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Abstract—The high repair cost of ��� ��Maximum Distance Sep-
arable (MDS) erasure codes has recently motivated a new class of
MDS codes, called Repair MDS codes, that can significantly reduce
repair bandwidth over conventional MDS codes. In this paper, we
describe ��� �� �� Exact-Repair MDS codes, which allow for any
failed node to be repaired exactly with access to � survivor nodes,
where � � � � �� �. We construct Exact-Repair MDS codes that
are optimal in repair bandwidth for the cases of: ��� ��� � ���
and � � �� � �1; ��� � � �. Our codes are deterministic and re-
quire a finite-field size of at most ���� ��. Our constructive codes
are based on interference alignment techniques.

Index Terms—Distributed storage, exact-repair MDS codes, in-
terference alignment, network codes.

I. INTRODUCTION

I N distributed storage systems, maximum distance separable
(MDS) erasure codes are well-known coding schemes that

can offer maximum reliability for a given storage overhead. For
an MDS code for storage, a source file of size bits is
divided equally into units (of size bits each), and these
data units are expanded into encoded units, and stored at
nodes. The code guarantees that a user or data collector (DC)
can reconstruct the source file by connecting to any arbitrary
nodes. In other words, any node failures can be tolerated
with a minimum storage cost of at each of nodes. While
MDS codes are optimal in terms of reliability versus storage
overhead, they come with a significant maintenance overhead
when it comes to repairing failed encoded nodes to restore the
MDS system-wide property. Specifically, consider failure of a
single encoded node and the cost needed to restore this node. It
can be shown that this repair incurs an aggregate cost of bits
of information from nodes. Since each encoded unit contains
only bits of information, this represents a -fold inefficiency
with respect to the repair bandwidth.
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1In this paper, we assume that all of the survivor systematic nodes participate
in the repair.

This challenge has motivated a new class of coding schemes,
called Regenerating Codes [1], [2], which target the informa-
tion-theoretic optimal tradeoff between storage cost and repair
bandwidth. Dimakis-Godfrey-Wu-Wainwright-Ramchandran
[1], [2] have translated the regenerating-codes problem into
a multicast network problem. Employing the network code
results in [3]–[5] that well address the multicast network, they
have shown that random network coding schemes achieve the
optimal repair bandwidth for a given storage cost. On one end
of this spectrum of Regenerating Codes are Minimum Storage
Regenerating (MSR) codes that can match the minimum storage
cost of MDS codes while also significantly reducing repair
bandwidth. As shown in [1], [2], the fundamental tradeoff
between bandwidth and storage depends on the number of
nodes that are connected to repair a failed node, simply called
the degee where . The optimal tradeoff is
characterized by

(1)

where and denote the optimal storage cost and repair
bandwidth, respectively for repairing a single failed node,
while retaining the MDS-code property for the user. Note
that this code requires the same minimal storage cost (of size

) as that of conventional MDS codes, while substantially
reducing repair bandwidth by a factor of (e.g., for

, there is a 5x bandwidth reduction).
This MSR code can be considered as a Repair MDS
code (to be specifically defined in Section II-A) that have
an MDS-code property; and can repair single-node
failures with minimum repair bandwidth given a repair-degree
of . In this paper, we assume that each repair link has the equal
bandwidth and its bandwidth is normalized to 1, making

. One can partition a whole file into smaller
chunks so that each has a size of .

While Repair MDS codes enjoy substantial benefits over con-
ventional MDS codes, they come with some limitations in con-
struction. Specifically, the achievable schemes in [1], [2] that
meet the optimal tradeoff bound of (1) restore failed nodes in a
functional manner only, using a random-network-coding based
framework. This means that the replacement nodes maintain the
MDS-code property (that any out of nodes can allow for the
data to be reconstructed) but do not exactly replicate the infor-
mation content of the failed nodes.

Mere functional repair can be limiting. First, in many applica-
tions of interest, there is a need to maintain the code in system-
atic form, i.e., where the user data in the form of information
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units are exactly stored at nodes and parity information (mix-
tures of information units) are stored at the remaining
nodes. Secondly, under functional repair, additional overhead
information needs to be exchanged for continually updating re-
pairing-and-decoding rules whenever a failure occurs. This can
significantly increase system overhead. A third problem is that
the random-network-coding based solution of [1] can require a
huge finite-field size, which can significantly increase the com-
putational complexity of encoding-and-decoding2. Lastly, func-
tional repair is undesirable in storage security applications in
the face of eavesdroppers. In this case, information leakage oc-
curs continually due to the dynamics of repairing-and-decoding
rules that can be potentially observed by eavesdroppers [6].

These drawbacks motivate the need for exact repair of failed
nodes. This leads to the following question: is there a price for
attaining the optimal tradeoff of (1) with the extra constraint
of exact repair: i.e., is there an overhead cost in terms of rate
needed? Unlike functional repair, this exact-repair problem can
be translated into a nonmulticast network problem (to be specif-
ically shown in Section II-B) where the cutset bound might not
be achievable [7] and linear network codes might not suffice
[8]. Due to this nature, the problem has been open in general.
The work in [9] sheds some light on this exact-repair problem:
specifically, it was shown that under scalar linear codes3, the op-
timal tradeoff cannot be achieved when . For large

, this case boils down to , i.e., redundancy less than
two. Now what about for ? This paper resolves this open
problem and shows that it is indeed possible to attain the op-
timal tradeoff of (1) for the case of and ,
while also guaranteeing exact repair. Here, we assume that all
of the survivor systematic nodes participate in the repair. Fur-
thermore, we show that for the special case of , there is
no price for exact repair, regardless of the value of . The inter-
esting special case in this class is the (5, 3) code4, which is not
covered by the first case of .

Our achievable scheme builds on the concept of interference
alignment, which was introduced in the context of wireless com-
munication networks [11], [12]. The idea of interference align-
ment is to align multiple interference signals in a signal sub-
space whose dimension is smaller than the number of inter-
ferers. Specifically, consider the following setup where a de-
coder has to decode one desired signal which is linearly inter-
fered with by two separate undesired signals. How many linear
equations (relating to the number of channel uses) does the de-
coder need to recover its desired input signal? As the aggregate
signal dimension spanned by desired and undesired signals is
at most three, the decoder can naively recover its signal of in-
terest with access to three linearly independent equations in the
three unknown signals. However, as the decoder is interested in

2Recall that the regenerating-codes problem can be translated into a multicast
communication problem where random-network-coding-based schemes require
a huge field size especially for large networks. In storage problems, the field
size issue is further aggravated by the need to support a dynamically expanding
network size due to the need for continual repair.

3In scalar linear codes, symbols are not allowed to be split into arbitrarily
small sub-symbols as with vector linear codes. This vector linear code is equiv-
alent to having large block-lengths in the classical setting.

4Independently, Cullina-Dimakis-Ho in [10] found (5, 3) Exact-Repair MDS
codes defined over ���, based on a search algorithm.

only one of the three signals, it can decode its desired unknown
signal even if it has access to only two equations, provided the
two undesired signals are judiciously aligned in a 1-D subspace.
See [11]–[13] for details.

We will describe in the sequel how this concept relates inti-
mately to our repair problem. At a high level, the connection
comes from our repair problem involving recovery of a subset
(related to the subspace spanned by a failed node) of the overall
aggregate signal space (related to the entire user data dimen-
sion). There are, however, significant differences some benefi-
cial and some detrimental. On the positive side, while in the
wireless problem, the equations are provided by nature (in the
form of channel gain coefficients), in our repair problem, the co-
efficients of the equations are man-made choices, representing
a part of the overall design space. On the flip side, however, the
MDS requirement of our repair code and the multiple failure
configurations that need to be simultaneously addressed with
a single code design generate multiple interference alignment
constraints that need to be simultaneously satisfied. This is par-
ticularly acute for a large value of , as the number of possible
failure configurations increases with (which increases with ).
Finally, another difference comes from the finite-field constraint
of our repair problem.

We propose a common-eigenvector based constructive design
framework (to be explained in Section IV) that covers all pos-
sible failure configurations. Based on this framework, we de-
velop an interference alignment technique for exact repair. We
also propose another interference alignment scheme for a (5, 3)
code5, which in turn shows the optimality of the cutset bound
(1) for the case . Our coding schemes are deterministic
and require a field size of at most . This is in stark con-
trast to the random-network-coding based solutions [1].

II. PROBLEM STATEMENT

A. Definition of Repair MDS Codes Through Code-Design
Space Characterization

While conventional MDS erasure codes are completely char-
acterized by their encoding (generator) matrix, Repair MDS
codes need more. They require not only the MDS property (as
in the classical case), but have the additional repair constraints
corresponding to all single-node failure patterns. This makes
the code design problem considerably more challenging. We
discuss this here by defining Repair MDS codes through their
complete code-design space characterization. In the interests of
keeping the notation simple without sacrificing the conceptual
insights behind this characterization, we will consciously avoid
the formalism associated with a general setting, and instead use
illuminating examples to illustrate our results while reserving
the detailed formal proofs to the appendices.

Consider a simple example of a systematic
code in Fig. 1. Note that the degree indicates the

number of nodes that are connected to repair a failed node.
We introduce matrix notation for illustrative purpose. This
code has information units. Let and

be -dimensional information-unit vectors,

5The finite-field nature of the problem makes this challenging.
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Fig. 1. Definition of a Repair MDS code through the complete characterization
of the code design space using the example of a systematic ��� �� �� � ��� �� ��
code. This is illustrated for the case when systematic node 1 fails, and a unit
per-link repair-bandwidth cost is assumed. Let � � �� � � � � � � � and � �
�� � � � � � � � be �-dimensional information-unit vectors, where � denotes the
storage cost per node. Systematic node 1 and 2 store uncoded information in the
form of row vectors, i.e., � and � , respectively. Let � and � be �-by-�
encoding submatrices (i.e., �� 	� 
 corresponds to generator submatrices) for
parity node ��� � �� ��. A failed node is repaired through the specification
of �-dimensional projection vectors associated with each surviving node that
participates in the repair. In the example, � �� � �� �� �� are defined as the
projection vectors needed for repair of systematic node 1. A Repair MDS code
is thus defined as having two functional components that have to be designed
jointly: 1) the encoding (generator) matrix associated with the storage nodes;
and 2) the projection vectors needed for node repair. Note that in this example,
the repair code involves 4 encoding submatrices and 12 projection vectors (3
projection vectors for each of 4 possible failure configurations) that need to be
designed jointly.

where denotes storage cost and indicates a transpose.
Systematic node 1 and 2 store uncoded information in the form
of row vectors, i.e., and , respectively. Let and
be -by- encoding submatrices (i.e., corresponds to
generator submatrices) for parity node . For example,
parity node 1 stores information in the form of .
The encoding submatrices for systematic nodes are not explic-
itly defined, since those are trivially inferred.

A failed node is repaired through the specification of -di-
mensional projection vectors associated with each survivor node
that participates in the repair. As we assume a unit per-link re-
pair-bandwidth cost , each survivor node projects its
data into a scalar. In the example, are defined
as the projection vectors needed for repair of systematic node
1. A Repair MDS code is thus defined as having two functional
components that have to be designed jointly:

1) the encoding (generator) matrix associated with the storage
nodes;

2) the projection vectors needed for node repair.
Note that in this example, the repair code involves -by-
encoding submatrices and 12 projection vectors (3 projection
vectors for each of 4 possible failure configurations) that need
to be jointly designed.

We categorize the Repair MDS code depending on whether
or not the failed nodes are exactly repaired. The code is called
a functional-repair code if the repaired system maintains the
MDS-code property (the repaired node can however be different
from that of the failed node). The code is called an exact-repair
code if the failed nodes are exactly repaired, thus restoring lost

encoded fragments with their exact replicas. The code is called
a partial exact-repair code if only the systematic nodes are re-
paired exactly, while parity nodes are repaired only functionally.
Finally, the code is also called the MSR code that achieves the
optimal tradeoff of (1).

The repair problem is to construct the repair code. For in-
stance, the exact-repair problem is to jointly design: 1) the en-
coding (generator) matrix and 2) the projection vectors such that
the failed nodes are exactly repaired.

B. Translation Into a Nonmulticast Network Problem

Unlike functional repair which is equivalent to a multicast
network problem [1], [2], the exact-repair problem we study
here is a more complicated nonmulticast network problem
which in general is an open problem in network coding today.
It is known that in general nonmulticast networks, the cutset
bound might not be achievable [7] and linear codes might not
suffice [8]. In this section, we explicitly show this translation
to highlight the difficulty of our exact-repair problem. As we
will show in the sequel, we show that exploiting the special
structure of our nonmulticast problem due to the exact repair
constraints, we can solve the problem for the case of
and .

Fig. 2 shows the translation of the (4, 2, 3) Exact-Repair MDS
code into a nonmulticast network where destination nodes have
asymmetric traffic demands. A source has informa-
tion units and , each having symbols. We have
storage nodes. The two systematic nodes store and , re-
spectively, while the two parity nodes store mixtures of and

. Here, we consider linear combination mixtures, although the
mixtures can also be arbitrary nonlinear functions of the in-
formation. We have 4 repair nodes. When node 1 fails, repair
node 1 (denoted by ) needs to decode by connecting to

survivor nodes. Similarly we have the other three re-
pair nodes. In addition to this, due to the MDS-code constraint,
there are destination nodes which need to de-
code all of the information units. Clearly the resulting network
is a nonmulticast network which contains two types of destina-
tion nodes: 1) 4 destination nodes want the individual traffic cor-
responding to the storage node content; 2) 6 destination nodes
have the multicast demand. Therefore, the exact-repair problem
is to design a network code which satisfies all of these 10 con-
straints. Specifically, designing the first component of the repair
code corresponds to designing local encoding submatrices for
the storage nodes, i.e., ’s and ’s. The second component
corresponds to designing coding coefficients for the links be-
tween the storage nodes and repair nodes. Notice that as code
parameters get large, the number of constraints grows
exponentially, thereby making the problem harder.

C. Related Work

As stated earlier, Regenerating Codes, which cover an en-
tire spectrum of optimal tradeoffs between repair bandwidth
and storage cost, were introduced in [1], [2]. As discussed, Re-
pair MDS codes (also called MSR codes) occupy one end of
this spectrum corresponding to minimum storage. At the other
end of the spectrum live Minimum Bandwidth Regenerating
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Fig. 2. Translation of the (4, 2, 3) Exact-Repair MDS code into a nonmulticast
network problem. A source has ��� �� information units � and �, each having
� symbols. We have ��� �� storage nodes. The two systematic nodes store �
and� , respectively, while the two parity nodes store mixtures of � and�. When
node 1 fails, repair node 1 (denoted by � ) needs to decode �� by connecting
to ��� �� survivor nodes. Similarly we have the other three repair nodes. In
addition to this, due to the MDS-code constraint, there are � � �
destination nodes which need to decode all of the information units.

Fig. 3. Repair models for distributed storage systems. In exact-repair, the failed
nodes are exactly regenerated, thus restoring lost encoded fragments with their
exact replicas. In functional-repair, the requirement is relaxed: the newly gen-
erated node can contain different data from that of the failed node as long as
the repaired system maintains the MDS-code property. In partial exact-repair,
only systematic nodes are repaired exactly, while parity nodes are repaired only
functionally.

(MBR) repair codes corresponding to minimum repair band-
width. The optimal tradeoffs described in [1], [2] are based
on random-network-coding based approaches, which guarantee
only functional repair.

The topic of exact-repair codes has received attention in the
recent literature [9], [10], [14]–[16]. Wu and Dimakis in [14]
showed that the MSR point (1) can be attained for the cases of:

and . Rashmi-Shah-Kumar-Ramchandran in
[15] showed that for , the optimal MBR point can
be achieved with a deterministic scheme requiring a small fi-
nite-field size and zero repair-coding-cost. Subsequently, Shah-
Rashmi-Kumar-Ramchandran in [9] developed partial exact-re-
pair codes for the MSR point corresponding to ,
where exact repair is limited to the systematic component of the
code. See Fig. 3. Finding the fundamental limits under exact re-
pair of all nodes (including parity) remained an open problem.
A key contribution of this paper is to resolve this open problem
by constructing Exact-Repair MDS codes that attain the optimal
tradeoff of (1) for the case of and . Here, we
assume that the helper nodes participating in the repair con-
tain all of the survivor systematic nodes.Our result covers an
important operating point where the minimum repair
bandwidth can be achieved. See (1). For the general case (e.g.,

or ), developing constructive codes
remains an open problem.

The constructive framework proposed in [9] forms the in-
spiration for our proposed solution in this paper. Indeed, we
show that the partial exact-repair code introduced in [4] (meant

Fig. 4. Interference alignment for a (4,2,3) Exact-Repair MDS code defined
over �	� [14]. Designing appropriate projection vectors, we can align inter-
ference space of �� � � � into 1-D linear space spanned by 
�� �� . As a result,
we can successfully decode 2 desired unknowns �� � � � from 3 equations con-
taining 4 unknowns �� � � � � � � �.

for exact repair of the systematic nodes only) can also be used
to repair the nonsystematic (parity) node failures exactly pro-
vided the second component of the repair code (i.e., the projec-
tion vectors needed for node repair) are appropriately designed.
Designing the projection-vectors of exact repair codes is chal-
lenging and had remained an open problem: resolving this for
the case of and is a key contribution of this
work. Another contribution of our work is the systematic de-
velopment of a family of code structures. This family of codes
provides conceptual insights into the structure of solutions for
the exact repair problem, while also offering a new large con-
structive design space of solutions.

III. INTERFERENCE ALIGNMENT FOR DISTRIBUTED

STORAGE REPAIR

Network coding [3]–[5] (that allows multiple messages to be
combined at network nodes) has been established recently as
a useful tool for addressing interference issues even in wire-
line networks where all the communication links are orthog-
onal and noninterfering. This attribute was first observed in [14],
where it was shown that interference alignment could be ex-
ploited for storage networks, specifically for Exact-Repair MDS
codes having small . However, generalizing interfer-
ence alignment to large values of (even ) proves to be
challenging, as we describe in the sequel. In order to appreciate
this better, let us first review the scheme of [14] that was applied
to the exact repair problem. We will then address the difficulty
of extending interference alignment for larger systems and de-
scribe how to address this in Section IV.

A. Review of (4, 2) Exact-Repair MDS Codes [14]

Fig. 4 illustrates an interference alignment scheme for a (4, 2,
3) Exact-Repair MDS code defined over . First, one can
easily check the MDS property of the code, i.e., all the source
files can be reconstructed from any nodes out of
nodes. Let us see how failed node 1 (storing ) can be
exactly repaired. Assume a source file size is 4 and repair-
bandwidth-per-link . The cutset bound (1) then gives the
fundamental limits of storage cost .

The example illustrated in Fig. 4 shows that the parameter
set described above is achievable using interference alignment.
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Here is a summary of the scheme. First notice that since the
bandwidth-per-link is 1, each survivor node uses a projection
vector to project its data into a scalar. Choosing appropriate pro-
jection vectors, we get the equations: ;

; . Observe that the undesired sig-
nals (interference) are aligned onto an 1-D linear sub-
space, thereby achieving interference alignment. Therefore, we
can successfully decode with three equations although
there are four unknowns. Similarly, we can repair when
it has failed.

For parity node repair, a remapping technique is introduced.
The idea is to define parity node symbols with new variables as
follows:

We can then rewrite and with respect to
and . In terms of prime notation, parity nodes turn into
systematic nodes and vice versa. With this remapping, one can
easily design projection vectors for exact repair of parity nodes.

B. Geometric Interpretation

Using matrix notation, we provide geometric interpretation of
interference alignment for the same example in Fig. 4. Let

and be 2-D information-unit vectors.
Let and be 2-by-2 encoding submatrices for parity node

. Define 2-D projection vectors ’s .
Let us consider exact repair of systematic node 1. By

connecting to three nodes, we get: ;
; . Recall the goal of

decoding 2 desired unknowns out of 3 equations including 4
unknowns. To achieve this goal, we need

(2)

The second condition can be met by setting
and . This choice forces the interference space
to be collapsed into a 1-D linear subspace, thereby achieving
interference alignment. With this setting, the first condition now
becomes

(3)

It can be easily verified that the choice of ’s and ’s given
in Figs. 4 and 5 guarantees the above condition. When the node
2 fails, we get a similar condition

(4)

where ’s denote projection vectors for node 2 repair. This
condition also holds under the given choice of encoding ma-
trices. With this remapping, one can easily design projection
vectors for exact repair of parity nodes.

Fig. 5. Geometric interpretation of interference alignment. The blue solid-line
and red dashed-line vectors indicate linear subspaces with respect to “�” and
“�”, respectively. The choice of� � � � and� � � � enables
interference alignment. For the specific example of Fig. 4, the corresponding en-
coding submatrices are� � ��� �� �� ��,� � ��� �� �� ��.� � ��� �� �� ��,
� � ��� �� �� ��.

C. Connection With Interference Channels in Communication
Problems

Observe the three equations shown in Fig. 5, as follows:

Separating into two parts, we can view this problem as a wireless
communication problem, wherein a subset of the information is
desired to be decoded in the presence of interference. Note that
for each term (e.g., ), the matrix and vector cor-
respond to channel matrix and transmission vector in wireless
communication problems, respectively.

There are, however, significant differences. In the wireless
communication problem, the channel matrices are provided by
nature and therefore not controllable. The transmission strategy
alone (vector variables) can be controlled for achieving interfer-
ence alignment. On the other hand, in our storage repair prob-
lems, both matrices and vectors are controllable, i.e., projec-
tion vectors and encoding submatrices can be arbitrarily de-
signed, resulting in more flexibility. However, our storage repair
problem comes with unparalleled challenges due to the MDS
requirement and the multiple failure configurations. These in-
duce multiple interference alignment constraints that need to be
simultaneously satisfied. What makes this difficult is that the
encoding submatrices, once designed, must be the same for all
repair configurations. This is particularly acute for large values
of (even ), as the number of possible failure configura-
tions increases with (which increases with ).

IV. PROPOSED FRAMEWORK

We propose a common-eigenvector based constructive design
framework to address the exact repair problem. This framework
draws its inspiration from the work in [9] which guarantees the
exact repair of systematic nodes, while satisfying the MDS code
property, but which does not provide exact repair of failed parity
nodes. In providing a constructive solution for the exact repair of
all nodes, we use geometric insights to propose a large family
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Fig. 6. Difficulty of achieving interference alignment simultaneously.

of repair codes. This both provides insights into the structure
of codes for exact repair of all nodes (particularly the projec-
tion-vectors code component), as well as opens up a rich and
large design space for constructive solutions. Specifically, we
propose a common-eigenvector based approach building on a
certain elementary matrix property [17], [18]. This structure
provides the key geometric insights needed to facilitate the de-
sign of the key projection-vectors code component of exact re-
pair codes. Moreover, our proposed coding schemes are deter-
ministic and constructive, requiring a symbol alphabet-size of
at most .

Our framework consists of four components: 1) developing a
family of codes6 for exact repair of systematic codes based on
the common-eigenvector concept; 2) drawing a dual relation-
ship between the systematic and parity node repair; 3) guaran-
teeing the MDS-code property; and 4) constructing codes with
finite-field alphabets. Step (2) of our framework is a signifi-
cant distinction from that of [9] and is needed to tackle the full
exact repair problem not addressed there. The framework covers
the case of and . It turns out that the

code case contains the key design ingredients
and the case of and can be derived from this
(see Section VI). Hence, we first focus on the simplest example:
(6, 3, 5) Exact-Repair MDS codes. Later in Section VI, we will
generalize this to arbitrary repair codes in the class.

A. Systematic Node Repair

For (more-than-two interfering information units),
achieving interference alignment for exact repair turns out to
be significantly more complex than the case. Fig. 6 illus-
trates this difficulty through the example of repairing node 1 for
a (6, 3, 5) code. By the optimal tradeoff (1), the choice of
and gives . Let ,
and . We define 3-by-3 encoding submatrices
of , and (for , 2, 3); and 3-D projection vectors

’s.

6Recall that our repair code consists of two components: 1) the encoding (gen-
erator) matrix; 2) the projection vectors needed for node repair. Interestingly, the
encoding matrix component of the code in [9] turns out to work for the exact re-
pair of both systematic and parity nodes provided the second component of the
repair code (projection vectors needed for repair) are appropriately designed.

Consider the equations downloaded from the nodes

In order to successfully recover the desired signal components
of “ ”, the matrices associated with and should have rank
1, respectively, while the matrix associated with should have
full rank of 3. In accordance with the (4, 2, 3) code example
in Fig. 5, if one were to set ,
and , then it is possible to achieve interference
alignment with respect to . However, this choice also speci-
fies the interference space of . If the ’s and ’s are not
designed judiciously, interference alignment is not guaranteed
for . Hence, it is not evident how to achieve interference align-
ment at the same time.

In order to address the challenge of simultaneous interfer-
ence alignment, we invoke a common eigenvector concept. The
idea consists of two parts: (i) designing the ’s such
that is a common eigenvector of the ’s and ’s, but not
of ’s7; (ii) repairing by having survivor nodes project their
data onto a linear subspace spanned by this common eigen-
vector . We can then achieve interference alignment for
and at the same time, by setting , . As long as

is invertible, we can also guarantee the de-
codability of . See Fig. 7.

The challenge is now to design encoding submatrices to guar-
antee the existence of a common eigenvector while also satis-
fying the decodability of desired signals. The difficulty comes
from the fact that in our (6, 3, 5) repair code example, these con-
straints need to be satisfied for all six possible failure configura-
tions. The structure of elementary matrices [17], [18] (general-
ized matrices of Householder and Gauss matrices) gives insights
into this. To see this, consider a 3-by-3 elementary matrix

(5)

7Of course, five additional constraints also need to be satisfied for the other
five failure configurations for this (6,3,5) code example.
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Fig. 7. Illustration of exact repair of systematic node 1 for (6,3,5) exact-repair MDS codes. The idea consists of two parts: (i) designing �� �� �� �’s such that
� is a common eigenvector of the � ’s and � ’s, but not of � ’s; (ii) repairing by having survivor nodes project their data onto a linear subspace spanned by
this common eigenvector � .

where and are 3-D vectors. Here is an observation that mo-
tivates our proposed structure: the dimension of the null space
of is 2 and the null vector is an eigenvector of , i.e.,

. This motivates the following structure:

(6)

where ’s are 3-D linearly independent vectors and so are ’s.
The values of the ’s, ’s and ’s can be arbitrary nonzero
values. First consider the simple design where the ’s are or-
thonormal. This is for conceptual simplicity. Later we will gen-
eralize to the case where the ’s need not be orthogonal but
only linearly independent. We see that for , 2, 3,

(7)

Importantly, notice that is a common eigenvector of the ’s
and ’s, while simultaneously ensuring that the vectors of

are linearly independent. Hence, setting for all
, it is possible to achieve simultaneous interference alignment

while also guaranteeing the decodability of the desired signals.
See Fig. 7. On the other hand, this structure also guarantees
exact repair for and . We use for exact repair of . It is
a common eigenvector of the ’s and ’s, while ensuring

invertible. Similarly, is used for exact
repair of .

We will see that a dual basis property gives insights into the
general case where is not orthogonal but
only linearly independent. In this case, defining a dual basis

gives the solution

The definition gives the following property: ,
, . Using this property, one can see that is a common

eigenvector of the ’s and ’s while ensuring the invertibility
of the desired signals

(8)

So it can be used as a projection vector for exact repair of .
Similarly, we can use and for exact repair of and ,
respectively.

B. Dual Relationship Between Systematic and Parity Node
Repair

We have seen so far how to ensure exact repair of the sys-
tematic nodes. We have known that if is linearly indepen-
dent and so is, then using the structure of (6) together
with projection vectors enables repair, for arbitrary values of

’s. A natural question is now: will this structure also
guarantee exact repair of parity nodes? It turns out that for exact
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repair of all nodes, we need a special relationship between
and through the correct choice of the ’s.

We will show that parity nodes can be repaired by drawing
a dual relationship with systematic nodes. The procedure has
two steps. The first is to remap parity nodes with , , and ,
respectively:

Systematic nodes can then be rewritten in terms of the prime
notations

(9)

where the newly mapped encoding submatrices ’s
are defined as

(10)

With this remapping, one can dualize the relationship between
systematic and parity node repair. Specifically, if all of the ’s,

’s, and ’s are elementary matrices and form a similar struc-
ture as in (6), exact repair of the parity nodes becomes trans-
parent.

The challenge is now how to guarantee the dual structure. In
Lemma 1, we show that a special relationship between and

through ’s can guarantee this dual relationship
of (13).

Lemma 1: Suppose

(11)

Also assume

(12)

where , ,
is the dual basis of , i.e., and

is an arbitrary nonzero value s.t. . Then, we can
obtain the following structure dual to (6):

(13)

where is the dual basis of , i.e.,
and ’s are the dual basis vectors of ’s, i.e.,

(14)

Proof: See Appendix A.

Remark 1: The dual structure (13) now gives projection
vector solutions for parity node repair. For exact repair of
parity node 1, we can use vector (a common eigenvector of
the ’s and ’s), since it enables simultaneous interference
alignment for and , while ensuring the decodability of .
See Fig. 8. Notice that more conditions of (11) and (12) are
added to ensure exact repair of all nodes, while these conditions
were unnecessary for exact repair of systematic nodes only.
Also note that these are only sufficient conditions.

Remark 2: Note that the dual structure (13) is quite similar to
the primary structure (6). The only difference is that in the dual
structure, and are interchanged to form a transpose-like
structure. This reveals insights into how to design projection
vectors for exact repair of parity nodes in a transparent manner.

C. The MDS-Code Property

The third part of the framework is to guarantee the MDS-code
property, which allows us to identify specific constraints on the

’s and/or . Consider four cases, associated
in the data collector (DC) who is intended in the source file data:

3 systematic nodes; 3 parity nodes; 2 systematic and
1 parity nodes; 1 systematic and 2 parity nodes.

The first is a trivial case. The second case has been al-
ready verified in the process of forming the dual structure
(13). The invertibility condition of (11) together with (12)
suffices to ensure the invertibility of the composite matrix

. The third case requires the
invertibility of all of each encoding submatrix. In this case, it is
necessary that the ’s, ’s and ’s are nonzero values; oth-
erwise, each encoding submatrix has rank 1. Also the nonzero
values together with (12) guarantee the invertibility of each
encoding submatrix. To see this, for example, consider

where the second equality follows from ,
and due to (12). Here, indicates a standard basis,
i.e., . Clearly, this resulting matrix is invertible.
Since is invertible, so is .

The last case requires some nontrivial work. Consider a spe-
cific example where the DC connects to nodes 3, 4, and 5. In
this case, we first recover from node 3 and subtract the terms
associated with from nodes 4 and 5. We then get

(15)
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Fig. 8. Exact repair of parity node 1 for a (6, 3, 5) exact-repair MDS code. The idea is to construct the dual structure of (13) by remapping parity nodes and then
adding sufficient conditions of (11) and (12).

Now consider

where the equality follows from the fact that
and , for , 2.

Using a Gaussian elimination method, one can now easily show
that this resulting matrix is invertible and so is
if

(16)

Considering the above 4 cases, the following condition to-
gether with (11) and (12) suffices for guaranteeing the MDS-
code property:

(17)

D. Code Construction With Finite-Field Alphabets

The last part is to design of (11) and in
(6) such that is linearly independent and the conditions of
(12) and (17) are satisfied. As for the matrices that satisfy (17),
one can think of a Cauchy matrix or a Vandermonde matrix [9],
[19]. Specifically, we employ the Cauchy matrix to construct
explicit codes with the guarantee on the minimum finite-field
size. Notice that the Cauchy matrix is an example that guaran-
tees (17). One may use any other matrices that satisfy (17).

Definition 1 (A Cauchy Matrix) [19]: A Cauchy matrix is
an matrix with entries in the form

where and are elements of a field and and are
injective sequences, i.e., elements of the sequence are distinct.

The injective property of and requires a finite field
size of for an -by- Cauchy matrix. Therefore, in our (6,
3, 5) repair code example, the finite field size of 6 suffices. The
field size condition for guaranteeing linear independence of
is more relaxed.

E. Summary

Using the structure of (6) and the conditions of (11), (12), and
(17), we can now state the following theorem.

Theorem 1 ((6, 3, 5) Exact-Repair MDS Codes): Suppose
of (11) is a Cauchy matrix, i.e., every submatrix of is invertible.
Each element of is in and . Suppose encoding
submatrices form the structure of (6), is
linearly independent, and satisfies the condition of (12).
Then, the repair code comprising the encoding matrix and the
projection vectors achieves the optimal tradeoff of (1).

V. EXAMPLES

We provide two numerical examples: (1) is
orthogonal, e.g., ; (2) is orthogonal, e.g., . We
will also discuss the complexity of repair construction schemes
for each of these examples. It turns out that the first code has sig-
nificantly lower complexity for exact repair of systematic nodes,
as compared to that of parity nodes. On the other hand, the
second case provides much simpler parity-node repair schemes
instead. Depending on applications of interest, one can choose
an appropriate code among our family of codes.
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A. Example 1:

We present an example of (6, 3, 5) Exact-Repair MDS codes
defined over where and

where is set based on (12) and . Notice that we em-
ploy a non-Cauchy-type matrix to construct a field-size
code (smaller than required when using a Cauchy ma-
trix). Remember that a Cauchy matrix provides only a sufficient
condition for ensuring the invertibility of any submatrices of .
By (6) and (13), the primary and dual structures for encoding
matrices are given by

(18)

where

(19)

Fig. 9 shows an example for exact repair of systematic
node 1 and parity node 1. Note that the projection vector so-
lution for systematic node repair is quite simple:

, . We download only the first equation from each
survivor node. Notice that the downloaded five equations con-
tain only five unknown variables of and three
equations associated with are linearly independent. Hence, we
can successfully recover .

On the other hand, exact repair of parity nodes seems non-
straightforward. However, our framework provides quite a
simple repair scheme: setting all of the projection vectors as

. This enables simultaneous interference
alignment, while guaranteeing the decodability of . Notice
that and are aligned into

and , respectively, while three equations associated
with are linearly independent.

As one can see, the complexity of systematic node repair is
a little bit lower than that of parity node repair, although both
repair schemes are simple. Hence, one can expect that this ex-
ample is useful for the applications where the complexity of sys-
tematic node repair needs to be significantly low.

B. Example 2:

We provide another example of (6, 3, 5) Exact-Repair MDS
codes where is orthogonal. We use the same field size of 5
and the same . Instead, we choose a nonorthogonal in order
to significantly reduce the complexity of parity node repair. Our
framework provides a concrete guideline for accomplishing this.
Remember that the projection vector solutions are , and

for exact repair of each parity node, respectively. For low
complexity, we can first set . The condition (12) then
gives the following choice:

where we use . By (6) and (13), the primary and dual
structures are given by

(20)

where is defined as (19). Notice that the matrices of (20) have
exactly the transpose structure of the matrices of (18). Hence,
this structure of (20) is a dual solution to that of (18), thereby en-
suring the transfer of the lowered complexity property for parity
node repair.

Fig. 10 shows an example for exact repair of systematic
node 1 and parity node 1. In contrast to our previous case,
exact repair of parity nodes is now much simpler. In this ex-
ample, by downloading only the first equation from each sur-
vivor node, we can successfully recover . On the contrary, sys-
tematic node repair is more involved, with all of the projection
vectors being set as . Using this vector, we
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Fig. 9. Example 1: � � �. A (6, 3, 5) Exact-Repair MDS code defined over ���. The projection vector solution for systematic node repair is quite simple:
� � � � ��� �� �� , ��. This example employs the same encoding matrix and projection vectors for systematic node repair as those in [9]. We download
only the first equation from each survivor node; for parity node repair, our new framework provides a simple scheme: setting all of the projection vectors as
� � � ��� �� �� . This enables simultaneous interference alignment, while guaranteeing the decodability of �.

Fig. 10. Example 2: � � �. A (6, 3, 5) Exact-Repair MDS code defined over ���. Since we choose � � �, the projection vector solution for parity node
repair, is much simpler. We download only the first equation from each survivor node; systematic node repair is more involved, with all of the projection vectors
being set as � � � ����� �� .

can achieve simultaneous interference alignment, thereby de-
coding the desired components of .

VI. GENERALIZATION: ;

Theorem 1 gives insights into generalization to
Exact-Repair MDS codes. The key observation is that assuming

, storage cost is
and this number is equal to the number of systematic nodes
and furthermore matches the number of parity nodes. Notice
that the storage size matches the size of encoding submatrices,
which determines the number of linearly independent vectors
of . In this case, therefore, we can generate

linearly independent vectors and corre-
sponding through the appropriate choice
of . This immediately provides Exact-Repair
MDS codes.

A. Case:

Theorem 2 ( Exact-Repair MDS Codes): Let
be a Cauchy matrix:

...
...

. . .
...
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Fig. 11. Illustration of the construction of a (5, 2, 3) Exact-Repair MDS code
from a (6, 3, 5) Exact-Repair MDS code defined over ���. For a larger code,
we adopt the (6, 3, 5) code in Fig. 9. First, we remove all the elements associated
with the last �� � ��� � � information unit (“�”). Next, we prune symbols
�� � � � and associated elements. Also we remove the last equation of each
storage node. Finally we obtain the ��� �� �� � ����� �� target code.

where each element , where . Suppose

(21)

where and is an arbitrary nonzero value
such that . Also assume that encoding submatrices
are given by

...
. . .

...

(22)

where indicates an encoding submatrix for parity node
, associated with information unit . Then, the repair code

achieves the optimal tradeoff of (1).
Proof: See Appendix B.

Remark 3: Note that the minimum required alphabet size is
. As mentioned earlier, this is because we employ a Cauchy

matrix for ensuring the invertibility of any submatrices of .
One may customize codes to find smaller alphabet-size codes.

B. Case: ;

Now what if is less than the size of
encoding submatrices, i.e., ? Note that this case
automatically implies that , since . The key
observation in this case is that the encoding submatrix size is
bigger than , and therefore we have more degrees of freedom (a
larger number of linearly independent vectors) than the number
of constraints. Hence, exact repair of systematic nodes becomes
transparent. This was observed in [9], where it was shown that
for , exact repair of systematic nodes only can
be guaranteed by carefully manipulating codes
through a pruning operation.

In this paper, we propose a generalized pruning algorithm that
ensures exact repair of all nodes for and .
The recipe for this has two parts:

1) Constructing a target code from a larger code.

2) Showing that the resulting target code ensures exact repair
of all nodes as well as the MDS-code property.

We provide detailed procedures8 of the first part.
1(a) Using Theorem 2, construct a larger

code with a finite field size of .
1(b) Remove all the elements associated with the
information units (e.g., from the th to the th
information unit). The number of nodes is then reduced by

and so are the number of information units and
the number of degrees. Hence, we obtain the
code.
1(c) Prune the last equations in each storage
node and also the last symbols of each infor-
mation unit, while keeping the number of information units
and storage nodes. We can then get the target code.

Indeed, based on our framework of Section IV, it can be shown
that the resulting code described above guarantees exact repair
of all nodes while retaining the MDS-code property.

Theorem 3 : Suppose that all of the sur-
vivor systematic nodes participate in the repair. Then, under
exact repair constraints of all nodes, the optimal tradeoff of (1)
can be attained with a deterministic scheme requiring a field size
of at most .

Proof: See Appendix C.

Example 1: Fig. 11 illustrates how to construct an
target code based on the above recipe. First construct

the code, which is larger
than the (5, 2, 3) target code, but which belongs to the category
of . For this code, we employ the example in Fig. 9.
We now remove all the elements associated with the last

information unit, which corresponds to .
Next, prune the last symbol of each information unit
and associated elements to shrink the storage size into 2. We
can then obtain the (5, 2, 3) target code. Based on the proposed
framework in Section IV, it can be shown that the resulting code
guarantees exact repair of all nodes and the MDS-code property.

VII. GENERALIZATION:

As a side generalization, we consider the case of (and
). The interesting special case of the (5, 3, 4) code9

will be focused on, since it is not covered by the above case of
. For this case, we propose another interference alignment

technique.

Theorem 4 : The optimal tradeoff of (1)
can be attained with a deterministic scheme requiring a finite-
field size of at most .

Proof: The case of is trivial. By Theorems 2 and 3,
we prove the case of . However, additional effort is needed
to prove the case of . By Theorems 2 and 3, for

and can be proved. But (5, 3, 4) codes are not in
the class. In Section VII-A, we will address this case to complete
the proof.

8While Steps (1a) and (1b) come from the pruning technique in [9], Step (1c)
is a significant distinction from that of [9].

9Independently, the authors in [10] found (5, 3, 4) codes defined over ���,
based on a search algorithm.
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Remark 4: In order to cover general , we provide a looser
bound on the required finite-field size: . In fact,
for the (5, 3, 4) repair code (that will be shown in Lemma 2), a
smaller finite-field size of is enough for
code construction. We have taken the maximum of the required
field sizes of all the cases.

A. (5, 3, 4) Exact-Repair MDS Codes

Assume and repair-bandwidth-per- . The
cutset bound (1) then gives the fundamental limits of storage
cost ; hence, the dimension of encoding submatrices is
2-by-2. Note that the size is less than the number of system-
atic nodes. Therefore, our earlier framework does not cover this
category.

We propose an eigenvector-based interference alignment
technique that guarantees exact repair of all nodes. Let

, and . For exact
repair, we connect to nodes to download a 1-D scalar
value from each survivor node. Fig. 12 illustrates exact re-
pair of node 1. We download four equations from survivor
nodes: ; ; ;

. The approach is dif-
ferent from that of our earlier proposed framework. Instead an
idea here consists of three steps: 1) choosing projection vectors
for achieving interference alignment; 2) gathering all the align-
ment constraints and the MDS-code constraint; 3) designing
the encoding submatrices that satisfy all the constraints. Notice
the design of encoding submatrices is the last part.

Here are details. Note that there are 6 unknown variables:
2 desired unknowns and 4 undesired unknowns

. Therefore, it is required to align
onto at least 2-D linear space. We face the challenge that
appeared in the (6, 3, 5) code example in Fig. 6. Projection
vectors and affect interference alignment and
simultaneously. Therefore, we need simultaneous interference
alignment. To solve this problem, we introduce an eigen-
vector-based interference alignment scheme.

First choose and such that and
, thus achieving interference alignment for “ ”.

Observe the interfering vectors associated with “ ”

The first and second vectors can be aligned by setting
. Now what about for the following

two vectors: and ? Suppose that the
associated matrices ( and ) and the projection
vector are randomly chosen. Then, these two vectors are
not guaranteed to be aligned. However, a judicious choice of

makes it possible to align them. The idea is to choose
as an eigenvector of . Since can be

chosen arbitrarily, this can be easily done. Lastly, consider
the condition for ensuring the decodability of desired signals

.

We repeat the procedure for exact repair of “ ” and “ ”. For
parity nodes, we employ the remapping technique described ear-
lier

(23)

We gather all the conditions that need to be guaranteed for exact
repair of all nodes

(24)

where

(25)

Note that eigenvectors may not exist for the finite Galois field.
However, the existence is guaranteed by carefully choosing the
encoding submatrices. We provide an explicit code in the fol-
lowing lemma.

Lemma 2 ((5, 3, 4) Exact-Repair MDS Codes): Let ,
and be nonzero. Suppose encoding submatrices are given

by

(26)

The projection vectors for exact repair are chosen through the
above procedures. Then, the code achieves the optimal tradeoff
of (1).

Proof: See Appendix D.

Remark 5: Note that encoding submatrices are lower-trian-
gular or upper-triangular. This structure has important proper-
ties. Not only does this structure guarantee invertibility, it can
in fact guarantee the existence of eigenvectors. It turns out the
structure as above satisfies all of the conditions needed for the
MDS property and exact repair.
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Fig. 12. Eigenvector-based interference alignment for (5, 3, 4) Exact-Repair MDS codes. First we align interference “�” by setting � � � � and � �
� � . Next, partially align interference of “�” by setting � � � � � . Finally, choosing � as an eigenvector of � � � � , we can achieve
interference alignment for �.

Fig. 13. Illustration of exact repair of node 1 for a (5, 3, 4) Exact-Repair
MDS code defined over ���. The eigenvector-based interference alignment
scheme enables to decode 2 desired unknowns �� � � � from 4 equations
containing 6 unknowns. Notice that interference “�” and “�” are aligned
simultaneously although the same projection vectors � and � are used.

Example 2: Fig. 13 illustrates exact repair of node
for a (5, 3, 4) Exact-Repair MDS code defined over . No-
tice that interference “ ” and “ ” are aligned simultaneously.
One can check exact repair of the remaining four nodes based
on our proposed method.

VIII. CONCLUSION

We have systematically developed interference alignment
techniques that attain the cutset bound (1) under exact repair
constraints of all nodes. Based on the proposed framework,
we provided a family of codes for the cases: and

; , for arbitrary (and .
This family of codes provides insights into a dual relationship
between the systematic and parity node repair, as well as opens
up a larger constructive design space of solutions. For (5, 3,
4) codes which do not satisfy , we have developed an
eigenvector-based interference alignment to show the opti-
mality of the cutset bound. Unlike wireless communication
problems, our storage repair problems have more flexibility
in designing encoding matrices which correspond to wireless
channel coefficients (provided by nature) in communication
problems. Exploiting this fact, we developed interference align-
ment techniques for optimal exact repair codes in distributed
storage systems.

APPENDIX A
PROOF OF LEMMA 1

It suffices to show that

Using (6) and (13), we compute

where follows from due to (11);
follows from (12); follows from

(See Claim 1); and follows from the fact that
, since are dual basis vectors.

Similarly, one can check that
and . Now let us compute one of
the cross terms
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where follows from and
; follows from

(12) and Claim 1. Similarly, we can check that the other cross
terms are zero matrices. This completes the proof.

Claim 1: For all , .
Proof: By (12), we can rewrite

Using the fact that are dual basis vectors, we get

This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

For generalization, we are forced to use some heavy notation
but only for this section and the related appendices. Let

be a message vector for information unit . Let be
an encoding submatrix for parity node , associated with the th
information unit.

1) Exact Repair of Systematic Nodes: By symmetry, we
consider only systematic node 1. We have each survivor node
project their data with projection vector , which is the first
column vector of . We then get

where and . Note that we can achieve
simultaneous interference alignment for nonintended signals.
Since ’s are linearly independent, we can decode desired sig-
nals , thus ensuring exact repair.

2) Exact Repair of Parity Nodes: The idea is the same
as that of Theorem 1. First we remap parity nodes with new
variables

... ...
...

. . .
...

...

Define the newly remapped encoding submatrices as

...
...

. . .
...

...
...

. . .
...

(27)

We can now apply the generalization of Lemma 1 to obtain the
dual structure

...

...

...

where the dual basis vectors are defined as

...
...

. . .
...

...
...

. . .
...

By symmetry, we consider only parity node 1. Choosing the
projection vector , we get

where and . Note that we can achieve
simultaneous interference alignment for nonintended signals.
Since ’s are linearly independent, we can decode desired sig-
nals , thus ensuring exact repair of parity node 1.

3) The MDS-Code Property: We check the invertibility of
a composite encoding submatrix when a Data Collector con-
nects to systematic nodes and parity nodes for

. The main idea is to use a Gaussian elimination method
as we did in Section IV-C. The verification is tedious and there-
fore details are omitted.

4) Minimum Required Finite-Field Size: Note that the di-
mension of a Cauchy matrix is -by- . Therefore, the min-
imum finite-field size required to generate the Cauchy matrix is

, i.e., .
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APPENDIX C
PROOF OF THEOREM 3

According to the proposed pruning algorithm, we start with
an larger code which has encoding
submatrices as follows:

...

...

... (28)

where indicates an encoding submatrix
for parity node , associated with the th information unit. We
use an invertible matrix for and set

(29)

where and is an arbitrary nonzero value
such that . We use a Cauchy matrix and let be
the element of . Notice that we have information
units , .

Next we remove the last information units and as-
sociated elements to obtain the code. This code
has information units and encoding submatrices

for and . Lastly, we prune the
last equations in each storage node and also the last

symbols of each information unit. We then obtain
the target code which has encoding submatrices

...

...

... (30)

where , indicate the top symbols
of , , respectively. Here, the size of an identity
matrix is . For simplicity, we use the same notation
for a different dimension of an identity matrix. It can be easily
differentiated from the context.

Let us now prove that the resulting code ensures exact repair
of all nodes and MDS-code property. We will provide the de-
tailed proof for a simple case of .

1) Exact Repair of Systematic Nodes: By symmetry, we
consider only systematic node 1. We connect to sys-

tematic nodes and parity nodes. Without loss of
generality, we consider parity nodes from 1 to . As for a
projection vector, we use . We then get

where and . Note that we can
achieve simultaneous interference alignment for nonintended
signals. The interference term can be canceled with side infor-
mation obtained from systematic nodes. After cancellation, we
rewrite equations obtained from parity nodes

By (29), , .
Using the fact that any submatrix of is invertible, we can show
that the right-hand-side matrix is invertible. This guarantees the
decodability of the desired message vector .

2) Exact Repair of Parity Nodes: By symmetry, it suffices
to consider parity node 1. We connect to systematic nodes and

parity nodes. Without loss of generality, we consider
parity nodes from 2 to . As for a projection vector, we

use . We then get

where and . Here, the equality
follows from the fact that . Note that the second
term in the parity node equation can be canceled with side in-
formation obtained from systematic nodes.
After cancelation, we rewrite equations obtained from
parity nodes

Since we know (side-information obtained from system-

atic nodes), we can construct . Adding this
value to the above, we get:

Using the fact that any submatrix of is invertible, we can
show that the right-hand-side matrix is invertible. This enables
to decode the left-hand-side vector, thus obtaining

(31)
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Using this information, we can now regenerate

This matches the content of parity node 1, thus ensuring exact
repair of the parity node.

3) The MDS-Code Property: We check the invertibility of
a composite encoding submatrix when a Data Collector con-
nects to systematic nodes and parity nodes for

. The main idea is to use a Gaussian elimination method
as we did in Section IV-C. The verification is tedious and there-
fore details are omitted.

4) Minimum Required Finite-Field Size: Note that the di-
mension of a Cauchy matrix is -by- . Therefore,
the minimum finite-field size required to generate the Cauchy
matrix is , i.e., .

APPENDIX D
PROOF OF LEMMA 2

1) Exact Repair: With the Gaussian elimination method,
we get

(32)

Using this, we can easily check the the existence of eigenvectors
(25) and decodabiity of desired signals (24). This completes the
proof.

2) The MDS-Code Property: Obviously, all the encoding
submatrices are invertible due to their lower-triangular or upper-
triangular structure. We consider three cases where a Data Col-
lector connects to: 1) 3 systematic nodes; 2) 2 systematic nodes
and 1 parity node; and 3) 1 systematic node and 2 parity nodes.
The first is a trivial case where the composite matrix associated
with information units is an identity matrix. The second case is
also trivial, since each encoding submatrix is invertible so that
the composite matrix is invertible as well. For the last case, we
consider

(33)

It is easy to check the invertibility of this matrix via the Gaussian
elimination method. The invertibility for all the cases guarantees
the MDS property.
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