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Community Recovery in Hypergraphs
Kwangjun Ahn , Kangwook Lee , and Changho Suh , Member, IEEE

Abstract— Community recovery is a central problem that
arises in a wide variety of applications such as network cluster-
ing, motion segmentation, face clustering, and protein complex
detection. The objective of the problem is to cluster data points
into distinct communities based on a set of measurements, each
of which is associated with the values of a certain number of
data points. While most prior works focus on a setting in which
the number of data points involved in a measurement is two,
this paper explores a generalized setting in which the number
can be more than two. Motivated by applications particularly
in machine learning and channel coding, we consider two types
of measurements: 1) homogeneity measurement that indicates
whether or not the associated data points belong to the same
community and 2) parity measurement that denotes the modulo-
2 sum of the values of the data points. Such measurements
are possibly corrupted by Bernoulli noise. We characterize the
fundamental limits on the number of measurements required to
reconstruct the communities for the considered models.

Index Terms— Clustering algorithms, channel coding, hyper-
graph clustering, information-theoretic limits, generalized
censored block model (GCBM).

I. INTRODUCTION

CLUSTERING of data is one of the central problems,
and it arises in many fields of science and engineering.

Among many related problems, community recovery in graphs
has received considerable attention with applications in numer-
ous domains such as social networks [3]–[5], computational
biology [6], and machine learning [7], [8]. The goal of the
problem is to cluster data points into different communities
based on pairwise information. Among a variety of models
for the community recovery problem, the stochastic block
model (SBM) [9] and the censored block model (CBM) [10]
have received significant attention in recent years. In SBM,
two data points in the same communities are more likely to
be connected by an edge than the other edges. In the case
of CBM, each measurement returns the modulo-2 sum of
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the values assigned to the two nodes, possibly corrupted by
Bernoulli noise.

While these models reflect interactions between a pair of
two nodes, there are numerous applications in which inter-
actions occur across more than two nodes [11]–[13]. One
such application is a folksonomy, a social network in which
users can annotate items with different tags [11]. In this
application, the graph consists of nodes corresponding to
different users, different items, and different tags. When user i
annotates item j with tag k, one can view this as a hyperedge
connecting node i , node j and node k. Therefore, in order to
cluster nodes of such a graph based on such interactions, one
needs a model that can capture such three-way interactions.
Another application is molecular biology, in which multi-
way interactions between distinct systems capture complex
molecular interactions [12]. There are also a broad range of
applications in other domains including computer vision [14],
VLSI circuits [15], and categorical databases [16].

These applications naturally motivate us to investigate a
hypergraph setting in which measurements are of multi-
way information type. Specifically, we consider a simple yet
practically-relevant model, which we name the generalized
censored block model (GCBM). In the GCBM, the n data
points are modeled as nodes in a hypergraph, and their
interactions are encoded as hyperedges across the nodes.
The n nodes are divided into two communities. Each node
takes a label between 0 or 1 depending on its affiliation. As
our measurement model, we consider a random d-uniform
hypergraph in which each subset of d nodes is sampled as
a hyperedge with probability p. Each sampled hyperedge is
then assigned with a binary label which is a function on the
labels of d nodes involved. Inspired by applications in machine
learning and channel coding, we study the following two types
of measurements:

• the homogeneity measurement which reveals whether
or not the d nodes are from the same community,
i.e., whether or not the d nodes are having the same
label; and

• the parity measurement which computes the modulo-2
sum of the labels of the d nodes.

We also investigate a noisy measurement setting in which
the label of each hyperedge can possibly be flipped with
probability, say θ ∈ [0, 1].

A. Main Contributions

Specialized to the d = 2 case, the above two measurement
models both reduce to the CBM, in which the information-
theoretic limit on the expected number of edges required for
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TABLE I

Summary of Main Results. THE INFORMATION-THEORETIC LIMITS ON SAMPLE COMPLEXITY p
(n
d
)

ARE SUMMARIZED. HERE n DENOTES THE NUMBER

OF NODES, θ DENOTES THE NOISE FLIPPING PROBABILITY, AND d DENOTES THE SIZE OF HYPEREDGES. AN OBSERVATION THAT THE SAMPLE
COMPLEXITY DECREASES IN d FOR THE PARITY MEASUREMENT CASE MOTIVATES US TO STUDY THE CASE d = f (n) WHERE f IS SOME

INCREASING FUNCTION. HERE “�θ,d ” MEANS THAT THE MULTIPLICATIVE CONSTANT FACTOR DEPENDS ON θ AND d

exact recovery is characterized as p
(n

2

) = 1
2 · n log n(√

1−θ−√
θ
)2 [17].

On the other hand, the information-theoretic limits for the case
of arbitrary d has not been settled. This precisely sets the goal
of our paper: We seek to characterize the information-theoretic
limits on the sample complexity for exact recovery under the
two models. A summary of our findings is as follows. For a
fixed constant d , the information-theoretic limits are:

• (the homogeneity measurement case) p
(n

d

) = 2d−2

d ·
n log n(√

1−θ−√
θ
)2 ; and

• (the parity measurement case) p
(n

d

) = 1
d · n log n(√

1−θ−√
θ
)2 if

d is a fixed constant.

One interesting observation is that the sample complexity
p
(n

d

)
decreases in d for the parity measurement case. This

naturally motivates us to ask whether one can further reduce
the sample complexity with a larger d . We also address this
question. Suppose that d can arbitrarily scale with n, i.e., d =
f (n) for some increasing function f . Then, the information-
theoretic limits for the parity measurement case1 read as
follows:

• p
(n

d

) = �
(

n log n
d

)
if d = o(log n); and

• p
(n

d

) = �(n) if d = �(log n).

Our findings provide some interesting implications to appli-
cations such as subspace clustering and channel coding. For
instance, the results offer concrete guidelines as to how to
choose d that minimizes sample complexity while ensuring
successful clustering. See details in Sec. II-A and Sec. III.

B. Related Work

1) The d = 2 Case: The exact recovery problem in
standard graphs (d = 2) has been studied in great generality.
In SBM, both the fundamental limits and computationally
efficient algorithms are investigated initially for the case of
two communities [17]–[19], and recently for the case of
an arbitrary number of communities [20]. In CBM, [21]
characterizes the sample complexity limit, and [17] develops
a computationally efficient algorithm that achieves the limit.

Another important recovery requirement is detection, which
asks whether one can recover the clusters better than a random
guess. The modern study of the detection problem in SBM is
initiated by a paper by Decelle et al. [22], which conjectures

1For the homogeneity measurement setting, we anticipate that the sample
complexity would keep growing with an increase in d, which is an undesirable
situation. Hence, the case d = f (n) is not studied in depth under the setting.

phase transition phenomena for the detection problem.2 This
conjecture is initially tackled for the case of two communities.
The impossibility of the detection below the conjectured
threshold is established in [23], and it is proved in [24]–[26]
that the conjectured threshold can be achieved efficiently. The
achievability part of the conjecture for an arbitrary number of
communities is recently settled by Abbe and Sandon [27]. For
another line of researches, minimax-optimal rates are derived
in [28], and algorithms that achieve the rates are developed
in [29]. We refer to a recent survey by Abbe [30] for more
exhaustive information.

2) The Homogeneity Measurement Case: Recently, [31],
[32] develop efficient algorithms for hypergraph community
recovery together with theoretical guarantees for the algo-
rithms. They derive an upper bound on sample complexity for
almost exact recovery, which allows for a vanishing fraction of
misclassified nodes. Although the models considered therein
are analogues of SBM rather than CBM in a hypergraph
setting, one can apply their algorithm to our model by mak-
ing small adjustments in our measurement.3 Applying their
algorithm to our model, their upper bound reads p

(n
d

) =
�(n log2 n). Whether or not the sufficient condition is also
necessary has been unknown. In this work, we show that
it is not the case, demonstrating that the minimal sample
complexity even for exact recovery is �(n log n).

We note that the homogeneity measurement case is closely
related to subspace clustering, one of the popular problems in
computer vision [14], [33], [34]; See Sec. II-A.1 for details.

3) The Parity Measurement Case: This case has been
explored by [35] in the context of random constraint satis-
faction problems. The case of d = 3 has been well-studied:
it is shown that the maximum likelihood decoder succeeds if
p
(n

3

) ≥ 2 · n log n
(0.5−θ)2 [35]. Unlike the prior result which only

considers the case of d = 3, we cover an arbitrary constant d ,
and characterize the sharp threshold on the sample complexity.

Abbe-Montanari [10] relate the parity measurement model
to a channel coding problem in which random LDGM codes
with a constant right-degree d are employed. By proving the
concentration phenomenon of the mutual information between
channel input and output, they demonstrate the existence of
phase transition for an even d . Our results span any fixed d ,
and hence fully settle the phase transition (see Sec. III).

2In the paper, it is also conjectured that an information-computation gap
might exist for the case of more than 3 communities (k ≥ 4).

3Specifically, we first remove hyperedges with label 0. Then, the remaining
hypergraph will only have hyperedges with label 1. We regard this hypergraph
as an unlabeled hypergraph by disregarding labels.
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4) Detection in the Stochastic Block Model for Hyper-
graphs: There are several works which study the community
detection under SBM for hypergraphs. In [36], the authors
explore the case of two equal-sized communities.4 Applying
their algorithm to our homogeneity measurement model, their
result shows that detection is possible if

(n
d

)
p = �(n).

Moreover, [37] recently conjectures phase transition thresholds
for detection. Lastly, [38] derives the minimax-optimal error
rates, and generalizes the results in [28] to the hypergraph
case.

5) Other Relevant Problems: Community recovery in
hypergraphs bears similarities to other inference problems,
in which the goal is to reconstruct data from multiple queries.
Those problems include crowdsourced clustering [39], [40],
group testing [41] and data extraction from histogram-type
information [42], [43]. Here one can make a connection to
our problem by viewing each query as a hyperedge mea-
surement. However, a distinction lies in the way that queries
are collected. For instance, an adaptive measurement model
is considered in the crowdsourced setting [39], [40] unlike
our non-adaptive setting in which hyperedges are sampled
uniformly at random. Histogram-type information acts as a
query in [41]–[43].

Lastly, it is also worth mentioning our follow-up work [44].
The key distinction relative to this paper (which focuses on
characterizing the information-theoretic limits) is that [44]
develops efficient algorithms. While [44] does not provide any
sharp-threshold result, the algorithms therein can be applied to
more general settings in which there could be more than two
communities, and/or hyperedge measurements are in [0, 1],
not limited to the binary values.

C. Paper Organization

Sec. II introduces the considered model; in Sec. III, our
main results are presented along with some implications; in
Sec. IV, V and VI, we provide the proofs of the main theo-
rems; Sec. VII presents experimental results that corroborate
our theoretical findings and discuss interesting aspects in view
of applications; and in Sec. VIII, we conclude the paper with
some future research directions.

D. Notations

For any two sequences f (n) and g(n): f (n) = �(g(n))
if there exists a positive constant c such that f (n) ≥ cg(n);
f (n) = O(g(n)) if there exists a positive constant c such
that f (n) ≤ cg(n); f (n) = ω(g(n)) if limn→∞ f (n)

g(n) = ∞;

f (n) = o(g(n)) if limn→∞ f (n)
g(n) = 0; and f (n) 	 g(n) or

f (n) = �(g(n)) if there exist positive constants c1 and c2
such that c1g(n) ≤ f (n) ≤ c2g(n).

For a set A and an integer m ≤ |A|, we denote
(A

m

) :=
{B ⊂ A : |B| = m}. Let [n] denote {1, . . . , n}. Let ei

be the i th standard unit vector. Let 0 be the all-zero-vector
and 1 be the all-one-vector. We use I{·} to denote an indi-
cator function. Let DKL(p�q) be the Kullback-Leibler (KL)

4Actually, the main model in the paper is the bipartite stochastic block
model, which is not a hypergraph model. However, the result for the
hypergraph case follows as a corollary (see Theorem 5 therein).

divergence between Bern(p) and Bern(q), i.e., DKL(p�q) :=
p log p

q + (1 − p) log 1−p
1−q . We shall use log(·) to indicate the

natural logarithm. We use H (·) to denote the binary entropy
function.

II. GENERALIZED CENSORED BLOCK MODELS

Consider a collection of n nodes V = [n], each represented
by a binary variable Xi ∈ {0, 1}, 1 ≤ i ≤ n. Let X :=
{Xi }1≤i≤n be the ground-truth vector. Let d denote the size
of a hyperedge. Samples are obtained as per a measurement
hypergraph H = (V, E) where E ⊂ ([n]

d

)
. We assume that each

element in
([n]

d

)
belongs to E independently with probability

p ∈ [0, 1]. Sample complexity is defined as the number of
hyperedges in a random measurement hypergraph, which is
concentrated around p

(n
d

)
in the limit of n. Each sampled edge

E ∈ E is associated with a noisy binary measurement YE :

YE = f (Xi1 , Xi2 , . . . , Xid )⊕ Z E , (1)

where f : {0, 1}d → {0, 1} is some binary-valued function,

⊕ denotes modulo-2 sum, and Z E
i.i.d.∼ Bern(θ) is a random

variable with noise rate 0 ≤ θ < 1
2 .5 For the choice of f ,

we focus on the two cases:

• the homogeneity measurement:

fh(Xi1 , Xi2 , . . . , Xid ) = I{Xi1 = Xi2 = · · · = Xid };
• the parity measurement:

f p(Xi1 , Xi2 , . . . , Xid ) = Xi1 ⊕ Xi2 ⊕ · · · ⊕ Xid .

Let Y := {YE }E∈E . We remark that when d = 2, this reduces
to CBM [21].

The goal of this problem is to recover X from Y. In this
work, we will focus on the case of even d . One can obtain
the same results also for the odd d case using the same proof
techniques. This will be clearer later while proving the results.
When d is even, the conditional distribution Y|X is equal to
Y|X ⊕ 1. Hence, given a recovery scheme ψ , the probability
of error is defined as6

Pe(ψ) := max
X∈{0,1}n

Pr (ψ(Y) /∈ {X, X ⊕ 1}) .

We intend to characterize the minimum sample complexity,
above which there exists a recovery algorithm ψ such that
Pe(ψ) → 0 as n tends to infinity, and under which Pe(ψ) � 0
for all algorithms.

A. Relevant Applications

5Note that the condition θ < 1/2 is to ensure that the maximum likelihood
estimator is equivalent to the minimum distance decoder. The other case
1
2 < θ ≤ 1 can be readily dealt with by simply flipping all the binary
measurements. Moreover, the choice of Bernoulli distribution is only for
simplicity. One can choose a different noise distribution as long as the tail of
the distribution behaves nicely. This will only change the constant factor in
the characterization of information-theoretic limits. See Sec. III.

6Notice in the parity measurement case that for an odd d, the definition
of Pe(ψ) should read instead: Pe(ψ) := maxX∈{0,1}n Pr (ψ(Y) �= X). This is
because the conditional distribution Y|X is no longer equal to Y|X ⊕ 1 under
the case.
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Fig. 1. Connection to subspace clustering. Subspace clustering is illustrated
for a simple scenario in which the entire signal space is two-dimensional
and data points are approximately lying on a union of two 1-dimensional
affine spaces (lines). A common procedure in the existing algorithms includes
construction of a d-th order affinity tensor (d ≥ 2) each entry of which
represents a quantity that captures a level of similarity across d data points,
so taking either 0 or 1 depending on the similarity level. For instance, the four
points involved in E1 in the figure lie near the same affine space, so the
similarity measure is decided as 1; on the other hand, the four points in E2
span different affine spaces, so the similarity measure is decided as 0. Since
each data point does not exactly lie in a subspace, an error can occur in the
decision—the similarity measurement can be noisy. Hence one can view this
problem as the GCBM under the homogeneity measurement model.

1) Subspace Clustering and the Homogeneity
Measurement: Subspace clustering is a popular problem of
which the task is to cluster n data points that approximately
lie in a union of lower-dimensional affine spaces. The
problem arises in a variety of applications such as motion
segmentation [45] and face clustering [46], where data points
corresponding to the same class (tracked points on a moving
object or faces of a person) lie on a single lower-dimensional
subspace; for details, see [47] and references therein. A
common procedure of the existing algorithms for subspace
clustering [34], [48]–[50] begins construction of a d-th order
affinity tensor (d ≥ 2) whose entries represent similarities
between every d data points. Since this construction incurs
a complexity that scales like nd , sampling-based approaches
are proposed in [14], [33], [34].

A similarity between d data points in prior works [14], [33],
[34] is defined such that it tends to 1 if all of the d points can
be well-fitted by a single low-dimensional affine space and 0
otherwise. Hence, restricted to the two-subspace case, one can
view a similarity over a d-tuple E as a homogeneity measure-
ment.7 By setting the probability of each entry being sampled
as p, one can relate this to our homogeneity measurement
model; see Fig. 1 for visual illustration.

2) Channel Coding and the Parity Measurement: The com-
munity recovery problem has an inherent connection with
channel coding problems [18], [21]. To see this, consider a
communication setting which employs random LDGM codes
with a constant right-degree d . To make a connection, we begin
by constructing a random d-uniform hypergraph with n nodes,

7In subspace clustering, similarities can sometimes be noisy in that even
though the d data points are from the same (different) subspace, similarity
can be 0 (1). Note that Z E in (1) captures this noise. Nonetheless, our noise
model cannot fully respect the noise effect that arises in subspace clustering in
which the noises are not necessarily i.i.d. In fact, more realistic noise models
were taken into consideration in [51], which however takes non-sampling
approaches.

Fig. 2. Connection to channel coding. GCBM with the parity information
can be seen as a channel coding problem which employs random LDGM
codes with a constant right-degree d. To see this, we first draw a random
d-uniform hypergraph with n nodes, where each edge of size d appears with
probability p. Given the input sequence of n information bits, the parity
bits corresponding to all the sampled hyperedges are concatenated, forming a
codeword. The noisy measurement can be mapped to the output of a binary
symmetric channel (BSC) with crossover probability θ , when fed by the
codeword. A recovery algorithm ψ corresponds to the decoder which wishes
to infer the n information bits from the received signals. One can then see
that recovering communities in hypergraphs is equivalent to the above channel
coding problem.

where each edge of size d appears with probability p. Given
the input sequence of n information bits, we then concatenate
the parity bits with respect to the sampled hyperedges to form
a codeword of average length p

(n
d

)
. Note that the expected

code rate is n
p(n

d)
. The noisy measurement can be mapped

to the output of a binary symmetric channel (BSC) with
crossover probability θ , when fed by the codeword. A recovery
algorithm ψ corresponds to the decoder which wishes to infer
the n information bits from the received signals. One can then
see that recovering communities in hypergraphs is equivalent
to the above channel coding problem; see Fig. 2 for visual
illustration.

III. MAIN RESULTS

A. The Homogeneity Measurement Case

Theorem 1. Let d ≥ 2 be a constant. Under the homogeneity
measurement case, the following holds for any � > 0:⎧⎨
⎩infψ Pe(ψ) → 0 if

(n
d

)
p ≥ (1 + �) 2d−2

d
n log n

(
√

1−θ−√
θ)2

;
infψ Pe(ψ) �→ 0 if

(n
d

)
p ≤ (1 − �) 2d−2

d
n log n

(
√

1−θ−√
θ)2
.

Proof: See Sec. IV.
We first make a comparison to the result in [31]. While [31]

models a fairly general similarity measurement, it considers
a more relaxed performance metric, so called almost exact
recovery, which allows for a vanishing fraction of misclassified
nodes; and provides a sufficient condition on sample complex-
ity under the setting [52]. On the other hand, we identify the
sufficient and necessary condition for exact recovery, thereby
characterizing the fundamental limit. Specializing their result
to the model of our interest, the sufficient condition in [31]
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reads �(n log2 n), which comes with an extra log n factor gap
to the optimality.

One interesting observation in Theorem 1 is that the sample
complexity limit is proportional to 2d−2

d . This suggests that the
amount of information that one hyperedge reveals on average
is approximately d

2d−2 bits. To understand why this is the case,
consider a setting in which θ = 0 and an hyperedge E =
{i1, i2, . . . , id} is observed. The case of YE = 1 implies Xi1 =
Xi2 = · · · = Xid , in which there are only two uncertain cases
(all zeros and all ones), i.e., the d − 1 bits of information are
revealed. On the other hand, the case of YE = 0 provides
much less information as it rules out only two possible cases
(Xi1 = Xi2 = · · · = Xid = 0 and Xi1 = Xi2 = · · · = Xid = 1)
out of 2d possible candidates. This amounts to roughly d · 2

2d

bits. Since YE = 1 occurs with probability 1
2d−1 , the amount of

information that one hyperedge can carry on average should
read about 1

2d−1 (d − 1)+
(

1 − 1
2d−1

)
d

2d−1 ≈ d
2d−2 .

Relying on the connection to subspace clustering elaborated
in Sec. II-A, one can make an interesting implication from
Theorem 1. The result offers a detailed guideline as to how
to choose d for sample-efficient subspace clustering. In the
case where the measurement quality reflected in θ is irrelevant
of the number d of data points involved in a measurement,
the limit increases in d . In practical applications, however, θ
may depend on d . Actually, the quality of similarity measure
can improve as more data points get involved, making θ
decrease as d increases. In this case, choosing d as small as
possible minimizes 2d−2

d but may make θ too large. Hence,
there might be a sweet spot on d that minimizes the sample
complexity. It turns out this is indeed the case in practice.
Actually we identify such optimal d∗ for motion segmentation
application; see Sec. VII-A for details.

B. The Parity Measurement Case

Theorem 2. Let d ≥ 2 be a constant. Under the parity
measurement case, the following holds for any � > 0:{

infψ Pe(ψ) → 0 if
(n

d

)
p ≥ (1 + �) 1

d
n log n

(
√

1−θ−√
θ)2

;
infψ Pe(ψ) �→ 0 if

(n
d

)
p ≤ (1 − �) 1

d
n log n

(
√

1−θ−√
θ)2
.

Proof: See Sec.V.
Notice that for a fixed θ and n, the minimum sample

complexity is proportional to 1
d , hence decreases in d unlike

the homogeneity measurement case.
In view of the connection made in Sec. II-A, a natural

question that arises in the context of channel coding is to
ask how far the rate of the random LDGM code is from
the capacity of the BSC channel. The connection can help
immediately answer the question. We see from Theorem 2
that the rate of the LDGM code is

n

p
(n

d

) = d(
√

1 − θ − √
θ)2

log n
.

This suggests that the code rate increases in d . Note that as
long as d is constant, the rate vanishes, being far from the
capacity of BSC channel 1 − H (θ). On the other hand, it is
not clear as to whether or not the random LDGM code can

achieve a non-vanishing code rate possibly by increasing the
value of d . To check this, we explore the case where d can
scale with n. By symmetry, it suffices to consider the case
2 ≤ d ≤ n/2. Moreover, to avoid pathological cases where
d fluctuates as n increases, we assume that d is a monotone
function.

Theorem 3. Fix d, a monotone function of n such that 2 ≤
d ≤ n/2, and � > 0. Under the parity measurement case,

• (upper bound) infψ Pe(ψ) → 0 if(
n

d

)
p ≥ (1 + �)

5/2

d

n log n

(
√

1 − θ − √
θ)2

and (2)(
n

d

)
p ≥ (1 + �)5 log 2

n

(
√

1 − θ − √
θ)2

; (3)

• (lower bound) infψ Pe(ψ) �→ 0 if(
n

d

)
p ≤ (1 − �)

1

d

n log n

(
√

1 − θ − √
θ)2

or (4)(
n

d

)
p ≤ n

1 − H (θ)
. (5)

Proof: See Sec. VI.
To see what these results mean, consider the two cases:

d = �(log n) and d = o(log n). In the case d = �(log n),
the theorem says that for a fixed θ ,

inf
ψ

Pe(ψ) → 0 if

(
n

d

)
p > β1 n and

inf
ψ

Pe(ψ) �→ 0 if

(
n

d

)
p < β2 n ,

where β1 = max
{

5/2 logn
(
√

1−θ−√
θ)2 d

, 5 log 2
(
√

1−θ−√
θ)2

}
	 1 and β2 =

max
{

log n
(
√

1−θ−√
θ)2d

, 1
1−H(θ)

}
	 1. This suggests that as long

as d grows asymptotically larger than log n, we can achieve
an order-wise tight sample complexity that is linear in n. On
the other hand, in the case d = o(log n), the theorem asserts
that

inf
ψ

Pe(ψ) → 0 if

(
n

d

)
p >

5/2

d

n log n

(
√

1 − θ − √
θ)2

and

inf
ψ

Pe(ψ) �→ 0 if

(
n

d

)
p <

1

d

n log n

(
√

1 − θ − √
θ)2

.

This implies that one cannot achieve the linear-order sample
complexity if d grows slower than log n. The implication of
the above two can be formally stated as follows.

Corollary 1. For d = o(log n), reliable recovery is impossible
with linear-order sample complexity, while it is possible for
d = �(log n).

From this, we see that the random LDGM code can achieve
a constant rate as soon as d = �(log n).

IV. PROOF OF THEOREM 1

The achievability and converse proofs are streamlined with
the help of Lemmas 1 and 2, of which the proofs are left in
Appendix A. For illustrative purpose, we focus on the noisy
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case (θ > 0) and assume that n is even. For a vector V :=
{Vi }1≤i≤n ∈ {0, 1}n , we define⎧⎪⎨

⎪⎩
f{i1,i2,...,id }(V) := f (Vi1 , Vi2 , . . . , Vid );
F(V) := { fE (V)}E∈E ;
dH(V) := �Y − F(V)�1 .

(6)

Let ψML be the maximum likelihood (ML) decoder. One can
easily verify that

ψML(Y) = arg min
V∈{0,1}n

dH(V), (7)

where ties are randomly broken.

A. Achievability Proof

We intend to prove that

max
X∈{0,1}n

Pr(ψML(Y) /∈ {X,X ⊕ 1}) → 0

under the claimed condition. Let A ∈ {0, 1}n be the ground-
truth vector. Without loss of generality, assume that the first
k coordinates are 0’s and the next n − k coordinates are 1’s,
where 0 ≤ k ≤ n/2.

Let Ai, j denote the collection of all vectors whose coordi-
nates are different from that of A in i many positions among
the first k coordinates and in j many positions among the next
n−k coordinates. Note that A0,0 = {A} and Ak,n−k = {A⊕1}.
Thus, a decoding algorithm ψ is successful if and only if the
output ψ(Y) ∈ A0,0 ∪ Ak,n−k . Let I := {(i, j) : (i, j) /∈
{(0, 0), (k, n − k)}, 0 ≤ i ≤ k, and 0 ≤ j ≤ n − k}. We also
define

Vi, j := (1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0

︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
j

, 1, . . . , 1

︸ ︷︷ ︸
n−k

) ,

which is a representative vector of Ai, j .
Using these notations and the union bound, we get:

Pr(ψML(Y) /∈ {X,X ⊕ 1} | X = A)

(a)≤ Pr

⎛
⎝ ⋃
(i, j )∈I

⋃
V∈Ai, j

[
dH(V) ≤ dH(A)

]⎞⎠
≤

∑
(i, j )∈I

∑
V∈Ai, j

Pr (dH(V) ≤ dH(A))

=
∑
(i, j )∈I

(
k

i

)(
n − k

j

)
Pr
(
dH(Vi, j ) ≤ dH(A)

)
, (8)

where the step (a) follows from the fact that the ML decoder
outputs V /∈ {A,A ⊕ 1} if dH(V) ≤ dH(A).

To compare dH(Vi, j ) with dH(A), we define the set of
distinctive hyperedges, i.e., the set of hyperedges such that
fE (A) �= fE (Vi, j ):

Fi, j :=
{

E ∈
([n]

d

)
: fE (A) �= fE (Vi, j )

}
(9)

and Ei, j := E ∩ Fi, j . By definition, for E ∈ Ei, j , YE =
fE (A) if Z E = 0; YE = fE (Vi, j ) otherwise. Hence,

dH(Vi, j ) ≤ dH(A) if and only if
∑

E∈Ei, j
Z E ≥ |Ei, j |

2 . This
leads to:

Pr
(
dH(Vi, j ) ≤ dH(A)

)
=

|Fi, j |∑
	=1

Pr
(
dH(Vi, j ) ≤ dH(A) | |Ei, j | = 	

)
Pr(|Ei, j | = 	)

(10)

=
|Fi, j |∑
	=1

Pr

⎛
⎝ ∑

E∈Ei, j

Z E ≥ 	

2

∣∣∣∣ |Ei, j | = 	

⎞
⎠

·
(|Fi, j |

	

)
p	(1 − p)|Fi, j |−	

(a)≤
|Fi, j |∑
	=1

e−	D(0.5�θ)
(|Fi, j |

	

)
p	(1 − p)|Fi, j |−	

= (1 − (1 − e−D(0.5�θ))p)|Fi, j | , (11)

where (a) is due to Hoeffding [53]. By letting p� := (1 −
e−D(0.5�θ))p and applying this to (8), we get:

Pr(ψML(Y) /∈ {X,X ⊕ 1} | X = A)

≤
∑
(i, j )∈I

(
k

i

)(
n − k

j

)
(1 − p�)|Fi, j |. (12)

To give a tight upper bound on (12), one needs a tight
lower bound on the size of the set of distinctive hyperedges,
i.e., |Fi, j |. It turns out that bounding |Fi, j | when d > 2
requires non-trivial combinatorial counting. Note that this was
not the case when d = 2, since |Fi, j | can be exactly com-
puted via simple counting. Indeed, one of our main technical
contributions lies in the derivation of tight bounds on |Fi, j |,
which we detail below.

Fact 1. The number of distinctive hyperedges can be calcu-
lated as follows:

|Fi, j | =
d−1∑
	=1

(
i

	

)(
k − i

d − 	

)
+

d−1∑
	=1

(
j

	

)(
n − k − j

d − 	

)

+
d−1∑
	=1

(
i

	

)(
n − k − j

d − 	

)
+

d−1∑
	=1

(
k − i

	

)(
j

d − 	

)
. (13)

Proof: Consider a hyperedge E = {i1, i2, . . . , id} such
that fE (A) = 1. That is, the hyperedge is connected only
to a subset of the first k nodes or only to a subset of the
last n − k nodes. That is, {i1, i2, . . . , id} ⊂ {1, 2, . . . , k} or
{i1, i2, . . . , id} ⊂ {k + 1, k + 2, . . . , n}. Consider the first
case, i.e., {i1, i2, . . . , id } ⊂ {1, 2, . . . , k}. In order for this
hyperedge to be distinctive, i.e., fE (Vi, j ) = 0, at least one
element of E must be in {1, 2, . . . , i}, and at least one element
of E must be in {i + 1, . . . , k}. Thus, the total number of
such distinctive hyperedges is

∑d−1
	=1

(i
	

)(k−i
d−	

)
. Similarly, one

can count the number of distinctive hyperedges for the case
{i1, i2, . . . , id} ⊂ {k + 1, k + 2, . . . , n}: ∑d−1

	=1

( j
	

)(n−k− j
d−	

)
.

By considering the opposite case where fE (A) = 0 and
fE (Vi, j ) = 1, one can also obtain the remaining two terms,
proving the statement.
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By symmetry, we see that |Fi, j | = |Fk−i,n−k− j |. Hence,∑
(i, j )∈I

(
k

i

)(
n − k

j

)
(1 − p�)|Fi, j |

≤
∑

(i, j )∈I, j≤� n−k
2 �

(
k

i

)(
n − k

j

)
(1 − p�)|Fi, j |

+
∑

(i, j )∈I, j≥� n−k
2 �

(
k

i

)(
n − k

j

)
(1 − p�)|Fi, j |

=
∑

(i, j )∈I, j≤� n−k
2 �

(
k

i

)(
n − k

j

)
(1 − p�)|Fi, j |

+
∑

(i, j )∈I, j≤� n−k
2 �

(
k

k − i

)(
n − k

n − k − j

)
(1 − p�)|Fk−i,n−k− j |

= 2
∑

(i, j )∈I, j≤� n−k
2 �

(
k

i

)(
n − k

j

)
(1 − p�)|Fi, j | =: 2
.

In order to show 
 → 0, for a fixed constant δ > 0,
we define the following index sets: Ibig := {(i, j) ∈ I :[

j ≤ n−k
2

] ∩ (
[i ≥ δn] ∪ [ j ≥ δn

])} and Ismall := {(i, j) ∈
I : [ j ≤ n−k

2

]∩([i < δn] ∩ [ j < δn
])}. Then, using the index

sets, one can express 
 as 
big +
small, where


big :=
∑

(i, j )∈Ibig

(
k

i

)(
n − k

j

)
(1 − p�)|Fi, j |

and


small :=
∑

(i, j )∈Ismall

(
k

i

)(
n − k

j

)
(1 − p�)|Fi, j | .

Let us first consider
big. Without loss of generality, assume
i ≥ δn. Then it follows from Fact 1 that

|Fi, j | ≥
d−1∑
	=1

(
i

	

)(
n − k − j

d − 	

)
(a)≥

d−1∑
	=1

(
i

	

)(
n/4

d − 	

)

≥
(

i

1

)(
n/4

d − 1

)
≥ δn

(
n/4

d − 1

)
= �(nd),

where (a) follows from the hypothesis that j ≤ n−k
2 and k ≤

n
2 . Then it is easy to show that 
big → 0:


big ≤
∑
(i, j )∈I

(
k

i

)(
n − k

j

)
e−p��(nd )

(a)= e−�(n log n)
∑
(i, j )∈I

(
k

i

)(
n − k

j

)
≤ e−�(n log n)2n → 0,

where (a) follows from the fact that p��(nd) 	 p
(n

d

) =
�(n log n).

Now we consider 
small. The following lemma gives a tight
lower bound on |Fi, j | for this case:

Lemma 1. For i < δn and j < δn,

|Fi, j | ≥ (i + j) · (1 − 2δ)d−1

2d−2

(
n − 1

d − 1

)
.

Proof: See Sec. A-A.

By Lemma 1, the following upper bound on 
small holds:∑
(i, j )∈Ismall

(
k

i

)(
n − k

j

)
(1 − p�)|Fi, j |

(a)≤
∑

(i, j )∈Ismall

ni n j e
−p�(i+ j )· (1−2δ)d−1

2d−2 (n−1
d−1)

=
∑

(i, j )∈Ismall

exp

(
(i + j)

{
log n − p�(1 − 2δ)d−1

(n−1
d−1

)
2d−2

})
,

(14)

where (a) follows due to
(k

i

) ≤ ni ,
(n−k

j

) ≤ n j and Lemma 1.

A straightforward computation yields (1 − e−DKL(0.5�θ)) =
(
√

1 − θ − √
θ)2, so the claimed condition(

n

d

)
p ≥ (1 + �)

2d−2

d

n log n

(
√

1 − θ − √
θ)2

becomes (
n

d

)
p� ≥ (1 + �)

2d−2

d
n log n . (15)

Under this claimed condition, we get:

p�(1 − 2δ)d−1
(n−1

d−1

)
2d−2 = p�(1 − 2δ)d−1

(n
d

) d
n

2d−2

(a)≥ (1 + �)(1 − 2δ)d−1 log n
(b)≥ (1 + �/2) log n,

where (a) follows from (15); (b) follows by choosing δ
sufficiently small ((1−2δ)d−1 → 0 as δ → 0). Thus, the RHS
of (14) converges to 0 as n tends to infinity. This completes
the proof.

B. Converse Proof

Let V1/2 be the collection of n-dimensional vectors, each
consisting of n/2 number of 0’s and n/2 number of 1’s.
Moreover, let X1/2 be the random vector sampled uniformly at
random over V1/2. For any scheme ψ , by definition of Pe(ψ),
we see that

Pr
(
ψ(Y) /∈ {X, X ⊕ 1} | X = X1/2

) ≤ Pe(ψ)

and hence

inf
ψ

Pr
(
ψ(Y) /∈ {X, X ⊕ 1} | X = X1/2

) ≤ inf
ψ

Pe(ψ).

Relying on this inequality, our proof strategy is to show that
the left hand side is strictly bounded away from 0. Note that
the infimum in the left hand side is achieved by ψML,1/2:

ψML,1/2(Y) = arg min
V∈V1/2

dH(V) .

By letting A = (0, . . . , 0︸ ︷︷ ︸
n/2

, 1, . . . , 1︸ ︷︷ ︸
n/2

), we obtain:

Pr
(
ψML,1/2(Y) /∈ {X, X ⊕ 1} | X = X1/2

)
= Pr

(
ψML,1/2(Y) /∈ {A, A ⊕ 1} | X = A

)
.
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Let S be the success event:

S :=
⋂

V∈V1/2\{A,A⊕1}

[
dH(V) > dH(A)

]
.

One can show that Pr
(
ψML,1/2(Y) /∈ {A, A ⊕ 1} | X = A

) ≥
1
3 Pr(Sc). This is due to the fact that given Sc, there are more
than two candidates for arg minV∈V1/2 dH(V), so

Pr
(
ψML,1/2(Y) /∈ {A, A ⊕ 1} | X = A, Sc) ≥ 1

3
.

Hence, it suffices to show Pr(S) → 0. To give a tight upper
bound on Pr(S), we construct a subset of nodes such that any
two nodes in the subset do not share the same hyperedge.
To this end, we use the deletion technique (alteration tech-
nique) [54]. We first choose a big subset

Rbig = {1, 2, . . . , r}
⋃{n

2
+ 1,

n

2
+ 2, . . . ,

n

2
+ r

}
,

where r = � n
log7 n

�; then erase every node in Rbig which
shares hyperedges with other nodes in Rbig to obtain Rres.
The following lemma guarantees that Rres has a comparable
size as that of Rbig with high probability. For the later usage,
we allow d to scale with n.

Lemma 2. Suppose
(n

d

)
p = O(n log n) and d = O(log n).

Let Rbig be a subset of [n] and Rres be a subset obtained
from Rbig by deleting every node which shares hyperedges
with other nodes in Rbig. If |Rbig| = O(n/ log7 n), then with
probability approaching 1,

|Rres| = (1 − o(1))|Rbig| .
Proof: See Sec. A-B.

Let � be the event that |Rres| ≥ (1 − o(1))|Rbig|.
Given the event �, both {1, 2, . . . , n/2} ∩ Rres and{ n

2 + 1, n
2 + 2, . . . , n

}∩Rres contain more than r/2 elements.
We collect r/2 elements from each of these sets and denote by
{b1, b2, . . . , br/2} and {c1, c2, . . . , cr/2}, respectively. Suppose
that there exist (k, 	) such that dH(A ⊕ ebk ) ≤ dH(A) and
dH(A ⊕ ec	) ≤ dH(A). Conditioning on �, there are no
hyperedges that contain both bk and c	, so dH(A⊕ebk ⊕ec	 ) ≤
dH(A). Hence conditioning on �,

S ⊂
r/2⋂
k=1

[dH(A ⊕ ebk ) > dH(A)]
⋃ r/2⋂

k=1

[dH(A ⊕ eck )>dH(A)]

=: S�.

Since the event � occurs with probability approaching 1 and
S ⊂ S�, Pr(S) � Pr(S | �) ≤ Pr(S� | �). Hence,

Pr(S) � Pr
(
S� | �)

≤ 2 Pr

⎛
⎝ r/2⋂

k=1

[
dH(A ⊕ ebk ) > dH(A)

] ∣∣∣∣ �
⎞
⎠

(a)= 2 Pr
(
dH(A ⊕ eb1) > dH(A)

∣∣ �)r/2 ,
where (a) follows from the fact that the events {[dH(A ⊕
ebk ) > dH(A)]}1≤k≤r/2 are mutually independent condi-
tioned on �. Let p� = (1 − e−DKL(0.5�θ))p as in the
achievability proof. We intend to give an upper bound

on Pr
(
dH(A ⊕ eb1) > dH(A)

∣∣ �), i.e., a lower bound on
Pr
(
dH(A ⊕ eb1) ≤ dH(A)

∣∣ �). Recall from the proof of
achievability (see (11)) that

Pr
(
dH(Vi, j ) ≤ dH(A)

) ≤ (1 − (1 − e−DKL(0.5�θ))p)|Fi, j | .

For the case of Vi, j = A ⊕ eb1 , |Fi, j | = (n/2−1
d−1

)+ ( n/2
d−1

)
(note

that k = n/2, i = 1, j = 0). So we get:

Pr
(
dH(A ⊕ eb1) ≤ dH(A)

) ≤ e
−p�

(
(n/2−1

d−1 )+( n/2
d−1)

)
. (16)

On the other hand, what we need for the converse proof is a
lower bound. In what follows, we will show that (16) is tight
enough, more precisely,

Pr
(
dH(A ⊕ eb1) ≤ dH(A)

∣∣ �) ≥ (1 − o(1))e−2p�(n/2−1
d−1 ) .

(17)

What this means at a high level is that Chernoff-Hoeffding is
tight enough. Let us condition on the event � for the time
being. As in (9), we define the following sets:

Fb1 :=
{

E ∈
([n]

d

)
: fE (A) �= fE (A ⊕ eb1)

}

and Eb1 := E ∩ Fb1 . By definition, for E ∈ Eb1 , YE = fE (A)
if Z E = 0; YE = fE (A ⊕ eb1) otherwise. We see that

dH(A ⊕ eb1) ≤ dH(A) ⇔
∑

E∈Eb1

Z E ≥ |Eb1|
2

.

Now we want to manipulate Pr
(
dH(A ⊕ eb1) ≤ dH(A)

∣∣ �) as
we did in (10). However, here we need to give a careful atten-
tion to the range of summation as Eb1 cannot be equal to Fb1 .
This is because every hyperedge in Eb1 should intersect Rbig at
exactly one node, which is b1. Indeed, for any hyperedge E in
Eb1 , b1 should be in E to satisfy fE (A) �= fE (A⊕ eb1), while
if another node from Rbig is contained in E , it contradicts the
fact that b1 ∈ Rres. This implies that Eb1 is always contained
in a proper subset Gb1 of Fb1 defined as:

Gb1 := Fb1 \
{

E ∈
([n]

d

)
: |E ∩ Rbig| ≥ 2

}
. (18)

Now a manipulation similar to (10) yields:

Pr
(
dH(A ⊕ eb1) ≤ dH(A) | �)

=
|Gb1 |∑
	=1

Pr
(
dH(A ⊕ eb1) ≤ dH(A)

∣∣ |Eb1| = 	, �
)

· Pr(|Eb1| = 	 | �).

Since the event � is related to the occurrence of edges in{
E ∈

([n]
d

)
: |E ∩ Rbig| ≥ 2

}
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and Eb1 is subject to (18), � and [|Eb1| = 	] are independent.
Thus, we get:

Pr
(
dH(A ⊕ eb1) ≤ dH(A) | �)

=
|Gb1 |∑
	=1

Pr
(
dH(A ⊕ eb1) ≤ dH(A)

∣∣|Eb1| = 	, �
)

Pr(|Eb1| = 	)

=
|Gb1 |∑
	=1

Pr

⎛
⎝ ∑

E∈Eb1

Z E ≥ 	

2

∣∣∣∣|Eb1| = 	

⎞
⎠(|Gb1 |

	

)
p	

(1 − p)	−|Gb1 | .

(19)

By the reverse Chernoff-Hoeffding bound [53], for a fixed
δ > 0, there exists nδ > 0 such that

Pr

⎛
⎝ ∑

E∈Eb1

Z E ≥ 	

2

∣∣∣∣|Eb1| = 	

⎞
⎠ ≥ e−(1+δ)	DKL(0.5�θ)

for all 	 ≥ nδ . Let gn be a sequence (to be determined) such
that gn → ∞ as n → ∞. For a sufficiently large n,

(19) ≥
|Gb1 |∑
	=1

(|Gb1 |
	

)
(e−(1+δ)DKL(0.5�θ) p)	

(1 − p)	−|Gb1 | (20)

−
gn−1∑
	=1

(|Gb1 |
	

)
(e−(1+δ)DKL(0.5�θ) p)	

(1 − p)	−|Gb1 | . (21)

Actually one can choose gn so that (21) is negligible
compared to (20). To see this, we consider:

(21)

(20)
≤

(1 − p)|Gb1 |∑gn−1
	=1

(
|Gb1 | pe−(1+δ)DKL(0.5�θ)

1−p

)	
(1 − p)|Gb1 |∑|Gb1 |

	=1

(|Gb1 |
	

) ( pe−(1+δ)DKL(0.5�θ)
1−p

)	

=
∑gn−1
	=1

(
|Gb1| pe−(1+δ)DKL(0.5�θ)

1−p

)	
(

1 + pe−(1+δ)DKL(0.5�θ)
1−p

)|Gb1 |

(a)=
∑gn−1
	=1

(
|Gb1 | pe−(1+δ)DKL(0.5�θ)

1−p

)	
(1 + o(1)) exp

(
|Gb1 | pe−(1+δ)DKL(0.5�θ)

1−p

)
=:

∑gn−1
	=1 q	

(1 + o(1))eq
, (22)

where (a) follows from the fact that limx→0+ 1+x
ex = 1,

and the last equation is due to the following definition:

q := |Gb1 | pe−(1+δ)DKL(0.5�θ)
1−p . One can easily verify that |Fb1| =(n/2−1

d−1

) + ( n/2
d−1

)
and |Gb1 | = (n/2−1−r

d−1

) + (n/2−r
d−1

)
. Since r =

o(n), limn→∞ |Gb1 |/|Fb1| → 1. Thus,

q = |Gb1 |
pe−(1+δ)DKL(0.5�θ)

1 − p
(23)

	 |Fb1|
pe−(1+δ)DKL(0.5�θ)

1 − p
	 nd−1 p = �(log n) . (24)

Therefore, if one chooses gn = �log q�,

(21)

(20)
=
∑gn−1
	=1 q	

eq
≤ gnqgn

eq

≤ log q · q log q

eq
= log q · e(log q)2

eq
→ 0,

and thus (21) = o(1) · (20).
Hence, we get:

(19) = (20) − (21)

≥ (1 − o(1))

|Gb1 |∑
	=1

(|Gb1 |
	

)
(e−(1+δ)DKL(0.5�θ) p)	

(1 − p)	−|Gb1 |

= (1 − o(1))
(

1 − (1 − e−(1+δ)DKL(0.5�θ))p
)|Gb1 |

(a)≥ (1 − o(1))
(

1 − (1 − e−(1+δ)DKL(0.5�θ))p
)2( n/2

d−1)

(b)= (1 − o(1)) exp

(
−2

(
n/2

d − 1

)
(1 − e−(1+δ)DKL(0.5�θ))p

)
,

where (a) follows since |Gb1 | ≤ |Fb1| ≤ 2
( n/2

d−1

)
; (b) follows

from the fact that limx→0+ 1+x
ex = 1. As δ > 0 can be

chosen arbitrarily small, the term e−(1+δ)DKL(0.5�θ) can be
made arbitrarily close to e−DKL(0.5�θ), which in turn ensures
that the last term is essentially equal to

(1 − o(1))e−2p�( n/2
d−1).

Applying this to the previous upper bound on Pr(S), we get:

Pr(S) ≤ Pr
(
dH(A ⊕ eb1) > dH(A)

∣∣ �)r/2
≤
(

1 − (1 − o(1))e−2p�( n/2
d−1)

)r/2

≤ exp
(
−(1 − o(1))

r

2
e−2p�( n/2

d−1)
)

= exp

(
−(1 − o(1))

n

2 log7 n
e
−(1+o(1))· p�d(nd)

2d−2n

)
,

where the last equality follows from the fact that

lim
n→∞

2 p�( n/2
d−1

)
p�d
(n

d

)
/2d−2n

→ 1 and r =
⌈

n

log7 n

⌉
.

The last term converges to 0 as p� ≤ (1 − �) 2d−2

d
n log n
(n

d)
.

V. PROOF OF THEOREM 2

In this section, we prove a similar statement for the parity
measurement case.

A. Achievability Proof

Note that the parity measurement is symmetric in a sense
that for any vector A, we have

Pr (ψML(Y) /∈ {X, X ⊕ 1} | X = A)

= Pr (ψML(Y) /∈ {0, 1} | X = 0) .

Indeed, this follows from a simple observation that for any
vector B, there is a trivial coupling between the conditional
distribution {Y|X = B} and {Y⊕A|X = B⊕A}, where Y⊕A =
{(Y ⊕A)E }E∈E is defined as

(Y ⊕A)E := YE ⊕
⊕
i∈E

Ai

for each E ∈ E .
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By this symmetry, we have

max
X∈{0,1}n

Pr(ψML(Y) /∈ {X,X ⊕ 1})
= Pr (ψML(Y) /∈ {0, 1} | X = 0) ,

and hence, it suffices to prove that

Pr (ψML(Y) /∈ {0, 1} | X = 0) → 0 .

Conditioning on X = 0,

Pr (ψML(Y) /∈ {0, 1})

≤ Pr

⎛
⎝ ⋃

A �=0,1

[
dH(A) ≤ dH(0)

]⎞⎠

= Pr

⎛
⎝n−1⋃

k=1

⋃
�A�1=k

[
dH(A) ≤ dH(0)

]⎞⎠
≤

n−1∑
k=1

∑
�A�1=k

Pr (dH(A) ≤ dH(0))

(a)= 2 ·
n/2∑
k=1

∑
�A�1=k

Pr (dH(A) ≤ dH(0))

(b)= 2 ·
n/2∑
k=1

(
n

k

)
Pr

(
dH

(
k∑

i=1

ei

)
≤ dH(0)

)
, (25)

where (a) follows form the fact that Pr (dH(A) ≤ dH(0)) =
Pr (dH(A ⊕ 1) ≤ dH(0)); (b) follows due to symmetry. To
compare dH

(∑k
i=1 ei

)
and dH(0), we define

Fk :=
{

E ∈
([n]

d

)
: fE (0) �= fE

(
k∑

i=1

ei

)}

and Ek := E ∩ Fk . As in (11), we obtain

Pr

(
dH

(
k∑

i=1

ei

)
≤ dH(0)

)

≤ (1 − (1 − e−DKL(0.5�θ))p)|Fk | = (1 − p�)|Fk | ,

yielding

1

2
· (25) ≤

n/2∑
k=1

(
n

k

)
(1 − p�)|Fk |. (26)

We again count |Fk| in an effort to obtain a tight upper bound
on (26). Notice that E ∈ Fk if |E ∩ [k]| is odd, and hence

|Fk| =
∑
i≤d

i is odd

(
k

i

)
·
(

n − k

d − i

)
. (27)

Let δ > 0 be a small constant that will be determined later.
For the case k ≥ δn, it follows that

|Fk| ≥
(

k

1

)(
n − k

d − 1

)
≥ δn

(
n/2

d − 1

)
= �(nd) .

Then it is easy to show (26)→ 0 for this case:

n/2∑
k=δn

(
n

k

)
(1 − p�)|Fk | ≤

n/2∑
k=δn

(
n

k

)
e−p��(nd )

(a)= e−�(n log n)
n/2∑

k=δn

(
n

k

)
≤ e−�(n log n)2n → 0 ,

where (a) follows from the fact that p��(nd) 	 p
(n

d

) =
�(n log n). For the case k < δn, we see that

|Fk| ≥
(

k

1

)(
n − k

d − 1

)
≥ k

(
(1 − δ)n

d − 1

)
(a)=

n→∞ (1 + o(1))k(1 − δ)d−1
(

n − 1

d − 1

)
, (28)

where (a) follows since

lim
n→∞

αd−1
(n−1

d−1

)( αn
d−1

) = 1 (29)

holds for a fixed d and α ∈ (0, 1). Hence, we get

δn∑
k=1

(
n

k

)
(1 − p�)|Fk | ≤

δn∑
k=1

nke−(1+o(1))p�k(1−δ)d−1( n
d−1)

=
δn∑

k=1

e
k·
{

log n−(1+o(1))p�(1−δ)d−1( n
d−1)

}
. (30)

By choosing δ arbitrarily small, under the claimed condition,
one can make

p�(1 − δ)d−1
(

n

d − 1

)
= (1 + o(1))(1 − δ)d−1

(
n

d

)
p� d

n

≥ (1 + �/2) log n ,

which implies that (30) converges to 0 as n tends to
infinity.

B. Converse Proof

As the parity measurement is symmetric,

inf
ψ

Pe(ψ) = Pr (ψML(Y) /∈ {X, X ⊕ 1} | X = 0) .

As before, we define the success event as:

S :=
⋂

V �=0,1

[
dH(V) > dH(0)

]
. (31)

Again, it suffices to show that Pr(S) → 0, and to this end,
we construct a subset of nodes such that any two nodes in the
subset do not share the same hyperedge. Unlike the previous
case, the subset is now defined as:

Rbig := {1, 2, . . . , r} (32)

where r = � n
log7 n

�, and we erase every node in Rbig which
shares hyperedges with other nodes in Rbig to obtain Rres.
In view of Lemma 2, we have |Rres| ≥ (1 − o(1))r almost
surely; let � be such event. Conditioning on �, we enumerate
r/2 many elements of Rres by b1, . . . , br/2. As there are
no hyperedges that connect two nodes in Rres, the events
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{[dH(ebk ) > dH(0)]}1≤k≤r/2 are mutually independent con-
ditioned on �. Hence, we get:

Pr(S) � Pr (S | �)

≤ Pr

⎛
⎝ r/2⋂

k=1

[
dH(ebk ) > dH(0)

] ∣∣∣∣ �
⎞
⎠

= Pr
(
dH(eb1) > dH(0)

∣∣ �)r/2 . (33)

Let p� = (1 − e−DKL(0.5�θ))p as before. Using similar argu-
ments used in the previous section, we have

Pr
(
dH(eb1) ≤ dH(0)

∣∣ �) ≥ (1 − o(1))e−p�(n−1
d−1) . (34)

This gives:

Pr
(
dH(eb1) > dH(0)

∣∣ �)r/2
≤
(

1 − (1 − o(1))e−p�(n−1
d−1)

)r/2

≤ exp

(
−(1 − o(1))

r

2
exp

{
−p�

(
n − 1

d − 1

)})

≤ exp

(
−(1 − o(1))

n

2 log7 n
exp

{
−(1 + o(1)) · p�(n

d

)
d

n

})
.

Notice that the last term converges to 0 as
(n

d

)
p� ≤ (1 −

�) n log n
d , which completes the proof.

VI. PROOF OF THEOREM 3

When d scales with n, a technical challenge arises, and we
will focus on such technical difficulties, skipping most of the
redundant parts.

A. Proof of the Upper Bound

From (26) and (27), we get

Pe(ψML) ≤
n/2∑
k=1

(
n

k

)
(1 − p�)Nk , (35)

where

Nk :=
∑

1≤i≤d
i is odd

(
k

i

)
·
(

n − k

d − i

)
(36)

and p� := (
√

1 − θ − √
θ)2 p. Let us focus on counting Nk .

When d 	 1,
(n

d

) ≈ nd

d ! suffices to obtain a proper bound
on Nk . However, in the general case where d scales with n,
one needs a more delicate bounding technique to obtain sharp
results. The following lemma presents our new bound.

Lemma 3. Let β := � n−d+1
2d+1 � < n/2 and α := n−d+1

d . Then

∑
1≤i≤d
i is odd

(
k

i

)(
n − k

d − i

)
≥
{

2k
5α

(n
d

)
, k < β;

1
5

(n
d

)
, β ≤ k ≤ n/2 .

Proof: See Sec. VI-C. The proof requires an involved
combinatorial counting, which is one of our main technical
contributions.

Employing Lemma 3, we get:

(35) ≤
β−1∑
k=1

(
n

k

)
(1 − p�)Nk +

n/2∑
k=β

(
n

k

)
(1 − p�)Nk

≤
β−1∑
k=1

(
n

k

)
(1 − p�)

2k
5α (

n
d) +

n/2∑
k=β

(
n

k

)
(1 − p�)

1
5 (

n
d)

(a)≤
β−1∑
k=1

[
nke−p� 2k

5α (
n
d)
]

+ 2ne− 1
5 p�(n

d)

≤
β−1∑
k=1

[
exp

{
k

(
log n − 2 p�(n

d

)
5α

)}]
(37)

+ exp

{
n log 2 − 1

5
p�
(

n

d

)}
, (38)

where (a) follows from
∑n/2

k=β
(n

k

) ≤ ∑n
k=0

(n
k

) ≤ 2n . Note that
(38) vanishes due to (3). In order to show that (37) vanishes
as well, we consider two cases: d = o(n) and d 	 n. When
d = o(n),

β−1∑
k=1

exp

{
k

(
log n − 2 p�(n

d

)
5α

)}

≤
β−1∑
k=1

exp

{
k

(
log n − 2dp�(n

d

)
5n

)}

≤
exp

(
log n − 2dp�(n

d)
5n

)
1 − exp

(
log n − 2dp�(n

d)
5n

) → 0,

since log n − 2dp�(n
d)

5n → −∞.
If d 	 n,

β−1∑
k=1

exp

{
k

(
log n − 2 p�(n

d

)
5α

)}

≤ β max
1≤k≤β−1

exp

{
k

(
log n − 2 p�(n

d

)
5α

)}

= β exp

(
log n − 2 p�(n

d

)
5α

)
,

where the last equality holds since log n − 2p�(n
d)

5α < 0, and
hence k = 1 achieves the maximum value. Note that this
vanishes since β is asymptotically bounded by a constant.
Therefore, (37) always vanishes, completing the proof.

B. Proof of the Lower Bound

The lower bound statement can be rewritten as fol-
lows: infψ Pe(ψ) �→ 0 if

(n
d

)
p ≤ max ((1 − �)

1
d

n log n
(
√

1−θ−√
θ)2
, n

1−H(θ)

)
. Note that when d = ω(log n),

the condition reduces to
(n

d

)
p ≤ n

1−H(θ) . Hence, it is sufficient
to show the following two statements.

• If d = O(log n): infψ Pe(ψ) �→ 0 if
(n

d

)
p ≤

max
(
(1 − �) 1

d
n log n

(
√

1−θ−√
θ)2
, n

1−H(θ)

)
.
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• If d = ω(log n): infψ Pe(ψ) �→ 0 if
(n

d

)
p ≤ n

1−H(θ) .

We first show that
(n

d

)
p ≤ n

1−H(θ) implies infψ Pe(ψ) �→ 0
for all d . By rearranging terms, we have

(n
d

)
p ≤ n

1−H(θ) ⇔
n
(n

d)p
≥ 1 − H (θ). One can immediately observe that this

implies infψ Pe(ψ) �→ 0 since n
(n

d)p
(which can be viewed

as the rate of a code) cannot exceed the Shannon capacity of
the channel 1 − H (θ).

We now prove that
(n

d

)
p ≤ (1 − �) 1

d
n log n

(
√

1−θ−√
θ)2

implies
infψ Pe(ψ) �→ 0 if d = O(log n). Further, we will focus
on the case of

(n
d

)
p 	 n log n

d since this is the regime where
the largest amount of information is available. Again, it is
enough to show that Pr(S) → 0, where S is defined as (31).
By defining Rbig,Rres,� and b1, . . . , br/2 as before, we again
obtain (33):

Pr(S) ≤ Pr
(
dH(eb1) > dH(0)

∣∣ �)r/2 . (39)

We finish the proof by showing the following for the
considered case:

Pr
(
dH(eb1) ≤ dH(0)

∣∣ �) ≥ (1 − o(1))e−2p�(n−1
d−1) .

While following the proof of (17), the key technical difficulty
arises when checking q = �(log n) (see (24)): a simple
calculation yields |Fb1 | = (n−1

d−1

)
and |Gb1 | = (n−|Rbig|

d−1

)
, but

here it is not clear whether
(n−|Rbig|

d−1

) 	 (n−1
d−1

)
when d is not a

constant. We resolve this using a careful estimation as follows.
As |Rbig| = �( n

log7 n
) and d = O(log n), it is straightforward

to verify

1 − 1

log2 n
≤ n − |Rbig| − j

n − 1 − j

for 0 ≤ j ≤ d − 2. This simple yet crucial inequality
concludes:(n−|Rbig|

d−1

)
(n−1

d−1

) =
d−2∏
j=0

n − |Rbig| − j

n − 1 − j

≥
(

1 − 1

log2 n

)d−1

≈ exp

{
− d − 1

log2 n

}
→ 1.

C. Proof of Lemma 3

Without loss of generality, we prove the lemma assuming
that d ≤ k. The proofs for the other cases are similar.

We wish to obtain lower bounds on

Nk =
∑

1≤i≤d
i is odd

(
k

i

)(
n − k

d − i

)

=
(

k

1

)(
n − k

d − 1

)
︸ ︷︷ ︸
boundary odd term

+
∑

i=3,5,...,d−3

(
k

i

)(
n − k

d − i

)
︸ ︷︷ ︸

intermediate odd terms

+
(

k

d − 1

)(
n − k

1

)
︸ ︷︷ ︸

boundary odd term

in terms of
(n

d

)
. First, observe that(

n

d

)
=

∑
0≤i≤d

(
k

i

)(
n − k

d − i

)

=
(

k

0

)(
n − k

d

)
︸ ︷︷ ︸

boundary term

+
∑

1≤i≤d−1

(
k

i

)(
n − k

d − i

)
︸ ︷︷ ︸

intermediate terms

+
(

k

d

)(
n − k

0

)
︸ ︷︷ ︸

boundary term

.

Suppose we have the following bounds for some quantities
A1, A2, A3 > 0.

Bound 1 :
(

k

0

)(
n − k

d

)
+
(

k

d

)(
n − k

0

)
︸ ︷︷ ︸

sum of boundary terms

≤ A1

[(
k

1

)(
n − k

d − 1

)
+
(

k

d − 1

)(
n − k

1

)]
︸ ︷︷ ︸

sum of boundary odd terms

.

Bound 2 :
∑

i=1,2,...,d−2,d−1

(
k

i

)(
n − k

d − i

)
︸ ︷︷ ︸

intermediate terms

≤ A2 ·
∑

i=3,5,...,d−3

(
k

i

)(
n − k

d − i

)
︸ ︷︷ ︸

intermediate odd terms

+A3 Nk .

Then, by summing up the two inequalities, one can obtain a
lower bound on Nk :(

n

d

)
≤ A1 ·

[(
k

1

)(
n − k

d − 1

)
+
(

k

d − 1

)(
n − k

1

)]

+ A2 ·
∑

i=3,5,...,d−3

(
k

i

)(
n − k

d − i

)
+ A3 · Nk

≤ max(A1, A2) · Nk + A3 · Nk

= (max(A1, A2)+ A3) · Nk .

Thus, the proof is completed as long as one can find appro-
priate quantities A1, A2 and A3.

The following lemma asserts that A2 = 2 and A3 = 3
satisfy Bound 2.

Lemma 4. For 1 ≤ k ≤ n/2,∑
i=1,2,...,d−2,d−1

(
k

i

)(
n − k

d − i

)

≤ 2 ·
∑

3≤i≤d−3
i: odd

(
k

i

)(
n − k

d − i

)
+ 3Nk .

Proof: See Sec. A-C.
For Bound 1, the following lemma characterizes A1.
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Fig. 3. Algorithm 1 achieves the optimal sample complexity. We run Monte Carlo simulations to estimate the probability of success when: (a) n = 1000,
d = 4, and for various choices of θ ; (b) n = 1000, θ = 0.05, and for various choices of d. For each curve, we normalize the number of samples by the
respective information theoretic limits, characterized in Theorem 1. Observe that the probability of success quickly approaches 1 as the normalized sample
complexity crosses 1.

Lemma 5. Let α := n−d+1
d and β :=

⌈
n−d+1
2d+1

⌉
. For

β ≤ k ≤ n/2,(
k

0

)(
n − k

d

)
+
(

k

d

)(
n − k

0

)

≤ 2

[(
k

1

)(
n − k

d − 1

)
+
(

k

d − 1

)(
n − k

1

)]
.

For k < β,(
k

0

)(
n − k

d

)
+
(

k

d

)(
n − k

0

)

≤ α

k

[(
k

1

)(
n − k

d − 1

)
+
(

k

d − 1

)(
n − k

1

)]
and α

k ≥ 2.

Proof: See Sec. A-D.
That is, A1 = 2 if β ≤ k ≤ n/2, and A1 = α

k if k < β.
We are now‘ ready to prove Lemma 3 with the help of

Lemma 4, Lemma, 5 and (40). When β ≤ k < n/2,(
n

d

)
≤ 5 Nk .

When k < β,(
n

d

)
≤
(

max
(

2,
α

k

)
+ 3

)
Nk ≤ 5α

2k
Nk ,

where the last inequality holds since α
k ≥ 2. This completes

the proof.

VII. EXPERIMENTAL RESULTS

A. The Homogeneity Measurement Case

1) Efficient Algorithms: We also develop a
computationally-efficient algorithm that achieves the
information-theoretic limit characterized in Theorem 1.8

8Notice that our theoretical guarantee for the efficient algorithm is only for
the balanced communities case, i.e., n1

n2
= �(1), where n1 and n2 denote the

sizes of the two communities, respectively. This condition ensures the weak
consistency guarantee of HSC (Stage 2).

Algorithm 1 An Efficient Algorithm for the Homogeneity
Case

1: For E ∈ ([n]
d

)
, define

WE :=
{

YE if E ∈ E;
0, otherwise.

2: Apply Hypergraph Spectral Clustering (HSC) [44] to
a weighted hypergraph ([n], {WE }E∈([n]

d )
) to obtain

X(0) = {X (0)i }1≤i≤n ∈ {0, 1}n.
3: Compute X = {Xi }1≤i≤n as follows:

Xi =
{

X (0)i if dH(X(0)) < dH(X(0) ⊕ ei );
X (0)i ⊕ 1 if dH(X(0)) ≥ dH(X(0) ⊕ ei ),

where dH(·) is defined in (6).
4: Output X.

Here we only present the algorithm while deferring a detailed
analysis to our companion paper [44]. The algorithm operates
in two stages, beginning with a decent initial estimate from
Hypergraph Spectral Clustering [44] followed by iterative
refinement. Detailed procedures are presented in Algorithm 1.
Our algorithm is inspired by two-stage approaches that have
been applied to a wide variety of problems including matrix
completion [55], [56], phase retrieval [57], [58], robust
PCA [59], community recovery [18], [20], [29], [60], [61],
EM-algorithm [62], and rank aggregation [63].

2) Performance of Algorithm 1: We demonstrate the per-
formance of Algorithm 1 by running Monte Carlo simulations.

Each point plotted in Fig. 3a and Fig. 3b indicates an
empirical success rate. We take 100 Monte Carlo trials. Fig. 3a
shows the probability of success when n = 1000, d = 4, and
for various choices of θ . Shown in Fig. 3b is the performance
of our algorithm with n = 1000, θ = 0.05, and for various
choices of d . For both figures, the x-axis denotes the number
of samples normalized by the respective information-theoretic
limits, characterized in Theorem 1. One can observe that the
success probability due to Algorithm 1 quickly approaches 1
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Fig. 4. Existence of d∗ in motion segmentation. (a) We estimate the empirical noise rate θ̂ as a function of d in motion segmentation. (b) We plug θ̂ to
the limit characterized in Theorem 1 and verify that d∗ = 6.

Fig. 5. Optimal choice of d when θ decays with d. We run Monte Carlo simulations to estimate the probability of success with the data set shown in
(a). We observe that the effective noise rate decreases as d increases. For varying d from 3 to 6, the success probability of Algorithm 1 is shown in (b): the
best performance of the algorithm is observed when d = 4.

as the normalized sample complexity crosses 1, which corrob-
orates our theoretical findings.

3) Optimal d for Subspace Clustering: We observe how
the fundamental limit varies as a function of d . As we briefly
discussed in Sec. III, if the noise rate θ is irrelevant to d ,
the optimal choice of d would be the minimum possible value
of d . However, if the noise quality θ depends on d , there may
be a sweet spot for d .

We demonstrate the existence of a sweet spot in one of
subspace clustering applications: motion segmentation. We use
the benchmark Hopkins 155 [64] dataset to compute an empir-
ical noise rate θ as a function d as follows. For each sampled
hyperedge E = {i1, . . . , id }, we adopt the method proposed
in [34] to evaluate similarity between the corresponding d data
points that we denote by D. Then, we set YE = 1 if and only if
D is less than a fixed threshold, which is appropriately chosen
so that Pr(YE = 0 | i1, i2, . . . , id are from the same line) ≈
Pr(YE = 1 | i1, i2, . . . , id are not from the same line).
We estimate the effective noise rate θ̂ := Pr(YE = 0 |

i1, i2, . . . , id are from the same line) for various d , and
observe that θ̂ quickly decreases as d increases; see Fig. 4a.
We then plug these θ̂ ’s to the limit characterized in Theorem 1;
see Fig. 4b. Note that d = 5 is not the optimal choice, but
d = 6 is the sweet spot.

We also corroborate the existence of a sweet spot in a
synthetic data set for subspace clustering, shown in Fig. 5a.
Here the goal is to cluster n (= 200) 2-dimensional data
points approximately lying on a union of two lines (1-
dimensional subspaces). We compute YE as above and
evaluate the performance of Algorithm 1, shown in Fig. 5b.
As a result, we observe that the optimal choice of d here
is 4 rather than 3. Interestingly, the optimal d�, as per
the experiment, matches with the one computed with the
estimated noise rate. When we compute the estimated
noise rates θ̂ ’s for each d as per the above procedure,
the results read θ̂ = 0.248, 0.112, 0.051, 0.022, 0.011 for
d = 3, 4, 5, 6, 7, respectively. Plugging these θ̂ ’s into the
limit characterized in Theorem 1, we obtain the estimated
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Fig. 6. We run the Monte Carlo simulations to estimate the probability of
success for n = 1000, varying d, and θ = 0. For each d, we normalize
the number of samples by max(n, n log n/d). Observe that the probability of
success quickly approaches 1 as the normalized sample complexity crosses
1. Here we see much sharper transitions, relative to the ones in Fig. 3. This
may be due to the fact that this experiment uses a deterministic algorithm
(Gaussian elimination) and is subject to the noiseless case.

sample complexities 5163, 2870, 3033, 3984, 6103 for
d = 3, 4, 5, 6, 7, respectively.

B. The Parity Measurement Case

1) Efficient Algorithms: For the parity measurement case,
there are two efficient algorithms in the literature [35], [65].
In [35], it is shown that for d = 3, a variant of message passing
algorithm successfully recovers the ground-truth vector pro-
vided that

(n
3

)
p = �(n2/ log n). Another efficient algorithm is

based on a low-rank tensor factorization algorithm proposed
in [65], and it is proved that reliable community recovery is
feasible if

(n
3

)
p = �(n1.5 log4 n). In either of the two cases,

the sufficient condition comes with a polynomial term (n or
n1/2) to the fundamental limit characterized in Theorem 1. In
fact, it is conjectured in [36] (see Conjecture 1 therein) that
at least n1.5 many samples are required for exact recovery.

On the other hand, focusing on the θ = 0 case, recovering
the ground-truth vector from the measurement vector Y is
essentially the same as solving linear equations over the
Galois field of two elements F2. Hence, one can use efficient
algorithms for solving linear equations such as Gaussian
elimination to recover ground truth in the noiseless case. For
subsequent experiments, we will only consider the noiseless
case and use Gaussian elimination as an efficient recovery
algorithm.

2) Information-Theoretic Limit: We first provide Monte
Carlo simulation results which corroborate our theoretical
findings in Theorem 2. Each point plotted in Fig. 6 and
Fig. 7 is an empirical success rate. All results are obtained
with 50 Monte Carlo trials. In Fig. 6, we plot the proba-
bility of successful recovery for n = 1000, varying d , and
θ = 0. For each d , we normalize the number of samples
by max(n, n log n/d). One can observe that the probability
of success quickly approaches 1 as the normalized sample
complexity crosses 1.

3) Minimum d for Linear Sample Complexity:
According to Corollary 1, d should be �(log n) for linear

Fig. 7. We run the Monte Carlo simulations to estimate the probability of
success for varying n, varying d, θ = 0, and p = 1.1n/

(n
d
)
. Note that when n

increases by a multiplicative factor of 4, the success probability curve shifts
rightward by about the same amount. In particular, the minimum d required
for a reasonable success probability, say 0.9, increases by about the same
amount. These results are consistent with Corollary 1.

sample complexity. We corroborate this through the
following experiment. In the experiment, we set n =
50, 200, 800, 3200, i.e., we increase n by a multiplication
factor of 4 at each time. For each n, we vary d , while
maintaining sample size to be p

(n
d

) = 1.1n, i.e, a linear sample
size. Plotted in Fig. 7 are the experimental results for this
setting. Note that when n increases by a multiplicative factor
of 4, the success probability curve shifts rightward by about
the same amount. In particular, the minimum d required for a
reasonable success probability, say 0.9, increases by about the
same amount. These results are consistent with Corollary 1
that the minimum d for linear sample complexity is �(log n).

VIII. CONCLUSION

In this paper, we investigate the problem of community
recovery in hypergraphs under the two generalized censored
block models (GCBM), one based on the homogeneity mea-
surement and the other based on the parity measurement. For
these two models, we fully characterize the information-
theoretic limits on sample complexity as a function of the
number of nodes n, the size of edges d , the noise rate θ , and
the edge observation probability p. We also corroborate our
theoretical findings via experiments.

We conclude our paper by highlighting a few interesting
open problems. One interesting question is whether or not
one can sharpen Theorem 3 to characterize exact information-
theoretic limits for the scaling d case. From the simulation
results in Sec. VII-B, we propose the following conjecture:
Under the setting of Theorem 3, the information-theoretic
limits is max

{
n

1−H(θ) ,
1
d

n log n
(
√

1−θ−√
θ)2

}
. Next open problem is

about the computational gap for the parity measurement case:
Investigating efficient algorithms for this case would shed
some light on the study of information-computation gaps.
Lastly, parallel to numerous efforts in the graph case [20],
[66]–[68], generalizing our main results to (i) more than
two communities or (ii) non-binary labels would be of great
interest.
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APPENDIX A
PROOFS OF LEMMAS

A. Proof of Lemma 1

Recall that

|Fi, j | =
d−1∑
	=1

(
i

	

)(
k − i

d − 	

)
+

d−1∑
	=1

(
i

	

)(
n − k − j

d − 	

)

+
d−1∑
	=1

(
j

	

)(
n − k − j

d − 	

)
+

d−1∑
	=1

(
k − i

	

)(
j

d − 	

)
.

In order to prove the lemma, it is sufficient to prove the
following two bounds:

Bound 1 :
d−1∑
	=1

(
i

	

)(
k − i

d − 	

)
+

d−1∑
	=1

(
i

	

)(
n − k − j

d − 	

)

≥ i · (1 − 2δ)d−1

2d−2

(
n − 1

d − 1

)
and

Bound 2 :
d−1∑
	=1

(
j

	

)(
n − k − j

d − 	

)
+

d−1∑
	=1

(
k − i

	

)(
j

d − 	

)

≥ j · (1 − 2δ)d−1

2d−2

(
n − 1

d − 1

)
.

Here we will focus on proving Bound 1. We remark that the
proof of Bound 2 is essentially identical.

For simplicity, let

Z :=
d−1∑
	=1

(
i

	

)(
k − i

d − 	

)
+

d−1∑
	=1

(
i

	

)(
n − k − j

d − 	

)
.

Then, since i < δn and j < δn,

Z ≥
d−1∑
	=1

(
i

	

)(
k − δn

d − 	

)
+

d−1∑
	=1

(
i

	

)(
n − k − δn

d − 	

)
.

We further bound Z by considering two cases separately: k ≥
δn and k < δn. When k ≥ δn,

d−1∑
	=1

(
i

	

)(
k − δn

d − 	

)
+

d−1∑
	=1

(
i

	

)(
n − k − δn

d − 	

)

≥ i

(
k − δn

d − 1

)
+ i

(
n − k − δn

d − 1

)

≈ i ·
[(

k

n
− δ

)d−1

+
(

1 − k

n
− δ

)d−1
](

n − 1

d − 1

)
,

where the last inequality holds since
(an

b

) ≈ ab
(n

b

) ≈ ab
(n−1

b

)
for constants a and b. We then apply Hölder’s inequality:
Given p, q such that 1/p + 1/q = 1, we have

∑
z |xz yz | ≤(∑

z |xz|p
)1/p (∑

z |yz|q
)1/q

for all sequences {xz} and {yz}.
By setting (x1, x2) = (α, β), (y1, y2) = (1, 1), p = d −1, q =
d−1
d−2 , we have

α + β ≤ (αd−1 + βd−1)
1

d−1 2
d−2
d−1 .

Applying this version of Hölder’s inequality to the last lower
bound, we have

i ·
[(

k

n
− δ

)d−1

+
(

1 − k

n
− δ

)d−1
](

n − 1

d − 1

)

≥ i · (1 − 2δ)d−1

2d−2

(
n − 1

d − 1

)
.

When k < δn,
∑d−1
	=1

(i
	

)(n−k− j
d−	

)
becomes the dominant

term. Hence,

d−1∑
	=1

(
j

	

)(
n − k − δn

d − 	

)
+

d−1∑
	=1

(
k − i

	

)(
δn

d − 	

)

> i

(
n − k − δn

d − 1

)
> i

(
n − 2δn

d − 1

)

≈ i · (1 − 2δ)d−1
(

n − 1

d − 1

)
> i · (1 − 2δ)d−1

2d−2

(
n − 1

d − 1

)
.

This completes the proof.

B. Proof of Lemma 2

Denote by Rbig ⊂ [n] the set of nodes of size n/ log7 n.
One can easily show that with high probability, some nodes
of this set are connected by the same hyperedge(s). Denote
by Rres the largest subset of Rbig, whose elements do not
share the same hyperedges. The lemma states that with high
probability, |Rres| � |Rbig|.

We now formally prove this statement. Note that for a
hyperedge E = (i1, i2, . . . , id), |E ∩ Rbig| is the number of
nodes in Rbig that are connected by the hyperedge. Hence,
if 2 ≤ |E ∩ Rbig| ≤ d , this hyperedge connects more than one
nodes in Rbig, and E ∩Rbig is the set of the nodes that share
the same hyperedge E .

Let us denote by Rshare the subset of nodes that are
connected by the same hyperedge(s). Then,

Rshare :=
d⋃

k=2

R(k)
share :=

d⋃
k=2

⋃
E∈E :|E∩Rbig|=k

E ∩ Rbig. (40)

Our proof strategy is as follows. Since

Rres = Rbig − Rshare = Rbig −
d⋃

k=2

R(k)
share, (41)

it is sufficient to show that∣∣∣∣∣
d⋃

k=2

R(k)
share

∣∣∣∣∣ = o(|Rbig|). (42)

More specifically, we will show

Pr

(
∃k ∈ {2, 3, . . . , d} s.t. |R(k)

share| >
n

log9 n

)
→ 0. (43)

That is, with probability approaching 1, |R(k)
share| =

o(n/ log8 n) for all k, 2 ≤ k ≤ d . Note that this



AHN et al.: COMMUNITY RECOVERY IN HYPERGRAPHS 6577

implies (42) since∣∣∣∣∣
d⋃

k=2

R(k)
share

∣∣∣∣∣ ≤
d∑

k=2

|R(k)
share| = O(d)× o

(
n

log8 n

)

= o

(
n

log7 n

)
= o(|Rbig|) .

In order to bound (43), we first derive an upper bound on
the expected value of |R(k)

share|. By definition,

|R(k)
share| ≤

∑
E∈E :|E∩Rbig|=k

|E ∩ Rbig|

≤
∑
E∈E :|E∩Rbig|=k

k = |{E ∈ E : |E ∩ Rbig| = k}| · k.

Observe that |{E ∈ E : |E ∩ Rbig|}| is the sum of(|Rbig|
k

)(n−|Rbig|
d−k

)
i.i.d. Bernoulli random variables with proba-

bility p. Hence,

E
{|{E ∈ E : |E ∩ Rbig| = k}| · k

}
= k

(|Rbig|
k

)(
n − |Rbig|

d − k

)
p

= |Rbig|
(|Rbig| − 1

k − 1

)(
n − |Rbig|

d − k

)
p .

As |Rbig| = o(n), we have
(|Rbig|−1

k−1

)(n−|Rbig|
d−k

) ≤(|Rbig|−1
1

)(n−|Rbig|
d−2

)
, which in turn gives the following upper

bound on the last term:

|Rbig|
(|Rbig| − 1

1

)(
n − |Rbig|

d − 2

)
p

≤ 2|Rbig|2
(

n − 2

d − 2

)
p

= 2|Rbig|2
(

n − 2

d − 2

)
n log n(n

d

)
= O

(
|Rbig|2d2 log n

n

)
= O

(
n

log11 n

)
,

where the last equality holds since
(n−2

d−2

) ≈ (n
d

) d2

n2 . Note that
this inequality holds for any 2 ≤ k ≤ d . Using Markov’s
inequality,

Pr

(
|{E ∈ E : |E ∩ Rbig| = k}| · k >

n

log9 n

)

≤ log9 n

n
· O

(
n

log11 n

)
= O

(
1

log2 n

)
.

Applying the union bound over all 2 ≤ k ≤ d , the probability
that there exists k = 2, 3, . . . , d such that∣∣{E ∈ E : |E ∩ Rbig| = k}∣∣ · k >

n

log9 n

is upped bounded by

d · O

(
1

log2 n

)
= O

(
1

log n

)
This completes the proof.

C. Proof of Lemma 4

Recall that we assumed d ≤ k at the beginning of
Sec. VI-C.

Fact 2. For 1 ≤ i ≤ d − 1,(
k

i

)(
n − k

d − i

)
≤ 2

(
k

i + 1

)(
n − k

d − (i + 1)

)

+ 2

(
k

i − 1

)(
n − k

d − (i − 1)

)
.

Proof: The conclusion follows from the following
inequalities:( k

i+1

)( n−k
d−(i+1)

)+ ( k
i−1

)( n−k
d−(i−1)

)
(k

i

)(n−k
d−i

)
= (k − i)(d − i)

(i + 1)(n − k − d + i + 1)
+ i(n − k − d + i)

(k − i + 1)(d − i + 1)

≥ 2

√
(k − i)(d − i)

(i + 1)(n − k − d + i + 1)
· i(n − k − d + i)

(k − i + 1)(d − i + 1)

= 2

√
(k − i)

(k − i + 1)
· (d − i)

(d − i + 1)
· i

i + 1
· (n − k − d + i)

(n − k − d + i + 1)

≥ 2

√(
1

2

)4

= 1

2
,

where the last inequality follows since k − i, d − i, i, n −k −
d +i are all greater than or equal to 1 as long as 1 ≤ i ≤ d −1
due to the assumption d ≤ k.
We conclude the proof using Fact 2:∑

1≤i≤d−1

(
k

i

)(
n − k

d − i

)

≤
∑

2≤i≤d−2
i: even

(
k

i

)(
n − k

d − i

)
+

∑
1≤i≤d−1

i: odd

(
k

i

)(
n − k

d − i

)

(a)≤ 2 ·
(

k

1

)(
n − k

d − 1

)
+ 4 ·

∑
3≤i≤d−3

i: odd

(
k

i

)(
n − k

d − i

)

+ 2 ·
(

k

d − 1

)(
n − k

1

)
+

∑
1≤i≤d−1

i: odd

(
k

i

)(
n − k

d − i

)

= 2 ·
∑

3≤i≤d−3
i: odd

(
k

i

)(
n − k

d − i

)
+ 3 Nk ,

where (a) follows from Fact 2.

D. Proof of Lemma 5

1) β ≤ k ≤ n/2
Since d ≤ n/2 and β < n/2, one can verify the inequality
using the following facts:(

k

0

)(
n − k

d

)
≤ 2

(
k

1

)(
n − k

d − 1

)
⇔ k ≥ n − d + 1

2d + 1

and(
k

d

)(
n − k

0

)
≤ 2

(
k

d − 1

)(
n − k

1

)
⇔ k ≤ n − n − d + 1

2d + 1
.
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2) k < β
We first show that α/k ≥ 2. Since

k ≤
⌈

n − d + 1

2d + 1

⌉
− 1 ≤ n − d + 1

2d + 1
,

we have

α

k
=
(

n−d+1
d

)
k

>

(
n−d+1

d

)
(

n−d+1
2d+1

) = 2d + 1

d
≥ 2 .

Next, the inequality can be checked using the following
facts: (

k

d

)(
n − k

0

)
≤ 2

(
k

d − 1

)(
n − k

1

)
⇔ k ≤ n − n − d + 1

2d + 1

and (k
0

)(n−k
d

)
(k

1

)(n−k
d−1

) = n − k − d + 1

kd
≤ n − d + 1

kd
= α

k
.
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