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Abstract—We consider a matrix completion problem that
leverages graph as side information. One common approach
in recently developed efficient algorithms is to take a two-step
procedure: (i) clustering communities that form the basis of the
graph structure; (ii) exploiting the estimated clusters to perform
matrix completion together with iterative local refinement of
clustering. A major limitation of the approach is that it achieves
the information-theoretic limit on the number of observed matrix
entries, promised by maximum likelihood estimation, only when
a sufficient amount of graph side information is provided (the
quantified measure is detailed later). The contribution of this
work is to develop a computationally efficient algorithm that
achieves the optimal sample complexity for the entire regime of
graph information. The key idea is to make a careful selection for
the information employed in the first clustering step, between two
types of given information: graph & matrix ratings. Our experi-
mental results conducted both on synthetic and real data confirm
the superiority of our algorithm over the prior approaches in the
scarce graph information regime.

A full version of this paper is accessible at: https://sites.
google.com/view/gwsuh/home/full-version_isit2021

I. INTRODUCTION

Recommender systems (RSs) aim to provide users with
relevant items of their potential preference and interest. During
the last decade, low-rank matrix completion, a prominent tech-
nique for operating RSs, have been extensively investigated
and shown to be powerful in a wide variety of applications [1–
8]. One challenge that arises in practice is the so-called cold
start problem: high-quality recommendation is not ensured
for new users and/or items. A natural way to address the
problem is to exploit additional side information. Indeed, it
has been demonstrated that the use of social networks such
as Facebook’s friendship graph [9] can improve the quality of
recommendation [10–19].

Recent efforts have been made to provide information-
theoretical insights into the gain due to graph side information
[19–24]. In particular, the pioneering work [19] characterized
the optimal sample complexity of matrix completion as a func-
tion of the quality of a given social graph. In the considered
stochastic block model (SBM), the quality is quantified as
Is := (

√
α−
√
β)2 where α (or β) indicates the edge probabil-

ity between two users in the same (or different) clusters. This
work has later been generalized to more practically relevant
scenarios [20–22] with the aid of such (or similarly) quantified
graph information.

One practical limitation of the prior works is that the
computationally efficient algorithms proposed therein achieve
the optimal sample complexity, only when the amount of
graph information is sufficiently large. For instance, in the
two-cluster binary matrix setting [19], the achievable regime
w.r.t. Is reads Is = ω( 1

n ) where n denotes the number of users
in the given social graph. Efficient algorithms for the entire Is
regime have been out of reach.

Contributions: Our contribution lies in the development of a
computationally efficient algorithm that ensures optimality for
the entire range of Is. As an initial effort, we focus on the
simple two-cluster binary matrix setting considered in [19],
although it can readily be extensible to other settings; for
details, see Remark 2 in Section IV.

One key feature in the prior efficient algorithms [19–24]
is that they take a well-known two-step procedure [5, 25–28]
in which clustering is first done using a spectral method and
then matrix ratings are estimated followed by iterative local
refinement of clustering. We find that the sole use of a given
graph in the first clustering step limits the applicability to the
scare graph information regime. Inspired by this, we develop
a switching-geared clustering strategy which selects employed
information between graph and matrix ratings, depending on
the amount of graph side information; see Algorithm 1 for
details on the threshold for switching. Employing perturbation
techniques in random matrix theory [29, 30], we show that
our algorithm indeed achieves the optimal sample complexity
for the entire Is regime. We also conduct experiments both
on synthetic and real datasets to demonstrate the superior
performance over other approaches [15, 19, 31–33] including
the ones that rely solely upon graph information in the first
clustering stage.

Related works: In addition to [19], graph-assisted matrix
completion has been explored for various settings [20–24].
Yoon et al. [20] considered a more-than-two-cluster model.
Elmahdy et al. [21] considered a more practically relevant
scenario in which clusters exhibit a hierarchical structure. Jo et
al. [22] introduced a generalized rating model in which each
matrix entry can take an arbitrary discrete value. Zhang et
al. [23, 24] explored a richer scenario wherein both social and
item similarity graphs are available as side information. While
all of the works characterized optimal sample complexities
for the considered models together with the development of
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efficient algorithms, their algorithms are far from optimality
when the amount of associated graph information is not
sufficiently large. In contrast, our algorithm ensures optimality
for the entire graph information regime under the two-cluster
setting; see Remark 2 for generalization.

As mentioned earlier, the key idea of our algorithm is
centered on the first clustering step which builds upon promi-
nent graph-based clustering [25, 26, 29, 34] as well as other
clustering methods [35–38]. Our switching mechanism in
clustering also employs matrix-rating-based clustering aided
by singular value decomposition (SVD) [35, 36]. We find that
several techniques [30, 39–42] intended for the SVD-based
approaches help us to analyze our algorithm in our setting.
Technical contributions are reflected in Lemmas 2 and 3.
Notation: We define that a clustering algorithm guarantees
“weak clustering” or “weak recovery” if an algorithm allows
for a vanishing fraction of misclassified users as the number
of users tends to infinity.

II. PROBLEM FORMULATION

Setting: As an initial effort, we focus on the simple setting
as in [19], in which a rating matrix consists of nm entries
for n users (rows) and m items (columns). Below is a list of
assumptions made for theoretical guarantees of our algorithm
(Theorem 3), but not for the algorithm itself (Algorithm 1).
Each user rates items either as 1 or −1 (for instance, "like" or
"dislike"). We assign 0 for unrated items. Assume that there
are two equal-sized clusters of users, say A and B, and the
users from the same group share the same rating vector. Let
vA, vB ∈ {−1, 1}1×m be the rating vectors of cluster A and B,
respectively. Let M ∈ {−1, 1}n×m be a rating matrix where
the ith row corresponds to the rating vector of user i. Let δ :=
1
mdH(vA, vB) be the normalized Hamming distance between
vA and vB , and M (δ) be the collection of rating matrices such
that the normalized Hamming distance of two rating vectors
does not exceed δ.
Problem of interest: Our goal is to recover a rating matrix
M ∈ M(δ) given two types of information. The first is a
partially observed matrix Y ∈ {−1, 0, 1}n×m. We denote by
Ω the set of observed entries of Y : Ω = {(i, j) ∈ [n]× [m] :
Yij 6= 0}. We assume that each element of M is observed
with probability p ∈ [0, 1], independently from others, and its
observation can be flipped with probability θ ∈ [0, 1

2 ): Yij ∼
Bern(p) · (1 − 2Bern(θ)) ×Mij . The second is social graph
G = ([n], E) where E denotes the set of edges, each capturing
social connection. The set [n] of vertices is partitioned into two
disjoint clusters. We assume that the graph follows the SBM
with two types of edge probabilities: α (or β) for intra-cluster
(or cross-cluster) users. We focus on realistic scenarios where
the same cluster users are more likely to be connected: α ≥ β.
Performance metric: Let ψ(Y,G) ∈ Rn×m be the estimator
of a rating matrix. We use the worst-case error probability
P

(δ)
e as a performance metric. The worst-case ground truth

matrix is chosen subject to the normalized Hamming distance
δ and the associated error probability reads: P (δ)

e (ψ) :=

maxM∈M(δ) P[ψ(Y,G) 6= M ]. We intend to develop an
efficient estimator ψ that satisfies P (δ)

e → 0 as n → ∞ for
any p larger than p∗. Here p∗ denotes the optimal sample
probability: (i) if p ≥ p∗, P (δ)

e → 0 as n → ∞ for some
estimator ψ; (ii) if p < p∗, P (δ)

e 6→ 0 as n→∞ for any ψ.

III. MAIN RESULTS

Let us start by recalling the optimal sample probability p∗,
characterized in [19]. Let Is := (

√
α −
√
β)2 be a quantified

measure for the quality of social graph; the higher, the easier
to cluster and hence the more graph information. As in [19],
we make the same assumption on n and m that turns out to
ease the proof via large deviation theories: m = ω(log n) and
logm = o(n). This assumption is also practically relevant as
it rules out highly asymmetric matrices.

Theorem 1 (Optimal sample probability [19]): Let

p∗(Is) = p∗ :=
1

(
√

1− θ −
√
θ)2

max

{
log n− n

2 Is

δm
,

2 logm

n

}
.

Fix ε > 0. If p > (1 + ε)p∗, P (δ)
e (ψ) → 0 as n → ∞ for

some sequence of estimator ψ. Conversely, if p < (1 − ε)p∗,
P

(δ)
e (ψ) 6→ 0 as n→∞ for any ψ.

We often use a simpler notation p∗ for p∗(Is). Ahn et al. [19]
also developed an efficient algorithm that achieves p∗ for a
certain range of Is, formally stated below.

Theorem 2 (Theoretical guarantees of [19]’s algorithm):
Suppose that Is = ω

(
1
n

)
and p respects the sufficient

condition in Theorem 1. Then, the algorithm in [19] exactly
recovers M with high probability as n and m tend to infinity:
P(M̂ = M) = 1− o(1) where M̂ := ψ(Y,G).

The existence of an optimal efficient algorithm guaranteed
for the entire Is regime has been unknown. We develop an
efficient universal algorithm that promises p∗ for the entire
range of Is.

Theorem 3 (Theoretical guarantees of our universal al-
gorithm): Suppose that p respects the sufficient condition
in Theorem 1. Then, our computationally-efficient algorithm
described in Algorithm 1 exactly recovers M with high
probability as n and m tend to infinity.

This implies that there is no information-computation gap
for any regime of Is. Even when Is = O

(
1
n

)
, there exists

an optimal efficient algorithm. In fact, the main reason that
the algorithm in [19] offers the limited achievable regime is
that it relies solely upon graph information for clustering in
the first step. This motivates us to develop a switching-geared
clustering strategy that properly chooses employed information
for clustering between graph and matrix ratings. It turns out
this leads to universal optimality.

Remark 1 (Comparison to other efficient algorithms): Fig.
1 illustrates achievable regimes (shaded in blue color) of
(p, Is) promised by an employed algorithm. The red shaded
region indicates the non-achievable regime. The black bold
line indicates the boundary dictated by the optimal sample
probability p∗ = p∗(Is). Here p∗(0) denotes the case Is = 0.
Fig. 1(a) refers to the achievable regime for the algorithm in
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(a) Graph clustering (b) Matrix clustering (c) Proposed

Fig. 1: Achievable regimes (shaded in blue color) due to: (a) graph-clustering approach (use only graph in the first clustering
step); (b) matrix-rating-clustering approach (use only matrix ratings); (c) our proposed approach (use graph or matrix ratings
depending on the amount of graph information). With proper switching of the employed information for clustering, our algorithm
achieves the entire achievable regime promised by MLE.

[19] that employs only graph information in the first clustering
step. As implied by Theorem 2, achievability is guaranteed
only when Is = ω

(
1
n

)
; see the red thick line on the right

bottom. Fig. 1(b) refers to the case in which we employ only
matrix ratings for clustering in the first stage (explicit details
on this are left in Algorithm 1). In this case, we could show
achievability when Is is small: Is = O

(
1
n

)
. See a dotted

box on the right bottom: the small Is regime becomes blue.
On the other hand, we find that the high Is regime can be
translated to p = O

(
1
m + 1√

nm

)
along the optimal boundary

indicated by the black bold line. We also find that in such
p regime above (guided by the red thick line), achievability
is not guaranteed; see the red-colored regime on the left top.
Details on these arguments as well as on how to translate the
high Is regime into the above p regime will be provided while
describing the proof of Theorem 3 in Section IV; see Lemma
1 in particular. On the other hand, by switching clustering
methods, our algorithm ensures achievability for the entire
(p, Is) regime promised by MLE. See Fig. 1(c). �

IV. PROOF OF THEOREM 3

A. Algorithm Description

As hinted earlier, our algorithm builds upon a well-known
two-stage procedure [5, 25–28]. For illustrative purpose, as
in [19, 20, 22, 24], we split the second stage into two steps,
thereby having three steps in total. Step 1 is the major step
that bears the key idea. In Step 1, we intend to identify two
clusters based on graph and matrix ratings. The 2nd and 3rd
steps are the standard steps employed in [19]. In Step 2, we
use the estimated clusters to recover two rating vectors. In
Step 3, we do iterative refinement of clustering based on the
estimated vectors. The details are described below; also see
Algorithm 1.
Step 1 (Initial clustering via a switching mechanism):
Inspired by the observations in Fig. 1(a) and (b), we develop
a switching mechanism. Notice that the regime Is = O( 1

n )
is not achievable with graph-based clustering [43], yet being

achievable with matrix-rating-based clustering; and vice versa
for the other regime Is = ω( 1

n ). This naturally motivates
a unified approach that makes a proper selection between
the two clustering methods depending on the amount of Is.
However, there is a challenge in implementing this natural
idea. The challenge is that the estimation of Is is not that
simple as it requires the knowledge of (α, β), which are
difficult to estimate without ground-truth clusters.

Hence, we propose an alternative that relies upon another
easily computable information yet which plays the same role.
The idea is inspired by the optimal boundary indicated by the
black bold line in Fig. 1. Notice along the optimal boundary
that the high Is regime corresponds to the small p∗(Is) regime
and vice versa. This suggests that p can play the same role for
switching. For a small p (a large Is), we apply graph-based
clustering. For a large p (a small Is), we perform matrix-
rating-based clustering. Here a practical benefit from the use
of p is that it is easy to estimate using observed ratings, and
also its MLE is accurate in the large (n,m) regime of practical
interest: p̂ := |Ω|

nm converges to p in the limit of n and m.
Now a key question is: what is a proper switching threshold,

say p̃? To answer this question, we intend to identify the range
of p in which the optimal sample probability is achievable
with matrix-rating-based clustering a.k.a. matrix clustering. It
turns out that matrix clustering leads to optimality as long as
p = ω

(
1
m + 1√

nm

)
. This is proved in Lemma 2 in Section IV-

B. This motivates the choice of p̃ as the one that is order-wise
greater than 1

m + 1√
nm

. Here we made one particular choice
like p̃ = log logn

m . Also one can verify that p > p̃ covers the
low Is = O

(
1
n

)
regime, as hinted in Fig. 1(c), and hence

matrix clustering ensures optimality for the low Is regime not
covered by graph clustering.

Matrix-rating-based clustering: If the empirical estimate p̂
is beyond the threshold p̃ = log logn

m , we perform matrix-based
clustering. We first perform SVD w.r.t. the observed matrix
Y : Y = UΣV T . We then generate an n-by-2 matrix UY such
that it takes only the two leading columns of U . Next we
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apply the famous k-means algorithm [44] w.r.t. UY to yield
the estimated clusters, say A(0) and B(0). For implementation,
see lines 3–6 in Algorithm 1. We will later show that this
procedure guarantees weak clustering, thereby ensuring matrix
completion together with Steps 2 and 3. See Lemma 2 in
Section IV.B for the weak clustering guarantee.

Graph-based clustering: If p̂ < p̃, we employ graph cluster-
ing [25] to yield the estimated clusters. See lines 7 and 8. It
has been shown in [25] that graph clustering in the considered
regime ensures weak clustering.
Step 2 (Recovery of rating vectors): This step is exactly the
same as that in [19]. Based on A(0) and B(0), we estimate
(vA, vB) via majority voting. For each item j, we set the jth
entry of v̂A (estimate), as the majority among the observed
ratings in the jth columns w.r.t. the rows governed by A(0).
Similarly we estimate v̂B using B(0). See lines 10–14 for
implementation. It was shown in [19] that this majority voting
ensures exact recovery of rating vectors.
Step 3 (Local refinement of clustering): Again this step
is identical to that in [19]. We do iterative local refinement
of clustering (A(0), B(0)) using localized MLE in which the
likelihood is computed based on the estimated clusters in the
prior iteration. See lines 19–27 for implementation. We apply
T = O(log n) iterations, as it is shown that such number
guarantees exact clustering [19].

Remark 2 (Generalization): One can extend the proposed
switching mechanism to other settings considered in [20–24].
The idea is to draw similar plots as in Fig. 1(a) and (b), and
then identify a proper threshold p̃ for switching with the help
of some follow-up analysis of the associated matrix clustering.
The detailed analysis is out of the scope of this work. �

B. Proof Outline

Due to space limit, we provide only the sketch of the proof,
while leaving the complete proof in the full version. The proof
consists of two parts. The first is to show that the achievability
proof boils down to the proof of weak recovery of matrix
clustering when p = ω( 1

m + 1√
nm

). This will be proved in
Lemma 1. The second is to prove the weak recovery of matrix
clustering for the focused regime (Lemma 2). Most of the
proofs of lemmas are left in the complete version.

To prove the first part, we introduce two regimes:
Regime 1 := {(p, Is) : p ≥ p∗, p < p̃}, Regime 2 :=
{(p, Is) : p ≥ p∗, p ≥ p̃}. We claim that: (i) in Regime 1,
p < p̃ implies Is = ω

(
1
n

)
; (ii) in Regime 2, p ≥ p̃ covers

Is = O( 1
n ). This claim is proved in Lemma 1.

Lemma 1: If p ≥ p∗ and p < p̃, then Is = ω
(

1
n

)
. Also if

p ≥ p∗ and Is = O
(

1
n

)
, then p ≥ p̃.

The second part stated in Lemma 1 implies that p ≥ p̃
covers the remaining regime Is = O

(
1
n

)
(not covered by

graph clustering) as long as p ≥ p∗. Hence, for Regime 2,
it suffices to prove weak recovery of matrix clustering. The
proof of this is in Lemma 2.

Lemma 2: If p ≥ p∗ and p = ω
(

1
m + 1√

nm

)
, matrix-rating-

based clustering in Step 1 guarantees weak recovery.

Algorithm 1: Proposed Algorithm
Input : Observed rating matrix Y ∈ {−1, 0, 1}n×m

Graph G = ([n], E)
The number of iteration for refinement T

Output: Estimate of a rating matrix M̂ ∈ {−1, 1}n×m
1 p̂← |Ω|/nm;
2 Step 1 (Initial clustering via a switching mechanism)
3 if p̂ > p̃ = log logn

m
then

4 UΣV T ← singular value decomposition of Y ;
5 UY ← two leading columns of U ;
6 Apply the k-means clustering w.r.t. UY to obtain an

initial estimate for clustering: (A(0), B(0));
7 else
8 Apply graph-based clustering w.r.t. G to obtain an initial

estimate for clustering: (A(0), B(0));
9 end

10 Step 2 (Recovery of rating vectors)
11 for item j = 1 to m do
12 (v̂A)j ← sign(

∑
i∈A(0) Yij);

13 (v̂B)j ← sign(
∑
i∈B(0) Yij);

14 end
15 Step 3 (Local refinement of clustering)
16 α̂← 1

(|A
(0)|
2 )+(|B

(0)|
2 )
|{{i1, i2} ∈ E :

i1, i2 ∈ A(0) or i1, i2 ∈ B(0)}|;
17 β̂ ← 1

|A0||B(0)| |{{i1, i2} ∈ E : i1 ∈ A(0), i2 ∈ B(0)}| ;

18 θ̂ ← |{(i, j) ∈ [n]× [m] : Yij 6= 0,

Yij 6= (v̂A)j , i ∈ A(0) or Yij 6= (v̂B)j , i ∈ B(0)}|/|Ω|;
19 for iteration t = 1 to T do
20 A(t), B(t) ← ∅;
21 for user i = 1 to n do
22 LA(i)← log

(
(1−β̂)α̂
(1−α̂)β̂

)
e({i}, A(t−1)) +

log
(

1−θ̂
θ̂

)∑
j∈[m] 1(Yij = (v̂A)j);

23 LB(i)← log
(

(1−β̂)α̂
(1−α̂)β̂

)
e({i}, B(t−1)) +

log
(

1−θ̂
θ̂

)∑
j∈[m] 1(Yij = (v̂B)j);

24 if LA(i) > LB(i) then A(t) ← A(t) ∪ {i};
25 else B(t) ← B(t) ∪ {i};
26 end
27 end
28 for user i = 1 to n do
29 if i ∈ A(T ) then M̂i ← v̂A else M̂i ← v̂B ;
30 end
31 Return M̂

Proof: Let us first introduce some notations. Recall from
Algorithm 1 that UY consists of the two leading left singular
vectors of Y . Let

√
2
nCA,

√
2
nCB ∈ R1×2 denote the centers

among the points (each referring to a certain row in UY )
that correspond to A and B, respectively. Let UG be an n-
by-2 matrix such that the ith row of UG =

√
2
nCA if i ∈

A;
√

2
nCB otherwise. Here what we can show is that by using

the approximate k-means error bound in [29] (see Lemma
5.3 therein), the fraction of misclustered users is bounded by
‖UY −UG‖2F up to a constant factor. For completeness, we also
leave the detailed proof in the full version. Hence, it suffices
to show ‖UY − UG‖2F → 0 for proving weak recovery. This
proof is done in Lemma 3. This completes the proof of Lemma
2. �
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Lemma 3: If p = ω
(

1
m + 1√

nm

)
, ‖UY − UG‖2F → 0 with

high probability as n,m→∞.
Remark 3 (Technical novelty): One major technical contri-

bution is reflected in Lemma 3. The key step in the proof is
to show that UY and the two leading ground-truth singular
vectors are very similar. To this end, we employ perturbation
bounding technique for singular subspaces in [29]. We then
derive an upper bound of sin Θ distance between UY and the
ground-truth singular vectors as a function of the variance of
Yij’s. Lastly we prove that the upper bound converges to 0. �

V. EXPERIMENTS

We provide Monte Carlo experiments to corroborate our
main results of Theorem 3.

(a) Graph clustering (b) Matrix clustering (c) Proposed

Fig. 2: Achievable regimes of (p, Is) due to: (a) graph-
based clustering; (b) matrix-rating-based clustering; (c) our
proposed algorithm. Here the brightness indicates the level of
the empirical success rate; the brighter, the higher.

Synthetic data: Synthetic data is generated as per the model
described in Section II. Here, we consider a setting where
θ = 0.1, n = 1000, m = 100 and δ = 0.5. In Fig. 2, we
evaluate the performance of three algorithms via the empirical
success rate for a rage of (p, Is). The empirical success rate is
visualized by the brightness level; the brighter, the higher. The
red line indicates the sharp boundary indicated by the optimal
sample probability p∗ = p∗(Is). Fig. 2(a) shows performance
of graph-clustering-based approach. As illustrated in Fig. 1(a),
we also observe the failure of recovery in the low Is regime.
See the lower right corner of Fig. 2(a). On the other hand,
in Fig. 2(b) w.r.t. matrix-rating-based approach, recovery is
mostly successful in the low p regime. As illustrated in Fig.
1(b), however, it suffers from performance degradation in
the high Is regime; see the upper left corner. By switching
between two clustering methods depending on p̂ (MLE of p),
our algorithm exhibits an improved performance for the two
focused regimes; see Fig. 2(c).

We also plot the performance for the low Is regime (the
scarce graph information regime, highlighted in Theorem 3).
To this end, we consider a setting where θ = 0.1, δ = 0.5,
Is = 1

n , and we vary n and m while preserving n/m = 5.
In Fig. 3, we plot the empirical success rate as a function
of normalized sample complexity p

p∗ . We observe that the
empirical success rate gets closer to 1 as soon as p exceeds
p∗, and the transition becomes sharper with an increase in n.
Real data: As in [19–22, 24], we consider a semi-real data
setting in which a social graph is real while rating vectors are
synthetically generated as per our considered model.

Fig. 3: The empirical success rate of the proposed algorithm as
a function of p/p∗ when n = 5m and Is = 1

n (Is = O
(

1
n

)
).

(a) (b)

Fig. 4: Comparison of MAEs evaluated for various recom-
mendation algorithms using political blog network [45]: (a)
Îs = 4.67×10−3 (high Is regime); (b) Îs = 8.07×10−4 (low
Is regime).

As a real graph, we employ political blog network having
the ground-truth clusters and n = 1222 [45]. We consider two
settings: (i) the original blog network; (ii) a sparse network
generated via randomly subsampling 5% of edges from the
original. We synthesize ratings to generate a rating matrix with
(n,m) = (1222, 500). We use mean absolute error (MAE),∑

(i,j)∈[n]×[m] |M̂ij −Mij |/nm, as a metric to compare ours
with various recommendation algorithms exploiting graph side
information: (i) item k-nearest neighbor (k-NN) [31]; (ii) user
k-NN [31]; (iii) matrix factorization and social regularization
(SoReg) [15]; (iv) biased matrix factorization (Biased MF)
[32]; (v) TrustSVD [33]; and (vi) Ahn et al. [19] based
solely on graph clustering. As shown in Fig. 4, our algorithm
outperforms all of the baselines. In particular, the gain is more
significant in the interested small Is regime (Îs = O

(
1
n

)
).

VI. DISCUSSION

We develop an efficient algorithm that achieves the optimal
sample complexity for the entire range of Is. The key idea is
to take a switching-geared clustering strategy which carefully
selects employed information for clustering between graph
and matrix ratings, depending on the amount of graph side
information.

To simplify our algorithm, one can consider an automatic
switching mechanism by minimizing some combination of
graph clustering error and matrix clustering error. If we can
prove the theoretical guarantee of this simplified algorithm, it
would strengthen our result. Another future work of interest
is to extend to more practically relevant settings, via relaxing
the assumptions made in our considered model, as mentioned
in Remark 2.
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