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Euclidean Information Theory of Networks
Shao-Lun Huang, Changho Suh, and Lizhong Zheng

Abstract— In this paper, we extend the information theoretic
framework that was developed in earlier works to multi-hop
network settings. For a given network, we construct a novel
deterministic model that quantifies the ability of the network
in transmitting private and common messages across users.
Based on this model, we formulate a linear optimization problem
that explores the throughput of a multi-layer network, thereby
offering the optimal strategy as to what kind of common messages
should be generated in the network to maximize the throughput.
With this deterministic model, we also investigate the role of
feedback for multi-layer networks, from which we identify a
variety of scenarios in which feedback can improve transmission
efficiency. Our results provide fundamental guidelines as to
how to coordinate cooperation between users to enable efficient
information exchanges across them.

Index Terms— Linear information coupling (LIC) problem,
divergence transition matrix (DTM), Kullback-Leibler divergence
approximation, deterministic model, feedback.

I. INTRODUCTION

W ITH the booming of internet and mobile communi-
cation, communication networks and social networks

are rapidly growing in size and density. While the global
behavior of such a large network depends on actions of
individual users indeed, the sheer volume of the network
makes the effect of an individual action often nonsignificant.
For instance, in social networks (or stock-market networks),
a public opinion (or the growth rate of wealth) is barely
affected by an individual’s opinion (or investment), although
it is formed by their aggregation.

One natural objective for such large networks is to
understand how users should design their local transmission
strategies to optimize network information flow. To this end,
we aim to develop an information-theoretic framework that
can well model such network phenomena, as well as suggest
the optimal transmission strategy of each user.

Specifically, we consider a discrete memoryless network
such that the input/output distributions of each node are fixed,
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and each node wishes to convey information by slightly
perturbing the given input distribution. In this network, we
intend to investigate how a small amount of information can
be efficiently conveyed to certain destinations. Here the given
distributions can be viewed as the global trend of the network,
and the low-rate transmission of each node can be interpreted
a nonsignificant action of an individual user. We employ
mutual information in an attempt to quantify the amount
of perturbation made by the users, as well as the low-rate
transmission efficiency.

By employing the notion of mutual information, earlier
works [1]–[3] have made some progress towards understanding
the optimal transmission strategy of users for certain networks.
Specifically, Borade and Zheng [1] introduced a local
geometric approach, based on an approximation of the
Kullback-Leibler (KL) divergence, to develop a novel
information-theoretic framework, and apply the framework
to point-to-point channels and certain broadcast channels.
Abbe and Zheng [2] employed the local geometric approach
to address some interesting open questions in Gaussian net-
works. Huang and Zheng [3] extended the framework to more
general yet single-hop multi-terminal settings, and coined the
linear information coupling (LIC) problems for the associated
problems (based on the framework) that will be reviewed
in Section II.

In particular [3] developed an insightful interpretation. The
key observation of [3] is that under certain local assump-
tions, transmission of different types of messages, such as
private and common messages, can be viewed as transmission
through separated deterministic links with certain capacities.
This viewpoint allows us to quantify the difficulty of broad-
casting common messages than sending private messages, as
well as compute the gain of transmitting common messages.
This development is particularly useful for multi-hop net-
works because it serves to characterize the trade-off between
the gain of sending a common message and the cost that
occurs in creating the common message from the previous
layer.

In this work, we generalize the development into multi-hop
networks, thereby shedding some insights as to what kinds of
common messages should be created in order to optimize the
trade-off. Our contributions are two-fold. The first contribution
is to extend the information theoretic framework in [1]–[3] into
multi-hop layered networks. Building upon this framework,
we construct a deterministic network model that allows us to
quantify efficiency of transmitting different types of private
and common messages in the networks. This deterministic
model enables us to translate the LIC problems into linear
optimization problems, in which the solutions suggest what
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kind of common messages should be generated to optimize
the throughput. With this deterministic model, we also develop
an optimal local strategy for a large-scaled layered network
having identical channel parameters for each layer. Specifically
we demonstrate that the optimal strategy is composed of
a few fundamental communication modes (to be specified
in Section V-A). In general, our results provide the insights
of how users in a communication network should cooperate
with each other to increase the efficiency of transmitting
information through the network.

The second contribution of this paper is that we further
generalize the framework into networks with feedback,
thereby exploring the role of feedback in multi-hop layered
networks. Specifically, we consider the same layered
networks but additionally include feedback links from each
node to the nodes of the preceding layers. For these networks,
we develop the best transmission strategy of each node
that maximizes transmission efficiency. The key technique
employed here relies on our new development on network
equivalence, saying that the layer-by-layer feedback strategy,
which allows feedback only for the nodes in the immediately-
preceding layer, yields the same performance as in the most
idealistic one, where feedback is available to the entire nodes
in all the preceding layers. Moreover, we identify a variety
of network scenarios in which feedback can strictly improve
transmission efficiency. Our deterministic model allows us
to have a deeper understanding on the nature of feedback
gain: feedback offers better information routing paths, thereby
making the gain of transmitting common messages effectively
larger. This feedback gain is shown to be multiplicative, which
is qualitatively similar to the gain in the two-user Gaussian
interference channel [4].

The rest of this paper is organized as follows. In Section II,
we review the LIC problems developed in the context of
certain single-hop multi-terminal networks [1]–[3]. The results
in Section II lead to a new type of deterministic model, which
is presented in Section III. In Section IV, we apply the frame-
work to the interference channel, constructing a corresponding
deterministic model. In Section V, we extend this deterministic
model to multi-hop layered networks, thus developing the best
transmission strategy that maximizes transmission efficiency.
In Section VI, we explore the role of feedback for multi-hop
layered networks and conclude the paper with discussions in
Sections VII and VIII.

II. LINEAR INFORMATION COUPLING PROBLEMS

This section is dedicated to a brief review of the linear
information coupling (LIC) problems which are formulated
based on the local geometric approach in [1]–[3]. Here we will
summarize the local geometric approach and its application
to point-to-point channels, broadcast channels, and multiple-
access channels.

In general, the LIC problems are represented in the multi-
letter form. However, Huang and Zheng [3] took the following
two steps to translate them into much simpler problems:
(i) translating information theory problems to linear-algebra
problems, and (ii) single-letterization. In this paper, we will

focus on the first step, while referring readers to [3] for details
on the single-letterization step.1

A. The Local Approximation of the
Kullback-Leibler Divergence

The key idea of the local geometric approach lies on an
approximation of the Kullback-Leibler (KL) divergence [1].
Let P and Q be two probability distributions over the same
alphabet X . We assume that Q and P are close to each other,
i.e., Q(x) = P(x)+ ε · J (x), for some small quantity ε. Then,
using the second order Taylor expansion, the KL divergence
can be written as

D(P‖Q) =
∑

x∈X
P(x) ln

P(x)

Q(x)

= −
∑

x∈X
P(x) ln

(
1 + ε · J (x)

P(x)

)

= 1

2
ε2 ·

∑

x

J 2(x)

P(x)
+ o(ε2)

= 1

2
ε2 · ‖L‖2 + o(ε2), (1)

where L = [√P
−1]J , and [√P

−1] is the diagonal matrix
with entries {√P(x)

−1
, x ∈ X }. Note that replacing [√P

−1]
with [√Q

−1] in the above Euclidean norm results in only the
difference of order o(ε2). Hence, D(P||Q) and D(Q||P) are
considered to be equal up to the first order approximation.
From this approximation, the divergence can be viewed as the
(weighted) squared Euclidean norm between two distributions.
In the rest of this section, we demonstrate how this local
approximation technique can be used to translate information
theory problems into linear algebra problems.

B. Point-to-Point Channels

In this section, we will first review the formulation of
LIC problem in a simple context of point-to-point channels,
and then explain how the local geometric approach serves to
translate it into a simple linear-algebra problem. Consider a
point-to-point channel with input X ∈ X , output Y ∈ Y ,
and the channel matrix W associated with the channel transi-
tion probability PY |X . Given some input distribution PX , the
LIC problem is formulated as:

max
U→X→Y :I (U ;X)≤ 1

2 ε2
I (U ; Y ), (2)

where ε is assumed to be small. The LIC problem aims
at exploring the optimal transmission strategy of each node
that wishes to send a small amount of message to certain
destination(s) in networks. In the point-to-point setting, the
following interpretation makes a connection between the above
problem and the goal. Let us view U as a message that the
transmitter wants to send. One can then interpret I (U ; X)

1In general, the single-letter version is not equivalent to the corresponding
multi-letter one for arbitrary networks, e.g., general K -user BCs. However,
it is shown in [3] that there always exist optimal finite-letter solutions. Note
that our approach in this paper for solving the single-letter problems can be
easily extended to their finite-letter versions, so we will consider only the
single-letter problems.
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as the transmission rate of information modulated in X , and
I (U ; Y ) as the data rate of information that is transferred
to the receiver. Unlike classical communication problems,
the LIC problem targets a setting in which the amount of
information is small. This is captured by the above assumption
that ε is sufficiently small. In addition, it is assumed that2 for
all u and x , PX |U=u(x)− PX (x) = o(ε). See [1], [3] for more
detailed discussions and justifications of this formulation.

The goal of (2) is to design PX |U=u for different u, such that
the marginal distribution is fixed as PX , and (2) is optimized.
To solve this problem, first observe that we can write the
constraint as

I (U ; X) =
∑

u

PU (u) · D(PX |U (·|u)‖PX ) ≤ 1

2
ε2. (3)

Thus, if we write PX |U=u as a local perturbation from
PX , i.e., PX |U=u = PX + ε · Ju , and employ the notation
Lu = [√PX

−1] · Ju , then we can simplify the constraint (3)
by the local approximation (1) as

∑

u

PU (u) · ‖Lu‖2 ≤ 1.

Moreover, note that U → X → Y forms a Markov relation,
we have

PY |U=u = W PX |U=u = W PX + ε · W Ju

= PY + ε · W [√PX ]Lu,

where the channel applied to the input distribution is simply
viewed as the channel transition matrix W , of dimension
|Y| × |X |, multiplying the input distribution as a vector.

Then, using the local approximation (1), the linear informa-
tion coupling problem (2) becomes a linear algebra problem:

max
∑

u

PU (u) ·
∥∥∥
[√

PY
−1]

W
[√

PX

]
· Lu

∥∥∥
2
, (4)

subject to:
∑

u

PU (u) · ‖Lu‖2 ≤ 1,
∑

x

√
PX (x)Lu(x) = 0.

(5)

where the second constraint of (5) comes from

∑

x

√
PX (x)Lu(x) = 1

ε

∑

x

(PX |U=u(x) − PX (x)) = 0.

Here, we denote B = [√PY
−1]W [√PX ] and call it the diver-

gence transition matrix (DTM). Note that in both (4) and (5)
the same set of weights PU (u) are used, thus the problem can
be reduced to finding a direction of L∗, which maximizes the
ratio ‖B L∗‖/‖L∗‖, and the optimal choice of Lu should be
along the direction of this L∗ for every u. By linearity of the
problem, scaling Lu along this direction has no effect on the
result. Thus, we can without loss of optimality choose U as

2The assumption of small I (U; X) does not necessarily imply PX |U=u ’s
are close to PX . See [5], [6]. However, the extra assumption that PX |U=u ’s
are close to PX leads to a geometric structure in the distribution spaces, which
allow us to solve general network information theory problems in a systematic
way. See [3] for details. In the rest of this paper, we will employ this extra
assumption and develop the geometric structure for general networks.

a uniformly distributed binary random variable, and further
reduce the problem to:

max
Lu : ‖Lu‖2≤1, Lu⊥√

PX

‖B Lu‖2, (6)

where
√

PX represents a |X |-dimensional vector with
entries

√
PX (x).

In order to solve (6), we shall find Lu as the right singular
vector of B with the largest singular value. However, the
largest singular value of B is 1 with the right and left singular
vectors

√
PX and

√
PY , and choosing Lu as

√
PX violates the

constraint Lu⊥√
PX . On the other hand, the rest right singular

vectors of B are orthogonal to
√

PX , satisfying the constraint
Lu⊥√

PX . Therefore, the optimal solution L∗
u must be the

right-singular vector with the second largest singular value,
and the corresponding maximum information rate is

max ||B Lu||2 = σ 2
smax(B) =: σ 2.

Here σsmax(B) denotes the second largest singular value of B ,
which we define as σ . This shows that the problem is reduced
to a simple linear-algebra problem of finding the fundamen-
tal direction L∗

u that maximizes the amount of information
I (U ; Y ) that flows into the receiver.

Example 1: Consider a quaternary-input binary-output
point-to-point channel:

Y =
{

X ⊕ Z1, X ∈ {0, 1};
(X mod 2) ⊕ Z2, X ∈ {2, 3},

where Z1 ∼ Bern(1
2 ) and Z2 ∼ Bern(α). The probability

transition matrix is then computed as

W =
[

1
2

1
2 1 − α α

1
2

1
2 α 1 − α

]
.

Suppose that PX is fixed as [ 1
4 , 1

4 , 1
4 , 1

4 ]T . We can then

compute PY = W PX = [ 1
2 , 1

2 ]T and B =
√

2
2 W . A simple

computation gives:

L∗
u = 1√

2
[0, 0, 1,−1]T , σ 2 = ||B L∗

u||2 = 1

2
(1 − 2α)2.

This solution is intuitive. Note that when X ∈ {0, 1}, it passes
through a zero-capacity channel with Z1 ∼ Bern( 1

2 ). On the
other hand, when X ∈ {2, 3}, the channel is a binary symmetric
channel with α. Therefore, information can be transferred only
when X ∈ {2, 3}, which matches the solution of L∗

u as above.
Note that L∗

u contains non-zero elements only for the third and
fourth entries corresponding to X = 2 and X = 3 respectively.
When α ≈ 1

2 , the channel w.r.t X ∈ {2, 3} is very noisy.
As α is far away from 1

2 , however, the channel is less noisy,
thus delivering more information. This is reflected in the form
of σ 2 as above. �

C. Broadcast Channels

Now, let us consider the LIC problem of broadcast channels.
Suppose that a two-receiver discrete memoryless broadcast
channel with input X ∈ X and two outputs (Y1, Y2) ∈ Y1×Y2,
is specified by the memoryless channel matrices W1 and W2.
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These channel matrices specify the conditional distributions of
the output signals at two receivers as Wk(yk |x) = PYk |X (yk|x)
for k = 1, 2. Let U0 be a common message intended for
both receivers; and U1, U2 be private messages intended for
receivers 1 and 2 respectively. Assume that (U0, U1, U2) are
mutually independent and PX is fixed. Let (R1, R2, R0) be the
corresponding information rates.

For this setting, the LIC problem is formulated as the one
that maximizes a rate region RBC such that

R1 ≤ I (U1; Y1), R2 ≤ I (U2; Y2),

R0 ≤ min{I (U0; Y1), I (U0; Y2)}, (7)

under the locality assumption of

I (U1; X) ≤ 1

2
ε2

1 , I (U2; X) ≤ 1

2
ε2

2 ,

I (U0; X) ≤ 1

2
ε2

0 , ε2
1 + ε2

2 + ε2
0 = ε2.

Here (U0, U1, U2) → X → (Y1, Y2) forms a Markov relation
and ε is assumed to be some small quantity.

While a natural extension of the point-to-point-channel
locality assumption is I (U1, U2, U0; X) ≤ 1

2ε2, it can be
shown that [3] the resultant rate region RBC with this
assumption is the same as considering the above three sep-
arate assumptions instead. Note that I (U1, U2, U0; X) ≤ 1

2ε2

captures the tradeoff between (R1, R2, R0) in an aggregated
manner, thus making the optimization involved. On the other
hand, under the separate assumptions, the tradeoff is captured
only by ε2

1 + ε2
2 + ε2

0 =: ε2 � 1: given that ε2 is appropriately

allocated to (ε2
1 , ε2

2 , ε2
0 ), there is no tension between those

rates. Hence, this simplification enables us to reduce the
problem to three independent sub-problems: two are w.r.t.
private messages (U1, U2), and the last is w.r.t. the common
message U0.

The optimization problems w.r.t. the private messages are
the same as in the point-to-point channel case: for k = 1, 2,

max I (Uk ; Yk) = 1

2
ε2

k · σ 2
k + o(ε2),

where σk = σsmax(Bk), and Bk = [√PYk

−1]Wk[√PX ].
Thus, the main focus here is the optimization of the common
information rate. Suppose that PX |U0=u0 = PX + ε · Ju0 , and
Lu0 = [√PX

−1]Ju0 . Using similar arguments, we can then
reduce the problem to:

max
Lu0 : ‖Lu0‖2≤1, Lu0⊥√

PX

min
{‖B1Lu0‖2, ‖B2 Lu0‖2}. (8)

Now, this problem is simply a finite dimensional convex
optimization problem, which can be easily solved. Let σ 2

0 be
the maximum value w.r.t. the L∗

u0
.

Example 2: Consider a quaternary-input binary-outputs
BC: for k ∈ {1, 2},

Yk =
{

X ⊕ Zk1, X ∈ {0, 1};
(X mod 2) ⊕ Zk2, X ∈ {2, 3},

where Z11, Z22 ∼ Bern(1
2 ) and Z12, Z21 ∼ Bern(α). The

transition probability matrices are computed as

W1 =
[

1
2

1
2 1 − α α

1
2

1
2 α 1 − α

]
,

W2 =
[

1 − α α 1
2

1
2

α 1 − α 1
2

1
2

]
.

Suppose that PX is fixed as [ 1
4 , 1

4 , 1
4 , 1

4 ]T . We can then
get PY1 = PY2 = [ 1

2 , 1
2 ]T . This allows us to compute

Bk =
√

2
2 Wk , (k = 1, 2). With a simple linear-algebra

calculation, we obtain

L∗
u1

= 1√
2
[0, 0, 1,−1]T , σ 2

1 = 1

2
(1 − 2α)2;

L∗
u2

= 1√
2
[1,−1, 0, 0]T , σ 2

2 = 1

2
(1 − 2α)2;

L∗
u0

= 1

2
[1,−1,−1, 1]T , σ 2

0 = 1

4
(1 − 2α)2.

Here, one can see the difficulty of delivering common mes-
sage, as compared to private message transmission. Note that
σ 2

0 is half of the σ 2
1 (= σ 2

2 ). This example represents an
extreme case where σ 2

0 is minimized for all possible channels
having the same σ1 and σ2, and thus the gap between σ0
and σ1(= σ2) is maximized. Note that σ 2

0 has a trivial lower
bound. It must be greater than a naive transmission rate:
min{λσ 2

1 , (1 − λ)σ 2
2 }, which can be achieved by privately

sending a message first to receiver 1 with the fraction λ of
time and later to receiver 2 with the remaining fraction (1−λ)
of time. This naive rate can be maximized as:

max
0≤λ≤1

min{λσ 2
1 , (1 − λ)σ 2

2 } = σ 2
1 σ 2

2

σ 2
1 + σ 2

2

. (9)

In this example, this rate is maximized as
σ 2

1
2 , which coincides

with σ 2
0 . �

D. Multiple-Access Channels

Now, let us consider the LIC problem of multiple-access
channels. Suppose that the multiple-access channel has two
inputs X1 ∈ X1, X2 ∈ X2, and one output Y ∈ Y . The mem-
oryless channel is specified by the channel matrix W , where
W (y|x1, x2) = PY |X1,X2(y|x1, x2) is the conditional distrib-
ution of the output signals. We want to communicate three
messages (U1, U2, U0) to the receiver with rates (R1, R2, R0),
where U1 and U2 are privately known by transmitter 1 and 2
respectively, and U0 is the common source known to both
transmitters. Then, the LIC problem for the MAC is formulated
as the one that maximizes a rate region RMAC:

R0 ≤ I (U0; Y ), R1 ≤ I (U1; Y ), R2 ≤ I (U2; Y ), (10)

such that U0 → (X1, X2) → Y , U1 → X1 → Y ,
U2 → X2 → Y , and the local constraints are:

I (U1; X1) ≤ 1

2
ε2

1 , I (U2; X2) ≤ 1

2
ε2

2 ,

I (U0; X1, X2) ≤ 1

2
ε2

0 , ε2
1 + ε2

2 + ε2
0 = ε2.

Again, ε is assumed to be some small quantity.
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Define the DTMs Bk = [√PY
−1]Wk[

√
PXk ], for k = 1, 2,

where

Wk(y|xk) =
∑

x3−k∈X3−k

W (y|x1, x2)PX3−k (x3−k).

Two optimization problems w.r.t. private messages
are the same as in the point-to-point channel case:
max I (Uk; Y ) = 1

2ε2
k σ 2

k + o(ε2) where σk = σsmax(Bk).
Now suppose that

PXi |U0=u0 = PXi + ε0 · Ji,u0 .

Since X1 and X2 are conditionally independent given U0, we
can write PX1 X2|U0=u0 as

PX1,X2|U0=u0 = PX1|U0=u0 ⊗ PX2|U0=u0 = PX1 ⊗ PX2 + ε0

· J1,u0 ⊗ PX2 + ε0 · PX1 ⊗ J2,u0 + O(ε2).

Then, the condition I (U0; X1, X2) ≤ 1
2ε2

0 can be written as
∑

u0

PU0(u0) · ∥∥Lu0

∥∥2 ≤ 1,

where Lu0 =
[
[√PX1

−1]J T
1,u0

[√PX2

−1]J T
2,u0

]T
. Moreover,

we can write PY |U0=u0 as

PY |U0=u0 = W · PX1,X2|U0=u0 = PY + ε0W1 J1,u0 + ε0W2 J2,u0

+ O(ε2)

so I (U0; Y ) can be written as
∑

u0

PU0(u0) · ∥∥B0Lu0

∥∥2
,

where B0 = [B1 B2]. Therefore, the optimization problem
w.r.t. the common message can be reduced to

max
Lu0 :‖Lu0‖2≤1

∥∥B0 Lu0

∥∥2
. (11)

Observe that unlike the point-to-point channel case, the
Lu0 has to respect the constraint that the first |X1| entries
of Lu0 (an |X1|-dimensional vector) is orthogonal to

√
PX1 ,

and the last |X2| entries of Lu0 is orthogonal to
√

PX2 .
Nevertheless it is shown in [3] that the optimal Lu0 in (11)
is still the right singular vector of B0 with the second largest
singular value. Hence, the maximum of (11) is 1

2ε2
0σ 2

0 where
σ 2

0 = σ 2
smax([B1 B2]).

Example 3: Consider a quaternary-inputs binary-output
MAC with

P(0|x1x2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
3 (2 − α), x1x2 = (00, 01, 02, 10, 11, 12);
α, x1x2 = (03, 13, 23, 33);
1
3 (4 − 5α), x1x2 = (20, 21, 22, 32);
1
3 (−2 + 7α), x1x2 = (30, 31),

P(1|x1x2) = 1 − P(0|x1x2), ∀(x1, x2).

Here we assume that 2
7 ≤ α ≤ 5

7 , which allows us to have a
valid probability distribution. Suppose that both PX1 and PX2

are fixed as [ 1
4 , 1

4 , 1
4 , 1

4 ]T . The probability transition matrices
are then given by

W1 = W2 =
[ 1

2
1
2 1 − α α

1
2

1
2 α 1 − α

]
.

We can then compute B1 = B2 =
√

2
2 W1. Hence, we get

the same (L∗
uk

, σ 2
k ) as that in Example 2 for k = 1, 2. For

(L∗
u0

, σ 2
0 ), we obtain

L∗
u0

= 1

2
[0, 0, 1,−1|0, 0, 1,−1]T , σ 2

0 = (1 − 2α)2.

Here we can see a gain due to coherent combining of
the transmitted signals. Notice that the common rate σ 2

0 is
double the private rate σ 2

1 = σ 2
2 . One can interpret this as

a so-called beamforming gain that is widely used to indicate
the coherent combining gain in the context of multi-antenna
Gaussian channels. �

III. A NEW DETERMINISTIC MODEL

The local geometric framework in Section II provides a
systematic approach in exploring the LIC problems. It turns
out that this approach allows us to abstract arbitrary com-
munication networks with a few key parameters induced by
the networks, thus developing a novel deterministic model.
In this section, we construct deterministic models for the
point-to-point, broadcast and multiple-access channels dis-
cussed in the preceding section, and will extend to more
general communication networks in the following sections.

Prior to describing our model, we emphasize three distin-
guishing features of the model with a comparison to one pop-
ular deterministic model: the Avestimehr-Diggavi-Tse (ADT)
model [7].

• Target Channels: While the ADT model is intended for
capturing key properties of wireless Gaussian channels,
our model aims at arbitrary discrete-memoryless
channels.

• Approximation: In the ADT model, approximation to
Gaussian channels is accurate when links have high
signal-to-noise ratios. On the other hand, our model relies
upon the Euclidean approximation and hence it is accu-
rate as long as the channels are assumed to be very noisy,
i.e., PX |U=u being close to PX . The locality assumption
puts limitations to our model in approximating general
not-very-noisy channels.

• Signal Interactions in the Noise-Limited Regime: The
ADT model focuses on the interaction of transmitted
signals rather than on background noises, thus well
representing the interference-limited regime, where the
noise power is negligible compared to signal powers. Our
model, however, can well represent noise-limited regimes
in which a beamforming gain often occurs. Moreover,
even for very noisy channels, signal interactions can be
captured in our model. This is a significant distinction
with respect to the ADT model targeted for Gaussian
channels. Note that for very noisy Gaussian channels,
signal interactions are completely ignored as the channels
are considered as multiple point-to-point links in the
noise-limited regime.

Remark 1: While our model does not well approximate
not-very-noisy channels which often represent many realistic
communication scenarios, it still plays a role in some realistic
networks. One such example is a cognitive radio network in
which secondary users wish to exchange their information
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Fig. 1. The bit-pipe deterministic model for discrete-memoryless broadcast channels. The LIC capacity region leads us to abstract a BC as a deterministic

channel with three bit-pipes, each having the capacity of δkσ 2
k . Note that the capacity δkσ 2

k can change depending on an allocation of (δ1, δ2, δ0). Here we
normalize the capacity region by δ. Rx k indicates a virtual terminal that decodes only Uk , for k = 0, 1, 2. Hence, physical-Rx k consists of virtual-Rx k and
virtual-Rx 0, for k = 1, 2.

while minimizing interference to the existing communication
network for primary users. By modeling the encoding of the
secondary users’ signals as superposition coding to existing
primary signals, we can formulate an LIC problem that intends
to characterize the tradeoff between the communication rates
of the secondary users and the interference to the existing
communication network. In Section VII-C, we will provide
more detailed discussions on this, and also show the potential
of our model to a wide range of other interesting applications
beyond communications.

Notations: For illustrative purpose, we shall use the follow-
ing notations for the rest of this paper. Let δ and δk be 1

2ε2

and 1
2ε2

k respectively. In fact, we assume that δ is a small
value, as it allows us to exploit the local approximation to
derive capacity regions. However, once the capacity regions
are obtained, the δ acts only as a scaling factor. So for
simplicity, we normalize the regions by replacing δ with 1.
In addition, in order to distinguish the local-approximation-
based capacity region from the traditional one, we shall call
it the linear information coupling (LIC) capacity region. With
slight abuse of notations, we will use the notation C (usually
employed to indicate the conventional capacity region) to
denote the LIC capacity region. We will also use the notation
Csum to indicate the LIC sum capacity.

A. Point-to-Point Channels

For a point-to-point channel, from Section II-A, the LIC
capacity is simply I (U ; X) ≈ δ · σ 2. This naturally leads us
to model the point-to-point channel as a single bit-pipe with
capacity σ 2. Here the quantity σ 2 can be computed simply as
the second largest singular value of the DTM. Importantly,
note that this deterministic model provides a general
framework as it can abstract every discrete-memoryless
point-to-point channel with a single quantity σ 2.

B. Broadcast Channels

For a general broadcast channel, the LIC capacity region (7)
is derived as

CBC =
⋃

δ1+δ2+δ0≤1

{
(R1, R2, R0) : Rk ≤ δkσ

2
k , k ∈ [0 : 2]},

where σk’s can be computed as in Section II-C. This simple
formula of the region leads us to model a broadcast channel as
three bit-pipes, each having capacity δkσ

2
i . Unlike traditional

wired networks, the capacities of these bit-pipes are flexible:
δkσ

2
k can vary depending on different allocations of (δ1, δ2, δ0)

subject to δ1 + δ2 + δ0 ≤ 1. Hence, the LIC capacity region is
of the shape as shown in the right figure of Fig. 1.

The left figure in Fig. 1 shows a pictorial representation
of our deterministic model for discrete-memoryless broadcast
channels. Here physical-Rx k wishes to decode its private
message Uk as well as the common message U0. So we
can represent physical-Rx k by two virtual receivers, say
Rx k and Rx 0, which intend to decode Uk and U0 respectively.
Employing the virtual receivers, we now model the broadcast
channel with one transmitter and three receivers in which
each receiver decodes its individual message. Here the circles
indicate bit-pipes intended for transmission of different mes-
sages. For instance, the top circle indicates a bit-pipe w.r.t.
the U1-message transmission. Note that different types of
messages are delivered via parallel channels, identified by
circles.

Another significant distinction w.r.t. the traditional wired
network model is that channel parameters (σ 2

1 , σ 2
2 , σ 2

0 ) have
to respect the inequality that intrinsically comes from the
structure of the broadcast channel:

σ 2
1 σ 2

2

σ 2
1 + σ 2

2

≤ σ 2
0 ≤ min{σ 2

1 , σ 2
2 }. (12)

Notice that the lower bound can be achieved as shown
in Example 2. This equality corresponds to the case, where
the two optimal perturbation vectors for each of the two
users are somehow orthogonal, and it is difficult to find a
communication scheme that conveys much information to both
receivers simultaneously. On the other hand, the equality of
the upper bound holds when the two optimal communication
directions of two users are aligned with each other, so that one
can design a perturbation vector that broadcasts information to
both receivers efficiently. Moreover, the upper bound implies
that common-message transmission requires more commu-
nication resources than private-message transmission does.
Following the procedure in Section II-C, one can explicitly
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Fig. 2. The bit-pipe deterministic model for multiple-access channels. A discrete-memoryless MAC can be modeled as three bit-pipes where the capacity of
each bit-pipe is δkσ 2

k . Unlike BCs, virtual transmitters are employed. Tx k indicates a virtual terminal that sends only Uk , for k = 0, 1, 2. Hence, physical-Tx
k consists of virtual-Tx k and virtual-Tx 0, for k = 1, 2.

computing σk’s, thus quantifying the cost difference between
common-message and private-message transmissions.

In addition, in this deterministic model, the trade-off
between (R1, R2, R0) can be well adjusted with (δ1, δ2, δ0)
subject to δ1 + δ2 + δ0 ≤ 1. This trade-off can be precisely
evaluated from μ-sum-rate maximization, which can be carried
out via a simple LP problem formulation as follows:

max
2∑

k=0

μk · (δkσ
2
k ) : s.t.

2∑

k=0

δk ≤ 1.

In the case of the sum-rate maximization where μk = 1,∀k,
we can get Csum = max{σ 2

1 , σ 2
2 , σ 2

0 } = max{σ 2
1 , σ 2

2 }. Here
we have used (12). This solution implies that common-
message transmission is more expensive, and hence choosing
a more capable link among private-message bit-pipes yields
the maximum sum rate.

C. Multiple-Access Channels

The LIC capacity region (10) for the multiple-access
channel is derived as

CMAC =
⋃

δ1+δ2+δ0≤1

{
(R1, R2, R0) : Rk ≤ δkσ

2
k , k ∈ [0, 2]},

where σk ’s can be computed as in Section II-D. Therefore,
any discrete-memoryless MAC can be modeled as three bit-
pipes, each having capacity δkσ

2
k . See Fig. 2. Applying similar

ideas as in the broadcast channel, we model physical-Tx k by
two virtual transmitters, say Tx k and Tx 0, which wishes to
send the private message Uk and the common message U0
respectively. So the multiple access channel is modeled with
three transmitters and one receiver.

Similarly, channel parameters (σ 2
1 , σ 2

2 , σ 2
0 ) here should

also satisfy the inequality that comes intrinsically from the
MAC structure:

max{σ 2
1 , σ 2

2 } ≤ σ 2
0 ≤ σ 2

1 + σ 2
2 . (13)

The lower bound of (13) is straightforward. To see the
upper bound, notice that for any valid perturbation vector
L = [LT

1 LT
2 ]T ,

‖B0 L‖2 ≤ (‖B1 L1‖ + ‖B2L2‖)2 ≤ (σ1‖L1‖ + σ2‖L2‖)2

≤ σ 2
1 + σ 2

2 .

Here the first inequality is due to the triangle inequality. The
second inequality follows from the definition of σ1 and σ2:
σk denotes the second largest singular value of Bk , k = 1, 2.
The third inequality comes from the Cauchy-Schwarz inequal-
ity and the unit-norm constraint: ||L||2 = ‖L1‖2 +‖L2‖2 ≤ 1.
Importantly, note that both transmitters share the knowledge of
the common message, and hence they can cooperate each other
in sending the common message efficiently. This is reflected
in the upper bound of (13), being interpreted as the coherent
combining gain (or the beamforming gain).

Moreover, the trade-off between (R1, R2, R0) can be eval-
uated from μ-sum-rate maximization. For example, the LIC
sum capacity is given by Csum = max{σ 2

1 , σ 2
2 , σ 2

0 } = σ 2
0 ,

obtained via maximizing the coherent combining gain.
Unlike the ADT model, our model can capture signal

interactions even for non-negligible noisy channels. This is
demonstrated through the following example.

Example 4: Consider a binary-inputs binary-output MAC
with

P(0|x1x2) =
{

1 − α, x1x2 = (00, 11);
α, x1x2 = (01, 10).

P(1|x1x2) = 1 − P(0|x1x2), ∀(x1, x2).

In fact, this is a binary addition channel:

Y = X1 ⊕ X2 ⊕ Z ,

where Z ∼ Bern(α). Suppose that both PX1 and PX2 are fixed
as [ 1

2 , 1
2 ]T . The probability transition matrices are then given

by

W1 = W2 =
[

1
2

1
2

1
2

1
2

]
.
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We can then compute B1 = B2 = W1, thus yielding
σ 2

1 = σ 2
2 = σ 2

0 = 0.
We now consider a different MAC where the above joint

probability distribution is slightly changed as follows:

P(0|x1x2) =
{

1 − α, x1x2 = (00, 10);
α, x1x2 = (01, 11).

P(1|x1x2) = 1 − P(0|x1x2), ∀(x1, x2).

The only difference here is that the probabilities
P(y|10) and P(y|11) are simply swapped each other.
This simple change yields different values of (σ 2

1 , σ 2
2 , σ 2

0 ).
Note that in this case,

W1 =
[

1
2

1
2

1
2

1
2

]
, W2 =

[
1 − α α

α 1 − α

]
,

thus yielding (σ 2
1 , σ 2

2 , σ 2
0 ) = (0, (1−2α)2

2 , (1−2α)2

2 ). Therefore,
we can see that even for non-negligible noisy channels, signal
interactions are well captured in our model. �

We now generalize this deterministic model to arbi-
trary discrete-memoryless networks. Specifically we will first
construct a deterministic model for interference channels
in Section IV, and then extend to more general networks in
the following sections.

IV. INTERFERENCE CHANNELS

The quantifications of the channel parameters in (12)
and (13) in Section III shed significant insights into exploring
transmission efficiency in more general networks. Specifi-
cally (13) suggests that common-message transmission in the
MAC is more advantageous due to the coherent combin-
ing gain. This motivates us to create common messages as
much as possible. On the other hand, (12) suggests that it
consumes more network resources to generate such common
messages than the private-message generation. Hence, there
is a fundamental trade-off between the cost of generating
common messages and the benefit from transmitting common
messages. With the framework established in the previous
sections, we now intend to investigate the trade-off rela-
tion, thereby optimizing communication rates of networks.
To this end, we will first explore interference channels in this
section.

For an interference channel with two transmitters and
two receivers, there are 9 types of messages Uij where
i, j = 0, 1, 2. Here Uij indicates a message from virtual-Tx
i to virtual-Rx j , i, j ∈ [0 : 2]. Note that Ui0 denote a com-
mon message (w.r.t. virtual-Tx i ) intended for both receivers,
while U0 j indicates a common message (w.r.t. virtual-Rx j )
accessible by both transmitters. Then, the LIC problem for the
interference channel is the one that maximizes a rate region
such that

Rij ≤ I (Uij ; Y j ), ∀i, j �= 0, (14)

Ri0 ≤ min {I (Ui0; Y1), I (Ui0; Y2)} ∀i, (15)

Fig. 3. A deterministic model for interference channels. We consider the most
general setting with 9 messages, denoted by Ui j ’s, each indicting a message
from virtual-Tx i to virtual-Rx j . This IC can be modeled as 9 bit-pipes,
each having the capacity of δi j σ

2
i j , where δi j indicates the network resource

assigned for transmitting Ui j .

subject to the constraints:

I (Uij ; Xi ) ≤ δi j , i �= 0, ∀ j,

I (U0 j ; X1, X2) ≤ δ0 j , ∀ j,
∑

i, j=0,1,2

δi j = 1.

Note that the constraints and the objective functions in the
above are of the same mutual information forms as those in
the BC and MAC problems in Section II. Therefore, following
the same local geometric approach, (14) can be reduced to

Rij ≤ δi j σ
2
i j , for i, j = 0, 1, 2,

∑

i, j=0,1,2

δi j ≤ 1, (16)

where σ 2
i j indicates a channel parameter that quantifies the

ability of the channel in transmitting Uij , and can be computed
in a similar manner as in Section II:

σ 2
i j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ 2
smax(Bij ), i �= 0, j �= 0;

maxvi min{||Bi1vi ||2, ||Bi2vi ||2}, i �= 0, j = 0;
σ 2

smax([B1 j B2 j ]), i = 0, j �= 0,

maxu min{||[B11 B21]u||2, ||[B12 B22]u||2}
i = 0, j = 0.

Here, Bij indicates the DTM with respect to the channel matrix
WY j |Xi between transmitter i and receiver j , and (v1, v2, u)
are unit-norm vectors, such that v1 and the first |X1| entries
of u are orthogonal to

√
PX1 , and v2 and the last |X2| entries

of u are orthogonal to
√

PX2 . Consequently, the LIC capacity
region of the interference channel is

CIC =
⋃

∑
i j δi j ≤1

{
(R11, R10, · · · , R22) : Rij ≤ δi j σ

2
i j

}
. (17)

From (17), we can now construct a deterministic model,
applying the same idea as in the previous section. This
deterministic model consists of flexible 9 bit-pipes, where the
capacity of each bit-pipe is δi j σ

2
i j , and can vary depending

on different allocations of δi j ’s. An illustration of the deter-
ministic model is shown in Fig. 3. Note that the presented
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transmitters and receivers are virtual terminals, and the
message Uij is transmitted from Tx i to Rx j . Moreover, σi j ’s
should satisfy the inequalities similar to (12) and (13):

σ 2
11σ

2
12

σ 2
11 + σ 2

12

≤ σ 2
10 ≤ min{σ 2

11, σ
2
12}

σ 2
21σ

2
22

σ 2
21 + σ 2

22

≤ σ 2
20 ≤ min{σ 2

21, σ
2
22}

σ 2
01σ

2
02

σ 2
01 + σ 2

02

≤ σ 2
00 ≤ min{σ 2

01, σ
2
02}

max{σ 2
11, σ

2
21} ≤ σ 2

01 ≤ σ 2
11 + σ 2

21

max{σ 2
12, σ

2
22} ≤ σ 2

02 ≤ σ 2
12 + σ 2

22, (18)

which can be derived similarly as in the BC and MAC cases.
Example 5: Consider a quaternary-inputs binary-outputs IC

where P(y1|x1x2) is the same as that in Example 3, but
P(y2|x1x2) is different as

P(0|x1x2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
3 (2 − α), x1x2 = (22, 23, 20, 32, 33, 30);
α, x1x2 = (21, 31, 01, 11);
1
3 (4 − 5α), x1x2 = (02, 03, 00, 10);
1
3 (−2 + 7α), x1x2 = (12, 13),

P(1|x1x2) = 1 − P(0|x1x2), ∀(x1, x2).

To have valid probability distributions, similarly we assume
that 2

7 ≤ α ≤ 5
7 . Suppose that both PX1 and PX2 are fixed

as [ 1
4 , 1

4 , 1
4 , 1

4 ]T . The probability transition matrix Wij w.r.t
PY j |Xi is then computed as

W11 =
[

1
2

1
2 1 − α α

1
2

1
2 α 1 − α

]
,

W21 =
[

1
2

1
2 1 − α α

1
2

1
2 α 1 − α

]
,

W12 =
[

1 − α α 1
2

1
2

α 1 − α 1
2

1
2

]
,

W22 =
[

1 − α α 1
2

1
2

α 1 − α 1
2

1
2

]
.

This gives Bij =
√

2√
3

Wij . Performing similar computations as

those in Examples 2 and 3, we can get

σ 2
11 = σ 2

12 = σ 2
21 = σ 2

22 = 1

2
(1 − 2α)2,

σ 2
10 = σ 2

20 = 1

4
(1 − 2α)2,

σ 2
01 = σ 2

02 = (1 − 2α)2,

σ 2
00 = 1

2
(1 − 2α)2 .

This example is an extreme case where sending Rx-common
messages is the hardest as possible while sending Tx-common
messages is the easiest due to the maximally-achieved beam-
forming gain. Note that 4σ 2

10 = 2σ 2
11 = σ 2

01, thus implying that

(σ 2
10, σ

2
20) achieve the lower bounds in (18), while (σ 2

01, σ
2
02)

achieve the upper bounds in (18). �

In this deterministic model, the trade-off between the
9 message rate-tuples can be characterized by solving the
LP problem for μ-sum-rate maximization. In particular,
the LIC sum capacity can be obtained as

Csum = max∑
δi j ≤1

∑
δi j σ

2
i j = max

i, j
σ 2

i j

= max{σ 2
01, σ

2
02},

where the last equality is due to (18). Therefore, to optimize
the total throughput, we will just let either δ01 or δ02 be 1, and
deactivate other links. In other words, the optimal strategy is
to transmit a common message accessible by both transmitters,
maximizing the beamforming gain.

V. MULTI-HOP LAYERED NETWORKS

Deterministic models of single-hop networks such as BCs,
MACs and ICs do not well capture the trade-off between the
cost of generating common messages and the benefit from
sending common messages. In BCs, only the cost due to
common-message generation is quantified, while in MACs, we
can only investigate the benefit from common-message trans-
mission. In ICs, an obvious solution to sum-rate maximization
is to maximize the coherent combining gain which comes from
common-message transmission.

On the other hand, in multi-hop layered networks, this
tension can be well taken into consideration. Notice that a
common message accessible by multiple transmitters in one
layer must be generated from the previous layer. Hence, to
optimize the throughput, one needs to compare the benefit
from common-message transmission in one layer with the cost
due to common-message generation in the preceding layer.
Now one natural question that arises in this context is then:
how do we plan which kinds of common messages should
be generated in a given network to maximize the throughput?
In this section, we will address this question.

For illustrative purpose, we consider a general layered
network with only two users in each layer, although our
approach can be readily extended to more general cases at
the expense of heavy notations. For the two-user L-layered
network, the �-th layer is an interference channel with input
symbols X (�)

1 , X (�)
2 , and output symbols Y(�)

1 , Y(�)
2 , and the

channel matrix W (�)
Y1Y2|X1 X2

. See Fig. 4.
For simplification, we assume a decode-and-forward

operation [8] at each layer: part of messages are decoded at
each layer and then these are forwarded to the next layer.
With the decode-and-forward scheme, one can abstract each
layer as a deterministic model like the one for an IC, and
a concatenation of these layers will construct a deterministic
model of the multi-hop layered network. See Fig. 5. Here, we
denote by si the virtual Tx i in the first layer, and by di the
virtual Rx i in the last layer. Denote by r (�)

i a node that can act
as the virtual Tx i and Rx i in the �-th intermediate layer.
In addition, the channel of layer � consists of 9 bit-pipes,

each having the capacity of δ
(�)
i j σ

2,(�)
i j , for i, j = 0, 1, 2, and

� ∈ [1 : L], and the corresponding constraint for δi j ’s is:

1

L

L∑

�=1

2∑

i=0

2∑

j=0

δ
(�)
i j ≤ 1. (19)
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Fig. 4. The L-layered network with two users in each layer. The super index “(�)” denotes the �-th layer of the transmitters, receivers, and the users.

Fig. 5. A deterministic model for multi-hop interference networks. We introduce a separation principle across layers. We abstract each layer as the bit-pipe
deterministic model, and then constitute an entire network with concatenating these layers. Layer � consists of 9 bit-pipes, each having the capacity
of δ

(�)
i j σ

2,(�)
i j , i, j ∈ [0 : 2] and � ∈ [1 : L]. Here σ

2,(�)
i j represent the key parameters that characterize layer �’s channel.

Here the constraint is normalized by the number of
layers.

For simplicity, in this paper, we do not allow any mixing
between distinct messages (network coding [9]), focusing
on the routing capacity. Then, for each set of δ

(�)
i j that

satisfies (19), one can obtain a layered network with fixed
capacity δ

(�)
i j σ

2,(�)
i j for each link (i, j) in the �-th layer. This

reduces to the traditional routing problem. Hence, we can
characterize the LIC capacity region of the 9 rate tuples by
investigating achievable rate regions over all possible sets
of δ

(�)
i j subject to (19).

Theorem 1: Consider a two-source two-destination
multi-hop layered network illustrated in Fig. 5. Assume
that 9 messages Uij ’s are mutually independent. Under the
assumption of (19), the LIC capacity region is

CLN =
⋃

∑
δi j ≤L

{
(R11, R10, · · · , R22) : Rij ≤ δi j σ

2
i j

}
,

where

σi j = 1

L
max

q∈[1:3L−1]
M(P (q)

i j ). (20)

Here, P (q)
i j denotes a set of the link capacities along the q-th

path from virtual source i to virtual destination j , and M(P (q)
i j )

denotes the harmonic mean of the elements in the set P (q)
i j .

Proof: Unlike single-hop networks, in multi-hop
networks, each link can be used for multiple purposes,

i.e., δ
(�)
i j can be the sum of the network resources consumed for

the multiple-message transmission. For conceptual simplicity,
we introduce message-oriented notations δi j ’s, each indicating

the sum of the δ
(�)
i j ’s which contribute to delivering the

message Uij . The constraint of
∑

δ
(�)
i j ≤ L then leads to∑

δi j ≤ L. Here the key observation is that the tradeoff
between the 9-message rates is decided only by the constraint
of

∑
δi j ≤ L, i.e., given a fixed allocation of δi j ’s, the 9

sub-problems are independent with each other.
Now let us fix δi j ’s subject to the constraint, and consider

the message Uij . Since there are 3L−1 possible paths for
transmission of this message, the problem is reduced to finding
the most efficient path that maximizes Rij , as well as finding
a corresponding resource allocation for the links along the
path. We illustrate the idea of solving this problem through an
example in Fig. 6. Consider the delivery of U10. In the case of
L = 2, we have three possible paths (P (1)

10 ,P (2)
10 ,P (3)

10 ), iden-
tified by blue, red and green paths. The key point here is that
the maximum rate for each path is simply a harmonic mean of
the link capacities associated with the path, normalized by the
number of layers. To see this, consider the top blue path P (1)

10
consisting of two links with capacities of σ

2,(1)
11 and σ

2,(2)
10 , i.e.,

P (1)
10 = {σ 2,(1)

11 , σ
2,(2)
10 }. Suppose that δi j is allocated such that

the λ fraction is assigned to the first link and the remaining
(1 − λ) fraction is assigned to the second link. The rate is
then computed as min{λσ

2,(1)
11 , (1 − λ)σ

2,(2)
10 }. Note that this

can be maximized as
σ

2,(1)
11 σ

2,(2)
10

σ
2,(1)
11 +σ

2,(2)
10

= 1
2 M(σ

2,(1)
11 , σ

2,(2)
10 ).
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Fig. 6. The maximum rate for U10 when L = 2. In this example, we have three possible paths for sending U10 as shown in the figure. For each path, the
maximum rate is computed as a harmonic mean of the link capacities along the path, normalized by the number of layers. Therefore, σ2

10 is given as above.

Therefore, the maximum rate is

σ 2
10 = 1

2
max

{
M(σ

2,(1)
11 , σ

2,(2)
10 ), M(σ

2,(1)
10 , σ

2,(2)
00 ),

M(σ
2,(1)
12 , σ

2,(2)
20 )

}
.

We can easily show that for an arbitrary L-layer case, the
maximum rate for each path is the normalized harmonic mean.
This completes the proof.

Remark 2 (Viterbi Algorithm): Notice that the complexity
for computing the LIC capacity region grows exponentially
with the number of layers: O(3L). However, the Viterbi
algorithm [10] allows us to reduce the complexity significantly.
Note that (20) is equivalent to finding the path such that the

inverse sum of σ
2,(k)
ik ik+1

is minimized. Taking 1/σ
2,(k)
ik ik+1

as a cost,

we can now apply the the Viterbi algorithm to find the path
with minimal total cost, and hence the complexity is reduced
to O(L). �

In addition, Theorem 1 immediately provides the maximum
throughput of this network as shown in the following
Corollary.

Corollary 1: Consider a layered network illustrated in
Fig. 5, the LIC sum capacity under the constraint (19) is

Csum = max
i1,i2,...,iL+1∈[0:2] M(σ

2,(1)
i1 i2

, σ
2,(2)
i2 i3

, . . . , σ
2,(L)
iL iL+1

), (21)

where M(·) denotes the harmonic mean.
Remark 3: Again one can find the optimal path via the

Viterbi algorithm with complexity O(L). �

A. Multi-Hop Networks With Identical Layers

While Theorem 1 offers a way to find the optimal strategy
for general layered networks, it is sometimes more useful
to understand the “patterns” or structures of the optimal
communication schemes for large-scaled networks. For
instance, suppose that channel parameters are available only
locally. Then the communication patterns can serve to design
local communication strategies for users. In this section, we
explore the communication patterns for a certain network: the
L-layered network with identical channel parameters for each
layer and L → ∞. Specifically, for all layers �, the channel

parameters are identical and denoted as σ
2,(�)
i j = σ 2

i j . The
following theorem identifies the fundamental communication
modes of the optimal strategies.

Theorem 2 (Identical Layers): Consider a layered network
illustrated in Fig. 5, where σ

2,(�)
i j = σ 2

i j ,∀�, and L → ∞.
Then, the LIC sum capacity is

Csum = max
{
σ 2

11, σ
2
00, σ

2
22, M(σ 2

10, σ
2
01), M(σ 2

20, σ
2
02),

M(σ 2
12, σ

2
21), M(σ 2

10, σ
2
02, σ

2
21),

M(σ 2
20, σ

2
01, σ

2
12)

}
, (22)

where M(·) denotes the harmonic mean.
Proof: Let us first prove the converse part. First observe

that we use the routing-only scheme to pass information
through the network. Thus, for any optimal communication
scheme, we have the inflow equal to outflow for every node
in the intermediate layers, i.e., for all k and �,

2∑

i=0

δ
(�−1)
ik σ 2

ik =
2∑

j=0

δ
(�)
kj σ 2

kj . (23)

Moreover, for all �, the total throughput of the network
is

∑2
k, j=0 δ

(�)
kj σ 2

kj . Now, for a network with L layers, let us

define a tuple of δ
(�)
i j as a γ -scheme, if

2∑

k=0

∣∣∣∣∣∣

2∑

j=0

δ
(1)
kj σ 2

kj −
2∑

i=0

δ
(L)
ik σ 2

ik

∣∣∣∣∣∣
= γ.

Here we define C(L)
sum,γ as the optimal achievable throughput

among all γ -schemes. Since our goal is to optimize the
network throughput, it suffices to only consider γ -schemes
that satisfy (23). Now, we want to show that if a γ -scheme
satisfies (23), then γ is upper bounded by 2 maxi, j σ 2

i j , and
not increasing with L. To see this, note that

γ ≤
2∑

k=0

2∑

j=0

δ
(1)
kj σ 2

kj +
2∑

k=0

2∑

i=0

δ
(L)
ik σ 2

ik = 2C(L)
sum,γ ≤ 2 max

i, j
σ 2

i j ,

where the first inequality is the triangle inequality, and
the second equality comes from the fact that the inflow
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is equal to the outflow for the schemes achieving the
optimal network throughput (23); hence,∑2

k=0
∑2

j=0 δ
(1)
kj σ 2

kj = ∑2
k=0

∑2
i=0 δ

(L)
ik σ 2

ik = C(L)
sum,γ .

Finally, the last inequality is a trivial upper bound for the
network throughput.

Now, the key technique to find the optimal throughput of
the L-layered network is to reduce the L-layered optimization
problem to a single-layered one. This is illustrated as follows:
for any γ -scheme δ

(�)
i j of a network with L layers that

achieves C(L)
sum,γ and satisfies (23), we consider the tuple δ̃i j

for i, j = 0, 1, 2, where

δ̃i j = 1

L

L∑

�=1

δ
(�)
i j .

Then, we have

2∑

k=0

∣∣∣∣∣∣

2∑

j=0

δ̃kj σ
2
kj −

2∑

i=0

δ̃ikσ
2
ik

∣∣∣∣∣∣

= 1

L

2∑

k=0

∣∣∣∣∣∣

2∑

j=0

L∑

�=1

δ
(�)
kj σ 2

kj −
2∑

i=0

L∑

�=1

δ
(�)
ik σ 2

ik

∣∣∣∣∣∣

= 1

L

2∑

k=0

∣∣∣∣∣∣

L∑

�=1

2∑

j=0

δ
(�)
kj σ 2

kj −
L+1∑

�=2

2∑

i=0

δ
(�−1)
ik σ 2

ik

∣∣∣∣∣∣

= 1

L

2∑

k=0

∣∣∣∣∣∣

2∑

j=0

δ
(1)
kj σ 2

kj −
2∑

i=0

δ
(L)
ik σ 2

ik

∣∣∣∣∣∣
= γ

L
.

Therefore, δ̃i j is a (γ /L)-scheme for a new network with
only one layer, and this single layer is identical to each of
the L layers of the original L-layered network. Moreover,
from (23), for the γ -scheme δ

(�)
i j of the original L-layered

network, the inflow and outflow of all layers are the same.
So, the total throughput of the (γ /L)-scheme δ̃i j of the new
single-layered network is

2∑

k=0

2∑

j=0

δ̃kj σ
2
kj = 1

L

L∑

�=1

2∑

k=0

2∑

j=0

δ
(�)
kj σ 2

kj =
2∑

k=0

2∑

j=0

δ
(1)
kj σ 2

kj

= C(L)
sum,γ .

This implies that C(L)
sum,γ ≤ C(1)

sum, γ
L

. Thus, C(1)

sum, γ
L

is an

upper bound for C(L)
sum,γ , and we only need to show that

limL→∞ C(1)

sum, γ
L

converges to the right hand side of (22).

To this end, let us first show that C(1)

sum, γ
L

is continuous

at γ
L = 0.
Lemma 1: limε→0+ C(1)

sum,ε = C(1)
sum,0.

Proof: See Appendix.
Now, note that γ is bounded by the constant 2 maxi, j σ 2

i j ,
independent of L, so γ

L → 0 in the limit of L. Hence, we
have

Csum ≤ lim
L→∞ C(1)

sum,
γ
L

= C(1)
sum,0, (24)

where the limit exists due to the continuity at γ
L = 0.

Therefore, an upper bound of Csum can be found by the

following optimization problem:

Csum ≤ max
δi j

∑

i, j

δi j σ
2
i j :

s.t.
∑

i, j

δi j ≤ 1, δi j ≥ 0 ∀i, j

2∑

i=0

δikσ
2
ik =

2∑

j=0

δkj σ
2
kj , k ∈ [0 : 2].

Note that the objective indicates the total amount of
information that flows into the destinations. The three
equality constraints in the above can be equivalently written
as two equality constraints:

δ01 =
(

σ 2
10

σ 2
01

)
δ10 +

(
σ 2

20

σ 2
01

)
δ20 −

(
σ 2

02

σ 2
01

)
δ02

δ12 =
(

σ 2
20

σ 2
12

)
δ20 +

(
σ 2

21

σ 2
12

)
δ21 −

(
σ 2

02

σ 2
12

)
δ02. (25)

Note that all of the δi j ’s are non-negative, we take a careful
look at the minus terms associated with δ02. This leads us to
consider two cases: (1) δ02 = 0; (2) δ02 �= 0.

The first is an easy case. For δ02 = 0, the problem can be
simplified into:

max
δi j

2∑

i=0

δiiσ
2
ii + (2δ10σ

2
10 + 3δ20σ

2
20 + 2δ21σ

2
21) :

s.t.
2∑

i=0

δii +
(

1 + σ 2
10

σ 2
01

)
δ10 +

(
1 + σ 2

21

σ 2
12

)
δ21

+
(

1 + σ 2
20

σ 2
01

+ σ 2
20

σ 2
12

)
δ20 ≤ 1, δi j ≥ 0, ∀i, j.

This LP problem is straightforward. Due to the linearity, the
optimal solution must be setting only one δi j as a non-trivial
maximum value while making the other allocations zeros.
Hence, we obtain:

Csum ≤ max
{
σ 2

11, σ
2
00, σ

2
22, M(σ 2

10, σ
2
01), M(σ 2

12, σ
2
21),

M(σ 2
20, σ

2
01, σ

2
12)

}
. (26)

Here, the fourth term M(σ 2
10, σ

2
01), for example, is obtained

when δ10 = 1
1+σ 2

10/σ
2
01

and δi j = 0 for (i, j) �= (1, 0).

The last term M(σ 2
20, σ

2
01, σ

2
12) corresponds to the case when

δ20 = 1
1+σ 2

20/σ
2
01+σ 2

20/σ
2
12

and δi j = 0 for (i, j) �= (2, 0).

We next consider the second case of δ02 �= 0. First note
that since δ01 and δ12 are nonnegative, by (25), we get

δ02 ≤
(

σ 2
20

σ 2
02

)
δ20 +

(
σ 2

10

σ 2
02

)
δ10,

δ02 ≤
(

σ 2
20

σ 2
02

)
δ20 +

(
σ 2

21

σ 2
02

)
δ21.

The key point here is that in general LP problems, whenever
δ02 �= 0, the optimal solution occurs when δ02 is the largest
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Fig. 7. LIC sum capacity of multi-hop interference networks with identical layers.

as possible and the above two inequalities are balanced:

δ02 =
(

σ 2
20

σ 2
02

)
δ20 +

(
σ 2

10

σ 2
02

)
δ10,

(
σ 2

10

σ 2
02

)
δ10 =

(
σ 2

21

σ 2
02

)
δ21.

Therefore, for δ02 �= 0, the problem can be simplified into:

max
δi j

2∑

i=0

δiiσ
2
ii + (3δ10σ

2
10 + 2δ20σ

2
20) :

s.t.
2∑

i=0

δii +
(

1 + σ 2
10

σ 2
02

+ σ 2
10

σ 2
21

)
δ10 +

(
1 + σ 2

20

σ 2
02

)
δ20

δi j ≥ 0, ∀i, j.

This LP problem is also straightforward. Using the linearity,
we can get:

Csum ≤ max {σ 2
11, σ

2
00, σ

2
22, M(σ 2

20, σ
2
02), M(σ 2

10, σ
2
02, σ

2
21)}.

(27)

By (26) and (27), we complete the converse proof.
For the achievability, note that σ 2

ii = M(σ 2
ii ), so all 8 modes

in (22) can be written in the form M(σ 2
i1 i2

, σ 2
i2 i3

, . . . , σ 2
ik i1

),

for k = 1, 2, 3, and i1, . . . , ik are mutually different. Then,
for k = 1, 2, 3, n ∈ [1 : k], and � ∈ [1 : L], the
M(σ 2

i1 i2
, σ 2

i2 i3
, . . . , σ 2

ik i1
) can be achieved by setting

δ
(�)
in in+1

= δin in+1 = M(σ 2
i1 i2

, σ 2
i2 i3

, . . . , σ 2
ik i1

)

kσ 2
in in+1

, (28)

and deactivating all other links by setting their δi j ’s to zero.
Here, we assume that in (28), when n = k, δik ik+1 denotes δik i1 .
It is easy to verify that the assignment of (28) satisfies the
constraint (19), thus we prove the achievability.

Theorem 2 implies that the optimal communication scheme
is from one of the eight communication modes in (22).

Fig. 7 illustrates the communication schemes that achieves
modes σ 2

00, M(σ 2
12, σ

2
21), and M(σ 2

10, σ
2
02, σ

2
21), where other

modes can be achieved similarly. For example, the mode
M(σ 2

10, σ
2
02, σ

2
21) is achieved by using links 1 − 0, 0 − 2,

and 2 − 1, such that

δ10σ
2
10 = δ02σ

2
02 = δ21σ

2
21 = M(σ 2

10, σ
2
02, σ

2
21)

3
,

and other δi j = 0. Then, the information flow for each layer
and the sum rate are all M(σ 2

10, σ
2
02, σ

2
21).

More interestingly, in order to achieve (22), it requires
the cooperation between users, and rolling the knowledges
of different part of messages between users layer by layer.
We demonstrate this by considering the communication

scheme that achieves M(σ 2
10, σ

2
02, σ

2
21) as an example. Sup-

pose that at the first layer, the node si has the knowledge of
message Ui , for i = 0, 1, 2. Since s0 is the virtual node that
represents the common message of both users, user 1 knows
messages (U0, U1), and user 2 knows (U0, U2). Then, to
achieve M(σ 2

10, σ
2
02, σ

2
21), user 1 broadcasts its private message

U1 to both users in the next layer, and both users in the
first layer cooperate to transmit their common message to
user 2 in the next layer as the private message. Thus, in the
second layer user 1 decodes messages (U1, U2) and user 2
decodes (U1, U0). Similarly, in the third layer, user 1 decodes
(U2, U0) and user 2 decodes (U2, U1), and then loop back.
This effect is shown by Fig. 8(c). Therefore, according to
the values of channel parameters, Theorem 2 demonstrates
the optimal communication mode, and hence indicates what
kind of common messages should be generated to achieve the
optimal sum rate.

VI. FEEDBACK

We next explore the role of feedback under our local
geometric approach. As in the previous section, we employ
the decode-and-forward scheme for both forward and feedback
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Fig. 8. The rolling of different pieces of information between users layer by layer for the optimal communication scheme that achieves
(a) σ 2

11 (b) M(σ 2
10 , σ 2

01) (c) M(σ 2
10, σ 2

02, σ 2
21).

transmissions, under which decoded messages at each node
(instead of analog received signals) are fed back to the nodes
in preceding layers. In this model, one can view the feedback
as bit-pipe links added on top of a deterministic channel. With
this assumption on the feedback, we can see that in the deter-
ministic model of the BC, as received signals are functions of
transmitted signals, so is feedback. Therefore, feedback does
not increase the LIC capacity region. The deterministic MAC
can be interpreted as three parallel point-to-point channels,
where feedback is shown to be useless in increasing the
traditional capacity [11]. Hence, the LIC capacity region does
not increase with feedback either. In contrast, we will show
that feedback can indeed increase the LIC capacity region for
a variety of scenarios in multi-hop layered networks. Let us
start with interference channels.

A. Interference Channels

Theorem 3: Consider the deterministic model of interfer-
ence channels illustrated in Fig. 3. Assume that decoded
messages at each receiver are fed back to all the transmitters.
Let δi j be the network resource consumed for delivering the
message Uij , and assume

∑
δi j ≤ 1. The feedback LIC

capacity region is then

Cfb
IC =

⋃
∑

δi j ≤1

{
(R11, · · · , R22) : Rk0 ≤ δk0σ

2,fb
k0 , k �= 0,

Rij ≤ δi j σ
2
i j , (i, j) �= (1, 0), (2, 0)

}
,

where

σ 2,fb
10 = max

{
σ 2

10,
M(σ 2

12, σ
2
01)

2
,

M(σ 2
11, σ

2
02)

2

}
,

σ 2,fb
20 = max

{
σ 2

20,
M(σ 2

21, σ
2
02)

2
,

M(σ 2
22, σ

2
01)

2

}
. (29)

Fig. 9. An alternative way to deliver the common message of U10. One

alternative way is to take a route: virtual-Tx 1 → virtual-Rx 2
feedback−→ virtual-

Tx 0 → virtual-Rx 1. The message is clearly a common message intended
for both receivers, as it is delivered to both virtual-Rxs. We can optimize the
allocation to the two links to obtain the rate of 1

2 M(σ 2
12 , σ 2

01).

Proof: Fix δi j ’s subject to the constraint. First, consider
the transmission of Uij when (i, j) �= (1, 0), (2, 0). In this
case, the maximum rate can be achieved by using the
Tx i -to-Rx j link. Hence, Rij ≤ δi j σ

2
i j .

On the other hand, in sending U10, we may have better
alternative paths. One alternative way is to take a route as

shown in Fig. 9: Tx 1 → Rx 2
feedback−→ Tx 0 → virtual-Rx 1.

The message is clearly a common message intended for both
receivers, as it is delivered to both virtual-Rxs. Suppose
that the network resource δ10 is allocated such that the λ
fraction is assigned to the σ 2

12-capacity link and the remaining



HUANG et al.: EUCLIDEAN INFORMATION THEORY OF NETWORKS 6809

Fig. 10. Interference channels with feedback. A feedback IC can be interpreted as a nonfeedback IC where (σ2
10, σ 2

20) are replaced by the (σ
2,fb
10 , σ

2,fb
20 )

in (29).

(1 − λ) fraction is assigned to the σ 2
01-capacity link. The rate

is then min{λσ 2
12, (1 − λ)σ 2

01}, which can be maximized as
1
2 M(σ 2

12, σ
2
01). The other alternative path is: virtual-Tx 1 →

virtual-Rx 1
feedback−→ virtual-Tx 0 → virtual-Rx 2. With this

route, we can achieve 1
2 M(σ 2

11, σ
2
02). Therefore, we can obtain

σ 2,fb
10 as claimed. Similarly we can get the claimed σ 2,fb

20 .
Remark 4 (Role of Feedback): In the traditional communi-

cation setting, it is well known that feedback can increase
the capacity region of MACs and degraded BCs [12], [13],
but the capacity improvement is marginal, providing at most
a constant number of bits in the Gaussian channel. On the
other hand, feedback can provide a more significant gain
in ICs: in the Gaussian channel, it provides an arbitrarily
large gain as signal-to-noise ratios of the links increase [4].
In the LIC problem setting, the impact of feedback is similar
yet slightly different. The difference is that for MACs and
BCs, feedback has no bearing on the LIC capacity regions.
However, as can be seen from Theorem 3, feedback can
strictly increase the LIC capacity region in the interference
channels. Also the nature of the feedback gain is similar to
that in [4] and [14]: relaying gain. From Fig 9, one can see that
feedback provides an alternative better path, thus making the
beamforming gain effectively larger compared to the nonfeed-
back case. Also the feedback gain can be multiplicative, which
is qualitatively similar to the gain in the two-user Gaussian
interference channels [4]. Here is a concrete example in which
feedback provides a multiplicative gain in the LIC capacity
region. �

Example 6: Consider the same interference channel as
in Example 5 but which includes feedback links from all
receivers to all transmitters. We obtain the same σi j ’s except
the following two:

σ 2,fb
10 = σ 2,fb

20 = 1

3
(1 − 2α)2 ≥ 1

4
(1 − 2α)2 = σ 2

10 = σ 2
20.

Note that
σ 2,fb

10
σ 2

10
= 4

3 when α �= 1
2 , implying a 33% gain

w.r.t R10. �

Remark 5: With Theorem 3, one can simply model an inter-
ference channel with feedback as a nonfeedback interference
channel, in which channel parameters (σ 2

10, σ
2
20) are replaced

by the (σ 2,fb
10 , σ 2,fb

20 ) in (29). See Fig. 10.

B. Multi-Hop Layered Networks

For multi-hop layered networks, we investigate two
feedback models: (1) full-feedback model, where the decoded
messages at each node is fed back to the nodes in all
the preceding layers; (2) layered-feedback model, where the
feedback is available only to the nodes in the immediately
preceding layer.

Theorem 4: Consider a multi-hop layered network
illustrated in Fig. 5. Assume that δ

(�)
i j ’s satisfy the constraint

of (19). Then, the feedback LIC capacity region of the full-
feedback model is the same as that of the layered-feedback
model, and is given by

Cfb
LN =

⋃
∑

δi j ≤L

{(R11, R10, · · · , R22) : Rij ≤ δi j σ
2
i j }, (30)

where

σ 2
i j = 1

L
max

1≤q≤3L−1
M(P fb,(q)

i j ).

Here, the elements of the set P fb,(q)
i j are with respect to

a translated network where (σ
2,(�)
10 , σ

2,(�)
20 ) are replaced by

(σ
2,(�),fb
10 , σ

2,(�),fb
20 ) for each layer � ∈ [1 : L]:

σ
2,(�),fb
10 = max

{
σ

2,(�)
10 ,

M(σ
2,(�)
12 , σ

2,(�)
01 )

2
,

M(σ
2,(�)
11 , σ

2,(�)
02 )

2

}
,

σ
2,(�),fb
20 = max

{
σ

2,(�)
20 ,

M(σ
2,(�)
21 , σ

2,(�)
02 )

2
,

M(σ
2,(�)
22 , σ

2,(�)
01 )

2

}
.

(31)
Proof: First, let us prove the equivalence between the

full-feedback and layered-feedback models. We introduce
some notations. Let Xi [t] be the transmitted signal of virtual
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Fig. 11. Network equivalence. The feedback LIC capacity region of the full-feedback model is the same as that of the layered-feedback model.

source si at time t ; let X (�)
i [t] be the transmitted signal of node

r (�)
i at time t ; and let X (�)[t] =

[
X (�)

1 [t], X (�)
0 [t], X (�)

2 [t]
]
,

where � ∈ [1 : L − 1]. Define Xt−1 = {X[ j ]}t−1
j=1. Let

Y (�)
i [t] be the received signal of node r (�)

i at time t , and

let Y (�)[t] =
[
Y (�)

1 [t], Y (�)
0 [t], Y (�)

2 [t]
]
, where � ∈ [1 : L].

Let Ui = [Ui1, Ui0, Ui2]. We use the notation A
f= B to

indicate that A is a function B .
Under the full-feedback model, we then get

Xi [t] f= (Ui , {Y (�),t−1}L
�=1)

f= (Ui , Y (1),t−1, X (1),t−1)

f= (Ui , Y (1),t−1, {Y (�),t−2}L
�=2)

f= (Ui , Y (1),t−1, X (1),t−2)

...

f= (Ui , Y (1),t−1, X (1)[1])
f= (Ui , Y (1),t−1) (32)

where the second step follows from the fact that in deter-
ministic layered networks, {Y (�),t−1}L

�=2 is a function of

X (1),t−1; the third step follows from the fact that X (1),t−1 f=
(Y (1),t−2, {Y (�),t−2}L

�=2); and the second last step is due to
iterating the previous steps (t − 3) times.

Using similar arguments, we can also show that for
� ∈ [1 : L − 1],

X (�)
i [t] f= (Y (�),t−1

i , {Y ( j ),t−1}L
j=�+1)

f= (Y (�),t−1
i , Y (�+1),t−1, X (�+1),t−1)

f= (Y (�),t−1
i , Y (�+1),t−1, {Y ( j ),t−2}L

j=�+2)

f= (Y (�),t−1
i , Y (�+1),t−1, X (�+1),t−2)

...
f= (Y (�),t−1

i , Y (�+1),t−1, X (�+1)[1])
f= (Y (�),t−1

i , Y (�+1),t−1). (33)

The functional relationships of (32) and (33) imply that any
rate point in the full-feedback LIC capacity region can also
be achieved in the layered-feedback LIC capacity region.
This proves the equivalence of the two feedback models.
See Fig. 11.

We next focus on the LIC capacity region characterization
under the layered-feedback model. The key idea is to employ
Theorem 3, thus translating each layer with feedback into
an equivalent nonfeedback layer, where (σ

2,(�)
10 , σ

2,(�)
20 ) are

replaced by (σ
2,(�),fb
10 , σ

2,(�),fb
20 ) in (31). We can then apply

Theorem 1 to obtain the claimed LIC capacity region.

C. Multi-Hop Networks With Identical Layers

Theorem 5: Consider a multi-hop layered network in which
σ

(�)
i j = σi j ,∀� and L = ∞. For both full-feedback and
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Fig. 12. The input X1 is composed of two binary inputs X ′
1 and X ′′

1 , and
the input X2 is binary. The output Y1 = X ′

1 ⊕ X2, and the output Y2 = X ′′
1 .

layered-feedback models, the feedback LIC sum capacity is
the same as

C fb
sum = max

{
σ 2

11, σ
2
00, σ

2
22, M(σ 2,fb

10 , σ 2
01), M(σ 2,fb

20 , σ 2
02),

M(σ 2
12, σ

2
21), M(σ 2,fb

10 , σ 2
02, σ

2
21),

M(σ 2,fb
20 , σ 2

01, σ
2
12)

}
, (34)

where (σ 2,fb
10 , σ 2,fb

20 ) are of the same formulas as those in (29).
Proof: The proof is immediate from Theorems 2, 3, and 4.

First, with Theorem 4, it suffices to focus on the layered-
feedback model. We then employ Theorem 3 to translate each
layer with the layered feedback into an equivalent nonfeedback
layer with the replaced parameters (σ 2,fb

10 , σ 2,fb
20 ). We can then

use Theorem 2 to obtain the desired LIC sum capacity.
We see from Example 6 that the LIC sum capacity does

not increase with feedback in a single-hop network. On the
other hand, in multi-hop networks, we find that the LIC sum
capacity can increase with feedback. Here is an example.

Example 7: Consider a multi-hop layered network in which
each layer is the interference channel shown in Fig. 12. Tx 1
has two binary inputs X ′

1 and X ′′
1 , and Tx 2 has one binary

input. The output Y1 is equal to X ′
1 ⊕ X2 and the output Y2

is equal to X ′′
1 . Suppose that PX2 is fixed as [0.1585, 0.8415],

and PX1 = PX ′
1 X ′′

1
is fixed as

PX ′
1 X ′′

1
=

{
0.095, X ′

1 X ′′
1 = (00, 01);

0.405, X ′
1 X ′′

1 = (10, 11).

Then, we have

(σ 2
11, σ

2
12, σ

2
10) = (0.35, 1, 0.26),

(σ 2
21, σ

2
22, σ

2
20) = (0.25, 0, 0),

(σ 2
01, σ

2
02, σ

2
00) = (0.6, 1, 0.375).

From Theorem 2, the nonfeedback LIC sum capacity is
computed as Csum = M(σ 2

12, σ
2
21) = 0.4. On the other

hand, (σ 2,fb
10 , σ 2,fb

20 ) = (0.375, 0.2) and from Theorem 5,
the feedback LIC sum capacity is computed as
C fb

sum = M(σ 2,fb
10 , σ 2

01) = 0.4615, thus showing a 15.4%
improvement. �

We also find some classes of symmetric multi-hop layered
networks, where feedback provides no gain in LIC sum
capacity.

Corollary 2: Consider a two-source two-destination sym-
metric multi-hop layered network, where

λ := σ 2
11 = σ 2

12 = σ 2
21 = σ 2

22,

μ := σ 2
10 = σ 2

20,

σ := σ 2
01 = σ 2

02, σ 2
00.

Assume that the parameters of (λ, μ, σ, σ 2
00) satisfy (18).

We then get:

Csum = C fb
sum = max{λ, σ 2

00, M(μ, σ ), M(μ, λ, σ )}.
Proof: Theorem 2 immediately yields Csum =

max{λ, σ 2
00, M(μ, σ ), M(μ, λ, σ )}. From Theorem 5,

we get:

C fb
sum = max

{
C̃sum, M

(
M(λ, σ )

2
, σ

)
, M

(
M(λ, σ )

2
, σ, λ

)}
.

Note that

M

(
M(λ, σ )

2
, σ

)
= λ

(
2σ

2λ + σ

)
≤ λ,

where the inequality comes from σ ≤ 2λ due to (18).
Similarly we can show that M

(
M(λ,σ )

2 , σ, λ
)

≤ λ. Therefore,

C fb
sum = Csum.

VII. DISCUSSIONS

A. Extension

A generalization to arbitrary M-source K -destination net-
works is straightforward. In the most general setting, we have
(2M − 1) virtual sources, (2K − 1) virtual destinations, and
(2M − 1)(2K − 1) messages. For example, in the case of
(M, K ) = (3, 3),

virtual sources: s1, s2, s3, s12, s13, s23, s123,

virtual destinations: d1, d2, d3, d12, d13, d23, d123,

where, for instance, s12 indicates a virtual terminal that
sends messages accessible by sources 1 and 2; and d12
denotes a virtual terminal that decodes messages intended for
destinations 1 and 2. And we have 7 × 7 = 49 messages,
denoted by US,D, where S,D ⊆ {1, 2, 3}( �= ∅), each indicat-
ing a message which is accessible by the set S of sources, and
is intended for the set D of destinations. For this network, we
can then obtain 49-dimensional LIC capacity regions and LIC
sum capacities, as we did in Theorems 1 and 2. We can also
extend to networks with feedback, thus obtaining the results
corresponding to Theorems 4 and 5.

An extension to cyclic networks is also straightforward. The
key idea is to employ an unfolding technique which enables
us to translate a cyclic network into an equivalent layered
network. Once it is converted into a layered network, we
can then apply the same techniques developed herein, thus
obtaining similar results.
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B. Non-Separation Approach & Network Coding

In this work, we have assumed a separation scheme between
layers. Only decoded messages at each node are forwarded
to next layers. We also focused on the routing capacity,
not allowing for network coding. So one future research
direction of interest would be developing a non-separation
and/or network-coding approach to explore whether or not
it provides a performance improvement over the separation
approach.

C. Applications of the Local Geometric Approach

In this work, we took a local geometric approach based
on an approximation on KL-divergence, to address a class
of network information theory problems which is often quite
challenging. We find this approach useful for a variety of
communication scenarios and other interesting applications.
As mentioned earlier in Remark 1, one such communica-
tion scenario is a cognitive radio network in which the
secondary users wish to exchange their information while
minimizing interference to the existing communication net-
work. Here one can model the encoding of secondary users’
signals as the superposition coding to the existing primary
signals. Given the constraint on the interference level, the
secondary users’ signals will only slightly perturb the con-
ditional input distribution w.r.t. the primary signals from the
original input distribution. Then, the decoder will detect the
perturbation to decode secondary users’ messages. There-
fore, our model serves to study the efficiency of exchanging
information between secondary users through superposition
coding, when the perturbation to the existing primary signals is
restricted.

In addition to communications problems, the local geomet-
ric approach can be applied to the stock market networks.
It has been shown in [3] that the local geometric approach
plays a crucial role in finding an investment strategy that maxi-
mizes an incremental growth rate in repeated investments [15].
The local geometric approach has also been exploited to a
wide range of applications in machine learning: a learning
problem in graphical models [16], an inference problem in
hidden Markov models [17], [18], and big networked data
analytics via communication and information theory [19], [20].

VIII. CONCLUSION

In this paper, we investigate the problem of how to effi-
ciently transmit information through discrete-memoryless net-
works, by perturbing the given distributions of the nodes in
the networks. In particular, we apply the local approximation
technique to study this problem and construct a new type
of deterministic model for multi-layer networks. Then, we
employ this deterministic model to investigate the optimization
of the throughput of multi-layer networks. Our results illustrate
the optimal communication strategy for network users to
optimize the efficiency of transmitting information through
large scale networks. In addition, we also consider the multi-
layer networks with feedback by our deterministic model.
We find that for some classes of networks, feedback can

provide insights of designing efficient information flows in
large communication networks.

APPENDIX

PROOF OF LEMMA 1

In this Appendix, we show that C(1)
sum,ε is continuous at

ε = 0, i.e., limε→0+ C(1)
sum,ε = C(1)

sum,0. By the squeeze
theorem, the continuity holds if the following inequalities are
established: for ε > 0,

C(1)
sum,ε ≥ C(1)

sum,0 ≥ C(1)
sum,ε − 4 max

σi j �=0
{σ−2

i j }ε
∑

i, j

σ 2
i j . (35)

The upper bound of (35) is trivial from the definition

of C(1)
sum,ε. To show the lower bound of (35), we consider

an optimal solution {δ∗
i j }i, j=[0,2] of C(1)

sum,ε , i.e., an optimal

solution {δ∗
i j }i, j=[0,2] of the optimization problem:

C(1)
sum,ε ≤ max

δi j

∑

i, j

δi j σ
2
i j :

s.t.
∑

i, j

δi j ≤ 1, δi j ≥ 0 ∀i, j

2∑

k=0

∣∣∣∣∣∣

2∑

j=0

δkj σ
2
kj −

2∑

i=0

δikσ
2
ik

∣∣∣∣∣∣
≤ ε.

If we can show that there exists a set of {δ̂i j }i, j=[0,2] satisfying
∑

i, j

δ̂i j ≤ 1, δ̂i j ≥ 0 ∀i, j (36)

2∑

k=0

∣∣∣∣∣∣

2∑

j=0

δ̂kj σ
2
kj −

2∑

i=0

δ̂ikσ
2
ik

∣∣∣∣∣∣
≤ 0, (37)

and

|δ∗
i j − δ̂i j | ≤ 4 max

σi j �=0
{σ−2

i j }ε, ∀i, j, (38)

then from (36) and (37), we have C(1)
sum,0 ≥ ∑

i, j δ̂i j σ
2
i j .

Moreover, from (38), we get
∑

i, j

δ̂i j σ
2
i j ≥

∑

i, j

δ∗
i j σ

2
i j − 4 max

σi j �=0
{σ−2

i j }ε
∑

i, j

σ 2
i j ,

which implies the lower bound of (35).
The idea of constructing such {δ̂i j }i, j=[0,2] is to first design

each δ̂i j as a perturbation to δ∗
i j , such that δ̂i j ≥ 0 and

satisfy (37) and (38). Then, the resultant δ̂i j ’s are multiplied
by a normalizing factor to meet the constraint

∑
i, j δ̂i j ≤ 1.

To show the design of the perturbations, we define αk �
∑2

i=0 δ∗
ikσ

2
ik − ∑2

j=0 δ∗
kj σ

2
kj , where

∑2
k=0 αk = 0 from the

definition. Then, since α0, α1, and α2 are symmetric w.r.t. σi j ,
we can without loss of generality assume α0 ≥ 0, α1 ≥ 0, and
α2 ≤ 0. In the following, we demonstrate the constructions
of {δ̂i j }i, j=[0,2] for the cases of σ20 and σ21 being zero or
nonzero:

(1) σ20 �= 0, σ21 �= 0: In this case, we first design δ̂20 and δ̂21
as δ∗

20 +σ−2
20 α0 and δ∗

21 +σ−2
21 α1, and let δ̂i j = δ∗

i j for the
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rest i and j . Then, it is easy to verify that (37) is satisfied.
To meet the constraint

∑
i, j δ̂i j ≤ 1, we normalize

δ̂i j by multiplying a factor (1 + σ−2
20 α0 + σ−2

21 α1)
−1 to

each δ̂i j . The verification of (38) for the resultant δ̂i j is
straightforward. For example, for δ̂20 = (1 + σ−2

20 α0 +
σ−2

21 α1)
−1(δ∗

20 + σ−2
20 α0), we have

|δ∗
20 − δ̂20| ≤

∣∣∣∣∣
σ−2

20 α0 + σ−2
21 α1

1 + σ−2
20 α0 + σ−2

21 α1
δ∗

20

∣∣∣∣∣

+
∣∣∣∣∣

σ−2
20 α0

1 + σ−2
20 α0 + σ−2

21 α1

∣∣∣∣∣

≤ 2 max
σi j �=0

{σ−2
i j }ε + max

σi j �=0
{σ−2

i j }ε

= 3 max
σi j �=0

{σ−2
i j }ε,

where the first inequality is the triangle inequality, and
second inequality is due to δ∗

20 ≤ 1, and
∑2

k=0 |αk | = ε,
which implies |αk | ≤ ε, for all k.

(2) σ20 �= 0, σ21 = 0

(i) σ01 �= 0: In this case, δ̂01 and δ̂20 are designed as
δ∗

01 +σ−2
01 α1 and δ∗

20 +σ−2
20 (α0 +α1). In addition, we

design δ∗
21 as 0, and for the rest i and j , δ̂i j = δ∗

i j .
Then, it is easy to check that (37) is satisfied. More-
over, we multiply each δ̂i j by a factor (1 + σ−2

01 α1 +
σ−2

20 (α0+α1))
−1 so that the constraint

∑
i, j δ̂i j ≤ 1 is

satisfied. To verify (38), note that when σi j = 0 for
some (i, j), then the corresponding δ∗

i j = 0, since
{δ∗

i j }i, j=[0,2] is an optimal solution. Thus, we have

δ∗
21 = δ̂21 = 0. The verification of (38) for the

rest δ̂i j ’s are the same as the case (1) by noting that
|α0 + α1| ≤ |α0| + |α1| ≤ ε.

(ii) σ01 = 0: In this case, we design δ̂20 as δ∗
20 +

σ−2
20 α0 + σ−2

20 σ 2
10δ

∗
10, and δ∗

01, δ∗
10, δ∗

12, δ∗
21 as 0.

In addition, for the rest i and j , δ̂i j = δ∗
i j . Then,

a factor (1 + σ−2
20 α0 + σ−2

20 σ 2
10δ

∗
10)

−1 is multiplied
to each δ̂i j for normalization. One can easily check
that the resultant δ̂i j ’s satisfy both (36) and (37).
To verify (38), since σ21 = σ01 = 0, we have
σ 2

10δ
∗
10 + σ 2

12δ
∗
12 = α1 ≤ ε. Hence, σ 2

1kδ
∗
1k ≤ ε,

which implies |δ∗
1k − δ̂1k | ≤ maxσi j �=0{σ−2

i j }ε,

for k = 0, 2. Moreover, for δ̂20 = (1 +
σ−2

20 α0 + σ−2
20 σ 2

10δ
∗
10)

−1(δ∗
20 + σ−2

20 α0 + σ−2
20 σ 2

10δ
∗
10),

we get

|δ∗
20 − δ̂20| ≤

∣∣∣∣∣
σ−2

20 α0 + σ−2
20 σ 2

10δ
∗
10

1 + σ−2
20 α0 + σ−2

20 σ 2
10δ

∗
10

δ∗
20

∣∣∣∣∣

+|σ−2
20 α0| + |σ−2

20 σ 2
10δ

∗
10|

≤
∣∣∣σ−2

20 α0 + σ−2
20 σ 2

10δ
∗
10

∣∣∣ + |σ−2
20 α0|

+|σ−2
20 σ 2

10δ
∗
10| ≤ 4 max

σi j �=0
{σ−2

i j }ε,

where the second inequality is due to δ∗
20 ≤ 1, and

the third inequality is from |α0| ≤ ε and σ 2
10δ

∗
10 ≤ ε.

Finally, the verification of (38) for the rest δ̂i j ’s is
the same as the previous cases.

(3) σ20 = 0, σ21 �= 0: This case is symmetric to the case (2).
By exchanging the role of subindexes 20 ↔ 21, 01 ↔ 10,
and α0 ↔ α1, the construction is the same as the case (2),

(4) σ20 = 0, σ21 = 0
(i) σ10 �= 0: In this case, if α1 − σ 2

02δ
∗
02 ≥ 0, we design

δ̂10 as δ∗
10+σ−2

10 α1−σ−2
10 σ 2

02δ
∗
02; otherwise, design δ̂01

as δ∗
01 −σ−2

01 α1 +σ−2
01 σ 2

02δ
∗
02. In addition, we design

δ̂20, δ̂21, δ̂02, δ̂12 to 0, and for the rest i and j ,
δ̂i j = δ∗

i j ’s. We multiply a factor (1 + |σ−2
10 α1 −

σ−2
10 σ 2

02δ
∗
02|)−1 to each δ̂i j for normalization. Then,

one can check that (36) and (37) are satisfied for

the resultant δ̂i j . Note that since σ20 = σ21 = 0,
we get σ 2

02δ
∗
02 + σ 2

12δ
∗
12 = −α2 ≤ ε, which implies

σ 2
k2δ

∗
k2 ≤ ε, for k = 0, 1. Thus, by the same

procedure as (ii) of the case (2), we can verify (38).

(ii) σ10 = 0: In this case, we simply set all the δ̂i j ’s be
zero. Since σ20 = σ21 = σ10 = 0, we get σ 2

01δ
∗
01 +

σ 2
02δ

∗
02 = α0 ≤ ε, and σ 2

02δ
∗
02 + σ 2

12δ
∗
12 = −α2 ≤ ε,

which imply δ∗
i j ≤ maxσi j �=0{σ−2

i j }ε for all i and j .

Thus, (36) to (38) are satisfied.
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