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Linear Degrees of Freedom of the X -Channel
With Delayed CSIT

Sina Lashgari, Amir Salman Avestimehr, and Changho Suh

Abstract— We establish the degrees of freedom (DoF) of the
two-user X-channel with delayed channel knowledge at transmit-
ters [i.e., delayed channel state information at the transmitters
(CSIT)], assuming linear coding strategies at the transmitters.
We derive a new upper bound and characterize the linear
DoF of this network to be 6/5. The converse builds upon
our development of a general lemma that shows that, if two
distributed transmitters employ linear strategies, the ratio of
the dimensions of received linear subspaces at the two receivers
cannot exceed 3/2, due to delayed CSIT. As a byproduct, we also
apply this general lemma to the three-user interference channel
with delayed CSIT, thereby deriving a new upper bound of 9/7 on
its linear DoF. This is the first bound that captures the impact of
delayed CSIT on the DoF of this network, under the assumption
of linear encoding strategies.

Index Terms— Delayed effects, channel state information, inter-
ference channels, interference suppression, wireless networks.

I. INTRODUCTION

THE X-channel is a canonical setting for the information-
theoretic study of interference management in wireless

networks. This channel consists of two transmitters caus-
ing interference at two receivers, and each transmitter aims
to communicate intended messages to both receivers. The
question is: how can the transmitters optimally manage the
interference and communicate their messages to the receivers?
This problem has been studied extensively in the literature
and various interference management techniques have been
proposed. In particular, in [2] it is shown that, quite surpris-
ingly, one can significantly improve upon conventional inter-
ference management schemes (e.g., orthogonalization) and
achieve 4/3 degrees of freedom (DoF) by using interference
alignment (IA) [3], [4].

However, in order to perfectly align the interference, the
transmitters need to accurately know the current state of the
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channels, which is practically very challenging and may even
be impossible (due to, for example, high mobility). Thus, a
natural question would be: how can the transmitters optimally
manage the interference with only delayed knowledge of the
channel state information (i.e., delayed CSIT)?

In the context of broadcast channel, Maddah-Ali and Tse
in [5] have recently shown that delayed CSIT can still be very
useful. In particular, for the multi-antenna broadcast channel
with delayed CSIT, they developed an innovative transmission
strategy that utilizes the past received signals to create signals
of common interest to multiple receivers, hence significantly
improving DoF by broadcasting them to the receivers. In a
sense, these “signals of common interest” represent aligned
interferences in the past receptions.

Subsequently in [6]–[9], the impact of delayed CSIT has
been explored for a variety of interference networks in which
transmit antennas are now distributed at different locations.
Unlike multi-antenna broadcast channels, in networks with
distributed transmitters, it may not be possible for a trans-
mitter to reconstruct previously received signals, since it may
include other transmitters’ signals that are not accessible to
that transmitter. Hence, although interference alignment has
happened in the past receptions, it may not be possible
to construct the aligned interference locally at a transmit-
ter and broadcast it to the receivers. Interestingly, even in
this setting, delayed CSIT has shown to still provide DoF
gains (see e.g., [6]–[9]). In particular, for the X-channel,
Ghasemi-Motahari-Khandani in [9] developed a scheme that
achieves DoF of 6

5 with delayed CSIT, which is strictly larger
than its DoF with no-CSIT (i.e., 1 DoF). However, given
that the only upper bound on the DoF of this network is
the one with instantaneous CSIT (i.e., 4

3 DoF), it remains
still open whether 6

5 is the fundamental limit on the DoF of
X-channel with delayed CSIT, or whether there are more
efficient interference management techniques.

Our main contribution in this work is to show that the
DoF of the Gaussian X- channel with delayed CSIT is indeed
6
5 , under the assumption that only linear encoding schemes
are employed at the transmitters. Under this constraint, only
a linear combination of information symbols are allowed to
be transmitted at each time. In fact, all of the interference
management strategies with delayed CSIT that are developed
thus far (e.g., [5]–[9]) fall into this category.

The key part of the converse is the development of a
general lemma, namely “Rank Ratio Inequality”, that bounds
the maximum ratio of the dimensions of received linear-
subspaces (at the two receivers) that are created by distributed
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transmitters with delayed CSIT. More specifically, we show
that if two distributed transmitters with delayed CSIT employ
linear strategies, the ratio of the dimensions of the received sig-
nals cannot exceed 3

2 . With instantaneous CSIT, this ratio can
be as large as 2, and with no CSIT, this ratio is always 1. As a
result, this lemma captures the fundamental impact of delayed
CSIT on the dimension of received subspaces. Also, in the
case of two centralized transmitters (e.g., multi-antenna BC),
this ratio can be as large as 2, therefore Rank Ratio Inequality
also captures the impact of distributed transmitters on the
dimension of received subspaces. Rank Ratio Inequality can
also be viewed as a generalization of the “entropy leakage
Lemma” in [10] and [11], which considers a broadcast channel
with binary fading, and bounds the maximum ratio of the
entropy of received signals at two different receivers.

We also demonstrate how our lemma can be applied to
any arbitrary network, in which a receiver decodes its desired
message in the presence of two interferers. As an example, we
apply the lemma to the three-user interference channel with
delayed CSIT and derive a new upper bound of 9

7 on its linear
DoF. This is the first upper bound that captures the impact of
delayed CSIT on the degrees of freedom of this network.

Other Related Results. There have been several con-
verse techniques developed in the literature for networks with
delayed CSIT. For the MISO broadcast channel with delayed
CSIT, Maddah-Ali and Tse [5] have provided an upper bound
based on the genie-aided bounding technique. This technique
essentially consists of two steps. First, signals of a set of
receivers are given to other set of receivers such that the
enhanced network becomes a physically degraded broadcast
channel. Using the fact that feedback cannot increase capacity
for physically degraded broadcast channels [12], we can then
take the non-feedback upper bound as that of the original
feedback channel. This technique has also been used in [13]
to approximate the capacity of MISO broadcast channel with
delayed CSIT, and in [14] in the context of broadcast erasure
channels with feedback. Also, for time correlated MISO
broadcast channel with delayed CSIT, a converse has been
proposed in [15], where the essential element of the converse
is the use of the extremal inequality [16] that bounds the
weighted difference of differential entropies at the receivers.
Finally, for MIMO interference channel with delayed CSIT, a
converse has been proposed in [7], which utilizes the fact that
for delayed CSIT, the signals received at different receivers
in a timeslot are statistically equivalent; therefore, the entropy
of received signals at different receivers in a certain timeslot
are equal when conditioned on past received signals at any
specific receiver.

Notation. We use small letters for scalars, arrowed letters
(e.g. �x) for vectors, capital letters for matrices, and a cal-
ligraphic font for sets. Furthermore, we use bold letters for
random entities, and non-bold letters for deterministic values
(e.g., realizations of random variables).

II. SYSTEM MODEL & MAIN RESULTS

We consider the Gaussian X-channel depicted in Fig. 1.
It consists of two transmitters and two receivers, and each
transmitter has a separate message for each of the receivers.

Fig. 1. Network configuration for X-channel. There are two transmitters
and two receivers, where each transmitter has a message for each receiver.
We assume time-varying channels, with delayed CSIT.

Each node is equipped with a single antenna.
The received signal at Rxk (k ∈ {1, 2}) at time t is given by

yk(t) = gk1(t)x1(t) + gk2(t)x2(t) + zk(t), (1)

where x j (t) is the transmit signal of Tx j ; gkj (t) ∈ C indicates
a channel from Tx j to Rxk ; and zk(t) ∼ CN (0, 1). The
channel coefficients of gkj (t)’s are i.i.d across time and users,
and they are drawn from a continuous distribution. We denote
by G(t) the set of all four channel coefficients at time t .
In addition, we denote by Gn the set of all channel coefficients
from time 1 to n, i.e.,

Gn = {gkj (t) : k, j ∈ {1, 2}, t = 1, . . . , n}.
Denoting the vector of transmit signals for Tx j in a block of

length n by �xn
j , each transmitter Tx j obeys an average power

constraint, 1
n E{||�xn

j ||2} ≤ P . We assume delayed channel
state information at the transmitters (CSIT). In other words,
at time t , only the states of the past Gt−1 are known to
the transmitters. Furthermore, we assume that receivers have
instantaneous CSIT, meaning that at time t , G t is known to
all receivers.

We restrict ourselves to linear coding strategies as defined
in [17], in which DoF simply represents the dimension of the
linear subspace of transmitted signals. More specifically, con-
sider a communication scheme with block length n, in which
transmitter Tx j wishes to transmit a vector �xkj ∈ Cmkj (n)

of mkj (n) ∈ N information symbols to Rxk ( j, k ∈ {1, 2}).
These information symbols are then modulated with precoding
vectors �vkj (t) ∈ Cmkj (n) at times t = 1, 2, . . . , n. Note that
the precoding vector �vkj (t) depends only upon the outcome
of Gt−1 due to the delayed CSIT constraint:

�vkj (t) = f (n)
k, j,t

(
Gt−1). (2)

Based on this linear precoding, Tx j will then send x j (t) =
�v1 j (t)��x1 j + �v2 j (t)��x2 j at time t . We denote by Vn

kj ∈
Cn×mkj (n) the overall precoding matrix of Tx j for Rxk , such
that the t-th row of Vn

kj is �vkj (t)�). In addition, we denote the

precoding functions used by Tx j by f (n)
j = { f (n)

1, j,t , f (n)
2, j,t }n

t=1,
j = 1, 2.

Based on the above setting, the received signal at Rxk

(k ∈{1, 2}) after the n time steps of the communication will be

�yn
k =Gn

k1(V
n
11�x11+Vn

21�x21)+Gn
k2(V

n
12�x12+Vn

22�x22)+�zn
k , (3)
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where Gn
kj is the n × n diagonal matrix whose t-th element

on the diagonal is gkj (t).1 Now, consider the decoding of �xkj

at Rxk (i.e., the mkj (n) information symbols of Tx j for Rxk).
The corresponding interference subspace at Rxk will be

Ikj = colspan
(
Gn

kj V
n
k′ j

)

∪ colspan
(
Gn

kj ′Vn
kj ′

) ∪ colspan
(
Gn

kj ′Vn
k′ j ′

)
,

where j ′ = 3 − j, k ′ = 3 − k, and colspan(.) of a matrix
corresponds to the sub-space that is spanned by its columns.
For instance, I11 = colspan (Gn

11Vn
21) ∪ colspan (Gn

12Vn
12) ∪

colspan (Gn
12Vn

22). Let Ic
kj ⊆ Cn denote the subspace orthog-

onal to Ikj . Then, in the regime of asymptotically high
transmit powers (i.e., ignoring the noise), the decodability
of information symbols from Tx j at Rxk corresponds to the
constraints that the image of colspan(Gn

kj V
n
kj ) on Ic

kj has
dimension mkj (n):

dim
(

ProjIc
kj

colspan
(
Gn

kj V
n
kj

)) = dim
(
colspan

(
Vn

kj

))

= mkj (n). (4)

Based on this setting, we now define the sum linear degrees
of freedom of the X-channel.

Definition 1. Four-tuple (d11, d12, d21, d22) degrees of
freedom are linearly achievable if there exists a sequence
{ f (n)

1 , f (n)
2 }∞n=1 such that for each n and the choice of

(m11(n), m12(n), m21(n), m22(n)), (Vn
11, Vn

12, Vn
21, Vn

22) sat-
isfy the decodability condition of (4) with probability 1, and
∀( j, k),

dkj = lim
n→∞

mkj (n)

n
. (5)

We also define the linear degrees of freedom region D as the
closure of the set of all achievable 4-tuples (d11, d12, d21, d22).
Furthermore, the sum linear degrees of freedom (DoFL-sum) is
then defined as follows:

DoFL-sum =max
∑

k, j∈{1,2}
dkj , s.t. (d11, d12, d21, d22)∈D. (6)

In case transmitters have instantaneous CSIT, it was shown
in [3] and [18] that the sum degrees of freedom is 4

3 .
The achievability uses interference alignment that enables us
to deliver four symbols over three timeslots. On the other
hand, in the non-CSIT case, one can readily see that the
received signals at the two receivers are statistically identi-
cal and therefore the DoF collapses to 1, which is that of
the multiple access channel. For the case of delayed CSIT,
Ghasemi-Motahari-Khandani in [9] develops a new scheme
that achieves the sum DoF of 6

5 .
Our main result in this paper is the following theorem,

proved in Section III, which states that 6
5 is the maximum

DoF that can be achieved using linear encoding schemes.
Theorem 1. For the X-channel with delayed CSIT,

DoFL-sum = 6

5
. (7)

Our converse proof builds upon the following key lemma,
which is proved in Section III-C.

1For j, k ∈ {1, 2}, we define G0
kj V0

kj � 01×mkj (n); therefore, for instance,

we have rank
[
G0

k1V0
k1 G0

k2V0
k2

] = 0, k ∈ {1, 2}.

Lemma 1. (Rank Ratio Inequality) For any linear coding
strategy { f (n)

1 , f (n)
2 }, with corresponding Vn

11, Vn
12 as defined

in (2),

rank
[
Gn

11Vn
11 Gn

12Vn
12

] a.s.≤ 3

2
rank

[
Gn

21Vn
11 Gn

22Vn
12

]
. (8)

Remark 1. Note that this lemma holds for any arbitrary
network (or sub-network) with two transmitters and two
receivers. It does not require any specific decodability assump-
tion at receivers. The inequality of (8) says that the ratio
of the ranks of received beamforming matrices at Rx1 and
Rx2 is at most 3

2 . For the case of having instantaneous CSIT,
one can show that the ratio of rank[Gn

11Vn
11 Gn

12Vn
12] to

rank[Gn
21Vn

11 Gn
22Vn

12] can be up to 2.2 Hence, Lemma 1
characterizes the impact of delayed CSIT on the maximum
ratio of the ranks of received beamforming matrices.

Remark 2. Lemma 1 can be viewed as a generalization of
the “entropy leakage Lemma” in [10]. Entropy leakage lemma
in [10] considers a broadcast channel with binary fading, and
bounds the maximum ratio of the entropy of received signals
at two different receivers. In fact, Rank Ratio Inequality can
be viewed as an extension of this lemma to the case of
two distributed transmitters with linear encoding strategies, in
which the entropy is approximated by the rank of the received
beamforming matrices.

III. PROOF OF THEOREM 1

In this section we will prove Theorem 1.

A. Achievability
As mentioned in the previous section, the achievability

is provided in [9], and utilizes a linear encoding scheme
to achieve 6

5 . Here we review the scheme to illustrate
how beamforming vectors are chosen. We set n = 5,
m11(n) = 2, m12(n) = 1, m21(n) = 1, m22(n) = 2. Let the
information symbols of the transmitters be denoted by

�x11 =
[

a1
a2

]
, �x12 = [

b1
]
,

�x21 = [
c1

]
, �x22 =

[
d1
d2

]
. (9)

In t = 1, Tx1 sends a1, and Tx2 sends b1, which corre-
sponds to choosing the following beamforming vectors at the
transmitters

�v11 =
[

1
0

]
, �v12 = [

1
]
, �v21 = [

0
]
, �v22 =

[
0
0

]
.

In t = 2, Tx1 sends a2, and Tx2 sends b1, which corre-
sponds to choosing the following beamforming vectors at the
transmitters

�v11 =
[

0
1

]
, �v12 = [

1
]
, �v21 = [

0
]
, �v22 =

[
0
0

]
.

2To see this, consider the following two-timeslot scheme. In time 1,
Tx1, Tx2 send x1, x2 respectively. Rx2 then gets g21(1)x1 + g22(1)x2. In
time 2, Tx1, Tx2 send g21(1)

g21(2) x1,
g22(1)
g22(2) x2 respectively. Rx2 then gets the same

equation as the one received in time 1. On the other hand, Rx1 gets a new
equation almost surely. Therefore, the rank of the received signal at Rx1 can
be twice that of Rx2. Also one can readily show that the two is the maximum
that can be achieved.
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Therefore, by the end of t = 2, Rx2 can cancel b1 from
its received signals to recover an equation only involving
a1 and a2, denoted by �m�

1 �x11. It is easy to see that, if
this equation is delivered to Rx1, it can decode all of its
desired information symbols (i.e., �x11 and �x12). Hence, it is
an equation of interest to Rx1 that is known at Rx2, and can
be created by Tx1.

A similar schemes is applied in the next two time steps.
More specifically, in t = 3, Tx1 sends c1, and Tx2 sends d1,
which corresponds to choosing the following beamforming
vectors at the transmitters

�v11 =
[

0
0

]
, �v12 = [

0
]
, �v21 = [

1
]
, �v22 =

[
1
0

]
.

In t = 4, Tx1 sends c1, and Tx2 sends d2, which corresponds
to choosing the following beamforming vectors at the trans-
mitters

�v11 =
[

0
0

]
, �v12 = [

0
]
, �v21 = [

1
]
, �v22 =

[
0
1

]
.

Therefore, by the end of t = 4, Rx1 can cancel c1 from
its received signals to recover an equation only involving
d1 and d2, denoted by �m�

2 �x22. Again, it is easy to see that,
if this equation is delivered to Rx2, it can decode all of its
desired information symbols (i.e., �x21 and �x22). Hence, it is
an equation of interest to Rx2 that is known at Rx1, and can
be created by Tx2.3

Now, in t = 5, Tx1 sends �m�
1 �x11, and Tx2 sends �m�

2 �x22.
Since each of these transmit signals is already known at one of
the receivers, after this transmission, Rx1 will recover �m�

1 �x11
and Rx2 will recover �m�

2 �x22. Therefore, all information sym-
bols are delivered to their corresponding receivers, achieving
sum DoF of 6

5 .

B. Converse

We will now prove the converse, which is the main con-
tribution of the paper. As mentioned in Section II, the key
idea behind the converse is Lemma 1, which we restate below
(proof of Lemma 1 is provided in Section III-C).

Lemma 1. (Rank Ratio Inequality) For any linear coding
strategy { f (n)

1 , f (n)
2 }, with corresponding Vn

11, Vn
12 as defined

in (2),

rank
[
Gn

11Vn
11 Gn

12Vn
12

] a.s.≤ 3

2
rank

[
Gn

21Vn
11 Gn

22Vn
12

]
. (10)

To prove the converse we also need the following three
lemmas. The following lemma states the sub-modularity
property of rank of matrices (see [19] for more details).

Lemma 2. (Sub-modularity of rank) Consider a matrix
Am×n ∈ Cm×n . Let AI , I ⊆ {1, 2, . . . , n} denote the sub-
matrix of A created by those columns in A which have their
indices in I . Then, for any I1, I2 ⊆ {1, 2, . . . , n} we have

rank[AI1 ] + rank[AI2 ] ≥ rank[AI1∩I2 ] + rank[AI1∪I2 ]. (11)
The following lemma is helpful in providing an equivalent

condition for decodability of messages in (4), whose proof is
based on basic linear algebra and omitted.

3One can check that �m1 = [g22 (2)g21(1) − g22(1)g21(2)]�, and �m2 =
[g12(3)g11(4) − g11(3)g12(4)]�.

Lemma 3. For two matrices A, B of the same row size,

dim(Projcolspan(B)ccolspan(A))= rank[A B]−rank[B], (12)

where Projcolspan(B)ccolspan(A) is the orthogonal projection
of column span of A on the orthogonal complement of the
column span of B .

Finally, the following lemma, whose proof is based on the
sub-modularity of the rank function (Lemma 2), will be useful
later in the converse proof.

Lemma 4. Suppose that for four matrices A, B, C, D with
the same number of rows,

rank[A] + rank[B C D] = rank[A B C D],
rank[B] + rank[A C D] = rank[A B C D]. (13)

Then,

rank[A] + rank[B] + rank[C D] = rank[A B C D].
Proof: Note that rank[A] + rank[B] + rank[C D] ≥

rank[A B C D]. Hence, in order to prove Lemma 4, we
only need to prove the inequality in the other direction. Now,
according to the assumptions in the Lemma, and using sub-
modularity of the rank (Lemma 2), we have

rank[A] + rank[B]
(13)= rank[A B C D] − rank[B C D]

+ rank[A B C D]−rank[A C D]
(sub-modularity)≤ rank[A B C D] − rank[B C D]

+ rank[B C D] − rank[C D]
= rank[A B C D] − rank[C D]. (14)

We are now ready to prove the converse. In particular, we
prove the following two inequalities:

(d11 + d12) + 3

2
(d21 + d22) ≤ 3

2
(15)

3

2
(d11 + d12) + (d21 + d22) ≤ 3

2
. (16)

The desired result follows from summing the above two
inequalities. By symmetry, we only need to prove (15).
Suppose (d11, d12, d21, d22) ∈ D, i.e., there exists a
sequence { f (n)

1 , f (n)
2 }∞n=1 resulting in linearly achieving

{m11(n), m12(n), m21(n), m22(n)}∞n=1 with probability 1, and

dkj = limn→∞
mkj (n)

n . First, note that

dim
(
colspan(Vn

kj )
) a.s.= dim

(
colspan(Gn

kj Vn
kj )

)
, (17)

due to the continuous distribution of gkj (t) for any t . There-
fore, by (17) and Lemma 3, we conclude that if (4) occurs with
probability 1, then for j, k ∈ {1, 2} and j ′ = 3− j, k ′ = 3−k,

rank[Gn
kj V

n
k′ j Gn

kj ′Vn
kj ′ Gn

kj ′Vn
k′ j ′ ] + rank[Gn

kj V
n
kj ]

a.s.= rank[Gn
k1Vn

k1 Gn
k2Vn

k2 Gn
k1Vn

k′1 Gn
k2Vn

k′2]. (18)
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Thus, we consider (18) as the equivalent decodability
condition, which consists of the following four equations:

rank[Gn
11Vn

11] + rank[Gn
11Vn

21 Gn
12Vn

12 Gn
12Vn

22]
a.s.= rank[Gn

11Vn
11 Gn

11Vn
21 Gn

12Vn
12 Gn

12Vn
22], (19)

rank[Gn
12Vn

12] + rank[Gn
11Vn

11 Gn
11Vn

21 Gn
12Vn

22]
a.s.= rank[Gn

11Vn
11 Gn

11Vn
21 Gn

12Vn
12 Gn

12Vn
22], (20)

rank[Gn
21Vn

21] + rank[Gn
21Vn

11 Gn
22Vn

12 Gn
22Vn

22]
a.s.= rank[Gn

21Vn
11 Gn

21Vn
21 Gn

22Vn
12 Gn

22Vn
22], (21)

rank[Gn
22Vn

22] + rank[Gn
21Vn

11 Gn
21Vn

21 Gn
22Vn

12]
a.s.= rank[Gn

21Vn
11 Gn

21Vn
21 Gn

22Vn
12 Gn

22Vn
22]. (22)

Hence, by (19), (20), and Lemma 4,

rank[Gn
11Vn

11] + rank[Gn
12Vn

12]
a.s.= rank[Gn

11Vn
11 Gn

11Vn
21 Gn

12Vn
12 Gn

12Vn
22]

− rank[Gn
11Vn

21 Gn
12Vn

22]. (23)

In addition, by (21), (22), and Lemma 4,

rank[Gn
21Vn

21] + rank[Gn
22Vn

22]
a.s.= rank[Gn

21Vn
11 Gn

21Vn
21 Gn

22Vn
12 Gn

22Vn
22]

− rank[Gn
21Vn

11 Gn
22Vn

12]. (24)

Therefore, we have

m11(n) + m12(n) + 3

2
(m21(n) + m22(n))

a.s.= rank[Vn
11] + rank[Vn

12] + 3

2
(rank[Vn

21] + rank[Vn
22])

a.s.= rank[Gn
11Vn

11]+rank[Gn
12Vn

12]
+3

2
(rank[Gn

21Vn
21] + rank[Gn

22Vn
22])

(23), (24)
a.s.= rank[Gn

11Vn
11 Gn

12Vn
12 Gn

11Vn
21 Gn

12Vn
22]

−rank[Gn
11Vn

21 Gn
12Vn

22]
+ 3

2
(rank[Gn

21Vn
11 Gn

22Vn
12 Gn

21Vn
21 Gn

22Vn
22]

− rank[Gn
21Vn

11 Gn
22Vn

12])
(a)≤ rank[Gn

11Vn
11 Gn

12Vn
12]

+ 3

2
rank[Gn

21Vn
11 Gn

22Vn
12 Gn

21Vn
21 Gn

22Vn
22]

− 3

2
rank[Gn

21Vn
11 Gn

22Vn
12]

(Lemma 1)
a.s.≤

3

2
rank[Gn

21Vn
11 Gn

22Vn
12 Gn

21Vn
21 Gn

22Vn
22]

≤ 3

2
n, (25)

where (a) follows from the fact that rank[A B] ≤ rank[A] +
rank[B]. Therefore, by dividing both sides of the inequality
in (25) by n, and letting n → ∞ we get

d11 + d12 + 3

2
(d21 + d22) ≤ 3

2
. (26)

Hence, the proof of converse for Theorem 1 is complete. �
We will next prove Lemma 1.

C. Proof of Lemma 1

Let us fix n ∈ N, and consider a fixed linear coding strategy
{ f (n)

1 , f (n)
2 }, with corresponding Vn

11, Vn
12 as defined in (2).

For notational simplicity in the proof, we denote Vn
11 by Vn

1,
and Vn

12 by Vn
2 . We first state some definitions.

Definition 2. Consider a fixed linear coding strategy

{ f (n)
1 , f (n)

2 }, with corresponding Vn
1

�= Vn
11, Vn

2
�= Vn

12. Define
the random set T { f (n)

1 , f (n)
2 }(G

n) with its alphabet being the
power set of {1, 2, . . . , n} as follows. For any realization of
channels Gn = Gn , which results in Gn

21 = Gn
21, Gn

22 =
Gn

22, Gn
11 = Gn

11, Gn
12 = Gn

12, and Vn
1 = V n

1 , Vn
2 = V n

2 , we
define

T{ f (n)
1 , f (n)

2 }(G
n) � {t|[�v1(t)

� �01×m2(n)], [�01×m1(n) �v2(t)
�]

∈ rowspan[Gt−1
21 V t−1

1 Gt−1
22 V t−1

2 ]}.
In words, T { f (n)

1 , f (n)
2 }(G

n) represents the set of random
timeslots (random due to the randomness in channels), where
the beamforming vectors transmitted by the two transmitters
are already individually recoverable by Rx2 using its received
beamforming vectors in the previous timeslots. Since the code
{ f (n)

1 , f (n)
2 } is fixed in the proof, for notational simplicity from

now on we denote T { f (n)
1 , f (n)

2 }(G
n) by T .

Definition 3. Consider a fixed linear coding strategy

{ f (n)
1 , f (n)

2 }, with corresponding Vn
1

�= Vn
11, Vn

2
�= Vn

12. Define
random variables r1(Gn), r2(Gn) in {1, . . . , n} as follows.
For any realization of channels Gn = Gn , which results in
Gn

21 = Gn
21, Gn

22 = Gn
22, Gn

11 = Gn
11, Gn

12 = Gn
12, and

Vn
1 = V n

1 , Vn
2 = V n

2 , define

ri (Gn) � dim
(
span(Ei (Gn))

)
, i = 1, 2,

where

E1(Gn) � {�sm1(n)×1| ∃�ln×1 s.t .

[�s� �01×m2(n)] = �l �[Gn
21V n

1 Gn
22V n

2 ]},
E2(Gn) � {�sm2(n)×1| ∃�ln×1 s.t .

[�01×m1(n) �s�] = �l �[Gn
21V n

1 Gn
22V n

2 ]}.
In words, r1(Gn) can be interpreted as the number of

linearly independent equations that Rx2 can recover from its
received signal, which only involve symbols of Tx1. Hereafter,
we denote r1(Gn), r2(Gn) simply by r1, r2.

We will now state the following lemma, proved in
Appendix V, which is the key to proving Lemma 1.

Lemma 5. For any linear coding strategy { f (n)
1 , f (n)

2 }, with

corresponding Vn
1

�= Vn
11, Vn

2
�= Vn

12 defined in (2),

• rank[Gn
11Vn

1 Gn
12Vn

2] − rank[Gn
21Vn

1 Gn
22Vn

2] a.s.≤
rank[GT

11VT
1 GT

12VT
2 ]

• rank[VT
j ] ≤ r j , j = 1, 2

• r j
a.s.≤ rank[Gn

21Vn
1 Gn

22Vn
2 ] − rank[Vn

3− j ], j = 1, 2

where T is defined in Definition 2, VT
i represents the random

sub-matrix of Vn
i derived by keeping rows whose indices are

in T , and r1, r2 are defined in Definition 3.
Remark 3. Note that the first inequality in the above

lemma intuitively implies that, in order to bound the difference
of the dimensions of received linear subspaces at the two
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Fig. 2. Network configuration for the three-user IC. There are three
transmitters and three receivers, and for j = 1, 2, 3, Tx j has message for
Rx j . We assume time-varying channels, with delayed CSIT.

receivers, we only needs to focus on the timeslots in which
Rx2 already knows both of the individual transmit equations.

We are now ready to prove Lemma 1. We will first use
Lemma 5 to find an upper bound on the difference between
rank[Gn

11Vn
1 Gn

12Vn
2] and rank[Gn

21Vn
1 Gn

22Vn
2].

rank[Gn
11Vn

1 Gn
12Vn

2] − rank[Gn
21Vn

1 Gn
22Vn

2]
(Lemma 5)

a.s.≤ rank[GT
11VT

1 GT
12VT

2 ]
≤ rank[GT

11VT
1 ] + rank[GT

12VT
2 ]

a.s.= rank[VT
1 ] + rank[VT

2 ]
(Lemma 5)≤ r1 + r2
(Lemma5)

a.s.≤ rank[Gn
21Vn

1 Gn
22Vn

2] − rank[Vn
2]

+ rank[Gn
21Vn

1 Gn
22Vn

2] − rank[Vn
1]

a.s.= 2rank[Gn
21Vn

1 Gn
22Vn

2 ]−rank[Gn
11Vn

1]−rank[Gn
12Vn

2]
a.s.≤ 2rank[Gn

21Vn
1 Gn

22Vn
2] − rank[Gn

11Vn
1 Gn

12Vn
2 ].

By rearranging the two sides of the above inequality, the proof
of Lemma 1 would be complete.

IV. THE THREE-USER INTERFERENCE CHANNEL

WITH DELAYED CSIT

In this section we give an example that shows how
Lemma 1 can be useful for deriving outer bounds in other
scenarios. In particular, we utilize Lemma 1 to provide a
new outer bound on the three-user interference channel with
delayed CSIT depicted in Fig. 2. The channel model is similar
to that of the X-channel except the channel input-output
relation and decodability constraints. The received signal at
Rxk (k ∈ {1, 2, 3}) at time t is given by

yk(t) =
3∑

j=1

gkj (t)x j (t) + zk(t). (27)

For block length of n and j = 1, 2, 3, we consider the
decodability constraint of

dim
(
ProjIc

j
colspan (Gn

j jV
n
j )
)
= dim

(
colspan (Vn

j )
)

= m j (n), (28)

where I j = ∪i �= j colspan (Gn
j iV

n
i ). Denote the linear degrees

of freedom region D3UserIC as the closure of the set of all
achievable 3-tuples (d1, d2, d3), where d j = limn→∞

m j (n)
n ,

and {m1(n), m2(n), m3(n)} are linearly achievable with prob-
ability 1 for every n ∈ N. We are interested in characterizing
the sum linear degrees of freedom:

DoFL-sum = max
3∑

j=1

d j , s.t . (d1, d2, d3) ∈ D. (29)

With delayed CSIT, it was shown in [6] that the sum DoF
of 9

8 can be achieved, which was later improved to 36
31 in [8].

However, the best known outer bound so far is 3
2 , which also

holds for the case of instantaneous CSIT [4]. The following
theorem provides a tighter bound on the linear degrees of
freedom.

Theorem 2. For the three-user interference channel with
delayed CSIT,

DoFL-sum ≤ 9

7
. (30)

Proof: Let us denote the symmetric degrees of freedom
for three-user interference channel by DoFL-sym. Note that due
to symmetry of topology,

DoFL-sum = 3 × DoFL-sym. (31)

Hence, in order to prove the theorem it suffices to show that
DoFL-sym ≤ 3

7 . So assume that for a given block length n,
m1(n) = m2(n) = m3(n), and we seek to show that if
decodability is accomplished with probability 1, we should
have m1(n) ≤ 3

7 n. By Lemma 3 if the decodability constraints
in (28) are satisfied with probability 1 for pairs Tx1-Rx1 and
Tx2-Rx2, then

rank[Gn
12Vn

2 Gn
13Vn

3] + rank[Gn
11Vn

1]
a.s.= rank[Gn

11Vn
1 Gn

12Vn
2 Gn

13Vn
3], (32)

rank[Gn
21Vn

1 Gn
23Vn

3 ] + rank[Gn
22Vn

2]
a.s.= rank[Gn

21Vn
1 Gn

22Vn
2 Gn

23Vn
3], (33)

where rank[Vn
1] a.s.= rank[Vn

2] a.s.= rank[Vn
3] a.s.= m1(n). Thus,

assuming m1(n) = m2(n) = m3(n) are linearly achievable
with probability 1, from (33), we have

rank[Gn
22Vn

2] a.s.= rank[Gn
21Vn

1 Gn
22Vn

2 Gn
23Vn

3]
−rank[Gn

21Vn
1 Gn

23Vn
3 ]

(a)≤ rank[Gn
22Vn

2 Gn
23Vn

3] − rank[Gn
23Vn

3 ], (34)

where (a) follows from sub-modularity of rank (Lemma 2).
In addition, we know that

rank[Gn
22Vn

2] ≥ rank[Gn
22Vn

2 Gn
23Vn

3] − rank[Gn
23Vn

3]. (35)

By (34), (35) we conclude that

rank[Gn
22Vn

2 Gn
23Vn

3] a.s.= rank[Gn
22Vn

2]+rank[Gn
23Vn

3]
a.s.= rank[Vn

2]+rank[Vn
3]a.s.= 2m1(n). (36)

On the other hand, from Lemma 1 we know that

rank[Gn
22Vn

2 Gn
23Vn

3] a.s.≤ 3

2
rank[Gn

12Vn
2 Gn

13Vn
3]. (37)
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Hence, by (36), (37),

rank[Gn
12Vn

2 Gn
13Vn

3] a.s.≥ 4

3
m1(n). (38)

Finally, by considering (32), (38), and the fact that
rank[Gn

11Vn
1 Gn

12Vn
2 Gn

13Vn
3] ≤ n, we get

m1(n)
a.s.= rank[V1] a.s.= rank[Gn

11Vn
1]

(32)
a.s= rank[Gn

11Vn
1 Gn

12Vn
2 Gn

13Vn
3 ]

−rank[Gn
12Vn

2 Gn
13Vn

3 ](38)
a.s.≤ n − 4

3
m1(n),

which implies that m1(n) ≤ 3
7 n because n, m1(n) are

non-random, and this completes the proof.

V. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, we characterized the linear degrees of freedom
of the X-channel with delayed CSIT. Our main contribution
was the development of a general lemma (i.e. Rank Ratio
Inequality) that shows that, if two distributed transmitters
employ linear strategies, the ratio of the dimensions of received
linear subspaces at the two receivers cannot exceed 3

2 , due
to lack of instantaneous knowledge of the channels. We also
applied this general lemma to the three-user interference
channel with delayed CSIT, thereby deriving a new upper
bound of 9

7 on its linear degrees of freedom.
Moreover, we have recently shown yet another application

of the Rank Ratio Inequality to secrecy problems such as
wiretap channel with delayed CSIT [20] . In particular, in [20]
we have considered the Gaussian wiretap channel with a
transmitter, a legitimate receiver, and k eavesdroppers (k ∈ N),
where the secure communication is aided via a jammer.
The transmitter and the jammer are blind with respect to
eavesdroppers CSI, and only have access to delayed CSI of the
legitimate receiver. We show that secure DoF in this case is
equal to 1

3 assuming linear coding strategies at the transmitters,
and this value is irrespective of the number of eavesdroppers
(k) in the network.

We conjecture that the total degrees of freedom of the
X-channel with delayed CSIT (without restriction to linear
schemes) is also 6

5 . In fact, we conjecture the following
generalization of Lemma 1 for general encoding strategies.

Conjecture 1. Consider the 2-transmitter 2-receiver net-
work setting of Lemma 1. For any n ∈ N and any coding
strategy denoted by encoding functions { f (n)

1 , f (n)
2 }, and its

corresponding received signals, �yn
1 and �yn

2, we have

h(�yn
1 |Gn) ≤ 3

2
h(�yn

2 |Gn) + n × o(log(P)). (39)
Therefore, a future direction would be to remove the lin-

earity restriction on the encoding schemes, and prove (or
disprove) the above conjecture, which (if true) will lead to the
DoF characterization of the X-channel with delayed CSIT.

We also believe that similar techniques could be applied
to other important network configurations to gain insight on
how delayed CSIT can be used to improve the Degrees of
Freedom, and what the limitations on this DoF improvement
are. In particular the K -user interference channel and multi-
hop interference networks (e.g., [21]–[23]), in which there is a

large gap between the state-of-the-art inner and outer bounds
on DoF with delayed CSIT, can be considered.

Most research so far has focused on understanding the
impact of delayed CSIT via a coarse DoF analysis. In the
context of linear schemes, this can be viewed as understanding
the impact of delayed CSIT on the dimension of desired signal
spaces at the receivers of a wireless networks. While such
analysis provides a first-order understanding of the impact of
delayed CSIT on capacity, it is of great value to refine the
analysis and study the impact of delayed CSIT on the volume
of desired signal spaces at the receivers. A first step along this
direction has been taken in [13] to approximate the capacity
of MISO BC with delayed CSIT to within 1 bit/sec/Hz.

APPENDIX A

PROOF OF LEMMA 5

A. Proof of rank[Gn
11Vn

1 Gn
12Vn

2] − rank[Gn
21Vn

1

Gn
22Vn

2] a.s.≤ rank[GT
11VT

1 GT
12VT

2 ]
For a fixed linear coding strategy { f (n)

1 , f (n)
2 }, with corre-

sponding Vn
1, Vn

2, let Ai ,Bi , Ci , i = 1, 2, . . . , n, denote the
following sets:

• Ai � {Gn| rank[Gi
21V i

1 Gi
22V i

2 ] = rank[Gi−1
21 V i−1

1
Gi−1

22 V i−1
2 ]}.

• Bi � {Gn | [�v1(i)� �01×m2(n)], [�01×m1(n) �v2(i)�] ∈
rowspan[Gi−1

21 V i−1
1 Gi−1

22 V i−1
2 ]}.

• Ci � {Gn| rank[Gi
11V i

1 Gi
12V i

2 ] = rank[Gi−1
11 V i−1

1
Gi−1

12 V i−1
2 ] + 1}.

Note that Bi is equivalent to {Gn| i ∈ T (Gn)}. In order to
prove Lemma 5 we first state the following lemma, whose
proof is postponed to Appendix B.

Lemma 6.

Pr(Gn ∈ ∪n
i=1(Ai ∩ Bc

i )) = 0. (40)
Lemma 6 implies that we need to prove the first inequality

in Lemma 5 only for channel realizations Gn = Gn , such
that Gn /∈ ∪n

i=1(Ai ∩ Bc
i ) (since, the rest have probability

measure zero). Thus, we only need to show that for any
arbitrary channel realization Gn = Gn with the corresponding
beamforming matrices V n

1 , V n
2 , and T = T , such that Gn /∈

∪n
i=1(Ai ∩ Bc

i ), we have

rank[Gn
11V n

1 Gn
12V n

2 ] − rank[Gn
21V n

1 Gn
22V n

2 ]
≤ rank[GT

11V T
1 GT

12V T
2 ]. (41)

Let I (.) denote the indicator function, we now bound the left
hand side of (41) as follows.

rank[Gn
11V n

1 Gn
12V n

2 ] − rank[Gn
21V n

1 Gn
22V n

2 ]
=

n∑

i=1

(rank[Gi
11V i

1 Gi
12V i

2 ]−rank[Gi−1
11 V i−1

1 Gi−1
12 V i−1

2 ])

− (rank[Gi
21V i

1 Gi
22V i

2 ] − rank[Gi−1
21 V i−1

1 Gi−1
22 V i−1

2 ])

≤
n∑

i=1

max{0, (rank[Gi
11V i

1 Gi
12V i

2 ]

−rank[Gi−1
11 V i−1

1 Gi−1
12 V i−1

2 ])
− (rank[Gi

21V i
1 Gi

22V i
2 ] − rank[Gi−1

21 V i−1
1 Gi−1

22 V i−1
2 ])}
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(a)=
n∑

i=1

I (rank[Gi
11V i

1 Gi
12V i

2 ]

= rank[Gi−1
11 V i−1

1 Gi−1
12 V i−1

2 ]+1)

×I (rank[Gi
21V i

1 Gi
22V i

2 ]
= rank[Gi−1

21 V i−1
1 Gi−1

22 V i−1
2 ])

=
n∑

i=1

I (Gn ∈ Ai ∩ Ci )

=
n∑

i=1

(I (Gn ∈ Ai ∩ Bi ∩ Ci ) + I (Gn ∈ Ai ∩ Bc
i ∩ Ci ))

≤
n∑

i=1

(I (Gn ∈ Bi ∩ Ci ) + I (Gn ∈ Ai ∩ Bc
i ))

(b)=
n∑

i=1

I (Gn ∈ Bi ∩ Ci )
(c)=

∑

i∈T
I (Gn ∈ Ci )

=
∑

i∈T
I (rank[Gi

11V i
1 Gi

12V i
2 ]

= rank[Gi−1
11 V i−1

1 Gi−1
12 V i−1

2 ]+1), (42)

where (a) holds since rank[Gi
k1V i

1 Gi
k2V i

2 ] −
rank[Gi−1

k1 V i−1
1 Gi−1

k2 V i−1
2 ] ∈ {0, 1} for k = 1, 2; and

(b) follows from the assumption that Gn /∈ (Ai ∩ Bc
i )

for i ∈ {1, 2, . . . , n}; and (c) follows from the fact that
T = {i |Gn ∈ Bi }. We now only need to show the following
to complete the proof of (41).

∑

i∈T
I (rank[Gi

11V i
1 Gi

12V i
2 ]= rank[Gi−1

11 V i−1
1 Gi−1

12 V i−1
2 ]+1)

≤ rank[GT
11V T

1 GT
12V T

2 ]. (43)

Without loss of generality, let us assume that T =
{τ1, τ2, . . . , τk} for some k, such that τ1 < τ2 < . . . < τk . We
define T j � {τ1, τ2, . . . , τ j }, and use V

T j
1 and V

T j
2 to denote

the sub-matrices of V n
1 and V n

2 with rows in T j . We also use

G
T j
11 to denote the |T j | × |T j | diagonal matrix with channel

coefficients of g11(t) at timeslots t ∈ T j on its diagonal
(similarly defined for other channel matrices). We now present
a claim that will be used to show (43) and complete the proof.

Claim 1. For any j = 1, 2, . . . , k,

I (rank[Gτ j
11V

τ j
1 G

τ j
12V

τ j
2 ]

= rank[Gτ j −1
11 V

τ j −1
1 G

τ j −1
12 V

τ j −1
2 ] + 1)

≤ I (rank[GT j
11 V

T j
1 G

T j
12 V

T j
2 ]

= rank[GT j−1
11 V

T j−1
1 G

T j−1
12 V

T j−1
2 ] + 1). (44)

Proof: The claim is trivially true when
rank[Gτ j

11V
τ j
1 G

τ j
12V

τ j
2 ] = rank[Gτ j −1

11 V
τ j −1
1 G

τ j −1
12 V

τ j −1
2 ].

So, suppose rank[Gτ j
11V

τ j
1 G

τ j
12V

τ j
2 ] = rank[Gτ j −1

11 V
τ j −1
1

G
τ j −1
12 V

τ j −1
2 ] + 1. It means that [g11(τ j )�v1(τ j )

�
g12(τ j )�v2(τ j )

�] is linearly independent of rowspan

[Gτ j −1
11 V

τ j −1
1 G

τ j −1
12 V

τ j −1
2 ]. Since T j−1 ⊆ {1, 2, . . . , τ j −1},

then [g11(τ j )�v1(τ j )
� g12(τ j )�v2(τ j )

�] is also linearly

independent of rowspan [GT j−1
11 V

T j−1
1 G

T j−1
12 V

T j−1
2 ]. Hence,

rank[GT j
11 V

T j
1 G

T j
12 V

T j
2 ]= rank[GT j−1

11 V
T j−1
1 G

T j−1
12 V

T j−1
2 ]+1.

Based on this claim, the proof of (43) is as follows.

∑

i∈T
I (rank[Gi

11V i
1 Gi

12V i
2 ]

= rank[Gi−1
11 V i−1

1 Gi−1
12 V i−1

2 ] + 1)

=
k∑

j=1

I (rank[Gτ j
11V

τ j
1 G

τ j
12V

τ j
2 ]

= rank[Gτ j −1
11 V

τ j −1
1 G

τ j −1
12 V

τ j −1
2 ] + 1)

Claim 1≤
k∑

j=1

I (rank[GT j
11 V

T j
1 G

T j
12 V

T j
2 ]

= rank[GT j−1
11 V

T j−1
1 G

T j−1
12 V

T j−1
2 ] + 1)

= rank[GTk
11 V Tk

1 GTk
12 V Tk

2 ]
= rank[GT

11V T
1 GT

12V T
2 ].

B. Proof of rank[VT
j ] ≤ r j , ( j = 1, 2)

It is sufficient to prove that rank[VT
1 ] ≤ r1,

since the other inequality (i.e. rank[VT
2 ] ≤ r2) can

be proven similarly. We show that for any realization
Gn = {Gn

kj }k, j∈{1,2} with the corresponding values T ,
r1, and matrices V n

1 , V n
2 , we have rank[V T

1 ] ≤ r1.
But according to definition of r1, it is sufficient to
prove

rowspan[V T
1 ] ⊆ span(�sm1(n)×1| ∃�ln×1 s.t .

[�s� �01×m2(n)] = �l �[Gn
21V n

1 Gn
22V n

2 ]). (45)

The following proves (45), thereby completing the proof for
rank[V T

1 ] ≤ r1:

rowspan[V T
1 ]

= span(�v1(i)|1 ≤ i ≤ n, [�v1(i)
� �01×m2(n)],

[�01×m1(n) �v2(i)
�] ∈ rowspan[Gi−1

21 V i−1
1 Gi−1

22 V i−1
2 ])

⊆ span(�v1(i)|1 ≤ i ≤ n, [�v1(i)
� �01×m2(n)],

[�01×m1(n) �v2(i)
�] ∈ rowspan[Gn

21V n
1 Gn

22V n
2 ])

⊆ span(�v1(i)|1 ≤ i ≤ n, [�v1(i)
� �01×m2(n)]

∈ rowspan[Gn
21V n

1 Gn
22V n

2 ])
⊆ span(�sm1(n)×1| ∃�ln×1 s.t .

[�s� �01×m2(n)] = �l �[Gn
21V n

1 Gn
22V n

2 ]).

C. Proof of r j
a.s.≤ rank[Gn

21Vn
1 Gn

22Vn
2] − rank[Vn

3− j ],
( j = 1, 2)

We will show this for j = 1, i.e., r1
a.s.≤

rank[Gn
21Vn

1 Gn
22Vn

2] − rank[Vn
2]. The proof for j = 2 will

be similar. Since rank[Gn
22Vn

2] a.s.= rank[Vn
2], it is sufficient to

show that r1 ≤ rank[Gn
21Vn

1 Gn
22Vn

2] − rank[Gn
22Vn

2]. To do
so, we show that for any realization Gn = {Gn

kj }k, j∈{1,2} with
the corresponding value r1, and matrices V n

1 , V n
2 , we have

r1 ≤ rank[Gn
21V n

1 Gn
22V n

2 ] − rank[Gn
22V n

2 ].
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Since r1 = dim(span(�sm1(n)×1| ∃ �ln×1 s.t .[�s��01×m2(n)] =
�l �[Gn

21V n
1 Gn

22V n
2 ])), we have

∃Lr1×n s.t .[S 0r1×m2(n)] = L[Gn
21V n

1 Gn
22V n

2 ], (46)

for some Sr1×m1(n), such that rank[S] = r1. This means

LGn
22V n

2 = 0r1×m2(n), LGn
21V n

1 = S, rank[S] = r1. (47)

We now state a claim that will be useful in completing the
proof.

Claim 2. For three matrices A, B, C where the number of
columns in A is equal to the number of rows in B, C ,

rank[AB AC] − rank[AC] ≤ rank[B C] − rank[C]. (48)
Proof: By Frobenius’s inequality, for any three matrices

X, Y, Z where XY , Y Z , and XY Z are defined,

rank[XY ] + rank[Y Z ] ≤ rank[XY Z ] + rank[Y ]. (49)

By setting X = A, Y = [B C], Z = [0 I ]�, where I is the
identity matrix, the desired result follows.

Therefore, by setting A = L, B = [Gn
21V n

1 Gn
22V n

2 ], C =
Gn

22V n
2 in Claim 2, and using (47), we get

r1 − 0 ≤ rank[Gn
21V n

1 Gn
22V n

2 ] − rank[Gn
22V n

2 ], (50)

which completes the proof.

APPENDIX B

PROOF OF LEMMA 6

Here we restate Lemma 6 before proving it.
Lemma 6. Consider a fixed linear coding strategy { f (n)

1 , f (n)
2 },

with corresponding Vn
1

�= Vn
11, Vn

2
�= Vn

12 as defined in (2).
For any i ∈ {1, 2, . . . , n}, let Ai ,Bi , denote the following sets:

• Ai � {Gn | rank[Gi
21V i

1 Gi
22V i

2 ] = rank[Gi−1
21 V i−1

1
Gi−1

22 V i−1
2 ]}.

• Bi � {Gn| [�v1(i)� �01×m2(n)], [�01×m1(n) �v2(i)�] ∈
rowspan[Gi−1

21 V i−1
1 Gi−1

22 V i−1
2 ]}.

Then,

Pr(Gn ∈ ∪n
i=1(Ai ∩ Bc

i )) = 0.

Proof: Note that due to Union Bound, it is sufficient to
show that for any i ∈ {1, 2, . . . , n},

Pr(Gn ∈ Ai ∩ Bc
i ) = 0.

Consider an arbitrary i ∈ {1, 2, . . . , n}. Due to Total Probabil-
ity Law, it is sufficient to show that for any channel realization
of the first i − 1 timeslots, denoted by Gi−1 = {Gi−1

kj } j,k∈{1,2},
we have

Pr(Gn ∈ Ai ∩ Bc
i |Gi−1 = Gi−1) = 0. (51)

Consider an arbitrary channel realization of the first i − 1
timeslots Gi−1 = {Gi−1

kj } j,k∈{1,2}, with corresponding matrices
V i

1 , V i
2 (which are now deterministic). Also, suppose that given

Gi−1, Bc
i occurs; since otherwise, the proof would be com-

plete. On the other hand, assuming Bc
i occurs, and denoting

L = rowspan[Gi−1
21 V i−1

1 Gi−1
22 V i−1

2 ], at least one of the
following is true according to the definition of Bi :

[�v1(i)
� �01×m2(n)] /∈ L⇒ProjLc [�v1(i)

� �01×m2(n)] �= 0,

(52)

[�01×m1(n) �v2(i)
�] /∈ L⇒ProjLc [�01×m1(n) �v2(i)

�] �= 0.

(53)

Therefore, the (m1(n) + m2(n)) × 2 matrix
[ProjLc [�v1(i)� �01×m2(n)]� ProjLc [�01×m1(n) �v2(i)�]�] is
non-zero, which means that its null space has dimension
strictly lower than 2. Hence, we have,

Pr(Gn ∈ Ai ∩ Bc
i |Gi−1 = Gi−1)

(a)= Pr(Gn ∈ Ai |Gi−1 = Gi−1)
(b)= Pr(ProjLc [g21(i)�v1(i)

� g22(i)�v2(i)
�] = 0|Gi−1 = Gi−1)

(c)= Pr(g21(i)ProjLc [�v1(i)
� �0]

+ g22(i)ProjLc [�0 �v2(i)
�] = 0|Gi−1 = Gi−1)

= Pr([ProjLc [�v1(i)
� �0]� ProjLc [�0 �v2(i)

�]�]
[

g21(i)
g22(i)

]

= 0|Gi−1 = Gi−1)

= Pr

( [
g21(i)
g22(i)

]
∈ nullspace[ProjLc [�v1(i)

� �0]�

ProjLc [�0 �v2(i)
�]�]|Gi−1 = Gi−1

)
(d)= 0,

where (a) holds since we assumed that for realiza-
tion Gi−1, Bc

i occurs; (b) holds according to the definition
of Ai ; (c) holds due to linearity of orthogonal projec-
tion; and (d) holds since the (m1(n) + m2(n)) × 2 matrix
[ProjLc [�v1(i)� �01×m2(n)]� ProjLc [�01×m1(n) �v2(i)�]�] is
non-zero, which means that its null space, which is a subspace
in R2, has dimension strictly lower than 2. Therefore, the

probability that the random vector

[
g21(i)
g22(i)

]
lies in a subspace

in R2 of strictly lower dimension (than 2) is zero.
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