
Community Recovery in Graphs with Locality

Yuxin Chen∗ YXCHEN@STANFORD.EDU
Govinda M. Kamath∗ GKAMATH@STANFORD.EDU
Changho Suh† CHSUH@KAIST.AC.KR
David Tse∗+ DNTSE@STANFORD.EDU
∗ Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
† Department of Electrical Engineering, KAIST, Daejeon 305-701, Korea
+ Department of EECS, University of California, Berkeley CA 94720, USA

Abstract
Motivated by applications in domains such as
social networks and computational biology, we
study the problem of community recovery in
graphs with locality. In this problem, pairwise
noisy measurements of whether two nodes are
in the same community or different communities
come mainly or exclusively from nearby nodes
rather than uniformly sampled between all node
pairs, as in most existing models. We present two
algorithms that run nearly linearly in the number
of measurements and which achieve the informa-
tion limits for exact recovery.

1. Introduction
Clustering of data is a central problem that is prevalent
across all of science and engineering. One formulation that
has received significant attention in recent years is commu-
nity recovery (Girvan & Newman, 2002; Fortunato, 2010;
Porter et al., 2009), also referred to as correlation cluster-
ing (Bansal et al., 2004) or graph clustering (Jalali et al.,
2011). In this formulation, the objective is to cluster indi-
viduals into different communities based on pairwise mea-
surements of their relationships, each of which gives some
noisy information about whether two individuals belong to
the same community or different communities. While this
formulation applies naturally in social networks, it has a
broad range of applications in other domains including pro-
tein complex detection (Chen & Yuan, 2006), image seg-
mentation (Shi & Malik, 2000; Globerson et al., 2015),
shape matching (Chen et al., 2014a), etc. See (Abbe &
Wainwright, 2015) for an introduction.

In recent years, there has been a flurry of works on de-
signing community recovery algorithms based on idealised
generative models of the measurement process. A partic-
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ular popular model is the Stochastic Block Model (SBM)
(Holland et al., 1983; Condon & Karp, 2001), where the
n individuals to be clustered are modeled as nodes on a
random graph with statistically more edges between nodes
within the same community than between nodes across
two different communities. A closely related model is the
Censored Block Model (CBM) (Abbe et al., 2015), where
one obtains noisy parity measurements on the edges of an
Erdős-Rényi graph (Durrett, 2007). Both the SBM and
the CBM can be unified into one model with noisy mea-
surements which are randomly sampled on the edges of a
complete graph, with the two models differing only in the
measurement noise model. Thus, a central assumption un-
derlying both models is that it is equally likely to obtain
measurements between any pair of nodes. This is a very
unrealistic assumption in many applications: nodes often
have locality and it is more likely to obtain data on rela-
tionships between nearby nodes than far away nodes. For
example, in friendship graphs, individuals that live close by
are more likely to interact than nodes that are far away.

This paper focuses on the community recovery problem
when the measurements are randomly sampled from graphs
with locality structure rather than complete graphs. Our
theory covers a broad range of graphs including rings, lines,
2-D grids, and small-world graphs (Fig. 1). Each of these
graphs is parametrized by a locality radius r such that
nodes within r hops are connected by an edge. We char-
acterize the information limits for community recovery on
these networks, i.e. the minimum number of measurements
needed to exactly recover the communities as the number
of nodes n scales. We propose two algorithms whose com-
plexities are nearly linear in the number of measurements
and which can achieve the information limits of all these
networks for a very wide range of the radius r. In the spe-
cial case when the radius r is so large that measurements
at all locations are possible, we recover the exact recov-
ery limit identified by (Hajek et al., 2015a) when measure-
ments are randomly sampled from complete graphs.

It is worth emphasizing that various computationally feasi-
ble algorithms (Coja-Oghlan, 2010; Chaudhuri et al., 2012;
Chen et al., 2014b; Abbe & Sandon, 2015) have been pro-
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posed for more general models beyond the SBM and the
CBM, which accommodate multi-community models, the
presence of outlier samples, the case where different edges
are sampled at different rates, and so on. Most of these
models, however, fall short of accounting for any sort of
locality constraints. In fact, the results developed in prior
literature often lead to unsatisfactory guarantees when ap-
plied to graphs with locality, as will be detailed in Section
3. Another recent work (Chen et al., 2015) has determined
the order of the information limits in geometric graphs,
with no tractable algorithms provided therein. In contrast,
our findings uncover a curious phenomenon: the presence
of locality does not lead to additional computational bar-
riers: solutions that are information theoretically optimal
can often be achieved computational efficiently and, per-
haps more surprisingly, within nearly linear time.

2. Problem Formulation and An Application
2.1. Sampling Model

Measurement Graph. Consider a collection of n vertices
V = {1, · · · ,n}, each represented by a binary-valued ver-
tex variable Xi ∈ {0, 1}, 1 ≤ i ≤ n. Suppose it is only
feasible to take pairwise samples over a restricted set of
locations, as represented by a graph G = (V, E) that com-
prises an edge set E . Specifically, for each edge (i, j) ∈ E
one acquires Ni,j samples1 Y

(l)
i,j (1 ≤ l ≤ Ni,j), where

each sample measures the parity ofXi andXj . We will use
G to encode the locality constraint of the sampling scheme,
and shall pay particular attention to the following families
of measurement graphs.

Complete graph: G is called a complete graph if every pair
of vertices is connected by an edge; see Fig. 1(a).

Line: G is said to be a line Lr if, for some locality radius r,
(i, j) ∈ E iff |i− j| ≤ r; see Fig. 1(b).

Ring: G = (V, E) is said to be a ring Rr if, for some lo-
cality radius r, (i, j) ∈ E iff i − j ∈ [−r, r] (mod n); see
Fig. 1(c).

Grid: G is called a grid if (1) all vertices reside within a√
n×√n square with integer coordinates, and (2) two ver-

tices are connected by an edge if they are at distance not
exceeding some radius r; see Fig. 1(d).

Small-world graphs: G is said to be a small-world graph if
it is a superposition of a complete graph G0 = (V, E0) and
another graph G1 = (V, E1) with locality. See Fig. 1(e).

Random Sampling. This paper focuses on a random sam-
pling model, where the number of samples Ni,j taken over
(i, j) ∈ E is independently drawn and obeys2 Ni,j ∼
Poisson (λ) for some average sampling rate λ. This gives

1We adopt the convention that Ni,j ≡ 0 for any (i, j) /∈ E .
2All results presented in this paper hold under a related model

where Ni,j ∼ Bernoulli (λ), as long as |E| � n logn and λ ≤ 1
(which is the regime accommodated in all theorems).

rise to an average total sample size

m :=
∑

(i,j)∈E
E [Ni,j ] = λ |E| . (1)

When m is large, the actual sample size sharply concen-
trates around m with high probability.

Measurement Noise Model. The acquired parity measure-
ments are assumed to be independent givenNi,j ; more pre-
cisely, conditional on Ni,j ,

Y
(l)
i,j = Y

(l)
j,i

ind.
=

{
Xi ⊕Xj , with probability 1− θ
Xi ⊕Xj ⊕ 1, else

(2)
for some fixed error rate 0 < θ < 1, where ⊕ denotes
modulo-2 addition. This is the same as the noise model
in CBM (Abbe et al., 2015). The SBM corresponds to an
asymmetric erasure model for the measurement noise, and
we expect our results extend to that model as well.

2.2. Goal: Optimal Algorithm for Exact Recovery

This paper centers on exact recovery, that is, to reconstruct
all input variables X = [Xi]1≤i≤n precisely up to global
offset. This is all one can hope for since there is absolutely
no basis to distinguish X from X ⊕ 1 := [Xi ⊕ 1]1≤i≤n
given only parity samples. More precisely, for any recovery
procedure ψ the probability of error is defined as

Pe (ψ) := max
X∈{0,1}n

P {ψ(Y ) 6= X and ψ(Y ) 6= X ⊕ 1} ,

where Y := {Y (l)
i,j }. The goal is to develop an algorithm

whose sample complexity approaches the information limit
m∗ (as a function of (n, θ)), that is, the minimum sample
size m under which infψ Pe (ψ) vanishes as n scales.

2.3. Haplotype Phasing: A Motivating Application

Humans have 23 pairs of homologous chromosomes, one
maternal and one paternal. Each pair are identical se-
quences of nucleotides A,G,C,T’s except on certain docu-
mented positions called single nucleotide polymorphisms
(SNPs), or genetic variants. The problem of haplotype
phasing is that of determining which variants are on the
same chromosome in each pair, and has important applica-
tions such as in personalized medicine and human genet-
ics. The advent of next generation sequencing technolo-
gies allows haplotype phasing by providing linking reads
between multiple SNP locations (Browning & Browning,
2011; Donmez & Brudno, 2011; Das & Vikalo, 2015).

One can formulate the problem of haplotype phasing as re-
covery of two communities of SNP locations, those with
the variant on the maternal chromosome and those with the
variant on the paternal chromosome (Si et al., 2014; Ka-
math et al., 2015). Each pair of linking reads gives a noisy
measurement of whether two SNPs have the variant on the
same chromosome or different chromosomes. While there
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Figure 1. Examples of (a) complete graph, (b) line, (c) ring, (d) grid, and (e) small-world graph.

are of the order of n = 105 SNPs on each chromosome, the
linking reads are typically only several SNPs or at most 100
SNPs apart, depending on the specific sequencing technol-
ogy. Thus, the measurements are sampled from a line graph
like in Fig. 1(b) with locality radius r � n.

2.4. Other Useful Metrics and Notation
One key metric that captures the distinguishability between
two probability measures P0 and P1 is the Chernoff infor-
mation (Cover & Thomas, 2006), defined as

D∗ (P0,P1) := − inf
0≤τ≤1

log
{∑

y
P τ0 (y)P 1−τ

1 (y)
}
. (3)

For instance, when P0 ∼ Bernoulli (θ) and P1 ∼
Bernoulli (1− θ), D∗ simplifies to

D∗ = KL (0.5 ‖ θ) = 0.5 log
0.5

θ
+ 0.5 log

0.5

1− θ , (4)

where KL (0.5 ‖ θ) is the Kullback-Leibler (KL) diver-
gence between Bernoulli(0.5) and Bernoulli(θ). Here and
below, we shall use log (·) to indicate the natural logarithm.

We denote by dv and davg the vertex degree of v and the
average vertex degree of G, respectively.

3. Main Results
This section describes two nearly linear-time algorithms
and presents our main results. The proofs of all theorems
can be found in (Chen et al., 2016).

3.1. Algorithms

3.1.1. SPECTRAL-EXPANDING

The first algorithm, called Spectral-Expanding, consists of
three stages. For concreteness, we start by describing the
procedure when the measurement graphs are lines / rings;
see Algorithm 1 for a precise description of the algorithm
and Fig. 2 for a graphical illustration.

Stage 1: spectral metrod on a core subgraph. Consider
a subgraph Gc induced by Vc := {1, · · · , r}, and it is self-
evident that Gc is a complete subgraph. We run a spectral
method (e.g. (Chin et al., 2015)) on Gc using samples taken
over Gc, in the hope of obtaining approximate recovery of
{Xi | i ∈ Vc}. Note that the spectral method can be re-
placed by other efficient algorithms, including semidefinite
programming (SDP) (Javanmard et al., 2015) and a variant
of belief propagation (BP) (Mossel et al., 2013).

Stage 2: progressive estimation of remaining vertices.
For each vertex i > |Vc|, compute an estimate ofXi by ma-
jority vote using backward samples—those samples linking
i and some j < i. The objective is to ensure that a large
fraction of estimates obtained in this stage are accurate. As
will be discussed later, the sample complexity required for
approximate recovery is much lower than that required for
exact recovery, and hence the task is feasible even though
we do not use any forward samples to estimate Xi.

Stage 3: successive local refinement. Finally, we clean up
all estimates using both backward and forward samples in
order to maximize recovery accuracy. This is achieved by
running local majority voting from the neighbors of each
vertex until convergence. In contrast to many prior work,
we reuse all samples in all iterations. As we shall see, this
stage is the bottleneck for exact information recovery.
Remark 1. The proposed algorithm falls under the cate-
gory of a general paradigm, which starts with an approxi-
mate estimate (often via spectral methods) followed by iter-
ative refinement. This paradigm has been successfully ap-
plied to a wide spectrum of applications ranging from ma-
trix completion (Keshavan et al., 2010a; Jain et al., 2013)
to phase retrieval (Chen & Candes, 2015) to community
recovery (Chaudhuri et al., 2012; Abbe et al., 2016).

An important feature of this algorithm is its low compu-
tational complexity. First of all, the spectral method can
be performed within O (mc log n) time by means of the
power method, where mc indicates the number of sam-
ples falling on Gc. Stage 2 entails one round of majority
voting, whereas the final stage—as we will demonstrate—
converges within at most O (log n) rounds of majority vot-
ing. Note that each round of majority voting can be com-
pleted in linear time, i.e. in time proportional to read-
ing all samples. Taken collectively, we see that Spectral-
Expanding can be accomplished within O (m log n) flops,
which is nearly linear time.

Careful readers will recognize that Stages 2-3 bear simi-
larities with BP, and might wonder whether Stage 1 can
also be replaced with standard BP. Unfortunately, we are
not aware of any approach to analyze the performance of
vanilla BP without a decent initial guess. Note, however,
that the spectral method is already nearly linear-time, and
is hence at least as fast as any feasible procedure.

While the preceding paradigm is presented for lines / rings,
it easily extends to a much broader family of graphs with
locality (see (Chen et al., 2016)). The only places that need
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Algorithm 1 : Spectral-Expanding

1. Run spectral method (see (Chen et al., 2016)) on a core subgraph induced by Vc, which yields estimatesX(0)
j , 1 ≤

j ≤ |Vc|.
2. Progressive estimation: for i = |Vc|+ 1, · · · ,n,

X
(0)
i ← majority

{
Y

(l)
i,j ⊕X

(0)
j | j : j < i, (i, j) ∈ E , 1 ≤ l ≤ Ni,j

}
.

3. Successive local refinement: for t = 0, · · · ,T − 1,
X

(t+1)
i ← majority

{
Y

(l)
i,j ⊕X

(t)
j | j : j 6= i, (i, j) ∈ E , 1 ≤ l ≤ Ni,j

}
, 1 ≤ i ≤ n.

4. Output X(T )
i , 1 ≤ i ≤ n.

Here, majority {·} represents the majority voting rule: for any sequence s1, · · · , sk ∈ {0, 1}, majority {s1, · · · , sk} is
equal to 1 if

∑k
i=1 si > k/2; and 0 otherwise.

Algorithm 2 : Spectral-Stitching

1. Split all vertices into several (non-disjoint) vertex subsets each of size W as follows

Vl := {i | (i− 1)W/2 + 1 ≤ l ≤ (i− 1)W/2 +W } , l = 1, 2, · · · ,

and run spectral method on each subgraph induced by Vl, which yields estimates {XVlj | j ∈ Vl} for each l ≥ 1.

2. Stitching: set X(0)
j ← XV1j for all j ∈ V1; for l = 2, 3, · · · ,

X
(0)
j ← XVlj (∀j ∈ Vl) if

∑
j∈Vl∩Vl−1

XVlj ⊕X
Vl−1

j ≤ 0.5 |Vl ∩ Vl−1| ;

and X
(0)
j ← XVlj ⊕ 1 (∀j ∈ Vl) otherwise.

3. Successive local refinement and output X(T )
i , 1 ≤ i ≤ n (see Steps 3-4 of Algorithm 1).

to be adjusted are:

(1) The core subgraph Vc. One would like to ensure that
|Vc| & davg and that the subgraph Gc induced by Vc forms
a (nearly) complete subgraph, in order to guarantee decent
recovery in Stage 1.

(2) The ordering of the vertices. Let Vc form the first |Vc|
vertices of V , and make sure that each i > |Vc| is connected
to at least an order of davg vertices in {1, · · · , i− 1}. This
is important because each vertex needs to be incident to
sufficiently many backward samples in order for Stage 2 to
be successful.

3.1.2. SPECTRAL-STITCHING

We now turn to the 2nd algorithm called Spectral-Stitching,
which shares similar spirit as Spectral-Expanding and, in
fact, differs from Spectral-Expanding only in Stages 1-2.

Stage 1: node splitting and spectral estimation. Split
V into several overlapping subsets Vl (l ≥ 1) of size W ,
such that any two adjacent subsets shareW/2 common ver-

tices. We choose the size W of each Vl to be r for rings /
lines, and on the order of davg for other graphs. We then
run spectral methods separately on each subgraph Gl in-
duced by Vl, in the hope of achieving approximate esti-
mates {XVli | i ∈ Vl}—up to global phase—for each sub-
graph.

Stage 2: stiching the estimates. The aim of this stage is
to stitch together the outputs of Stage 1 computed in isola-
tion for the collection of overlapping subgraphs. If approxi-
mate recovery (up to some global phase) has been achieved
in Stage 1 for each Vl, then the outputs for any two adja-
cent subsets are positively correlated only when they have
matching global phases. This simple observation allows us
to calibrate the global phases for all preceding estimates,
thus yielding a vector {X(0)

i }1≤i≤n that is approximately
faithful to the truth modulo some global phase.

The remaining steps of Spectral-Stitching follow the same
local refinement procedure as in Spectral-Expanding; see
Algorithm 2. As can be seen, the first 2 stages of Spectral-
Stitching—which can also be completed in nearly lin-
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Figure 2. Illustration of the information flow in Spectral-Expanding and Spectral-Stitching.

ear time—are more “symmetric” than those of Spectral-
Expanding. More precisrely, Spectral-Expanding empha-
sizes a single core subgraph Gc and computes all other es-
timates based on Gc, while Spectral-Stitching treats each
subgraph Gl almost equivalently. This symmetry nature
might be practically beneficial when the acquired data de-
viate from our assumed random sampling model.

3.2. Theoretical Guarantees: Rings

We start with the performance of our algorithms for rings.
This class of graphs—which is spatially invariant—is ar-
guably the simplest model exhibiting locality structure.

3.2.1. MINIMUM SAMPLE COMPLEXITY

Encouragingly, the proposed algorithms succeed in achiev-
ing the minimum sample complexity, as stated below.
Theorem 1. Fix θ > 0 and any small ε > 0. Let G be a
ringRr with locality radius r, and suppose

m ≥ (1 + ε)m∗, (5)

where
m∗ =

n log n

2
(
1− e−KL(0.5‖θ)

) . (6)

Then with probability approaching one3, Spectral-
Expanding (resp. Spectral-Stitching) converges to the
ground truth within T = O (log n) iterations, provided that
r & log3 n (resp. r ≥ nδ for an arbitrary constant δ > 0).

Conversely, if m < (1− ε)m∗, then the probability of er-
ror Pe(ψ) is approaching one for any algorithm ψ.
Remark 2. When r = n − 1, a ring reduces to a com-
plete graph (or an equivalent Erdős-Rényi model). For this
case, computationally feasible algorithms have been exten-
sively studied (Swamy, 2004; Jalali et al., 2011; Chen et al.,
2014c;b;a), most of which focus only on the scaling results.
Recent work (Hajek et al., 2015a; Jog & Loh, 2015) suc-
ceeded in characterizing the sharp threshold for this case,
and it is immediate to check that the sample complexity
we derive in (6) matches the one presented in (Hajek et al.,
2015a; Jog & Loh, 2015).

3More precisely, the proposed algorithms succeed with prob-
ability exceeding 1 − c1r−9 − C2 exp{−c2mn (1 − e

−D∗)} for
some constants c1, c2,C2 > 0.

Remark 3. Theorem 1 requires r & poly log(n) because
each node needs to be connected to sufficiently many
neighbors in order to preclude “bursty” errors. The con-
dition r & log3 n might be improved to a lower-order
poly log (n) term using more refined analyses. When r .
log n, one can compute the maximum likelihood (ML) es-
timate via dynamic programming (Kamath et al., 2015)
within polynomial time.

Theorem 1 uncovers a surprising insensitivity phenomenon
for rings: as long as the measurement graph is sufficiently
connected, the locality constraint does not alter the sample
complexity limit and the computational limit at all. This
subsumes as special cases two regimes that exhibit dramati-
cally different graph structures: (1) complete graphs, where
the samples are taken in a global manner, and (2) rings with
r = O(poly log (n)), where the samples are constrained
within highly local neighborhood.

Notably, both (Abbe et al., 2015) and (Hajek et al.,
2015b) have derived general sufficient recovery conditions
of SDP which, however, depend on the second-order graph-
ical metrics of G (Durrett, 2007) (e.g. the spectral gap
or Cheeger constant). When applied to rings (or other
graphs with locality), the sufficient sample complexity
given therein is significantly larger than the information
limit4. This is in contrast to our finding, which reveals
that for many graphs with locality, both the information and
computation limits often depend only upon the vertex de-
grees independent of these second-order graphical metrics.

3.2.2. BOTTLENECKS FOR EXACT RECOVERY

Before explaining the rationale of the proposed algorithms,
we provide here some heuristic argument as to why n log n
samples are necessary for exact recovery and where the re-
covery bottleneck lies.

Without loss of generality, assume X = [0, · · · , 0]>. Sup-
pose the genie tells us the correct labels of all nodes ex-
cept v. Then all samples useful for recovering Xv reside
on the edges connecting v and its neighbors, and there are
Poisson(λdv) such samples. Thus, this comes down to

4For instance, the sufficient sample complexity given in (Abbe
et al., 2015) scales as n logn

hGD∗
with hG denoting the Cheeger con-

stant. Since hG = O(1/n) for rings / lines, this results in a sample
size that is about n times larger than the information limit.
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testing between two conditionally i.i.d. distributions with a
Poisson sample size of mean λdv . From the large deviation
theory, the ML rule fails in recovering Xv with probability

Pe,v ≈ exp
{
−λdv(1− e−D

∗
)
}
, (7)

where D∗ is the large deviation exponent. The above argu-
ment concerns a typical error event for recovering a single
node v, and it remains to accommodate all vertices. Since
the local neighborhoods of two vertices v and u are nearly
non-overlapping, the resulting typical error events for re-
covering Xv and Xu become almost independent and dis-
joint. As a result, the probability of error of the ML rule
ψml is approximately lower bounded by

Pe(ψml) &
∑n

v=1
Pe,v ≈ n exp

{
−λdavg(1− e−D

∗
)
}
,

(8)
where one uses the fact that dv ≡ davg. Apparently, the
right-hand side of (8) would vanish only if

λdavg(1− e−D
∗
) > log n. (9)

Since the total sample size is m = λ · 12ndavg, this together
with (9) confirms the sample complexity lower bound

m =
1

2
λndavg >

n log n

2 (1− e−D∗) = m∗.

As we shall see, the above error events—in which only a
single variable is uncertain—dictate the hardness of exact
recovery.

3.2.3. INTERPRETATION OF OUR ALGORITHMS

The preceding argument suggests that the recovery bottle-
neck of an optimal algorithm should also be determined by
the aforementioned typical error events. This is the case
for both Spectral-Expanding and Spectral-Stitching, as re-
vealed by the intuitive arguments below. While the intu-
ition is provided for rings, it contains all important ingredi-
ents that apply to many other graphs.

To begin with, we provide an heuristic argument for
Spectral-Expanding.

(i) Stage 1 focuses on a core complete subgraph Gc. In the
regime where m & n log n, the total number of samples
falling within Gc is on the order of |Vc|n · m ≥ |Vc| log n,
which suffices in guaranteeing partial recovery using spec-
tral methods (Chin et al., 2015). In fact, the sample size we
have available over Gc is way above the degrees of freedom
of the variables in Gc (which is r).

(ii) With decent initial estimates for Gc in place, one can
infer the remaining pool of vertices one by one using exist-
ing estimates together with backward samples. One impor-
tant observation is that each vertex is incident to many—
i.e. about the order of log n—backward samples. That said,
we are effectively operating in a high signal-to-noise ra-
tio (SNR) regime. While existing estimates are imperfect,
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Figure 3. (Left) Minimum sample complexity m∗ vs. locality ra-
dius r; (Right) Minimum number Lm∗ of vertices being mea-
sured (including repetition) vs. single-vertex error rate p.

the errors occur only to a small fraction of vertices. More-
over, these errors are in some sense randomly distributed
and hence fairly spread out, thus precluding the possibil-
ity of bursty errors. Consequently, one can obtain correct
estimate for each of these vertices with high probability,
leading to a vanishing fraction of errors in total.

(iii) Now that we have achieved approximate recovery, all
remaining errors can be cleaned up via local refinement us-
ing all backward and forward samples. For each vertex,
since only a vanishingly small fraction of its neighbors con-
tain errors, the performance of local refinement is almost
the same as in the case where all neighbors have been per-
fectly recovered.

The above intuition extends to Spectral-Stitching. Follow-
ing the argument in (i), we see that the spectral method re-
turns nearly accurate estimates for each of the subgraph Gl
induced by Vl, except for the global phases. Since any two
adjacent Gl and Gl+1 have sufficient overlaps, this allows
us to calibrate the global phases for {XVli : i ∈ Vl} and
{XVl+1

i : i ∈ Vl+1}. Once we obtain approximate recovery
for all variables simultaneously, the remaining errors can
then be cleaned up by Stage 3 as in Spectral-Expanding.

We emphasize that the first two stages of both algorithms—
which aim at approximate recovery—require only O (n)
samples (as long as the pre-constant is sufficiently large).
In contrast, the final stage is the bottleneck: it succeeds
as long as local refinement for each vertex is successful.
The error events for this stage are almost equivalent to the
typical events singled out in Section 3.2.2, justifying the
information-theoretic optimality of both algorithms.

3.3. Theoretical Guarantees: Inhomogeneous Graphs

The proposed algorithms are guaranteed to succeed for a
much broader class of graphs with locality beyond rings,
including those that exhibit inhomogeneous vertex degrees.
The following theorem formalizes this claim for two of the
most important instances: lines and grids.

Theorem 2. Theorem 1 continues to hold for the following
families of measurement graphs:

(1) Lines with r = nβ for some constant 0 < β < 1, where
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m∗ =
max {1/2, β}n log n

1− e−KL(0.5‖θ) ; (10)

(2) Grids with r = nβ for some constant 0 < β < 0.5,
where

m∗ =
max {1/2, 4β}n log n

1− e−KL(0.5‖θ) . (11)

Remark 4. Careful readers will note that for lines
(resp. grids), m∗ does not converge to n logn

2(1−e−KL(0.5‖θ)) as
β → 1 (resp. β → 0.5), which is the case of complete
graphs. This arises because m∗ experiences a more rapid
drop in the regime where β = 1 (resp. β = 0.5). For in-
stance, for a line with r = γn for some constant γ > 0, one
has m∗ = (1−γ/2)n logn

1−e−KL(0.5‖θ) . In addition, the result extends to
small-world graphs. See (Chen et al., 2016) for details.

Theorem 2 characterizes the effect of locality radius upon
the sample complexity limit; see Fig. 3 for a comparison
of three classes of graphs. In contrast to rings, lines and
grids are spatially varying models due to the presence of
boundary vertices, and the degree of graph inhomogeneity
increases in the locality radius r. To be more concrete, con-
sider, for example, the first davg/ log n vertices of a line,
which have degrees around davg/2. In comparison, the set
of vertices lying away from the boundary have degrees as
large as davg. This tells us that the first few vertices form
a weakly connected component, thus presenting an addi-
tional bottleneck for exact recovery. This issue is negligible
unless the size of the weakly connected component is ex-
ceedingly large. As asserted by Theorem 2, the minimum
sample complexity for lines (resp. grids) is identical to that
for rings unless r &

√
n (resp. r & n1/8). Note that the

curves for lines and grids (Fig. 3) have distinct hinge points
primarily because the vertex degrees of the corresponding
weakly connected components differ.

More precisely, the insights developed in Section 3.2.2
readily carry over here. Since the error probability of the
ML rule is lower bounded by (8), everything boils down to
determining the smallest λ (called λ∗) satisfying

∑n

v=1
exp

{
−λ∗dv

(
1− e−D∗

)}
→ 0,

which in turn yields m∗ = 1
2λ
∗davgn. The two cases ac-

commodated by Theorem 2 can all be derived in this way.

3.4. Connection to Low-Rank Matrix Completion

One can aggregate all correct parities into a matrix Z =
[Zi,j ]1≤i,j≤n such that Zi,j = 1 ifXi = Xj and Zi,j = −1
otherwise. It is straightforward to verify that rank (Z) =

1, with each Y (l)
i,j being a noisy measurement of Zi,j . Thus,

our problem falls under the category of low-rank matrix
completion, a topic that has inspired a flurry of research
(e.g. (Candes & Recht, 2009; Keshavan et al., 2010b;
Candès et al., 2011; Chandrasekaran et al., 2011; Chen

et al., 2013)). Most prior works, however, concentrated on
samples taken over an Erdős–Rnyi model, without inves-
tigating sampling schemes with locality constraints. One
exception is (Bhojanapalli & Jain, 2014), which explored
the effectiveness of SDP under general sampling schemes.
However, the sample complexity required therein increases
significantly as the spectral gap of the measurement graph
drops, which does not deliver optimal guarantees. We be-
lieve that the approach developed herein will shed light on
solving general matrix completion problems from samples
with locality.

4. Extension: Beyond Pairwise Measurements
The proposed algorithms are applicable to numerous sce-
narios beyond the basic setup in Section 2.1. This section
presents one important extension.

In some applications, each measurement may cover more
than two nodes in the graph. In the haplotype phasing ap-
plication, for example, a new sequencing technology called
10X (10x, 2016) generates barcodes to mark reads from the
same chromosome (maternal or paternal), and more than
two reads can have the same barcode. For concreteness,
we suppose the locality constraint is captured by rings, and
consider the type of multiple linked samples as follows.

Measurement (hyper)-graphs. Let G0 = (V, E0) be a ring
Rr, and let G = (V, E) be a hypergraph such that (i) every
hyperedge is incident to L vertices in V , and (ii) all these L
vertices are mutually connected in G0.

Noise model. On each hyperedge e = (i1, · · · , iL) ∈ G,
we obtain Ne

ind.∼ Poisson (λ) multi-linked samples {Y (l)
e |

1 ≤ l ≤ Ne}. Conditional on Ne, each sample Y (l)
e is an

independent copy of

Ye =

{
(Zi1 , · · · ,ZiL) , with prob. 0.5,
(Zi1 ⊕ 1, · · · ,ZiL ⊕ 1) , else,

(12)

where Zi is a noisy measurement of Xi such that Zi = Xi

with probability 1 − p and Zi = Xi ⊕ 1 otherwise. Here,
p represents the error rate for measuring a single vertex.
For the pairwise samples considered before, one can think
of the parity error rate θ as P {Zi ⊕ Zj 6= Xi ⊕Xj} or,
equivalently, θ = 2p(1− p).
We emphasize that a random global phase is incorporated
into each sample (12). That being said, each sample reveals
only the relative similarity information among these L ver-
tices, without providing further information about the ab-
solute cluster membership. Interestingly, the proposed al-
gorithms with slight modification (see (Chen et al., 2016))
are still information-theoretically optimal.
Theorem 3. FixL ≥ 2. Theorem 1 continues to hold under
the above L-wise sampling model, with m∗ replaced by

m∗ :=
n log n

L
(
1− e−D(P0,P1)

) .
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Figure 4. Empirical success rate of Spectral-Expanding for: (a) RingsRr; (b) RingsR18 with varied measurement error rate θ; (c) Insert
size distribution (Illumina, 2012); (d) Performance on a simulation of haplotype; (e) Performance on a simulation of haplotype. For (a)
and (b), the x-axis is the sample size m normalized by the information limit m∗.

r = n0.25 r = n0.5 r = n0.75

Time (seconds/run) 3.55 6.45 58.4

Table 1. The time taken to run Spectral-Expanding on a MacBook
Pro equipped with a 2.9 GHz Intel Core i5 and 8GB of memory
over ringsRr , where n = 100, 000, θ = 10% and m = 1.5m∗.

Here,

P0 = (1− p)Binomial (L− 1, p) + pBinomial (L− 1, 1− p) ;
P1 = pBinomial (L− 1, p) + (1− p)Binomial (L− 1, 1− p) .

Remark 5. A closed-form expression of D(P0,P1) can be
found in (Chen et al., 2016).

With Theorem 3 in place, we can determine the bene-
fits of multi-linked sampling. To enable a fair compari-
son, we evaluate the sampling efficiency in terms of Lm∗
rather than m∗, since Lm∗ captures the total number of
vertices (including repetition) one needs to measure. As
illustrated in Fig. 3, the sampling efficiency improves as
L increases, but there exists a fundamental lower barrier
given by n logn

1−e−KL(0.5‖p) . This lower barrier, as plotted in the
black curve of Fig. 3, corresponds to the case where L is
approaching infinity.

5. Numerical Experiments
To verify the practical applicability of the proposed algo-
rithms, we have conducted simulations in various settings.
All these experiments focused on graphs with n = 100, 000
vertices, and used an error rate of θ = 10% unless oth-
erwise noted. For each point, the empirical success rates
averaged over 10 Monte Carlo runs are reported.

(a) Regular rings. We ran Algorithm 1 on ringsRr for var-
ious values of locality radius r (Fig. 4(a)), with the runtime
reported in Table 1;

(b) Rings with different error rates. We varied the error rate
θ for rings with r = 18 = n0.25, and plotted the empirical
success rate (Fig. 4(d)).

We have also simulated a model of the haplotype phasing
problem by assuming that the genome has a SNP period-
ically every 1000 base pairs. The insert length distribu-
tion, i.e. the distribution of the genomic distance between

Figure 5. The switch error rates of Spectral-Stitching when run on
the NA12878 data-set from 10x-genomics (10x Genomics, 2015).

the linking reads, is given in Fig. 4(c) for Illumina reads,
and a draw from Poisson(3.5) truncated within the interval
1, · · · , 9 is a reasonable approximation for the number of
SNPs between two measured SNPs. We then ran the simu-
lation on the ringsR9, with non-uniform sampling weight.
Using the nominal error rate of p = 1% for the short reads,
the error rates of the measurements is 2p(1−p) ≈ 2%. The
empirical performance is shown in Fig. 4(d).

Additionally, we have simulated reads generated by 10x-
Genomics (10x, 2016) , which corresponds to the model in
Section 4. Each measurement consists of multiple linked
reads, which is generated by first randomly picking a seg-
ment of length 100 SNPs (called a fragment) on the line
graph and then generating Poisson(9) number of linked
reads uniformly located in this segment. The noise rate
per read is p = 0.01. The empirical result is shown in
Fig. 4(e). The information theoretic limit is calculated us-
ing Theorem 3, with L set to infinity (since the number of
vertices involved in a measurement is quite large here).

To evaluate the performance of our algorithm on real data,
we ran Spectral-Stitching for Chromosomes 1-22 on the
NA12878 data-set made available by 10x-Genomics (10x
Genomics, 2015). The nominal error rate per read is p =
1%, and the average number of SNPs touched by each sam-
ple isL ∈ [6, 7]. The number of SNPs n ranges from 34240
to 191829, with the sample sizem from 102633 to 574189.
Here, we split all vertices into overlapping subsets of size
W = 100. The performance is measured in terms of the
switch error rate, that is, the fraction of positions where we
need to switch the estimate to match the ground truth. The
performance on Chromosomes 1-22 is reported in Fig. 5.
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