
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 5, MAY 2011 2667
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Abstract—We characterize the capacity region to within 2
bits/s/Hz and the symmetric capacity to within 1 bit/s/Hz for the
two-user Gaussian interference channel (IC) with feedback. We
develop achievable schemes and derive a new outer bound to
arrive at this conclusion. One consequence of the result is that
feedback provides multiplicative gain at high signal-to-noise ratio:
the gain becomes arbitrarily large for certain channel parameters.
This finding is in contrast to point-to-point and multiple-access
channels where feedback provides no gain and only bounded
additive gain respectively. The result makes use of a linear deter-
ministic model to provide insights into the Gaussian channel. This
deterministic model is a special case of the El Gamal–Costa deter-
ministic model and as a side-generalization, we establish the exact
feedback capacity region of this general class of deterministic ICs.

Index Terms—Deterministic model, feedback capacity, Gaussian
interference channel, side information.

I. INTRODUCTION

S HANNON showed that feedback does not increase the ca-
pacity of memoryless point-to-point channels [1]. On the

other hand, feedback can indeed increase capacity in channels
with memory such as colored Gaussian noise. However, the
gain is bounded: feedback can provide a capacity increase of
at most one bit [2]–[4]. In the multiple access channel (MAC),
Gaarder and Wolf [5] showed that feedback could increase ca-
pacity even when the channel is memoryless. Inspired by this
result, Ozarow [6] found the feedback capacity region for the
two-user Gaussian MAC. Ozarow’s result reveals that feedback
gain is bounded. The reason for the bounded gain is that in
the MAC, transmitters cooperation induced by feedback can at
most boost signal power via aligning signal directions. Boosting
signal power provides a capacity increase of a bounded number
of bits.

In the MAC, the receiver decodes the messages of all users.
A natural question is to ask whether feedback can provide more
significant gain in channels where a receiver wants to decode
only the desired message in the presence of interference. To an-
swer this question, we focus on the simple two-user Gaussian
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interference channel (IC) where each receiver wants to decode
the message only from its corresponding transmitter. We first
make progress on the symmetric capacity. Gaining insights from
a deterministic model [7] and the Alamouti scheme [8], we de-
velop a simple two-staged achievable scheme. We then derive
a new outer bound to show that the proposed scheme achieves
the symmetric capacity to within one bit for all values of the
channel parameters.

An interesting consequence of this result is that feedback
can provide multiplicative gain in interference channels at high
signal-to-noise ratio ( ). This can be shown from the gener-
alized degrees-of-freedom in Fig. 1. The notion was defined in
[9] as

(1)

where and is the
capacity region. In the figure, ( axis) indicates the ratio of

to in dB scale: . Notice that in certain
weak interference regimes and in the very strong
interference regime , feedback gain becomes arbitrarily
large as and go to infinity. For instance, when

, the gap between the nonfeedback and the feedback capacity
becomes unbounded with the increase of and , i.e.

(2)

Observing the ratio of the feedback to the nonfeedback capacity
in the high regime, one can see that feedback provides

multiplicative gain (50% gain for ): .
Moreover, we generalize the result to characterize the feed-

back capacity region to within 2 bits per user for all values
of the channel parameters. Unlike the symmetric case, we de-
velop an infinite-staged achievable scheme that employs three
techniques: (i) block Markov encoding [10], [11]; (ii) backward
decoding [12]; and (iii) Han-Kobayashi message splitting [13].
This result shows an interesting contrast with the nonfeedback
capacity result. In the nonfeedback case, it has been shown that
the inner and outer bounds [13], [9] that guarantee a 1 bit gap
to the optimality are described by five types of inequalities in-
cluding the bounds for and . On the other
hand, our result shows that the feedback capacity region approx-
imated to within 2 bits requires only three types of inequalities
without the and bounds.

We also develop two interpretations to provide qualitative in-
sights as to where feedback gain comes from. The first interpre-
tation, which we call resource hole interpretation, says that the
gain comes from using feedback to maximize resource utiliza-
tion, thereby enabling more efficient resource sharing between
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Fig. 1. Generalized degrees-of-freedom of the Gaussian IC with feedback. For
certain weak interference regimes �� � � � � and for the very strong in-
terference regime �� � ��, the gap between the nonfeedback and the feedback
capacity becomes arbitrarily large as and go to infinity. This implies
that feedback can provide unbounded gain.

the interfering users. The second interpretation is that feedback
enables receivers to exploit their received signals as side infor-
mation to increase the nonfeedback capacity. With this inter-
pretation, we make a connection between our feedback problem
and other interesting problems in network information theory.

Our results make use of a linear deterministic model [7], [37]
to provide insights into the Gaussian channel. This deterministic
model is a special case of the El Gamal–Costa model [14]. As
a side-generalization, we establish the exact feedback capacity
region of this general class of deterministic ICs. From this result,
one can infer an approximate feedback capacity region of two-
user Gaussian MIMO ICs, as Teletar and Tse [15] did in the
nonfeedback case.

Interference channels with feedback have received previous
attention [16]–[20]. Kramer [16], [17] developed a feedback
strategy in the Gaussian IC; Kramer-Gastpar [18] and Tandon-
Ulukus [19] derived outer bounds. However, the gap between
the inner and outer bounds becomes arbitrarily large with the in-
crease of and .1 Jiang–Xin–Garg [20] found an achiev-
able region in the discrete memoryless IC with feedback, based
on block Markov encoding [10] and binning. However, their
scheme involves three auxiliary random variables and therefore
requires further optimization. Also no outer bounds are pro-
vided. We propose explicit achievable schemes and derive a new
tighter outer bound to characterize the capacity region to within
2 bits and the symmetric capacity to within 1 bit universally.
Subsequent to our work, Prabhakaran and Viswanath [21] have
found an interesting connection between our feedback problem
and the conferencing encoder problem. Making such a connec-
tion, they have independently characterized the sum feedback
capacity to within 19 bits/s/Hz.

II. MODEL

Fig. 2 describes the two-user Gaussian IC with feedback
where each transmitter gets delayed channel-output feedback
only from its own receiver. Without loss of generality, we

1Although this strategy can be arbitrarily far from optimality, a careful anal-
ysis reveals that the Kramer scheme can also provide multiplicative feedback
gain. See Fig. 13 for this.

Fig. 2. Gaussian interference channel (IC) with feedback.

normalize signal power and noise power to 1, i.e.,
. Hence, the SNR and the interfer-

ence-to-noise ratio (INR) can be defined to capture the channel
gains

(3)

There are two independent and uniformly distributed messages,
. Due to the delayed feedback,

the encoded signal of user at time is a function of its
own message and past output sequences

(4)

where we use shorthand notation to indicate the sequence
up to . A rate pair is achievable if there exists a
family of codebook pairs with codewords (satisfying power con-
straints) and decoding functions such that the average decoding
error probabilities go to zero as code length goes to infinity.
The capacity region is the closure of the set of the achievable
rate pairs.

III. SYMMETRIC CAPACITY TO WITHIN ONE BIT

We start with the symmetric channel setting where
and

(5)

Not only is this symmetric case simple, it also provides the
key ingredients to both the achievable scheme and outer bound
needed for the characterization of the capacity region. Further-
more, this case provides enough qualitative insights as to where
feedback gain comes from. Hence, we first focus on the sym-
metric channel.

Theorem 1: We can achieve a symmetric rate of

(6)
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Fig. 3. Deterministic IC with feedback.

The symmetric capacity is upper-bounded by

(7)

For all channel parameters of and

(8)

Proof: See Sections III-D, III-E, and III-F.

A. Deterministic Model

As a stepping stone towards the Gaussian IC, we use an inter-
mediate model: the linear deterministic model [7], illustrated in
Fig. 3. This model is useful in the nonfeedback Gaussian IC: it
was shown in [22] that the deterministic IC can approximate the
Gaussian IC to within a bounded number of bits irrespective of
the channel parameter values. Our approach is to first develop
insights from this model and then translate them to the Gaussian
channel.

The connection with the Gaussian channel is as follows. The
deterministic IC is characterized by four values:
and where indicates the number of signal bit levels (or
resource levels) from transmitter to receiver . These values
correspond to the channel gains in dB scale, i.e.,

(9)

In the symmetric channel, and
. Upper signal levels correspond to more significant bits

and lower signal levels correspond to less significant bits of
the received signal. A signal bit level observed by both the re-
ceivers above the noise level is broadcasted. If multiple signal
levels arrive at the same signal level at a receiver, we assume a
modulo-2-addition.

B. Achievable Scheme for the Deterministic IC

Strong Interference Regime : We explain the
scheme through the simple example of , illustrated
in Fig. 4. Note that each receiver can see only one signal level
from its corresponding transmitter. Therefore, in the nonfeed-
back case, each transmitter can send only 1 bit through the top
signal level. However, feedback can create a better alternative
path, i.e.,

Fig. 4. Achievable scheme for the deterministic IC: strong interference regime
� �� � �.

. This alternative path enables an
increase over the nonfeedback rate.

The feedback scheme consists of two stages. In the first
stage, transmitters 1 and 2 send independent binary symbols

and , respectively. Each receiver de-
fers decoding to the second stage. In the second stage, using
feedback, each transmitter decodes information of the other
user: transmitters 1 and 2 decode and ,
respectively. Each transmitter then sends the other user’s infor-
mation. Each receiver gathers the received bits sent during the
two stages: the six linearly independent equations containing
the six unknown symbols. As a result, each receiver can solve
the linear equations to decode its desired bits. Notice that the
second stage was used for refining all the bits sent previously,
without sending additional information. Therefore, the sym-
metric rate is in this example. Notice the 50% improvement
from the nonfeedback rate of 1. We can easily extend the
scheme to arbitrary . In the first stage, each transmitter
sends bits using all the signal levels. Using two stages, these

bits can be decoded with the help of feedback. Thus, we can
achieve

(10)

Remark 1: The gain in the strong interference regime comes
from the fact that feedback provides a better alternative path
through the two cross links. The cross links relay the other user’s
information through feedback. We can also explain this gain
using a resource hole interpretation. Notice that in the nonfeed-
back case, each transmitter can send only 1 bit through the top
level and therefore there is a resource hole (in the second level)
at each receiver. However, with feedback, all of the resource
levels at the two receivers can be filled up. Feedback maximizes
resource utilization by providing a better alternative path. This
concept coincides with correlation routing in [16].

On the other hand, in the weak interference regime, there is
no better alternative path, since the cross links are weaker than
the direct links. Nevertheless, it turns out that feedback gain can
also be obtained in this regime.

Weak Interference Regime : Let us start by ex-
amining the scheme in the nonfeedback case. Unlike the strong
interference regime, only part of information is visible to the
other receiver in the weak interference regime. Hence, informa-
tion can be split into two parts [13]: common bits (visible
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Fig. 5. Achievable schemes for the weak interference regime, e.g., � � � . (a) A nonfeedback scheme. (b) A feedback scheme.

to the other receiver) and private bits (invisible to the
other receiver). Notice that using common levels causes interfer-
ence to the other receiver. Sending 1 bit through a common level
consumes a total of 2 levels at the two receivers (say $2), while
using a private level costs only $1. Because of this, a reason-
able achievable scheme is to follow the two steps sequentially:
(i) sending all of the cheap private bits on the lower
levels; (ii) sending some number of common bits on the upper
levels. The number of common bits is decided depending on
and .

Consider the simple example of , illustrated in
Fig. 5(a). First transmitters 1 and 2 use the cheap private signal
levels, respectively. Once the bottom levels are used, however
using the top levels is precluded due to a conflict with the private
bits already sent, thus each transmitter can send only one bit.

Observe the two resource holes on the top levels at the two re-
ceivers. We find that feedback helps fill up all of these resource
holes to improve performance. The scheme uses two stages. As
for the private levels, the same procedure is applied as that in
the nonfeedback case. How to use the common levels is key to
the scheme. In the first stage, transmitters 1 and 2 send private
bits and on the bottom levels, respectively. Now trans-
mitter 1 squeezes one more bit on its top level. While is
received cleanly at receiver 1, it causes interference at receiver 2.
Feedback can however resolve this conflict. In the second stage,
with feedback transmitter 2 can decode the common bit of
the other user. As for the bottom levels, transmitters 1 and 2
send new private bits and , respectively. The idea now is
that transmitter 2 sends the other user’s common bit on its top
level. This transmission allows receiver 2 to refine the corrupted
bit from without causing interference to receiver 1,
since receiver 1 already had the side information of from the
previous broadcasting. We paid $2 for the earlier transmission of

, but now we can get a rebate of $1. Similarly, with feedback,
transmitter 2 can squeeze one more bit on its top level without
causing interference. Therefore, we can achieve the symmetric
rate of in this example, i.e., a 50% improvement from the non-
feedback rate of 1.

This scheme can be easily generalized to arbitrary . In
the first stage, each transmitter sends bits on the upper levels
and bits on the lower levels. In the second stage, each
transmitter forwards the bits of the other user on the upper
levels and sends new private bits on the lower levels.
Then, each receiver can decode all of the bits sent in the first

Fig. 6. Symmetric feedback rate (10), (11) for the deterministic IC. Feedback
maximizes resource utilization while it cannot reduce transmission costs. The
“V” curve is obtained when all of the resource levels are fully packed with feed-
back. This shows the optimality of the feedback scheme.

stage and new private bits sent in the second stage.
Therefore, we can achieve

(11)

Remark 2 (Resource Hole Interpretation): Observe that all
the resource levels are fully packed after applying the feedback
scheme. Thus, feedback maximizes resource utilization to im-
prove the performance significantly. We will discuss this inter-
pretation in more details in Section VI-B.

We also develop another interpretation as to the role of feed-
back, which leads us to make an intimate connection to other in-
teresting problems in network information theory. We will dis-
cuss this connection later in Section VI-C.

C. Optimality of the Achievable Scheme for the Deterministic
IC

Now a natural question arises: is the scheme optimal? In this
section, using the resource hole interpretation, we provide an
intuitive explanation of the optimality. Later in Section V, we
will provide a rigorous proof.

From W to V Curve: Fig. 6 shows (i) the symmetric feed-
back rate (10), (11) of the achievable scheme (representing the
“V” curve); (ii) the nonfeedback capacity [22] (representing the
“W” curve). Using the resource hole interpretation, we will pro-
vide intuition as to how we can go from the W curve to the V
curve with feedback.

Observe that the total number of resource levels and transmis-
sion cost depend on . Specifically, suppose that the two
senders employ the same transmission strategy to achieve the
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symmetric rate: using private and common levels. We then
get

of resource levels at each receiver

transmission cost (12)

Here notice that using a private level costs 1 level, while using
a common level costs 2 levels. Now observe that for fixed , as

grows: for , transmission cost increases; for
, the number of resource levels increases. Since all the

resource levels are fully utilized with feedback, this observation
implies that with feedback the total number of transmission bits
must decrease when (inversely proportional to trans-
mission cost) and must increase when (proportional to the
number of resource levels). This is reflected in the V curve. In
contrast, in the nonfeedback case, for some range of , resource
levels are not fully utilized, as shown in the example of
Fig. 5(a). This is reflected in the W curve.

Why We Cannot Go Beyond the V Curve: While feedback
maximizes resource utilization to fill up all of the resource holes,
it cannot reduce transmission costs. To see this, consider the ex-
ample in Fig. 5(b). Observe that even with feedback, a common
bit still has to consume two levels at the two receivers. For ex-
ample, the common bit needs to occupy the top level at re-
ceiver 1 in time 1; and the top level at receiver 2 in time 2. In
time 1, while is received cleanly at receiver 1, it interferes
with the private bit . In order to refine , receiver 2 needs to
get cleanly and therefore needs to reserve one resource level
for . Thus, in order not to interfere with the private bit , the
common bit needs to consume a total of the two resource
levels at the two receivers. As mentioned earlier, assuming that
transmission cost is not reduced, a total number of transmission
bits is reflected in the V curve. As a result, we cannot go be-
yond the “V” curve with feedback, showing the optimality of
the achievable scheme. Later in Section V, we will prove this
rigorously.

Remark 3 (Reminiscent of Shannon’s Comment in [23]): The
fact that feedback cannot reduce transmission costs reminds us
of Shannon’s closing comment in [23]: “We may have knowl-
edge of the past and cannot control it; we may control the fu-
ture but have no knowledge of it.” This statement implies that
feedback cannot control the past although it enables us to know
the past; so this coincides with our finding that feedback cannot
reduce transmission costs, as the costs already occurred in the
past.

D. An Achievable Scheme for the Gaussian IC

Let us go back to the Gaussian channel. We will translate the
deterministic IC scheme to the Gaussian IC. Let us first consider
the strong interference regime.

Strong Interference Regime : The structure
of the transmitted signals in Fig. 4 shed some light on a good
scheme for the Gaussian channel. Observe that in the second
stage, each transmitter sends the other user’s information sent
in the first stage. This reminds us of the Alamouti scheme [8].
The beauty of the Alamouti scheme is that received signals can
be designed to be orthogonal during two time slots, although the
signals in the first time slot are sent without any coding. This was

exploited and pointed out in distributed space-time codes [24].
With the Alamouti scheme, transmitters are able to encode their
messages so that received signals are orthogonal. Orthogonality
between the two different signals guarantees complete removal
of the interfering signal.

In accordance with the deterministic IC example, the scheme
uses two stages (or blocks). In the first stage, transmitters 1 and
2 send codewords and with rates and , respec-
tively. In the second stage, using feedback, transmitters 1 and 2
decode and , respectively. This can be decoded if

(13)

We are now ready to apply the Alamouti scheme. Transmitters 1
and 2 send and , respectively. Receiver 1 can then
gather the two received signals: for

(14)

To extract , it multiplies the row vector orthogonal to the
vector associated with and therefore we get:

(15)

The codeword can be decoded if

(16)

Similar operations are done at receiver 2. Since (16) is implied
by (13), we get the desired result: the left term in (6).

Weak Interference Regime : Unlike the
strong interference regime, in the weak interference regime,
there are two types of information: common and private infor-
mation. A natural idea is to apply the Alamouti scheme only for
common information. It was shown in [25] that this scheme can
approximate the symmetric capacity to within bits/s/Hz.
However, the scheme can be improved to reduce the gap fur-
ther. Unlike the deterministic IC, in the Gaussian IC, private
signals have some effects, i.e., these private signals cannot
be completely ignored. Notice that the scheme includes de-
code-and-forward operation at the transmitters after receiving
the feedback. And so when each transmitter decodes the other
user’s common message while treating the other user’s private
signals as noise, private signals can incur performance loss.

This can be avoided by instead performing amplify-and-for-
ward: with feedback, the transmitters get the interference plus
noise and then forward it subject to the power constraints. This
transmission allows each receiver to refine its corrupted signal
sent in the previous time, without causing significant interfer-
ence.2 Importantly, notice that this scheme does not require mes-
sage-splitting. Even without splitting messages, we can refine
the corrupted signals (see Appendix A to understand this better).
Therefore, there is no loss due to private signals.

Specifically, the scheme uses two stages. In the first stage,
each transmitter sends codeword with rate . In the

2In Appendix A, we provide intuition behind this scheme.
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second stage, with feedback transmitter 1 gets the interference
plus noise:

(17)

Now the complex conjugate technique based on the Alam-
outi scheme is applied to make and well separable.

Transmitters 1 and 2 send and , respectively,

where is a normalization factor to meet the power
constraint. Under Gaussian input distribution, we can compute
the rate under MMSE demodulation: .
Straightforward calculations give the desired result: the
right-hand-side term in (6). See Appendix A for detailed com-
putations.

Remark 4: As mentioned earlier, unlike the decode-and-for-
ward scheme, the amplify-and-forward scheme does not require
message-splitting, thereby removing the effect of private sig-
nals. This improves the performance to reduce the gap further.

E. An Outer Bound

The symmetric rate upper bound is implied by the outer
bound for the capacity region; we defer the proof to Theorem 3
in Section IV-B.

F. One-Bit Gap to the Symmetric Capacity

Using the symmetric rate of (6) and the outer bound of (7), we
get the equation at the bottom of the page. Step (a) follows from

choosing the trivial maximum value of the outer bound (7) and
choosing a minimum value (the second term) of the lower bound
(6). Note that the first and second terms in (7) are maximized
when and , respectively. Step (b) follows from

; and
follows from and .

Fig. 8 shows a numerical result for the gap between the inner
and outer bounds. Notice that the gap is upper-bounded by ex-
actly one bit. The worst-case gap occurs when and
these values go to infinity. Also note that in the strong inter-
ference regime, the gap approaches 0 with the increase of
and , while in the weak interference regime, the gap does
not vanish. For example, when , the gap is around 0.5
bits.

Remark 5 (Why does a 1-bit gap occur?): Observe in Figs. 7
and 15 that the transmitted signals of the two senders are un-
correlated in our scheme. The scheme completely loses power
gain (also called beamforming gain). On the other hand, when
deriving the outer bound of (7), we allow for arbitrary correla-
tion between the transmitters. Thus, the 1-bit gap is based on the
outer bound. In any scheme, the correlation is in-between and
therefore one can expect that the actual gap to the capacity is
less than 1 bit.

Beamforming gain is important only when and are
quite close, i.e., . This is because when , the in-
terference channel is equivalent to the multiple access channel
where the Ozarow scheme [6] and the Kramer scheme [16] (that
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Fig. 7. Alamouti-based achievable scheme for the Gaussian IC: strong inter-
ference regime.

Fig. 8. Gap between our inner and upper bounds. The gap is upper-bounded
by exactly one bit. The worst-case gap occurs when � and these
values go to infinity. In the strong interference regime, the gap vanishes with
the increase of and , while in the weak interference regime, the gap
does not, e.g., the gap is around 0.5 bits for � � .

capture beamforming gain) are optimal. In fact, the capacity the-
orem in [17] shows that the Kramer scheme is optimal for one
specific case of , although it is arbi-
trarily far from optimality for the other cases. This observation
implies that our proposed scheme can be improved further.

IV. CAPACITY REGION TO WITHIN 2 BITS

A. Achievable Rate Region

We have developed an achievable scheme meant for the
symmetric rate and provided a resource hole interpretation. To
achieve the capacity region, we find that while this interpreta-
tion can also be useful, the two-staged scheme is not enough.
A new achievable scheme needs to be developed for the region
characterization.

To see this, let us consider a deterministic IC example in
Fig. 9 where an infinite number of stages need to be employed
to achieve a corner point of (2,1) with feedback. Observe that
to guarantee , transmitter 1 needs to send 2 bits every

Fig. 9. Deterministic IC example where an infinite number of stages need to be
employed to achieve the rate pair of (2,1) with feedback. This example motivates
us to use (1) block Markov encoding; and (2) Han-Kobayashi message splitting.

time slot. Once transmitter 1 sends , transmitter 2 cannot
use its top level since the transmission causes interference to re-
ceiver 1. It can use only the bottom level to send information.
This transmission however suffers from interference: receiver 2
gets the interfered signal . We will show that this cor-
rupted bit can be refined with feedback. In time 2, transmitter 2
can decode with feedback. In an effort to achieve the rate pair
of (2,1), transmitter 1 sends and transmitter 2 sends
on the bottom level. Now apply the same idea used in the sym-
metric case: transmitter 2 sends the other user’s information
on the top level. This transmission allows receiver 2 to refine
the corrupted signal without causing interference to receiver
1, since receiver 1 already had as side information. Notice
that during the two time slots, receiver 1 can decode 4 bits (2
bits/time), while receiver 2 can decode 1 bits (0.5 bits/time).
The point (2,1) is not achieved yet due to unavoidable loss oc-
curred in time 1. This loss, however, can be amortized by iter-
ating the same operation. As this example shows, the previous
two-staged scheme needs to be modified so as to incorporate an
infinite number of stages.

Let us apply this idea to the Gaussian channel. The use of
an infinite number of stages motivates the need for employing
block Markov encoding [10], [11]. Similar to the symmetric
case, we can now think of two possible schemes: (1) decode-
and-forward (with message-splitting); and (2) amplify-and-for-
ward (without message-splitting). As pointed out in Remark 4,
in the Gaussian channel, private signals cannot be completely
ignored, thereby incurring performance loss, thus the amplify-
and-forward scheme without message-splitting has better per-
formance. However, it requires tedious computations to com-
pute the rate region, so we focus on the decode-and-forward
scheme, although it induces a larger gap. As for a decoding op-
eration, we employ backward decoding [12].

Here is the outline of our scheme. We employ block Markov
encoding with a total size of blocks. In block 1, each trans-
mitter splits its own message into common and private parts and
then sends a codeword superimposing the common and private
messages. For power splitting, we adapt the idea of the simpli-
fied Han-Kobayashi scheme [9] where the private power is set
such that the private signal is seen below the noise level at the
other receiver. In block 2, with feedback, each transmitter de-
codes the other user’s common message (sent in block 1) while
treating the other user’s private signal as noise. Two common
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messages are then available at the transmitter: (1) its own mes-
sage; and (2) the other user’s message decoded with the help
of feedback. Conditioned on these two common messages, each
transmitter generates new common and private messages. It then
sends the corresponding codeword. Each transmitter repeats this
procedure until block . In the last block , to facilitate
backward decoding, each transmitter sends the predetermined
common message and a new private message. Each receiver
waits until a total of blocks have been received and then per-
forms backward decoding. We will show that this scheme en-
ables us to obtain an achievable rate region that approximates
the capacity region.

Theorem 2: The feedback capacity region includes the set
of such that for some

(18)

(19)

(20)

(21)

(22)

(23)

Proof: Our achievable scheme is generic, not limited to
the Gaussian IC. We therefore characterize an achievable rate
region for discrete memoryless ICs and then choose an appro-
priate joint distribution to obtain the desired result. In fact, this
generic scheme can also be applied to El Gamal–Costa deter-
ministic IC (to be described in Section V).

Lemma 1: The feedback capacity region of the two-user dis-
crete memoryless IC includes the set of such that

(24)

(25)

(26)

(27)

(28)

(29)

over all joint distributions
.

Proof: See Appendix B.

Now we will choose the following Gaussian input distribution
to complete the proof:

(30)

where and indicate the powers al-
located to the common and private message of transmitter , re-
spectively; and ’s are independent. By symmetry,
it suffices to prove (18), (19) and (22).

To prove (18), consider
. Note

(31)

As mentioned earlier, for power splitting, we adapt the idea of
the simplified Han-Kobayashi scheme [9]. We set private power
such that the private signal appears below the noise level at the
other receiver. This idea mimics that of the deterministic IC ex-
ample where the private bit is below the noise level so that it is
invisible. The remaining power is assigned to the common mes-
sage. Specifically, we set:

(32)

This choice gives

(33)

which proves (18). With the same power setting, we can com-
pute

(34)

(35)

This proves (19). Last, by (33) and (35), we prove (22).

Remark 6 (Three Types of Inequalities): In the nonfeedback
case, it is shown in [9] that an approximate capacity region is
characterized by five types of inequalities including the bounds
for and . In contrast, in the feedback case,
our achievable rate region is described by only three types of in-
equalities.3 In Section VI-B, we will provide qualitative insights
as to why the bound is missing with feedback.

Remark 7 (Connection to Related Work [26]): Our achiev-
able scheme is essentially the same as the scheme introduced
by Tuninetti [26] in a sense that the three techniques (mes-
sage-splitting, block Markov encoding and backward decoding)
are jointly employed. Although the author in [26] considers
a different context (the conferencing encoder problem), Prab-
hakaran and Viswanath [21] have made an interesting connec-
tion between the feedback problem and the conferencing en-
coder problem. See [21] for details. Despite this close connec-
tion, however, the scheme in [26] uses five auxiliary random
variables and thus requires further optimization. On the other
hand, we obtain an explicit rate region by reducing those five

3It is still unknown whether or not the exact feedback capacity region includes
only three types of inequalities.
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auxiliary random variables into three and then choosing a joint
input distribution appropriately.

B. An Outer Bound Region

Theorem 3: The feedback capacity region is included by the
set of such that for some

(36)

(37)

(38)

(39)

(40)

(41)

Proof: By symmetry, it suffices to prove the bounds of (36),
(37) and (40). The bounds of (36) and (37) are nothing but cutset
bounds. Hence, proving the noncutset bound of (40) is the main
focus of this proof. Also recall that this noncutset bound is used
to obtain the outer bound of (7) for the symmetric capacity in
Theorem 1. We go through the proof of (36) and (37). We then
focus on the proof of (40), where we will also provide insights
as to the proof idea.

Proof of (36): Starting with Fano’s inequality, we get:

where follows from the fact that conditioning reduces
entropy. Assume that and have covariance , i.e.,

. Then, we get

If is achievable, then as . Therefore,
we get the desired bound

Proof of (37): Starting with Fano’s inequality, we get

where (a) follows from the fact that is independent from
and

(see Claim 1); follows from the fact
that is a function of ; (c) follows from the fact
that is a function of ; follows from the fact that
conditioning reduces entropy. Hence, we get the desired result

where (a) follows from the fact that

(42)

(43)

The inequality of (43) is obtained as follows. Given ,
the variance of is upper-bounded by

where

By further calculation, we can get (43).

Claim 1: .
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Proof:

where (a) follows from the fact that is a function of
and is a function of (by Claim 2);

(b) follows from the fact that
and ; (c) follows from the memoryless
property of the channel and the independence assumption of

and .

Claim 2: For all is a function of and
is a function of .

Proof: By symmetry, it is enough to prove only one. No-
tice that is a function of and is a function
of ). Hence, is a function of .
Iterating the same argument, we conclude that is a function
of . Since depends only on , we com-
plete the proof.

Proof of (40): The proof idea is based on the genie-aided
argument [14]. However, finding an appropriate genie is not
simple since there are many possible combinations of the
random variables. The deterministic IC example in Fig. 5(b)
gives insights into this. Note that providing and
to receiver 1 does not increase the rate , i.e., these are useless
gifts. This motivates us to choose the genie as .
However, in the Gaussian channel, providing is equiva-
lent to providing . This is of course too much information,
inducing a loose upper bound. Inspired by the technique in [9],
we instead consider a noisy version of

(44)

The intuition behind this is that we cut off at the noise
level. Indeed this matches the intuition from the deterministic
IC. This genie together with turns out to lead to the desired
tight upper bound.

Starting with Fano’s inequality, we get

where (a) follows from the fact that adding information in-
creases mutual information (providing a genie); (b) follows
from the independence of and ; follows from

(see Claim 1);
follows from (see Claim 3); (e)

follows from the fact that is a function of (see
Claim 2); (f) follows from the fact that conditioning reduces
entropy.

Hence, we get

Note that

(45)

From (43) and (45), we get the desired upper bound.

Claim 3: .
Proof:

where (a) follows from the fact that is a function of
and is a function of ; (b) follows

from the fact that is a function of and
is a function of ; (c) follows from the fact that

is a function of and is a function of
(by Claim 2).

C. 2-Bit Gap to the Capacity Region

Theorem 4: The gap between the inner and outer bound re-
gions (given in Theorems 2 and 3) is at most 2 bits/s/Hz/user

(46)

Proof: The proof is immediate by Theorem 2 and 3. We
define to be the difference between (36), (37) and

(18), (19) . Similarly, we define and . Straightfor-
ward computation gives
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Similarly, we get and . This completes the
proof.

Remark 8 (Why does a 2-bit gap occur?): The achievable
scheme for the capacity region involves message-splitting. As
mentioned in Remark 4, message-splitting incurs some loss in
the process of decoding the common message while treating pri-
vate signals as noise. Accounting for the effect of private sig-
nals, the effective noise power becomes double, thus incurring
a 1-bit gap. The other 1-bit gap comes from a relay structure of
the feedback IC. To see this, consider an extreme case where
user 2’s rate is completely ignored. In this case, we can view
the communication pair as a single
relay which only helps the commu-
nication pair. It has been shown in [7] that for this single relay
Gaussian channel, the worst-case gap between the best known
inner bound [10] and the outer bound is 1 bit/s/Hz. This incurs
the other 1-bit gap. This 2-bit gap is based on the outer bound
region in Theorem 3, which allows for arbitrary correlation be-
tween the transmitters. So, one can expect that the actual gap to
the capacity region is less than 2 bits.

Remark 9 (Reducing the gap): As discussed, the amplify-
and-forward scheme has the potential to reduce the gap. How-
ever, due to the inherent relay structure, reducing the gap to less
than one bit is challenging. As long as no significant progress
is made on the single relay Gaussian channel, one cannot easily
reduce the gap further.

Remark 10 (Comparison with the two-staged scheme): Spe-
cializing to the symmetric rate, it can be shown that the infi-
nite-staged scheme in Theorem 2 can achieve the symmetric
capacity to within 1 bit. Coincidentally, this gap matches the
gap result of the two-staged scheme in Theorem 1. However,
the 1-bit gap comes from different reasons. In the infinite-staged
scheme, the 1-bit gap comes from message-splitting. In contrast,
in the two-staged scheme, the gap is due to lack of beamforming
gain. One needs to come up with a new technique that combines
these two schemes to reduce the gap to less than one bit.

V. FEEDBACK CAPACITY REGION OF THE

EL GAMAL–COSTA MODEL

We have so far made use of the linear deterministic IC to pro-
vide insights for approximating the feedback capacity region of
the Gaussian IC. The linear deterministic IC is a special case of
El Gamal–Costa deterministic IC [14]. In this section, we estab-
lish the exact feedback capacity region for this general class of
deterministic ICs.

Fig. 10(a) illustrates El Gamal–Costa deterministic IC with
feedback. The key condition of this model is given by

(47)

where is a part of , visible to the other receiver.
This implies that in any working system where and are
decodable at receivers 1 and 2, respectively, and are com-
pletely determined at receivers 2 and 1, respectively, i.e., these
are common signals.

Fig. 10. El Gamal–Costa deterministic IC with feedback.

Theorem 5: The feedback capacity region of El Gamal–Costa
deterministic IC is the set of such that

for some joint distribution .
Here is a discrete random variable which takes on values in
the set where .

Proof: Achievability proof is straightforward by
Lemma 1. Set . Fix a joint distribution

. We now write
a joint distribution in two different ways:

where indicates the Kronecker delta function. This gives

Now we can generate a joint distribution .
Hence, we complete the achievability proof. See Appendix C
for converse proof.

As a by-product, we obtain the feedback capacity region of
the linear deterministic IC.

Corollary 1: The feedback capacity region of the linear de-
terministic IC is the set of such that

Proof: The proof is straightforward by Theorem 5. The
capacity region is achieved when is constant; and and
are independent and uniformly distributed.
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Fig. 11. Feedback capacity region of the linear deterministic IC. This shows that feedback gain could be significant in terms of the capacity region, even when
there is no improvement due to feedback in terms of the symmetric capacity. (a) � � � , (b) � � , (c) � � , (d) � � , (e) � � �, (f) � � �.

VI. ROLE OF FEEDBACK

Recall in Fig. 1 that feedback gain is bounded for
in terms of the symmetric rate. So a natural question that arises
is to ask whether feedback gain is marginal also from a ca-
pacity-region perspective in this parameter range. With the help
of Corollary 1, we show that feedback can provide multiplica-
tive gain even in this regime. We next revisit the resource hole
interpretation in Remark 2. With this interpretation, we address
another interesting question posed in Section IV: why is the

bound missing with feedback?

A. Feedback Gain From a Capacity Region Perspective

Fig. 11 shows the feedback capacity region of the linear de-
terministic IC under the symmetric channel setting:

and . Interestingly, while for ,
the symmetric capacity does not improve with feedback, the
feedback capacity region is enlarged even for this regime. This
implies that feedback gain could be significant in terms of the
capacity region, even when there is no improvement with feed-
back in terms of the symmetric capacity.

B. Resource Hole Interpretation

Recall the role of feedback in Remark 2: feedback maximizes
resource utilization by filling up all the resource holes under-
utilized in the nonfeedback case. Using this interpretation, we
can provide an intuitive explanation why bound is
missing with feedback.

To see this, consider an example where bound is
active in the nonfeedback case. Fig. 12(a) shows an example
where a corner point of (3,0) can be achieved. Observe that at
the two receivers, the five signal levels are consumed out of the
six signal levels. There is one resource hole. This resource hole
is closely related to the bound, which will be shown
in Fig. 12(b).

Suppose the bound is active. This implies that if
is reduced by 1 bit, then should be increased by 2 bits.

Suppose that in order to decrease by 1 bit, transmitter 1

sends no information on the second signal level. We then see
the two empty signal levels at the two receivers (marked as the
gray balls): one at the second level at receiver 1; the other at the
bottom level at receiver 2. Transmitter 2 can now send 1 bit on
the bottom level to increase by 1 bit (marked as the thick red
line). Also it allows transmitter 2 to send one more bit on the
top level. This implies that the top level at receiver 2 must be a
resource hole in the previous case. This observation combined
with the following observation can give an answer to the ques-
tion.

Fig. 12(c) shows the feedback role that it fills up all the re-
source holes to maximize resource utilization. We employ the
same feedback strategy used in Fig. 9 to obtain the result in
Fig. 12(c). Notice that with feedback, all of the resource holes
are filled up except a hole in the first stage, which can be amor-
tized by employing an infinite number of stages. Therefore, we
can now see why the bound is missing with feedback.

C. Side Information Interpretation

By carefully looking at the feedback scheme in Fig. 12(c), we
develop another interpretation as to the role of feedback. Recall
that in the nonfeedback case that achieves the (3,0) corner point,
the broadcast nature of the wireless medium precludes trans-
mitter 2 from using any levels, as transmitter 1 is already using
all of the levels. In contrast, if feedback is allowed, transmitter 2
can now use some levels to improve the nonfeedback rate. Sup-
pose that transmitters 1 and 2 send and through
their signal levels, respectively. Receivers 1 and 2 then get the
bits and , respectively. With feedback,
in the second stage, the bit —received cleanly at the desired
receiver while interfering with at the other receiver—can be
exploited as side information to increase the nonfeedback ca-
pacity. For example, with feedback transmitter 2 decodes the
other user’s bit and forwards it through the top level. This
transmission allows receiver 2 to refine the corrupted bit from

. This seems to cause interference to receiver 1. But this
does not cause interference since receiver 1 already had the side
information of from the previous broadcasting. We exploited
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Fig. 12. Relationship between a resource hole and �� �� bound. The �� �� bound is missing with feedback. (a) A resource hole vs. �� �� bound,
(b) Whenever �� � � is active, there is a resource hole, (c) Feedback fills up all resource holes to maximize resource utilization.

the side information with the help of feedback to refine the cor-
rupted bit without causing interference. With this interpretation,
we can now make a connection between our feedback problem
and a variety of other problems in network information theory
[27]–[32].

Connection to Other Problems: In 2000, Alshwede-
Cai-Li-Yeung [27] invented the breakthrough concept of net-
work coding and came up with the butterfly example where
network coding is used to exploit side information. This result
shows that exploiting side information plays an important role
in decoding the desired signals from the network-coded signals
(equations). This network coding idea combined with the idea
of exploiting side information was shown to be powerful in
wireless networks as well [28], [29]. Specifically, in the context
of two-way relay channels, it was shown that the broadcast
nature of wireless medium can be exploited to generate side
information, and this generated side information plays a crucial
role in increasing capacity. Subsequently, the index coding
problem was introduced by Bar-Yossef, et al. [30] where the
significant impact of side information was directly addressed.

In our work, as a consequence of addressing the two-user
Gaussian IC with feedback, we develop an interpretation as to
the role of feedback: feedback enables receivers to exploit their
received signals as side information, thus improving the non-
feedback capacity significantly. With the help of this interpre-
tation, we find that all of the above problems can be intimately
linked through the common idea of exploiting side information.

Very recently, the authors in [31] and [32] came up with in-
teresting results on feedback capacity. Georgiadis and Tassi-
ulas [31] showed that feedback can significantly increase the
capacity of the broadcast erasure channel. Maddah-Ali and Tse
[32] showed that channel state feedback, although it is out-
dated, can increase the nonfeedback MIMO broadcast channel

capacity. We find that interestingly the role of feedback in these
channels is the same as that in our problem: feedback enables
receivers to exploit their received signals as side information to
increase capacity.

VII. DISCUSSION

A. Comparison to Related Work [16]–[18]

For the symmetric Gaussian IC, Kramer [16], [17] developed
a feedback strategy based on the Schalkwijk–Kailath scheme
[33] and the Ozarow scheme [6]. Due to lack of closed-form
rate-formula for the scheme, we cannot see how Kramer’s
scheme is close to our symmetric rate in Theorem 1. To see this,
we compute the generalized degrees-of-freedom of Kramer’s
scheme.

Lemma 2: The generalized degrees-of-freedom of Kramer’s
scheme is given by

(48)

Proof: See Appendix D.

Note in Fig. 13 that Kramer’s scheme can be arbitrarily far
from optimality, i.e., it has an unbounded gap to the symmetric
capacity for all values of except . We also plot the
symmetric rate for finite channel parameters as shown in Fig. 14.
Notice that Kramer’s scheme is very close to the outer bounds
only when is similar to . In fact, the capacity theorem
in [17] says that they match each other at .
However, if is quite different from , it becomes far
away from the outer bounds. Also note that our new bound is
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Fig. 13. Generalized degrees-of-freedom comparison.

Fig. 14. Symmetric rate comparison.

Fig. 15. Achievable scheme in the symmetric Gaussian IC: Alamouti-based
amplify-and-forward scheme.

much tighter than Gastpar-Kramer’s outer bounds in [16] and
[18].

B. Closing the Gap

Less than 1-bit gap to the symmetric capacity: Fig. 14 im-
plies that our achievable scheme can be improved especially
when where beamforming gain plays a significant role.
As mentioned earlier, our two-staged scheme completely loses
beamforming gain. In contrast, Kramer’s scheme captures the

beamforming gain. As discussed in Remark 10, one may de-
velop a unified scheme that beats both schemes for all channel
parameters to reduce the worst-case gap.

Less than 2-bit gap to the capacity region: As mentioned in
Remark 8, a 2-bit gap to the feedback capacity region can be
improved up to a 1-bit gap. The idea is to remove message
splitting. Recall that the Alamouti-based amplify-and-forward
scheme in Theorem 1 improves the performance by removing
message splitting. Translating the same idea to the characteri-
zation of the capacity region is needed for the improvement. A
noisy binary expansion model in Fig. 16 may give insights into
this.

C. Extension to Gaussian MIMO ICs With Feedback

The feedback capacity result for El Gamal–Costa model can
be extended to Teletar-Tse IC [15] where in Fig. 10, ’s are de-
terministic functions satisfying El Gamal–Costa condition (47)
while ’s follow arbitrary probability distributions. Once ex-
tended, one can infer an approximate feedback capacity region
of the two-user Gaussian MIMO IC, as [15] did in the nonfeed-
back case.

VIII. CONCLUSION

We have established the feedback capacity region to within
2 bits/s/Hz/user and the symmetric capacity to within 1
bit/s/Hz/user universally for the two-user Gaussian IC with
feedback. The Alamouti scheme inspires our two-staged
achievable scheme meant for the symmetric rate. For an achiev-
able rate region, we have employed block Markov encoding to
incorporate an infinite number of stages. A new outer bound
was derived to provide an approximate characterization of the
capacity region. As a side-generalization, we have character-
ized the exact feedback capacity region of El Gamal–Costa
deterministic IC.

An interesting consequence of our result is that feedback
could provide multiplicative gain in many-to-many channels
unlike point-to-point, many-to-one, or one-to-many channels.
We develop two interpretations as to how feedback can provide
significant gain. One interpretation is that feedback maxi-
mizes resource utilization by filling up all the resource holes
under-utilized in the nonfeedback case. The other interpretation
is that feedback can exploit received signals as side information
to increase capacity. The latter interpretation leads us to make
a connection to other problems.

APPENDIX A
ACHIEVABLE SCHEME FOR THE SYMMETRIC RATE OF (6)

The scheme uses two stages (blocks). In the first stage, each
transmitter sends codeword with rate . In the second
stage, with feedback transmitter 1 gets the interference plus
noise: . Now the complex conjugate
technique based on Alamouti’s scheme is applied to make

and well separable. Transmitters 1 and 2 send and

, respectively, where is a normalization
factor to meet the power constraint.
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Fig. 16. Noisy binary expansion model. Noise is assumed to be a � � random variable i.i.d. across time slots (memoryless) and levels. This induces the
same capacity as that of the deterministic channel, so it matches the Gaussian channel capacity in the high regime. (a) A noisy binary-expansion model, (b)
Interpretation of Schalkwijk–Kailath scheme.

Receiver 1 can then gather the two received signals: for
,

Under Gaussian input distribution, we can compute the rate
under MMSE demodulation

Straightforward calculations give

Therefore, we get the desired result: the right term in (6).

(49)

Intuition Behind the Proposed Scheme: To provide intu-
ition behind our proposed scheme, we introduce a new model
that we call a noisy binary expansion model, illustrated in
Fig. 16(a). In the nonfeedback Gaussian channel, due to the
absence of noise information at transmitter, transmitter has no
chance to refine the corrupted received signal. On the other
hand, if feedback is allowed, noise can be learned. Sending
noise information (innovation) enables to refine the corrupted
signal: the Schalkwijk–Kailath scheme [33]. However, the
linear deterministic model cannot capture interplay between
noise and signal. To capture this issue, we slightly modify the
deterministic model so as to reflect the effect of noise. In this
model, we assume that noise is a random variable i.i.d.
across time slots (memoryless) and levels. This induces the
same capacity as that of the deterministic channel, so it matches
the Gaussian channel capacity in the high regime.

Fig. 17. Intuition behind the Alamouti-based amplify-and-forward scheme.

As a stepping stone towards the interpretation of the proposed
scheme, let us first understand Schalkwijk–Kailath scheme [33]
using this model. Fig. 16(b) illustrates an example where 2 bits/
time can be sent with feedback. In time 1, transmitter sends in-
dependent bit streams . Receiver then gets

where indicates an i.i.d.
random variable of noise level at time . With feed-

back, transmitter can get noise information
by subtracting the transmitted signals (sent previously) from the
received feedback. This process corresponds to an MMSE op-
eration in Schalkwijk–Kailath scheme: computing innovation.
Transmitter scales the noise information to shift it by 2 levels
and then sends the shifted version. The shifting operation cor-
responds to a scaling operation in Schalkwijk–Kailath scheme.
Receiver can now recover corrupted by in
the previous slot. We repeat this procedure.

The viewpoint based on the binary expansion model can pro-
vide intuition behind our proposed scheme (see Fig. 17). In
the first stage, each transmitter sends three independent bits:
two bits above the noise level; one bit below the noise level.
Transmitters 1 and 2 send and , respec-
tively. Receiver 1 then gets: (1) the clean signal ; (2) the in-
terfered signal ; and (3) the interfered-and-noised signal

. Similarly for receiver 2. In the second stage,
with feedback, each transmitter can get interference plus noise
by subtracting the transmitted signals from the feedback. Trans-
mitters 1 and 2 get and , respec-
tively. Next, each transmitter scales the subtracted signal sub-
ject to the power constraint and then forwards the scaled signal.
Transmitters 1 and 2 send and ,
respectively. Each receiver can then gather the two received sig-
nals to decode 3 bits. From this figure, one can see that it is not
needed to send additional information on top of innovation in the
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second stage. Therefore, this scheme matches Alamouti-based
amplify-and-forward scheme in the Gaussian channel.

APPENDIX B
PROOF OF LEMMA 1

Codebook Generation: Fix a joint distribution
. First

generate independent codewords
, according

to . For each codeword , encoder 1
generates independent codewords

, according to . Subse-
quently, for each pair of codewords ,
generate independent codewords

, according to .
Similarly, for each codeword , encoder 2

generates independent codewords
, according to . For
, generate independent code-

words , according to
.

Notation: Notations are independently used only for this sec-
tion. The index indicates the common message of user 1 in-
stead of user index. The index is used for both purposes: (1) in-
dicating the previous common message of user 1; (2) indicating
time index. It could be easily differentiated from contexts.

Encoding and Decoding: We employ block Markov en-
coding with a total size of blocks. Focus on the th block
transmission. With feedback , transmitter 1 tries to
decode the message (sent from transmitter 2 in the

th block). In other words, we find the unique such that

where indicates the set of jointly typical sequences.
Note that transmitter 1 already knows its own messages

. We assume that is correctly
decoded from the previous block . The decoding error
occurs if one of two events happens: (1) there is no typical
sequence; (2) there is another such that it is a typical se-
quence. By AEP, the first error probability becomes negligible
as goes to infinity. By [34], the second error probability
becomes arbitrarily small (as goes to infinity) if

(50)

Based on , transmitter 1 generates a new
common message and a private message . It then

sends . Similarly transmitter

2 decodes , generates and then sends

.

Each receiver waits until total blocks have been received
and then does backward decoding. Notice that a block index
starts from the last and ends to 1. For block , receiver 1 finds
the unique triple such that

where we assumed that a pair of messages was suc-
cessively decoded from block . Similarly receiver 2 de-
codes .

Error Probability: By symmetry, we consider the proba-
bility of error only for block and for a pair of transmitter 1 and
receiver 1. We assume that
was sent through block and block ; and there was
no backward decoding error from block to , i.e.,

are successfully decoded.
Define an event

By AEP, the first type of error becomes negligible. Hence, we
focus only on the second type of error. Using the union bound,
we get

(51)

From (50) and (51), we can say that the error probability can
be made arbitrarily small if

(52)

(53)
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Fourier-Motzkin Elimination: Applying Fourier-Motzkin
elimination, we easily obtain the desired inequalities. There are
several steps to remove , and , successively.
First substitute and to get

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

Categorize the above inequalities into the following three
groups: (1) group 1 not containing ; (2) group 2 containing
negative ; (3) group 3 containing positive . By adding
each inequality from groups 2 and 3, we remove . Rear-
ranging the inequalities with respect to , we get

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

Adding each inequality from groups 2 and 3, we remove
and finally obtain

(72)

(73)

(74)

APPENDIX C
CONVERSE PROOF OF THEOREM 5

For completeness, we provide the detailed proof, although
there are many overlaps with the proof in Theorem 3. The main
point of the converse is how to introduce an auxiliary random
variable which satisfies that given is conditionally
independent of . Claim 4 gives hint into this. It gives the
choice of .

First we consider the upper bound of an individual rate.

where (a) follows from Fano’s inequality and (b) follows from
the fact that entropy is nonnegative and conditioning reduces
entropy.

Now consider the second bound.

where (a) follows from the fact that is a function
of ; (b) follows from the fact that is a function
of ; (c) follows from the fact that is a function
of ; (d) follows from the fact that is a function
of is a function of , and conditioning
reduces entropy. Similarly we get the outer bound for .

The sum rate bound is given as follows:

where (a) follows from the fact that is a function of
and is a function of ; follows from

the fact that is a function of and conditioning reduces
entropy. Similarly, we get the other outer bound

Now let a time index be a random variable uniformly
distributed over the set and independent of

. We define

(75)

If is achievable, then as . By
Claim 4, an input joint distribution satisfies

. This establishes the converse.
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Claim 4: Given and are con-
ditionally independent.

Proof: The proof is based on the dependence-bal-
ance-bound technique in [35], [36]. For completeness we
describe details. First we show that , which
implies that and are independent given . Based on
this, we show that and are conditionally independent
given .

Consider

where (a) follows from ; (b) follows from the
chain rule; (c) follows from the chain rule and

; (d) follows from the fact that is a function of
and is a function of (see Claim 5); (e) fol-
lows from the fact that conditioning reduces entropy. Therefore,

, which shows the independence of and
given .

Notice that is a function of and is a
function of (see Claim 5). Hence, it follows easily
that

(76)

which proves the independence of and given .

Claim 5: For is a function of . Simi-
larly, is a function of .

Proof: By symmetry, it is enough to prove it only for .
Since the channel is deterministic (noiseless), is a function
of . In Fig. 10, we see that information of to the
first link pair must pass through . Also note that depends
on the past output sequences until (due to feedback delay).
Therefore, is a function of .

APPENDIX D
PROOF OF LEMMA 2

Let . Then, by [16, eq. (29)] and [17, eq. (77*)],
we get

(77)

where is the solution between 0 and 1 such that

Notice that for and for the high regime,
is a dominant term and . Hence, we get

. This gives .
For , the first and second dominant terms become

and , respectively. Also for this regime, .
Hence, we approximately get . This gives

. For , note that the first and

second dominant terms are and ; and is very
close to 1. So we get . This gives the de-
sired result in the last case.
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