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ABSTRACT

Large-scale and interpretable educational data analysis is a key en-
abler of the next generation of education, and a variety of statistical
models for such data and corresponding machine learning algorithms
have been proposed in the literature. In this work, we introduce an
interpretable multidimensional IRT model and propose an efficient
algorithm that is highly scalable and parallelizable. Our approach
provides improved human interpretability and greater scalability. We
also provide experimental results on a real-world large-scale data
set to demonstrate that our algorithm achieves as good prediction
performance as the state of the arts. Further, leveraging the inter-
pretability of our model, we offer an efficient and systematic method
of identifying wrongly annotated tagging information.
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1 INTRODUCTION

Educational data analysis aims at replacing the current old-fashioned
education system with a fully personalized and automated education
system [26]. Among many tasks of educational data analysis, per-
sonalized prediction of test responses based on the record of each
individual learner is of the utmost importance. Another important
task is question analysis, which necessitates human-interpretable
statistical models of educational data. Thus, striking a critical bal-
ance between prediction performance and human interpretability is
the key requirement that machine learning algorithms should satisfy.
Moreover, the large amount of modern educational data, which is
constantly being collected from online education platforms such as
Massive Open Online Courses (MOOCs) [12], calls for the need
of highly scalable learning algorithms that entail efficient time and
space complexities.

A variety of statistical models of educational data such as test
response data have been extensively studied in the literature. Among
the proposed models, item response theory (IRT) models have re-
ceived much attention due to their simplicity as well as superior
human interpretability [20]. By identifying an implicit connection
between these IRT models and the popular matrix completion frame-
work, a few efficient algorithms have been recently developed [3, 19].
It is also demonstrated that their algorithms provide great prediction
performances.

In this work, improving upon these algorithms, we propose a new
machine learning algorithm for analyzing large-scale educational
data. Our algorithm relies on a modified IRT model, and offers
improved human interpretability and scalability, while providing

as good prediction performance as the state-of-the-art algorithms.
More specifically, our modified IRT model resolves the ambiguity
issues of the original IRT models, which we will describe in Sec. 2.2
with greater detail. Further, our algorithm is highly scalable due
to its efficient time complexity and space complexity as well as
easily parallelizable. For comparison to the prior approaches, we
collect a large-scale data set from an online education platform
with more than 120000 users and more than 3800 multiple choice
questions, each with 4 options. Using this data set, we demonstrate
that the performance of our algorithm matches those of the state of
the arts, while providing an improved human interpretability and
greater scalability. Further, leveraging the interpretability of our
model, we propose an efficient and systematic way of identifying
wrongly annotated tagging information.

1.1 Notations

For a positive integer n, [n] := {1, 2,-- -, n}. We shall use log(-) to in-
dicate the natural logarithm. Further, we denote by [L1;La;--- ;Lp]
the vertical concatenation of n row vectors L1, Ly, ..., Ly.

2 RESPONSE MODEL AND ALGORITHM
2.1 Response Model

Item Response Theory (IRT) is a class of mathematical models
of test responses [20]. While the unidimensional IRT models as-
sociate students and questions with scalar latent parameters, the
multidimensional IRT (MIRT) models [25] associate them with mul-
tidimensional latent parameters, thus capturing the multiple factors
affecting test responses, which we call hidden concepts.

Consider an education system with n students and m questions.
The MIRT model assumes the following latent parameters associated
with students and questions. For each i, 1 < i < n, student i is asso-
ciated with an r-dimensional row vector L; € R1*", where r denotes
the upper bound on the number of hidden concepts. Similarly, for
each j, 1 < j < m, question j is associated with an r-dimensional
row vector R;j € RIX"_ In the MIRT model, it is assumed that the
probability that student i correctly answers question j depends only
on the inner product of L; and R}, i.e., L,-RjT. ‘While this model is
able to reflect multiple factors w.r.t. test responses as well as pro-
vides a reasonable level of human interpretability, the model is faced
with inherent ambiguity issues. First, note that flipping signs of the
k™ components of L; and R; does not alter the value of L l—R]T. Also,
multiplying the k™ component of L; by a constant factor and dividing
the k™ component of R;j by the same factor yields the same value
of LiRjT. Hence, these incur ambiguities on interpretation of the
latent parameters. For instance, L;(1) > L;(2) does not necessarily
imply that student i has a better understanding on the first hidden



concept relative to the second one. Similarly, Rj(1) > R;(2) does
not necessarily imply that the first hidden concept is more important
than the second one w.r.t. question j.

In order to resolve such ambiguities, we propose a simple vari-
ant of the MIRT model. In our model, we assume that student i
is associated with an r-dimensional row vector L;, of which each
component is restricted to [0, 1]. Differently from the original MIRT
model, our model allows for precise interpretation of the student
features: the j* component of L; represents the level of student i’s
understanding on the j® hidden concept. Similarly, question i is
associated with an r-dimensional row vector R; € [0, 1], the
components of which sum up to 1, i.e., Z;zl R;(j) = 1. Here, the
j™ component of R; can be interpreted as the contribution of the j*
hidden concept to question i. We note that this modification fully
resolves the ambiguity issue, enabling natural interpretation of the
latent parameters. For instance, L;(1) > L;(2) implies that student
i has a better understanding on the first hidden concept than the
second one. For notational simplicity, we define the student-concept
matrix L := [Lq;L;--- ;Lp] € [0,1]™" and the question-concept
matrix R := [RT,RT, ... R]] € [0,1]™*".

For student i and question j, the level of student i’s understanding
on question j is quantified as

,
Xij = Z Li(k)R;(k) = LiR .
k=1

That is, the quantity is a weighted sum of the understanding lev-
els of each hidden concept, where the weights are dictated by the
composition of the question. Further, we assume a non-linear link
function that maps the level of understanding to the probability of
correct guess. More specifically, we assume the following logistic
link function: Given Xjj, the probability that student i correctly
answers question j is defined as

1-¢q

1+ e P Xij=dp)’

where ¢4, ¢p, and ¢, indicate some constants that are appropriately
set, independently of questions and users. Here, ¢, often called the
guessing parameter, denotes the probability of correct guess when
the level of understanding is zero, and (¢, ¢.) are introduced for
a proper normalization!. Let X := [X; 7] € [0,1]™™ denote the
understanding level matrix and P := [P;;] € [0,1]™™ denote a
matrix w.r.t. the probability of correct-answer. Note that X = LRT
and P = ¢(X), where ¢(-) is applied component-wise. Finally, we
assume that Y;; € {0, 1}, which represents whether student i guessed
the correct answer for question j (Y;; = 1) or not (Yj; = 0), follows
a Bernoulli random distribution with probability P;;. We denote by
Q the set of student-question pairs for observed responses. Further,
we denote by Q;4 and Q4 ; the set of question indices attempted by
student i and the set of indices of users who attempted question j,
respectively. That is, Q;. = {jI(i,j) € Q}, and Q; = {i|(i,)) € Q}.

We note that the model described above cannot capture the in-
herent difficulties of problems. In order to resolve this issue, we
introduce the following two auxiliary concepts: the (r + 1)" concept
is the one that no one knows, and the (r + 2)™ concept is the one that

Pij = ¢(Xij) = dpa +

'We remark that though seemingly similar, ¢y is irrelevant to the easiness parameters
of the classic IRT models.

everyone knows. This can be imposed by setting L;(r + 1) = 0 and
L;(r+2) = 1for all i. On the other hand, the parameters R;(r+1) and
R;(r + 2) for all i are treated equally as the other hidden parameters,
and hence need to be estimated. In order to see how these auxiliary
concepts help model atypical questions, consider an extreme case.
Imagine that question j consists of a concept that is not known to
everyone. One would like to model this case in a way that every user,
regardless of their backgrounds, will randomly guess the answer of
the question. This situation can be easily captured under our model
by setting Rj(r + 1) = 1. As L;(r + 1) = 0 for all i, the understanding
level of student i on question j is zero, i.e., LiRJ.T = Xjj = 0, imply-
ing P;j = ¢4. Thus, this immediately models the situation where all
the users will randomly guess the answer of question j.

In this variant of MIRT model2, the goal of educational data
analysis is to estimate L and R from the observed test responses
(Yij)q , and to predict missing components of Y from the estimated
latent parameters.

2.2 Algorithm

‘We begin with a brief review of the matrix completion problem since
it is intimately related to the inference problem of our interest.

The goal of matrix completion (also known as matrix factoriza-
tion) is to fill a low-rank matrix with partially revealed entires [2, 8—
10]. It has been shown powerful for tackling various collaborative
filtering problems such as the recommendation problem. In [10],
Candes and Rao show that, under some mild conditions, one can
reliably fill a square matrix of size n by n and of rank r if the num-
ber of observed entries is the order of nrpolylog(n) by solving an
optimization problem called the nuclear norm minimization prob-
lem. A similar result holds even when the observed entries are not
exact but noisy. In addition to such convex program approaches,
many other efficient algorithms (e.g., spectral methods, non-convex
algorithms, stochastic algorithms) have been proposed in the liter-
ature [7, 16, 24]. The 1-bit low-rank matrix completion [13] is a
variant of the original problem. The goal of the problem is to fill a
binary-valued matrix assuming that the observed entries are realiza-
tion of Bernoulli random variables whose probabilities being 1 are
governed by a hidden low-rank matrix.

The 1-bit low-rank matrix completion problem has a strong con-
nection to the inference of latent parameters under the MIRT model.
One can view the observed test responses as a binary-valued matrix
with missing entries. This way, the inference of the latent param-
eters L and R reduces to a variant of the 1-bit matrix completion.
In [3], Berner et al. first observe such connection. In [19], Lan et
al. introduce a variant of the MIRT model, which imposes sparsity
constraints on R;’s for improved interpretability, and propose an
algorithm that can efficiently estimate the latent parameters. The
dealbreaker model, proposed in [17], is a nonlinear latent variable
model under which the student’s success probability depends only
on his/her weakest concept understanding. The authors also propose
an algorithm based on the alternating direction method of multipliers
(ADMM) framework [5].

2We remark that our model with these auxiliary concepts can also be seen as an
alternative form of the M3PL latent trait model since it captures multidimensional
item discrimination, item difficulty, as well as different guessing probability for each
problem.



Algorithm 1

1. Input: observed responses (Yij)(;, j)eq, index set Q

2. Initialize L(® and R uniformly at random in [0, 1].
3: Normalize every Rﬁo) such that Z}r.:l REO) (j) = 1.
4: k=0

5: repeat
6 L=LK R=RK
7: Shuffle Q
8. for (i,j) in Q do
_ Ha _ Ha
% fr=l-jg,phR=1-107

ge(Yi—g(LiRT))
¢(LiRJT)(1+e_¢C(LiR]T—¢b))
11: L =TIp, (ﬂLLi +:8Rj)
12: Rj =Tlp, (ﬂRRj +5Li)
13:  end for
14: k=k+1
15: L(k) -1 R(k) R
16: until convergence
17: Output: 15 and RK)

While the prior algorithms have shown superior prediction per-
formances, most of them can hardly scale and/or can be hardly par-
allelized. In order to design a scalable and parallelizable algorithm
for a large-scale educational data analysis, we develop an algorithm
based on the projected Stochastic Gradient Descent (SGD) method,
which can be readily deployed on a parallel/distributed computing
platform as shown in [15, 24].

We now present our algorithm. Our algorithm is highly scalable
since its time and space complexities are linear in the number of
observed test responses. Further, it is inherently online: an already
trained model can be efficiently retrained when new test responses
are revealed.

Our algorithm attempts to find the maximum likelihood (ML)
estimator of X given a set of observation [Yj;](; jyeq- Equivalently,
the ML estimator can be found by solving a minimization problem
whose objective function is the negative of the log likelihood of
the observed entries. In order to encourage X to reflect a low-rank
structure, we also add to the objective function the nuclear norm reg-
ularization term [10]. That is, we formulate an optimization problem
as:

Tin Z (Yij, Pij) + plILRT .
’ (i.j)eQ
st. 0<L;jj<1,0<R;<1,Vij, (P1)

P = ¢(LRT), ZL,-,- =1, Vi,
J

where £(Y;j, P;j) indicates the negative log-likelihood of the ob-
served response Y;; when P(Y;; = 1) = P;j :

{(Yij, Pij) = —Yijlog(Pij) — (1 - Yij) log(1 — Pyj).

We intend to approximate the optimization problem (P1) with (P2)
(see below) by replacing the nuclear norm of LRT with the sum
of the squared Frobenius norms of L and R. This approximation is
based on the following property [23]: the nuclear norm of a matrix

X is equal to the minimum sum of the squared Frobenius norms of L
and R such that X = LRT.

. H 2 2
min Z (0%, Pij) + 5 (ILIG + IRIZ)
(i,j)eQ
st. 0<Ljj<1,0<R;j<1,Vij (P2)

P = ¢(LRT), ZLU =1, Vi.
j

Indeed, any local minimum of (P2) is known to match that of the
global minimum of the original problem (P1) under mild condi-
tions, and this agreement can be further certified by checking rank
deficiency of L and R [24].

As a specific choice of the algorithm for solving (P2), we make
use of the projected Stochastic Gradient Descent (SGD) method. A
formal description of our algorithm is given in Algorithm 1. The
algorithm starts with randomly initialized L and RO and then
iteratively updates sequences of L®) and R®) as follows. At the
beginning of each epoch, we randomly shuffle the index set Q. For
each pair of indices from Q, say (i, j), we update L; and R; as in
Algorithm 1 where ITp, (-) and IIp, (-) are projections of a vector
onto the spaces of feasible L’s and R’s, respectively. This procedure
is repeated until L®*) and R converge. Note that each epoch’s
runtime consists of time to shuffle data points and time to update
parameters |Q| times. Since time to update parameter takes O(r),
the total time complexity, if a constant number of epochs is run, is
o(r|Q]).

Note that the projected SGD is known to converge to a globally
optimal solution when the objective function and the regularization
terms (including those induced by constraints) are convex [21]. The
objective function of (P2), however, is non-convex due to the prod-
uct term LR, so we run the above algorithm multiple times with
different initialization points.

A simple variation of our algorithm is the one intended for the
case when both R and the test response data set Y are given. It can
be shown that given R and observed responses Yq, the optimization
problem (P2) reduces to a set of independent logistic regression prob-
lems, each being with linear constraints. Hence, one can estimate L
by solving all of the logistic regression problems, and concatenating
the estimated user features L;’s.

2.3 Comparison with Existing Algorithms

In this section, we compare our proposed algorithms with the existing
algorithms in the literature. See Table 1 for the summary.

We first compare the algorithms that can estimate latent variables.
As a specific instance of the IRT model, consider the two-parameter
logistic model (2PL) [20]. Assume that a gradient descent method is
applied to solve the corresponding ML estimation problem. The 2PL
model assumes that the probability of correct guess depends on the
sum of the user latent variable and the question latent variable. While
it allows for less ambiguous interpretation of estimation results, it
may not be able to capture a complex structure due to its limited
model complexity. On the other hand, the original MIRT model [25]
has the ability to express more complex models but fails to provide
consistent and interpretable estimation results. SPARFA [18], a vari-
ant of the MIRT model, has much improved human interpretability



MODEL & ALGORITHM CLASS HUMAN- REQUIRES SCALABLE & ONLINE
INTERPRETABLE R PARALLELIZABLE
2PL [20] IRT, AFFINE v X X X
MIRT [25] MIRT, AFFINE X X X X
SPARFA [19] MIRT, AFFINE v X X v
DEALBREAKER [17] NONLINEAR v X v X
OURS (SEC. 2.2) MIRT, AFFINE v X v v
G-DINA [14] NONLINEAR v v X X
OURS WITH R (SEC. 2.2) | MIRT, AFFINE v v v v

Table 1: Machine learning algorithms for educational data analysis

NAME n m Q| |Q|/(nm)
FuLL 123973 | 3835 | 8861570 1.86%
FILTERED 16065 1999 | 2983327 9.29%

Table 2: Data sets

due to the sparse nature of their estimated parameters. More pre-
cisely, by imposing sparsity constraints on R, their algorithm is able
to identify a few most important hidden concepts associated with
each question. Further, it scales well to high-dimensional problems
since it relies on a first-order method called the FISTA framework [1].
However, it is not clear whether it can be easily parallelized. On
the other hand, the dealbreaker model [17] is based on the ADMM
framework [5], and hence can be easily parallelized.

Recall that when the precise estimate of R is provided, our al-
gorithm reduces to multiple instances of convex problems, each of
which resembles logistic regression. This is because when R is fixed,
the objective function and the constraints of (P2) can be decomposed
into n instances of a simple logistic regression. The G-DINA (gen-
eralized deterministic inputs, noisy “and” gate) model [14] can be
deployed when such question tagging information is available, and
allows for highly interpretable results. However, unlike our algo-
rithm, the existing algorithms for the G-DINA model are neither
scalable nor parallelizable.

3 EXPERIMENTAL SETUP AND RESULTS

3.1 Data Set

We first collected a pool of TOEIC (Test Of English for International
Communication) questions. TOEIC is a test of English for interna-
tional communication, and each test is composed of 150 multiple-
choice questions with 4 options each. We first created the question
pool of 3835 TOEIC questions. With this question pool, we have
collected a large response data set via an online TOEIC education
platform. From 1/1/2016 to 1/15/2017, a total of 123973 students
had signed up for the platform, and a total of 8861570 responses
had been collected. Note the extremely low density of the response
matrix, which amounts to about 1.86%.

In order to obtain a high quality data set, we preprocess the raw
data set as follows. We first removed the students who had attempted
less than 30 questions during the observation period or had spent
less than 3 seconds for more than or equal to 95% of their attempts.
Similarly, we filtered out students whose correct answer rate is less

than or equal to 30%> After we obtained the refined set of students,
we filter out the questions that are responded less than 400 distinct
students.

With the aforementioned filtering process, we obtained the filtered
data set consisting of |Q2| = 2983327 responses of n = 16065 students
on m = 1999 questions. Note that the density of the observation
matrix is about 9.29%. The size of the original data set and the
filtered data set are summarized in Table 2.

3.2 Algorithm Implementation and Specification

We randomly divide the filtered data set into the training set (90%)
and the test set (10%). All the experiment results reported in this
section are with respect to the test set. We then conduct a heuristic
optimization for finding the optimal hyper-parameters such as the
regularization parameter y, the sequence of step sizes, and etc. As a
result, we chose p = 1; the step size is initialized as a9 = 0.1, and is
decreased by a multiplicative factor of 10°-3 whenever the validation
score stops improving for 3 epochs in a row. For the link function
¢(-), we use ¢ = 0.25, ¢, = 0.5 and ¢, = 10. The rationale behind
these choices is that one can correctly guess the answer of a question
without knowing anything about a 4-choice question with probability
at least 0.25.

We implement our algorithm in Python. In addition to our ap-
proach, we also evaluate the prediction performances of some of
the approaches described in Sec. 2.3: we fit our data set to the 2PL
model [20] using mirt R package [11], and to the vanilla MIRT
model [25] using the 1-bit matrix completion algorithm of [13].

3.3 Prediction Performance

In this section, we evaluate the prediction performances of various
algorithms. More precisely, we run various algorithms with the
training set and measure the prediction (classification) performances.
A prediction outcome for an unobserved test response is called a true
positive (negative) if the predictor correctly guessed that the student
will respond to the question with a correct (wrong) answer. Similarly,
a prediction outcome is a false positive (negative) if the predictor
made a wrong guess that the student will respond to the question with
a correct (wrong) answer. We denote the number of true positives,
false positives, true negatives, and false negatives by tp, fp, tn, and
fn, respectively. For the performance metric, we consider the area

3The rationale behind these filtering conditions is that students not satisfying these
conditions are likely to be ones who simply wanted to try out and explore the mobile
applications for fun.



ALGORITHM AUC NLL
M2PL 0.7775 | 0.5209
MIRT (L,r =2) | 0.7674 | 0.5413
MIRT (L,r =4) | 0.7695 | 0.5361
MIRT (p,r =2) | 0.7696 | 0.5338
MIRT (p,r =4) | 0.7692 | 0.5320
OURS (r = 2) 0.7760 | 0.5223
OURS (r = 4) 0.7707 | 0.5277

Table 3: Prediction performances on the filtered data set. AUC
denotes the area under curve (AUC) of a receiver operating
characteristic (ROC) curve, and NLL denotes the negative of
log likelihood. For the MIRT model, we test both logistic link
functions (denoted by ‘L’) and probit link function (denoted by
’P’). For the MIRT model and our algorithm, we vary the num-
ber of hidden concepts r € {2,4}.

under curve (AUC) of a receiver operating characteristic (ROC)
curve. For a classification threshold 6 € [0, 1], the ROC curve is
a collection of pairs (fpr(6), tpr(0)). Note that the ROC curve of a
random predictor is a line segment connecting (0, 0) and (1, 1), and
that of a perfect predictor is line segments connecting (0, 0), (0, 1),
and (1, 1). Thus, the area under curve (AUC) of a ROC curve can
represent the classification performance of a predictor: the larger the
AUC is, the better the prediction performance is. We also measure
the negative of log likelihood (NLL) of each prediction algorithm.

The prediction performances of various learning algorithms are
summarized in Table 3. For the MIRT model, we test both logistic
link function (denoted by ‘L) and probit link function (denoted
by 'P’). For the MIRT model and our algorithm, we evaluate the
prediction performances with r € {2,4}. We observe that when
we set r > 4, the prediction performance is strictly worse*. For
each configuration, the AUC and NLL are measured 20 times with
randomly divided data sets, and the average values are shown. We
can see that the best prediction performance is achieved by the M2PL
model, and our algorithm closely matches the best performance.

Thanks to the scalability of our algorithm, we could also measure
the AUC performance of our algorithm w.r.t. the full data set: the
average AUC is observed to be 0.7778.

3.4 Tag Correction via Interpretable Results

In a large-scale education system, questions are associated with
‘concept tags’, and such associations are usually judged by experts
in a manual way. However, such tagging information is prone to
errors due to human errors, inherent ambiguity, atypical questions,
etc. Thus, identifying those wrongly tagged questions and correcting
them are a key to maintain high-quality tagging information, which
is crucial for providing suitable learning materials in a personalized
education system.

We first explain how the improved interpretability of our model
allows for an efficient tag correction procedure. First, if there exist
the sign ambiguity and the scale ambiguity, the question features of
similar questions are not necessarily close to each other. Secondly,

4Note that choosing a larger value for r, the upper bound on the true rank, does not
necessarily improve the prediction performance due to overfitting.

question features obtained under ambiguous models are not invariant
across different training instances. For example, when one has to
rerun the training algorithm from scratch for some reasons (such
as new dataset arrival, batch model update, algorithm modification,
etc.), all question features change, and such a tagging correction
procedure has to be restarted from scratch.

Leveraging the improved interpretability of our algorithm, we now
present a systematic way of identifying wrongly tagged questions.
Consider the case of r = 2. Under our model, the quantity y =
R;i(1)/(R;(1) + R;(2)) can be interpreted as the relative fraction of
hidden concept 1 w.r.t. question i. If our model can well explain the
data set, questions of the same type are supposed to have similar
values of y. Thus, by inspecting the values of y of the questions
annotated with the same tag, one may be able to detect wrongly
tagged questions.

In order to conduct the experiment, we had a small subset of the
TOEIC question pool tagged by experts as follows. The 15 hired
experts first investigated the question pool, and then came up with
a set of 69 tags, which were considered useful and necessary for
describing the questions in the question pool. More specifically,
each question was randomly assigned to at least two experts, and
the experts tagged each of the assigned questions with the most
relevant concept. We develop an online tagging system where the
experts were able to individually work on the assigned questions.
In order to reduce systematic bias between experts, we revealed the
first reviewer’s response to a question to the second reviewer of the
question so that the second reviewer can adjust the response of the
first reviewer>.

After every question is tagged, we compare the values of y of the
questions of the same tag, and identified a large number of wrongly
tagged questions, of which a few instances are shown below. We
plot in Fig. 1 the values of y of all the questions tagged with the tag
‘for oneself/by oneself/on one’s own’.There are 12
questions, denoted by Qi for i € [12], which are identified as ques-
tions that require the understanding on the usage of ‘for oneself’, ‘by
oneself’, or ‘on one’s own’. These questions are for testing whether
students can fill a blank in a sentence with a grammatically correct
word or phrase. Each question is tagged with the key phrase that one
needs to fully understand in order to correctly answer the question.
However, we can observe 3 clusters of the questions: the first cluster
consisting of Q1 and Q2, the second one in the middle, and the third
one consisting of Q9 to Q12.

It turns out that the questions in the first and third clusters are
associated with incorrect tags. Table. 4 shows two correctly tagged
questions and two incorrectly tagged ones. It is clear that the first
two questions are about ‘for oneself” but the other two questions are
irrelevant to the tag. For instance, Q10 is asking whether students
can fill the missing pronoun ‘them’. We conjecture that this problem
is wrongly tagged because the problem may seem relevant to the
concept on one’s own. Similarly, Q11 is clearly wrongly tagged
since it is about whether students can fill the missing blank with a
correct reflexive pronoun.

SWe could not measure inter-rater reliability (IRR) since the responses of different
experts were dependent under our scheme.
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(Q2) on your own
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(Q8) for themselves
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(Q12) view of its own
(Q10) logo on them

Figure 1: y values of the questions tagged with ‘for oneself/by oneself/on one’s own’

Q7. Ms. GRANT HAS ASKED | Q8. THE MANUFACTURING | Q10. THE COMPANY PULLED | Q11. IT’S NEVER A GOOD
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AIRPORT TO THE CLIENT’S OF- | ERS TO SPEAK FOR (THEMSELVES) | STORE SHELVES WHEN THE PUB- | SELF) AS SUPERIOR TO
FICES FOR (HERSELF) AND | IN CASES WHERE COMPENSATIONIS | LIC COMPLAINED ABOUT THE | YOUR SUPERIORS, OR YOU
THE ENTIRE SALES TEAM | SOUGHT FOR AN INJURY SUFFERED | OFFENSIVE LOGO ON (THEM). JUST MIGHT GET FIRED.

THIS MONDAY. ON THE JOB.

Table 4: A few questions tagged with ‘for oneself/by oneself/on one’s own’
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Figure 2: Prediction performance as a function of the number
of per-student, per-question observations.

4 CONCLUSION

In this work, we proposed a new algorithm based on a human-
interpretable MIRT model, which is both scalable and parallelizable.
Using the large data set collected from an online education platform,
we observe that our algorithm can achieve as good prediction perfor-
mance as the state of the arts. Moreover, we show that the improved
interpretability of our model allows for an efficient and systematic
way of identifying wrongly tagged questions. We conclude the paper
by discussing a few interesting open problems and some aspects of
our current model that are subject to improvements.

4.1 Correlation Between the Number of
Responses and Prediction Accuracy

In our data set, the number of responses per student and the number
of responses per question widely vary. One important question is:
how the prediction performance changes when the number of ques-
tions per student (or per question) increases. To answer this question,
we first bin the students according to the number of responses per
student, and then micro-average the prediction accuracies of the
students of the same bin. Similarly, we bin the questions according

to the number of responses per question, and then micro-average the
prediction accuracies. Plotted in Fig. 2 are micro-averaged accuracy
as a function of the number of questions attempted by students and
that as a function of the number of responses per question. We use
the bin size of 50 for Fig. 2(a), and the bin size of 250 for Fig. 2(b).
From Fig. 2(a), we can observe that the predicted accuracy of a
student’s responses linearly increases as the number of questions
submitted by the student increases. Similarly, the predicted accuracy
of the responses for a question linearly increases with the number of
responses for the question. Thus, one can determine using this proce-
dure the number of responses per student or per question with which
a personalized education system can provide prediction services
with high enough accuracy.

4.2 Incorporation of Other Forms of Data

While we used the binary response data only, the actual response
data set contains several additional sources of side information such
as the option chosen by students, the options marked wrong by
students, the time taken to respond to a question, and etc. By incor-
porating the other forms of data with a more complicated model,
one may be able to obtain better estimates of students and questions,
and hence to provide superior prediction performance as well as
personalized learning of a better quality. For instance, the nominal
response model (NRM) proposed in [4] can model the probability
of students responding to a certain option of a question. In [22],
Ning et al. propose a new model for option responses with human-
interpretable outputs, and show that the new model fits better with
real world data as well. It is an interesting future direction to study
how one can apply a similar collaborative filtering-approach under
such models capturing option responses. In [6], Brinton et al. show
that one can predict students’ future performances on quizzes using
video-watching clickstream data from MOOC:s. It is an interesting
open question whether a unified model that uses both response data
and video-watching clickstream data can achieve higher prediction
performance.



4.3 Time-varying L

Our response model implicitly assumes that the level of students’
understanding is time-invariant. If the data set is collected over a
long time period during which student’s level of understanding is
likely to fluctuate, such an assumption may totally fail, and the
estimated L will be close to the time average of L, which is less
informative for predicting future responses.

If one is given with an enormous amount of data, there is a simple
fix: one can simply keep fresh responses collected over a short time
period only: a time-invariant model for students’ understanding will
fit better for a shorter range of time. The number of responses in the
dataset, however, decreases when one reduces the data collection
period, possibly deteriorating the prediction performance.

In order to resolve this issue, in [18], Lan et al. have proposed a
time-variant model for learning analytics capturing the time varying
levels of understanding of learners. We believe that such a time-
variant model can take advantage of a large amount of data without
compromising the fitness of the model.

4.4 Sparsity of R

While it is reasonable to believe that among many concepts only a
few are required to correctly answer a question, we observe that our
collaborative filtering algorithm usually results in a dense question-
concept matrix R. Therefore, imposing sparsity on R can potentially
allow for a better model and hence an improved prediction per-
formance. In [19], Lan et al. propose a collaborative filtering that
can find a sparse question-concept matrix R by incorporating the ¢;
regularization term into the objective function of the optimization
problem. The authors observe a superior prediction performance of
their proposed sparse model compared with the non-sparse model
proposed in [3]. Inspired by this observation, we also measured the
performance of the variation of our algorithm where the ¢; regular-
ization term is incorporated but we did not observe an improvement
in prediction performance with our data set. Even though we could
not observe an improvement in prediction performance with our data
set, we believe that the sparse models, capturing the natural sparsity
of R, will result in more accurate estimates in general.

4.5 Mixture Models and Outlier Detection

All the models described in this paper assume a common assump-
tion: one model fits all the students and questions. This could be the
case for small-scale educational data such as those collected from
classrooms but not for data collected from a large-scale education
platform with hundreds of thousands of students with completely
different backgrounds. For instance, in an online education system
where students freely choose questions to work on and do not get
penalized for guessing wrong answers, some students might reck-
lessly solve questions, resulting in random responses, which do not
conform existing response models. Similarly, some questions in a
large question pool may not conform the typical pattern of the other
questions. Hence, an accurate mixture model capturing such outliers
can greatly enhance the performance prediction.
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