [k1] and all
users i ∈ [n],

∣∣La(i)− L̃a(i)
∣∣ ≤ ξn log n.

The proof of Lemma 5 can be found in Appendix VII-C.
Combining (40) and Lemma 5 via the triangle inequality, we
have that all the users satisfy Lσ(i)(i) > maxā∈[k1]\{σ(i)} Lā(i).
This ensures the success of Stage 3, i.e., σ̂(i) = σ(i), ∀i ∈ [n].

ε

4
log n+

[
n

k1
− ηnn

]
·
(
logE(e

1
2λ1Yk) + logE(e−

1
2λ1Xk)

)
+

[
|U (0)

ā \ Ua| −
n

k1
+ ηnn

]
logE(e

1
2λ1Yk)

+

[
|Saa| −

n

k1
+ ηnn

]
logE(e−

1
2λ1Xk) + |Saā| logE(e

1
2λ1Xk) + |U (0)

a \ Ua| logE(e−
1
2λ1Yk)

+
∑
b∈[k2]

[
m

k2
− γnm

]
logE

(
e−

1
2A

ab
ij

)
+

[
|Tbb| −

m

k2
+ γnm

]
logE

(
e−

1
2A

ab
ij

)
+
∑
b̄ �=b

|Tb̄b| logE
(
e−

1
2 Ā

ab,b̄
ij

)
(32)

≤ ε

4
log n+

[
n

k1
− ηnn

](
−I1

log n

n
+O(α2

1)

)
+
∑
b∈[k2]

[
m

k2
− γnm

] (
−p ·H2(Qab, Qāb) +O(p2)

)
+ ηnn

(∣∣ logE(e 1
2λ1Yk)

∣∣+ ∣∣ logE(e− 1
2λ1Xk)

∣∣+ ∣∣ logE(e 1
2λ1Xk)

∣∣+ ∣∣ logE(e− 1
2λ1Yk)

∣∣)
+ γnm

⎛⎝∑
b∈[k2]

∣∣∣∣ logE(e− 1
2A

ab
ij

) ∣∣∣∣+∑
b̄ �=b

∣∣∣∣ logE(e− 1
2 Ā

ab,b̄
ij

) ∣∣∣∣
⎞⎠ . (33)

ε

4
log n− I1

k1
log n+O(ηn log n) +O

(
(log n)2

n

)
−

⎛⎝mp

k2

∑
b∈[k2]

H2(Qab, Qāb)

⎞⎠+O(γnmp) +O(mp2) (37)

≤ ε

4
log n− I1

k1
log n+O(ηn log n)+O

(
(log n)2

n

)
−
[
(1+ε)− I1

k1

]
log n+O(γnmp)+O(mp2) (38)

= −
(
1 +

3

4
ε

)
log n+O(ηn log n)+O

(
(log n)2

n

)
+O(γnmp) +O(mp2) ≤ −

(
1 +

1

2
ε

)
log n. (39)
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D. Analysis of Stage 4

The analysis of Stage 4 is similar to that of Stage 3. Lemma 6
below states that all them items can be classified into the correct
cluster when mnp satisfies (41).

Lemma 6: Suppose h ∈ G and (σ(0), τ (0)) ∈ G′. If

mnp ≥ ((1 + ε)− (I2/k2))m logm

dI/k1
, (41)

with probability 1− o(1), all the items j ∈ [m] satisfy
L′
τ(j)(j) > maxb̄∈[k2]\{τ(j)} L

′
b̄
(j).

Finally, based on the outputs {Ûa}a∈[k1] and {Îb}b∈[k2] of

MC2G, one can recover the nominal matrix N̂ via majority
voting. Specifically, for a ∈ [k1] and b ∈ [k2], we define uab :=
arg maxz∈Z

∑
i∈̂Ua

∑
j∈̂Ib 1{Uij = z}, and we then set

N̂ij = uab, if i ∈ Ûa, j ∈ Îb. (42)

The correctness of (42) follows from the fact that∑
i∈̂Ua

∑
j∈̂Ib 1{Uij = z} ≈ mnQab(z)/(k1k2).

E. The Overall Success Probability

Let Esuc be the event that MC2G exactly recovers the nominal
matrix. From the analyses of Stages 2–4, we know that for any
h ∈ G and (σ(0), τ (0)) ∈ G′,

P (Esuc|h, (σ(0), τ (0))) ≥ 1− o(1), (43)

where (43) is uniform inh ∈ G and (σ(0), τ (0)) ∈ G′. Therefore,
the overall success probability satisfies

P (Esuc) =
∑
h∈G

P (h)P (Esuc|h) +
∑
h∈Bh

P (h)P (Esuc|h)

≥
∑
h∈G

P (h)
∑

(σ(0),τ (0))∈G′

P ((σ(0), τ (0))|h)

× P (Esuc|h, (σ(0), τ (0)))

≥ (1− o(1))
∑
h∈G

P (h)
∑

(σ(0),τ (0))∈G′

P ((σ(0), τ (0))|h)

(44)

≥ (1− o(1))(1−√
εn)

2(1− 2
√
εn)

2

= (1− o(1)), (45)

where (44) is due to (43), and (45) follows from (20) and
Lemma 1.

VI. PROOF SKETCH OF THEOREM 2

The proof techniques used for Theorem 2 is a generalization of
the techniques used in [12, Section IV-B], thus we only provide
a proof sketch here. The key idea is to first show that the ML
estimator φML is the optimal estimator (as proved in [12, (33)]),
and then analyze the error probability with respect to φML—the
crux of the analysis is to focus on a subset of of events that are
most likely to induce errors, and to prove the tightness of the
Chernoff bound.

To analyze φML, we first show that under the model parameter
(σ, τ,N) (where a single parameter ξ is used to be the abbrevia-
tion of (σ, τ,N) in the following), the log-likelihood of observing
(U, G1, G2) is

logPξ(U, G1, G2)=eσ1 log
β1(1−α1)

α1(1−β1)
+eτ2 log

β2(1−α2)

α2(1−β2)

+
∑

a∈[k1]

∑
b∈[k2]

∑
z∈Z

|Dz
ab(ξ)| · logQab(z) + C0, (46)

where eσ1 is the number of inter-cluster edges in G1 with respect
to σ; eτ2 is the number of inter-cluster edges in G2 with respect
to τ ; Dz

ab(ξ) = {(i, j) ∈ [n]× [m] : σ(i) = a, τ(j) = b,Uij =
z} is the number of observed ratings z corresponding to user
cluster Ua and item cluster Ib; and C0 is a constant that is
independent of (σ, τ,N).

Suppose ξ is the ground truth that governs the model from
now on, and note that the ML estimator φML succeeds if ξ is the
most likely model parameter inΞ conditioned on the observation
(U, G1, G2), i.e., logPξ(U, G1, G2) is larger than any other
logPξ′(U, G1, G2) for ξ′ ∈ Ξ \ {ξ}. In fact, what we show in
the converse proof is that when mnp is less than the bound
in (17), with high probability there exists another model pa-
rameter ξ′ ∈ Ξ \ {ξ} such that the likelihood logPξ′(U, G1, G2)
achieves the maximum.

Specifically, let ξ′ �= ξ be a model parameter that is identical
to ξ except that its first component σ′ differs from σ by only two
labels, i.e.,

∑
i∈[n] 1{σ′(i) �= σ(i)} = 2. As the distinction be-

tween ξ′ and ξ is small, the probability that logPξ′(U, G1, G2) ≥
logPξ(U, G1, G2) turns out to be relatively large, which is at
least

1

4
exp

{
−(1+o(1))

2I1(log n)

k1
−(1+o(1))

2mpdU
k2

}
(47)

due to the tightness of the Chernoff bound (which can be
proved by generalizing [12, Lemma 2]). In fact, one can find
a subset Ξ0 ⊆ Ξ of model parameters such that |Ξ0| = Θ(n)
and each element in ξ0 ∈ Ξ0 satisfies (47) (i.e., the probabil-
ity that ξ0 induces an error is relatively large). This, together
with the assumption that mnp < k2[

1−ε
2 − I1

k1
]n log n/dU , even-

tually implies that with probability approaching one, there
exists at least one ξ0 ∈ Ξ0 such that logPξ0(U, G1, G2) ≥
logPξ(U, G1, G2). Thus, the ML estimator fails.

In a similar and symmetric fashion, one can show that the
ML estimator fails with probability approaching one, when
mnp < k1[

1−ε
2 − I2

k2
]m logm/dI . This completes the proof of

the converse part.

VII. EXPERIMENTS

In this section, we apply the simplified version of MC2G

mentioned in Remark 3 (without the information splitting step),
as the sizes of the graphs m and n cannot be made arbitrarily
large in the experiments.5 That is, the four stages are applied to

5As discussed in Remark 3, the information splitting method is merely for
the purpose of analysis, and the first part of the graphs (Ga

1,G
a
2) turns out to

be too sparse to achieve weak recovery of clusters when m and n are not large
enough.
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Fig. 3. The empirical success rate (over 400 trials) vs. the normalized sample
complexity under the setting described in Section VII-A.

the fully-observed graphs (G1, G2). While this implementation
is slightly different from the original algorithm as described
in Algorithm 1, its empirical performance nonetheless demon-
strates a keen agreement with the theoretical guarantee for the
original MC2G in Theorem 1 (as shown in Section VII-A below).

A. Verification of Theorem 1 on Synthetic Data

We verify the theoretical guarantee provided in Theorem 1 on
a synthetic dataset generated according to a symmetric setting
described as follows. The setting contains k1 = 3 user clusters,
k2 = 4 item clusters, nominal ratings

z11 = 5, z12 = 1, z13 = 4, z14 = 2,

z21 = 2, z22 = 4, z23 = 5, z24 = 1,

z31 = 3, z32 = 2, z33 = 5, z34 = 5,

with Z = {1, 2, 3, 4, 5}, and the personalization distribution
QV |Z(v|z) that equals either 0.6 (if v = z) or 0.1 (if v �= z).
We set n = 2m, and both I1 and I2 (the qualities of social and
item graphs) to 2. Fig. 3 shows the empirical success rate as a
function of the normalized sample complexity for three different
values of m and n. The empirical success rate is averaged over
400 random trials, and the normalized sample complexity is
defined (according to Theorem 1) as mnp divided by

max

{
(1− (I1/k1))n log n

dU/k2
,
(1− (I2/k2))m logm

dI/k1

}
. (48)

It can be seen from Fig. 3 that as the normalized sample com-
plexity increases, the empirical success rate also increases and
becomes close to one when the normalized sample complexity
exceeds one (corresponding to the success condition).

B. Comparing MC2G With Other Algorithms on Synthetic Data

Next, we compare MC2G to several existing matrix comple-
tion algorithms on another synthetic dataset. The competitors
include OPTSPACE [15] (a state-of-the-art matrix completion
algorithm based on singular value decomposition followed by
local manifold optimization), SoRec [3] (a matrix factorization
based algorithm that incorporates social graphs), and a spec-
tral clustering method with local refinements using only the
social graph or only the item graph as side information by

Fig. 4. Comparisons of MAEs of different algorithms under the synthetic
setting described in Section VII-B.

Ahn et al. [1]. This synthetic dataset is simpler compared to
the one in Section VII-A, as we need to choose the ratings Z
to be binary (as other competing algorithms are amenable only
to binary ratings). It contains n = 3000 users partitioned into
two user clusters, m = 3000 items partitioned into three item
clusters, and we set the qualities of graphs I1 = 1.5 and I2 = 2,
as well as the nominal ratings to be z11 = 0, z12 = 1, z13 = 0,
z21 = 0, z22 = 0, z23 = 1. The personalization distributions are
modelled as additive Bern(0.25) noise, i.e., QV |Z(v|z) equals
0.75 if v = z, and equals 0.25 otherwise.

To ensure that the comparisons are fair, we quantize the
outputs of the other algorithms to be {0, 1}-valued. We measure
the performances using the mean absolute error (MAE)

MAE :=

n∑
i=1

m∑
j=1

|N̂ij − Nij |
mn

. (49)

Fig. 4 shows the MAE (averaged over 100 random trials) of each
algorithm when p ∈ [0.001, 0.01]. It is clear that MC2G is orders
of magnitude better than the competing algorithms in terms of
the MAEs for this synthetic dataset.

C. Comparing MC2G With Other Algorithms on Real Graphs

Next, we applied MC2G to a semi-real dataset that contains
synthetic ratings but is inspired by real graphs.
� We adopt the LastFM social network [16] (collected in

March 2020) as the social graph. Each node is a LastFM
user, while each edge represents mutual follower relation-
ships between users. The network contains n = 7624 users
that are partitioned into 18 clusters with maximal size 1572
and minimal size 16. The sizes of all the 18 clusters and
the empirical connection probabilities are provided in the
supplementary material.

� We adopt the political blogs network [17] as the item
similarity graph. Each node represents a blog that is ei-
ther liberal-leaning or conservative-leaning, and each edge
represents a link between two blogs. This network contains
m = 1222 blogs which are partitioned into two clusters

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 24,2022 at 22:16:07 UTC from IEEE Xplore.  Restrictions apply. 



2694 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Fig. 5. Comparisons of MAEs of different algorithms under the semi-real
setting described in Section VII-C, where we adopt the LastFM social network
and political blog networks as social and item similarity graphs respectively. The
length of each errorbar above and below each data point represents the standard
deviations across the 100 independent trials.

with sizes (m1,m2) = (586, 636), and the empirical con-

nection probabilities are B′ =

[
42.6 4.2

4.2 38.8

]
× 10−3.

We chooseZ = {0, 1}. The nominal ratings {zij} for i ∈ [18]
and j ∈ [2] are provided in the supplementary material. The
personalization distributions are modelled as additive Bern(0.1)
noise. The nominal matrix N is synthesized based on the user and
item clusters as well as the nominal ratings. The personalized
ratings matrix V is then synthesized from N and personalization
distributions. Note that the objective is to recover the low rank
nominal matrix based on partial observations of the personalized
rating matrix V .

We compare MC2G to the algorithms introduced in VII-B on
this semi-real dataset. Fig. 5 shows the MAE (averaged over 50
trials) of each algorithm whenp ∈ [0.002, 0.012]. Clearly, MC2G

is superior to the other algorithms, and the advantage is more
significant when the sample probability p is small. In addition,
the errorbars above and below each data point (representing one
standard deviation) for MC2G are fairly small, demonstrating
the statistical robustness of MC2G. The average running time
(in seconds) of each algorithm, when p = 0.01, is as follows6,
showing that the running time of MC2G is commensurate with
its prediction abilities.

The reason why the running times of MC2G are longer than
the algorithm in [1] is that MC2G performs spectral clustering
for both social and item graphs, while their algorithm only
performs spectral clustering for one graph. SoRec runs faster
but its performance is rather poor, as can be seen from Figs. 4
and 5.

6We point out that MC2G, Ahn et al.’s algorithm [1], and SoRec are imple-
mented in Python, while OPTSPACE is run in Matlab (since only its Matlab code
is publicly available).

APPENDIX A
THEORETICAL GUARANTEES FOR WEAK RECOVERY

Theorem 3 (Adapted from Theorem 6 in [48]): Suppose
an SBM contains N nodes that belong to K disjoint clusters
with relative size (p1, . . . , pK), where

∑K
k=1 pk = 1 and each

pk does not depend on N . Let δ : [N ] → [K] be the label
function, R be the K ×K symmetric connectivity matrix, and
Rmax = maxi,j∈[K] Rij be the largest probability.

Assume the following conditions hold: (i) NRmax = ω(1);
(ii) there exists a constant C1 > 0 such that for all i, j, k ∈
[K], max{Rij

Rik
,
1−Rij

1−Rik
} ≤ C1; (iii) there exists a constant

C2 > 0 such that
∑K

k=1(Rik − Rjk)
2/R2

max ≥ C2. Then, ap-
plying the spectral clustering method in [4, Algorithm 2]
yields that with probability 1− o(1), the estimated label func-

tion δ̂ satisfies l(δ, δ̂) = O( (log(NRmax))
2

NRmax
), where l(δ, δ̂) :=

minπ∈SK

1
N

∑
i∈[N ] 1{δ̂(i) �= π(δ(i))} is the misclassification

proportion.
We now check that the artificial SBM G̃1 satisfies the condi-

tions in Theorem 3. Note that for G̃1, the entries in the connectiv-
ity matrix equal either α1/

√
log n or β1/

√
log n, both of which

scale as Θ(
√
log n/n) since α1 and β1 scale as Θ((log n)/n).

Thus, nα1/
√
log n = Θ(

√
log n), and condition (i) holds. Also

note that condition (ii) holds since α1 and β1 have the same
scaling. Moreover, one can check that condition (iii) is equiva-
lent to 2( α1√

logn
− β1√

logn
)2/( α1√

logn
)2 ≥ C2, which clearly holds

since α1 and β1 have the same scaling. Therefore, applying the
spectral clustering method in [4, Algorithm 2] to G̃1 yields that
with probability 1− o(1),

l1(σ
(0), σ)=O

(
(log(nα1/

√
log n))2

nα1/
√
log n

)
=O
(
(log log n)2√

log n

)
,

which tends to zero as n tends to infinity. Similarly, one can
also show that applying the spectral clustering method in [4,
Algorithm 2] to G̃2 yields that with probability 1− o(1),

l2(τ
(0), τ)=O

(
(log(mα2/

√
logm))2

mα2/
√
logm

)
=O
(
(log logm)2√

logm

)
,

which tends to zero as m tends to infinity (or equivalently, as
n tends to infinity, since n = ω(logm)). Therefore, there exist
vanishing sequences εn, ηn, and γn such that with probability at
least 1− εn, the spectral clustering method running on G̃1 and
G̃2 ensure that l1(σ(0), σ) ≤ ηn and l2(τ

(0), τ) ≤ γn.
Remark 9: There is a subtle difference between the SBM

considered in [48] and the current work. It is assumed in [48]
that each node is assigned to the k-th cluster with probability
pk, thus when setting (p1, . . . , pK) = (1/K, . . . , 1/K), all the
clusters have size approximately n/K. In contrast, the current
work assumes that all the clusters have exactly the same size
of n/K. However, the theoretical guarantee of the spectral
clustering method in [4, Algorithm 2] is valid for both models.
The only difference in the proofs is that for the model in [48],
one needs to additionally prove that the size of the k-th cluster is
tightly concentrated around pkn (for all k ∈ {1, . . . ,K}) with
high probability, by using proper concentration inequalities such
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as the Chernoff bound. For example, inequality (31) in [48] holds
only when the cluster size is at least pkn(1− o(1)).

APPENDIX B
PROOF OF LEMMA 1

Consider the process of first generating a sub-graph Ha
1 and

then generating a sub-SBMGa
1 on the sub-graphHa

1 . The proba-
bility that an edge Eii′ (connecting nodes i and i′) appears in Ga

1

equals7 1/
√
log nmultiplied byα1 or β1 (depending on whether

i and i′ are in the same community). Thus, a key observation
is that the aforementioned process is equivalent to generating
G̃1 directly. By this observation and recalling that a spectral
clustering method running on G̃1 ensures l1(σ(0), σ) ≤ ηn with
probability at least 1− εn [48, Theorem 6], we have∑

ha
1

P (Ha
1 = ha

1)Psuc(h
a
1) ≥ 1− εn, (50)

where Psuc(h
a
1) is the probability that a spectral cluster-

ing method running on Ga
1 (which depends on ha

1) ensures
l1(σ

(0), σ) ≤ ηn. Let Ha,G
1 and Ha,B

1 respectively be the sets
of good and bad sub-graphs ha

1. Suppose the probability of gen-
erating a good sub-graph (i.e., ha

1 ∈ Ha,G
1 ) is less than 1−√

εn.
Then, by the definition of the good sub-graphs ha

1,∑
ha
1

P (Ha
1 = ha

1)Psuc(h
a
1)

<
∑

ha
1∈H

a,G
1

P (Ha
1 = ha

1) +
∑

ha
1∈H

a,B
1

P (Ha
1 = ha

1)(1−
√
εn)

=
∑

ha
1∈H

a,G
1

P (Ha
1 =ha

1) + (1−√
εn)

(
1−
∑

ha
1∈H

a,G
1

P (Ha
1 = ha

1)

)

< 1− εn,

which yields a contradiction to (50). Thus, we conclude that
with probability at least 1−√

εn over the generation of Ha
1 , the

randomly generated Ha
1 is a good sub-graph.

Now, we consider a specific user node i ∈ [n], and use the
random variable Dii′ ∼ Bern(1/

√
log n) to denote whether or

not the edge between nodes i and i′ (where i′ �= i) belongs to
Ha

1 . Let D =
∑

i′ �=i Dii′ be the degree of node i in Ha
1 , and its

expected value E(D) = (n− 1)/
√
log n.

Theorem 4 (Multiplicative Chernoff bound): Suppose
X1, . . . , Xn are independent random variables taking values
in {0, 1}. Let X :=

∑n
i=1 Xi denote their sum and E(X) de-

note the sum’s expected value. Then, for any δ > 0, P (X ≥
(1 + δ)E(X)) ≤ exp{− δ2E(X)

2+δ }.
Proof: The proof of Theorem 4 follows from [56, Ex. 4.7]

together with the inequality 2δ
2+δ ≤ log(1 + δ) for δ ≥ 0. �

Applying Theorem 4 with δ = 2n
n−1 − 1, we have

P

[
D≥ 2n√

log n

]
=P (D≥(1+δ)E(D)) ≤ e

− δ2(n−1)

(2+δ)
√

logn .

7Specifically, the probability that an edge Eii′ appears in Ga
1 is equal to the

probability of Eii′ belonging to Ha
1 multiplied by the probability of generating

Eii′ in the sub-SBM Ga
1.

Thus, with probability at least 1− exp{− δ2(n−1)

(2+δ)
√
logn

}, the de-

gree of node i in Ha
1 is at most 2n/

√
log n. A union bound

over all user nodes guarantees that, with probability at least
1− n exp{− δ2(n−1)

(2+δ)
√
logn

} = 1− exp(−Θ(n/
√
log n)), the de-

grees of all the nodes inHa
1 is at most 2n/

√
log n, which implies

the complement sub-graph Hb
1 is good.

Without loss of generality, we can assume that
√
εn

decays slower than exp(−Θ(n/
√
log n)), i.e.,

√
εn >

exp(−Θ(n/
√
log n)) for sufficiently largen. This is because we

have the flexibility to choose εn: even if it is allowed to choose
an εn such that

√
εn decays faster than exp(−Θ(n/

√
log n)),

one can always decide to choose an εn that does not decay so
fast. Thus, applying a union bound (over the “good events” for
Ha

1 and Hb
1 ) implies that for sufficiently large n, the probability

that both Ha
1 and Hb

1 are good is at least 1− 2
√
εn. In a similar

manner, we can also prove the analogous statements for Ha
2 and

Hb
2 . Due to the independence of the generations of (Ha

1 , H
b
1 )

and (Ha
2 , H

b
2 ), the probability that Ha

1 , H
b
1 , H

a
2 , H

b
2 are all

good is at least (1− 2
√
εn)

2.

APPENDIX C
PROOF OF LEMMA 2

We first analyze the estimates {B̂aa}a∈[k1] in (5).

By letting {Xk} i.i.d.∼ Bern(α1) and {Yk} i.i.d.∼ Bern(β1), we
have e(U (0)

a ,U (0)
a ) =

∑B1

k=1 Xk +
∑B2

k=1 Yk, where B1 :=∑
ā∈[k1]

(|Sāa|
2

)
and B2 :=

(|U(0)
a |
2

)
−B1. Note that μBaa

:=

E[e(U (0)
a ,U (0)

a )]≤ α1

(|U(0)
a |
2

)
. On the other hand, since the de-

gree of any nodes in hb
1 is at least n(1− 2/

√
log n) (or equiv-

alently, the number of non-edges of any nodes is at most
2n/

√
log n), we know that

e(U (0)
a ,U (0)

a )≥
B1−n

2
2n√
logn∑

k=1

Xk, and μBaa
≥
[
B1−

n2

√
log n

]
α1.

Applying Theorem 4 yields that for any δ ∈ (0, 1), with proba-
bility at least 1− 2 exp(−δ2μBaa

/3),

(1− δ)

(
B1−

n2

√
log n

)
α1 ≤ e(U (0)

a ,U (0)
a )

≤ (1 + δ)α1

(
|U (0)

a |
2

)
.

As the estimate B̂aa = e(U (0)
a ,U (0)

a )/
(|U(0)

a |
2

)
, we then have(

1− δ − c1ηn − c2√
log n

)
α1 ≤ B̂aa ≤ (1 + δ)α1.

for some constants c1, c2 > 0. By choosing δ = 1/
√
log n, we

complete the proof for B̂aa.
The analyses of other estimates {B̂aa′ }a �=a′ , {B̂bb}b∈[k2],

and {B̂bb′ }b �=b′ are similar, thus we omit them for brevity

(except that we need to replace ηn by γn for {B̂bb}b∈[k2],

and {B̂bb′ }b �=b′ ). Therefore, one can find a sequence εn ∈
Ω(max{γn, ηn, 1/

√
log n}) ∩ o(1) such that Lemma 2 holds.
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APPENDIX D
PROOF OF LEMMA 3

Let us recall the definition of Q̂ab(z) in (7), in which the nu-

merator |Qz
ab| =

∑
i∈U(0)

a

∑
j∈I(0)

b

1{Uij = z}. Let {Tij} i.i.d.∼

Bern(p), {Zab
ij }

i.i.d.∼ Qab for all a ∈ [k1] and b ∈ [k2]. Thus,
|Qz

ab| can be rewritten as∑
i∈Saa

∑
j∈Tbb

Tij1(Zab
ij = z) +

∑
ā �=a

∑
b̄ �=b

∑
i∈Sāa

∑
j∈Tb̄b

Tij1(Z āb̄
ij = z).

Note that the number of summands in the first term

|i ∈ Saa| · |j ∈ Tbb|≥ [((n/k1)−ηnn) ((m/k2)− γnm)] :=L.

Thus, the expectation of |Qz
ab| satisfies

E(|Qz
ab|) ≥ L · E(Tij1(Zab

ij = z)) ≥ LpQab(z), and

E(|Qz
ab|) ≤ L · E(Tij1(Zij = z))+(mn/(k1k2)− L)E(Tij),

where the upper bound is due to the fact that 1(Z āb̄
ij =

z) ≤ 1. Applying Theorem 4 yields that with probability 1−
exp(−Θ(δ2E(|Qz

ab|))), for all z ∈ Z ,

|Qz
ab| ≥ (1− δ)LpQab(z), and

|Qz
ab| ≤ (1 + δ)(1 + Θ(max{ηn, γn}))LpQab(z),

where δ ∈ (0, 1). Choosing δ = 1/
√
log n, we ensure that with

probability 1− o(1), for all z ∈ Z , a ∈ [k1], and b ∈ [k2],∣∣∣(Q̂ab(z)/Qab(z))− 1
∣∣∣=O(max{ηn, γn, 1/

√
log n}).

APPENDIX E
PROOF OF LEMMA 5

First note that∣∣La(i)−L̃a(i)
∣∣≤ ∑

a′∈[k1]

e({i},U (0)
a′ )

∣∣∣∣∣log Baa′(1−B̂aa′)

B̂aa′(1−Baa′)

∣∣∣∣∣
+
∑
b∈[k2]

∑
j∈I(0)

b

1{Uij �=e} ·
∣∣∣∣∣log Qab(Uij)

Q̂ab(Uij)

∣∣∣∣∣ .
(51)

As
∑

a′∈[k1]
e({i},U (0)

a′ ) represents the degree of user i in the
social graph, and its expectation μi satisfies nβ1 ≤ μi ≤ nα1.
By applying Theorem 4, we have that for any κ > 0,

P

( ∑
a′∈[k1]

e({i},U (0)
a′ ) ≥ (1 + κ)nα1

)
≤ e−

κ2

2+κnβ1 . (52)

We choose κ to be a large enough constant that ensures the RHS
of (52) to scale as o(n−1). Then, by applying the union bound
over all the n users, we have that with probability 1− o(1), all
the users i ∈ [n] satisfy∑

a′∈[k1]

e({i},U (0)
a′ ) ≤ (1 + κ)nα1 = c3 log n, (53)

for some constant c3 > 0. Also, note that the term∑
b∈[k2]

∑
j∈I(0)

b

1{Uij �=e} corresponds to the number of ob-

served ratings for each user. By a similar analysis (based on the
Chernoff bound), one can show that with probability 1− o(1),
all the users i ∈ [n] satisfy∑

b∈[k2]

∑
j∈I(0)

b

1{Uij �=e} ≤ c4 log n, (54)

for some constant c4 > 0.
Recall from Lemmas 2 and 3 that the estimated con-

nection probabilities satisfy
∣∣(B̂aa′ −Baa′)/Baa′

∣∣ ≤ εn for all
a, a′ ∈ [k1], and the estimated personalization distribution∣∣(Q̂ab(z)/Qab(z))− 1

∣∣ ≤ ε′n for all a ∈ [k1], b ∈ [k2], z ∈ Z .
By applying a Taylor series expansion, we then have∣∣∣∣∣log Baa′(1−B̂aa′)

B̂aa′(1−Baa′)

∣∣∣∣∣ ≤ 2εn,

∣∣∣∣∣log Qab(Uij)

Q̂ab(Uij)

∣∣∣∣∣ ≤ 2ε′n. (55)

Combining (53), (54), and (55), we complete the proof of
Lemma 5.
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