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Abstract

Developing a computer vision-based algorithm for identify-
ing dangerous vehicles requires a large amount of labeled ac-
cident data, which is difficult to collect in the real world. To
tackle this challenge, we first develop a synthetic data gener-
ator built on top of a driving simulator. We then observe that
the synthetic labels that are generated based on simulation
results are very noisy, resulting in poor classification perfor-
mance. In order to improve the quality of synthetic labels, we
propose a new label adaptation technique that first extracts
internal states of vehicles from the underlying driving sim-
ulator, and then refines labels by predicting future paths of
vehicles based on a well-studied motion model. Via real-data
experiments, we show that our dangerous vehicle classifier
can reduce the missed detection rate by at least 18.5% com-
pared with those trained with real data when time-to-collision
is between 1.6 s and 1.8 s.

Introduction
Nearly 1.3 million people die in road crashes each year, and
3 out of 4 deaths are caused by incautious driving. One can
save a significant number of lives by warning them ahead
of a collision. The goal of collision prediction system (CPS)
is to predict vehicle collisions as early as possible by using
a variety of input sensors. While developing efficient CPS
requires a large amount of labeled accident data, it is difficult
to collect accident data in the real world, and it is even more
difficult to accurately annotate accident data.

In this work, we tackle this challenge by developing a
synthetic data generator built on top of a driving simulator.
Specifically, we manipulate low-level internal functions of a
video game called Grand Theft Auto 5 (GTA V) to synthe-
size accident and non-accident scenes. Each scene is labeled
according to simulation results of nearby vehicles.

Potentially due to the difference between the driving
model of AI agents in the simulator and that of human
drivers, synthetic labels are very noisy, resulting in perfor-
mance degradation when used for training. In order to im-
prove the accuracy of synthetic labels, we propose a label
adaptation technique, which fully leverages the flexibility of
synthetic data generator. Our label adaptation algorithm first
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extracts the states of nearby vehicles by accessing internal
variables of the underlying driving simulator. Using the ex-
tracted states, we refine labels by predicting vehicle paths as
per a vehicle motion model.

Using the aforementioned approach, we generate a large
synthetic accident dataset, and train efficient CNN-based
classifiers with it. We evaluate the performance of our
approach on a real-world accident dataset consisting of
YouTube dashcam videos1. Our extensive experiments show
that classifiers trained with our synthetic data better predict
dangerous vehicles than those trained with real data. Specif-
ically, when time-to-collision (TTC) is between 1.6 s and
1.8 s, our approach achieves 18.5% lower missed detection
rate than those trained with real data.

Related Works
Collision prediction algorithms: Due to the difficulty
of collecting a large amount of accident dataset, most of
the existing collision prediction algorithms are rule-based
ones (Raut and Malik 2014). These approaches predict col-
lisions by developing precise motion models, fitting the mo-
tions of the nearby vehicles, and estimating their future tra-
jectories. For instance, one can compute the collision proba-
bility as a function of the distance to the nearby vehicles and
the speed of ego-vehicle (Nakamori et al. 2002). However,
these approaches typically assume availability of expensive
devices (such as radar, LIDAR, or communication chips) to
measure or receive the states of nearby vehicles.

To avoid the dependency on expensive hardwares, one
may make use of low-cost cameras by developing a com-
puter vision-based collision prediction systems. In a few re-
cent works, the authors propose the use of convolutional
neural networks (CNNs) for building efficient CPS (Wang
and Kato 2017; Suzuki, Aoki, and Kataoka 2017; Chan et
al. 2017). However, they could collect only a small amount
of accident data due to data scarcity and difficulty of manual
annotation. Different from the existing works, our synthetic
data generator can produce a large enough dataset with-
out requiring manual labeling. Further, existing computer
vision-based algorithms classify dangerous scenes from safe
scenes, and hence cannot capture which vehicle is the source
of danger. On the other hand, our proposed framework first

1https://sites.google.com/view/crash-to-not-crash



detects/tracks vehicles in a scene, and then classifies danger-
ous ones from safe ones, improving interpretability.

Synthetic dataset via simulators: The idea of using sim-
ulators or video games to generate an arbitrarily large
amount of synthetic data with labels has been shown use-
ful for various tasks such as semantic segmentation (Richter
et al. 2016) and eye gaze estimation (Shrivastava et al. 2017;
Lee, Kim, and Suh 2018). It voids the need of costly annota-
tion procedure: For instance, annotating a single image with
semantic segmentations takes about 60 minutes but it takes
almost no time with a photo-realistic simulator (Richter et
al. 2016). Moreover, it even enables more detailed annota-
tion, which is traditionally considered impossible: One may
annotate each vehicle in a driving scene with its velocity,
acceleration, wheel angle, and vehicle orientation. In this
work, by manipulating driving agents in the virtual world,
we freely generate dangerous driving scenes, which are not
observed frequently in the real world.

Domain adaptation: Even though modern simulators and
video games provide photo-realistic images, there still exists
a gap between synthetic and real data distributions. To min-
imize this gap, one may adapt algorithms trained with syn-
thetic data to real data via domain adaptation. One approach
is to use both real and synthetic data when training (Richter
et al. 2016). Another promising line of approaches is based
on Generative Adversarial Networks (GANs). Particularly,
GAN-based unsupervised image-to-image translation algo-
rithms have been shown useful for adapting a model trained
on a labeled data to another unlabeled dataset. This task,
called unsupervised domain adaptation, is useful particu-
larly for our setting since it is much easier to collect un-
labeled accident images than to collect labeled ones. The
first GAN-based domain adaptation algorithm is proposed
in (Shrivastava et al. 2017) and (Bousmalis et al. 2017). They
first learn a forward mapping from synthetic images to real
images via GAN, translate labeled synthetic images to real-
like images, and then train a model with the translated im-
ages. They achieve the state-of-the-art performance on some
unsupervised domain adaptation tasks using this approach.
In (Lee, Kim, and Suh 2018), the authors take a backward
approach: They map real images to the synthetic domain at
inference time and then apply a model that is trained in the
synthetic domain.

In order to generate synthetic labels, one can simply sim-
ulate the dynamics of vehicles and see whether or not any of
the nearby vehicle is colliding with the ego-vehicle in near
future. Due to the difference between the driving model of
AI agents in the simulator and that of human drivers, such
a labeling method does not provide accurate labels, result-
ing in significant performance degradations (See the section
on domain adaptation for more details). To tackle this chal-
lenge, we make a novel use of collision risk assessment al-
gorithms. In short, we extract hidden states of vehicles from
the simulator, and assess each vehicle’s collision risk via a
motion model. As a result, we achieve the best classification
performance by adapting both features and labels.
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Figure 1: A two-stage decomposition of collision prediction.
The first stage detects/tracks vehicles in the input image(s),
and the second stage classifies dangerous vehicles. Our goal
is to design an accurate and efficient classifier.

Self-driving and collision avoidance: Another line of re-
lated works is about self-driving and collision avoidance al-
gorithms. In (Pomerleau 1989), the authors demonstrate that
a successfully trained neural network can mimic the way
humans drive. Recently, deep learning has been applied to
self-driving (Chen et al. 2015; Bojarski et al. 2016), achiev-
ing extraordinary performances. In (Bojarski et al. 2017), the
authors explain how their deep neural networks perceive the
scene, and show that they pay more attentions to key objects
such as lane markings, nearby vehicles, etc. In (Kahn et al.
2017; Thorsson and Steinert 2016), the authors apply rein-
forcement learning to develop collision avoidance systems.
Despite of the huge success, these approaches cannot effi-
ciently predict and handle dangerous scenarios, which are
rarely observed during training. Thus, our collision predic-
tion algorithms can provide an additional level of safety to
self-driving and collision avoidance systems.

Problem Formualation and Datasets
Collision prediction problem
A collision prediction algorithm can be divided into two
phases as shown in Fig. 1. First, it detects and tracks ev-
ery vehicle in a sequence of images. Since object detec-
tion/tracking algorithm does not need to be trained with ac-
cident data, one can easily make use of an off-the-shelf ob-
ject detection/tracking algorithm (Ren et al. 2015; Dai et al.
2016; Redmon and Farhadi 2017; Liu et al. 2016). The sec-
ond phase, which is of our main interest, takes the input im-
ages together with the bounding boxes of a vehicle, and clas-
sifies whether or not the vehicle indicated by the bounding
boxes is dangerous. This procedure is applied to each vehi-
cle to identify all dangerous vehicles from the input scene.

The dangerous vehicle classification problem can be for-
mally defined as follows. A natural definition of danger-
ous vehicles is probabilistic: A vehicle is dangerous at
time T if it will collide with the ego-vehicle, in time
t ∈ [T, T + Tlook-ahead] with probability larger than some
threshold, say ε. Each labeled sample consists of a fea-
ture X = (XT−δ, XT−2δ, . . . , XT−dδ) and a binary label
Y ∈ {0, 1}. Here, Xt denotes the frontal view taken by the
ego-vehicle at time t and the bounding box of the vehicle of
interest at that time. Assuming the frontal view is given as
an RGB image of size w×h and encoding the bounding box
of a vehicle as a binary image of the same size, one can treat



Figure 2: Sample images from YouTubeCrash: Accident data (first row) and non-accident data (second row)

the bounding box as the fourth channel, i.e., Xt ∈ Rw×h×4.
Given the train data [(X1, Y1), (X2, Y2), . . . , (XN , YN )],

our goal is to find a mapping hθ(X) := p(Y = 1|X; θ) that
maximizes the log-likelihood of the dataset, i.e., we solve
the following maximum likelihood problem:

max
θ

N∑
i=1

Yi log hθ(Xi) + (1− Yi) log (1− hθ(Xi)). (1)

In this work, we will consider a class of classifiers that are
parameterized by weights θ.

While we take the log-likelihood as an objective function
to maximize, one may consider more useful metric such as
the area under curve (AUC) of the receiver operating charac-
teristic (ROC) curve, or AUC in short. AUC is particularly
useful when the number of positive samples largely differ
from that of negative samples. In our application, the num-
ber of safe vehicles (negative samples) is much larger than
that of dangerous vehicles (positive samples), and hence we
choose AUC as the primary metric of this work. We also
report missed detection rate at a fixed false alarm rate.

YouTubeCrash
For evaluation of dangerous vehicle classification algo-
rithms, we prepare a real dataset consisting of 122 dashcam
videos collected from YouTube (CarCrashesTime 2014),
which we call YouTubeCrash. These dashcam videos
include diverse accident scenarios such as abrupt lane
changes, sudden stops, and signal violations. From each
video, we extract a pair of accident scene and non-accident
scene: A clip of length 2.0 s just before the accident is de-
fined as an accident scene, and another clip of the same
length starting from the beginning of the video is defined
as a non-accident scene. When an accident clip and the cor-
responding non-accident clip overlaps with each other, we
discard the non-accident clip. As a result, we collected 122
accident and 100 non-accident scenes in total. We randomly
pick 61 accident and 50 non-accident scenes to form train
set, and the rest of the dataset form test set. Some statistics
of YouTubeCrash are shown in Table. 1.

To generate samples from each scene, we perform the fol-
lowing preprocessing. For the vehicle that crashes with the
ego-vehicle at time T , we generate the number Tlook-ahead/δ
of samples as follows:

((XT−δ, XT−2δ, . . . , XT−dδ), 1), (2)

((XT−2δ, XT−3δ, . . . , XT−(d+1)δ), 1), . . . ,

((XT−Tlook-ahead , XT−Tlook-ahead−δ, . . . , XT−Tlook-ahead−(d−1)δ, 1),

Table 1: Statistics of YouTubeCrash and GTACrash

Number of YouTubeCrash GTACrash

Accident scenes 122 7720
Non-accident scenes 100 3661
Positive samples 2096 128347
Negative samples 11486 623173

where Tlook-ahead denotes the maximum look-ahead time for
accident prediction, and δ is the time between consecutive
frames. In this work, we set δ = 0.1 s, Tlook-ahead = 18δ =
1.8 s, and d = 3. That is, each sample consists of 3 consecu-
tive frames, and the maximum look-ahead time is 18 frames
in future. Further, each scene contains Tlook-ahead/δ = 18
samples per vehicle.2 Recall that Xt denotes the RGB im-
age and the bounding box of the dangerous vehicle at time
t. Each bounding box of the vehicle is encoded as a binary
map of the same dimensionality as the RGB channels. We
manually annotate each sample with bounding boxes using
LabelImg (Tzutalin 2015), an open-source software for
manual bounding-box annotation. Shown in Fig. 2 are some
samples from YouTubeCrash: See Supplementary Mate-
rials for more samples. Red bounding boxes denote danger-
ous vehicles while green ones denote safe ones.

For all the other vehicles (in an accident scene) that are
not going to crash with the ego-vehicle, we generate samples
in a similar way but with negative labels. Non-accident scene
are used to generate negative samples: Per each vehicle in a
non-accident scene, we generate negative samples.

Synthetic Data Collection
GTACrash
In this section, we describe our data generation framework
and introduce our dataset, which we dub as GTACrash.
Our synthetic dataset GTACrash is collected from a pop-
ular video game named Grand Theft Auto V (GTA V). We
now detail how we collect our synthetic dataset.

In order to collect a large amount of driving data, we
first implement our own data generation framework based
on Script Hook V, an open-source library that enables ac-
cess to the low-level internal functions of GTA V.

A few important functions available in our frame-
work, which play key roles in our data generation

2To be more precise, each scene may contain less than or equal
to 18 samples per vehicle since some samples are removed if the
dangerous vehicle is invisible (due to occlusion or so) in the scene.



process, are described as follows: Start Cruising(s)
lets the player’s car cruise along the lane at speed
s; Get Nearby Vehicles() returns the list
of vehicles in the current scene of the game;
Set Vehicle Out Of Control(v) makes vehi-
cle v drive out of control; Is My Car Colliding()
checks whether the ego-vehicle is colliding with some other
vehicle; Get Bounding Box(v) returns the bounding
box of vehicle v; Get Internal States(v) returns
the (x, y) coordinates of the vehicle, vehicle orientation,
velocity, acceleration, and yaw rate (rotation rate around
z-axis) of vehicle v; and Set Wheel Angle(v, a) sets
the wheel angle of the specified vehicle v as a.

A data generation process begins with calling
Start Cruising(s), making the player’s car cruise
along the lane at the specified speed. The player keeps
exploring the virtual world until the end of the generation
process. This is possible because the player’s car has a full
access to the internal states of the virtual world such as
the road lanes and the map of the world. We now describe
two different data generation modes: one for generating
non-accident scenes and the other for accident ones. In both
modes, the data generator collects screenshots of the game
at the rate of 10 frames per second, i.e., δ = 0.1 s, and
keeps only a subset of the collected screenshots according
to certain rules.

We first illustrate how we collect driving scenes. The data
collector samples random times according to a Poisson pro-
cess. For each of the sampled time, the collector enters the
normal driving mode with probability half or the insane driv-
ing mode with probability half.

Under the insane driving mode, one of the nearby vehi-
cles is chosen uniformly at random, and it will start driv-
ing out of control. We implement this by utilizing the func-
tions available in our data generation framework as follows.
We call Get Nearby Vehicles() to retrieve the list of
nearby vehicles. We then choose one of those nearby vehi-
cles at random, and make it start driving carelessly by calling
Set Vehicle Out Of Control(v). We observe that
with high probability, the chosen car eventually ends up with
crashing into the player’s car. Since the player continues
driving at the constant speed following the lane without at-
tempting to avoid the collision, one can obtain risky scenes
in this way. To check whether or not a car accident actu-
ally happens, we make use of Is My Car Colliding().
When an accident is detected at time T , we take the 20
screenshots of the game screen at time T−δ, T−2δ, . . . , T−
20δ. To make screenshots more realistic, we randomly tilt
the virtual dashcam by a small angle and then captures
screenshots. This collection of 20 screenshots is called an
accident scene. Similar to YouTubeCrash, each 3 con-
secutive frames form a sample, and hence 18 samples are
generated for each vehicle in an accident scene. For the ve-
hicle that collides with the ego-vehicle, we label its sam-
ples with 1. For all the other vehicles, their samples are la-
beled with 0. We also obtain each vehicle’s bounding box
via Get Bounding Box(v), encode it as a binary image,
and include it in the corresponding sample.

Under the normal driving mode, all the vehicles in the

simulator drive normally according to the original driving
rule of GTA V. Data samples are generated in a similar way,
and the only distinction is that samples are always labeled
with 0. Scenes, frames, and samples generated under this
mode are called non-accident.

Fig. 3 shows some sample driving images from
GTACrash. Shown in the first row are consecutive frames
from an accident scene, and shown in the second row are
those from a non-accident scene. See Supplementary Mate-
rials for more samples.

Overview of GTACrash: Following the above procedure,
we collect synthetic data for 72 hours on a single com-
puter running GTA V. As shown in Table. 1, our dataset
GTACrash consists of 3661 non-accident scenes and 7720
accident scenes. The total number of positive samples is
128347, and the total number of negative samples is 623173.
Note that the dangerous vehicle in the first row is marked
with red bounding boxes while all the others are marked with
green bounding boxes. Further, the dataset is highly diverse:
The images are taken in arterial roads and highways, in days
and nights, and on sunny, rainy, and snowy days.

We note that the distribution of our synthetic data is differ-
ent from that of real data since our current simulator cannot
capture all possible accident patterns that happen in reality.
For instance, our dataset does not include sudden stop acci-
dents, which frequently happen in the real world. Regardless
of the bias in the GTACrash, our goal is to demonstrate that
the model trained with biased but large synthetic data can
outperform that trained with unbiased but small real data.

Algorithms

In this section, we describe our algorithms along with its
variations and baseline approaches.

Classification algorithms (RGB + B.Box)

We first illustrate our approach that takes both images
and bounding boxes and outputs the probability of a ve-
hicle being dangerous. Recall that each sample’s feature
is a sequence of d frames, say (X1, X2, . . . , Xd), and
each frame is encoded as a 4-channel (RGB and Bound-
ing box) image. We design a neural network that takes a
concatenation of d frames as input. That is, we concatenate
X1, X2, . . . , Xd to obtain X1:d ∈ Rw×h×4d, and then feed
it into a smaller version of the VGG16 network (Simonyan
and Zisserman 2014). Specifically, we modify the original
VGG16 network by replacing the FC (fully-connected) lay-
ers of the original architecture (the layers after pool5) with
three FC layers. The first and second hidden layer is of
size 100, and the last layer of size 2 corresponds to the
binary classes. We train our model using AdamOptimizer
with mini-batches of size 32 and momentum parameters
(β1, β2) = (0.9, 0.999) (Kingma and Ba 2015). We use
10−4 as the initial learning rate, and decay it by a factor of
10 at the end of every epoch.



Figure 3: Sample images from GTACrash: Accident data (first row) and non-accident data (second row)
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Figure 4: Illustration of our domain adaptation algorithm

Baseline algorithms and limitations
We now illustrate two simple baseline algorithms. (B.Box-
size) The first one classifies vehicles based on the sizes of
their bounding boxes only. Specifically, we train a 5-layer
fully-connected neural network (d-10-10-10-10-2), where
the input layer is a d-dimensional vector, whose entries
are the size of the bounding boxes in d consecutive frame.
This is a promising approach if the goal is to predict im-
minent collisions since the dangerous car (and its bound-
ing box) must be much larger than other safe vehicles (and
their bounding boxes). However, if the look-ahead time
gets longer, such a size-based predictor is expected to per-
form worse than more sophisticated algorithms since non-
imminent accidents might not be predictable without exam-
ining subtle visual clues. (B.Box) Another baseline algo-
rithm is similar to our proposed algorithm but it only takes
the bounding box of the input, ignoring its RGB channels.
While this is expected to outperform “B.Box-size” algo-
rithm, it is also limited since it cannot distinguish between
two different inputs with the same bounding boxes. For in-
stance, it cannot tell difference between a vehicle turning
toward the ego-vehicle from another one turning toward the
opposite direction if their bounding boxes are the same.

Domain adaptation
We now describe our domain adaptation algorithm, illus-
trated in Fig. 4. Our domain adaptation algorithm can
be viewed as a combination of forward-mapping ap-
proach (Shrivastava et al. 2017) and backward-mapping ap-
proach (Lee, Kim, and Suh 2018): It refines labels at train-
ing time (forward) while it refines features at inference time
(backward).
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Figure 5: A sample positive scene and predicted paths: The
nearby vehicle on the left hand side is not going to collide
with the ego-vehicle according to model-based path predic-
tion, and our label adaptation algorithm will flip the label of
this sample. On the other hand, the nearby vehicle is going
to collide with the ego-vehicle according to path prediction,
so we keep its label as positive.

We first explain why one can achieve improved perfor-
mance by adapting labels in our application. Recall that our
synthetic data generator labels a sample with 1 if the corre-
sponding vehicle collides with the ego-vehicle according to
simulated paths of them. If the driving algorithm of the un-
derlying video game (GTA V) is identical or close enough to
that of human drivers, such simulated paths are distributed
similarly to those of the real world, and hence synthetic la-
bels will be distributed identically to real labels. However,
we observe that this is not the case in our application, and
synthetic labels are biased. This is because the driving algo-
rithms implemented in our simulator are simple rule-based
ones that cannot fully capture complicated mechanisms of
human drivers. This makes a non-negligible fraction of syn-
thetic labels inconsistent with real labels, i.e., what human
drivers would expect from driving scenes. Hence, one needs
to apply a domain adaptation algorithm for labels.

To see this, consider an accident scene in GTACrash
shown in Fig. 5. In these images, there exists a single visible
vehicle near the ego-vehicle, and this vehicle labeled as posi-
tive (dangerous) since its simulated future path collides with
that of the ego-vehicle. However, on the left hand side, it
does not seem dangerous at all since it seems to safely follow



its lane without any abnormal behaviors. On the right hand
side, the vehicle seems dangerous since its wheels are facing
toward the ego-vehicle. This implies that the path simulated
by the data generator is not always consistent with the path
predicted by humans, and we need to refine such labels.

To resolve this, we propose a simple yet novel label
adaptation method. Specifically, we adopt a path predic-
tion model called the Constant Turn Rate and Acceleration
(CTRA) model (Schubert, Richter, and Wanielik 2008). Even
though the CTRA model is a simple curvilinear model that
cannot capture the correlation between the velocity and the
yaw rate (rotation rate around the z-axis), it is shown to
achieve the state-of-the-art path prediction performance in
the real world when various sensor measurements are avail-
able. More specifically, assuming constant turn rate ω and
acceleration a, it predicts a path according to the following
state transition equation:

(x(t+ T ), y(t+ T ), θ(t+ T ), v(t+ T )) (3)
= (x(t), y(t), θ(t), v(t)) + (∆x(T ),∆y(T ), ωT, aT ),

where x, y, θ, v denote x-coordinate, y-coordinate, vehicle
orientation along the z-axis, and velocity of the vehicle, re-
spectively, and

∆x(T ) = ω−2[(v(t)ω + aωT ) sin(θ(t) + ωT ) (4)
+ a cos(θ(t) + ωT )− v(t)ω sin θ(t)− a cos θ(t)],

∆y(T ) = ω−2[(−v(t)ω − aωT ) cos(θ(t) + ωT ) (5)
+ a cos(θ(t) + ωT ) + v(t)ω cos θ(t)− a sin θ(t)].

Thus, as long as one has an access to the state vector,
turn rate, and acceleration of a vehicle, it can predict a path
of the vehicle using the state transition equations. How-
ever, such information is not available in real dataset, and
also it is nearly impossible to manually annotate it. On the
other hand, such information can be made available in syn-
thetic dataset by extracting the internal states from the un-
derlying driving simulator. Specifically, one can first call
Get Nearby Vehicles() to retrieve the list of nearby
vehicles. Then, one can call Get Internal States(v)
for each vehicle to retrieve (x(t), y(t), θ(t), v(t)) and (ω, a)
of the vehicle. By repeating this, we can compute the pre-
dicted path of each vehicle as per the CTRA model, and
assign a positive label if and only if the predicted path in-
tersects with that of the ego-vehicle. Once the new labels
are obtained, we replace the synthetic labels of GTACrash
with those obtained via our label adaptation algorithm.

As an example, let us revisit the positive samples shown
in Fig. 5. We extract internal states of the ego-vehicle and the
nearby vehicle, and predict its path as per the CTRA model.
Visualized in the second row are predicted paths of them.
According to them, the first image does not seem dangerous,
hence its refined label is 0. Our forward adaptation method
for labels is illustrated in green parts in Fig. 4.

For RGB images, we employ the backward translation ap-
proach (Lee, Kim, and Suh 2018). That is, we first train a
classifier using the original synthetic images, and then at
inference time we map input images to the synthetic do-
main before we feed them into the classifier. To achieve this,

Table 2: Test AUC of classification algorithms on
YouTubeCrash. Column titles denote which training
dataset is used for each configuration.

Alg\Training data YouTubeCrash GTACrash

5-layer NN (B.Box-size) 0.8766 0.8812
CNN (B.Box) 0.8708 0.8992
CNN (RGB + B.Box) 0.8730 0.9086

Table 3: Test AUC of CNN (RGB + B.Box) with and without
feature/label adaptation.

w/o label adapt. w/ label adapt.

w/o feature adapt. 0.9086 0.9154
w/ feature adapt. 0.9102 0.9164

we learn a bidirectional mapping via CycleGAN with fea-
ture loss between GTACrash and an independent set of
YouTube dashcam videos, which do not necessarily con-
tain car accidents. We also tried learning a mapping between
GTACrash and KITTI dataset (Geiger, Lenz, and Urtasun
2012), which is one of the most popular dataset of driving
images, but did not observe improvements in performance.
Note that a backward mapping learned from data is known
to output highly distorted images in some cases. To mitigate
this, we apply the classifier to both the original input and the
refined input, and take the average output as the final pre-
diction result. Our backward domain adaptation method for
features is illustrated in blue parts in Fig. 4.

Experimental Results
Comparison results
We now evaluate the performance of our algorithm and com-
pare it with those trained with real data. Further, to ob-
serve the efficacy of synthetic data, we train each classifier
once with YouTubeCrash and once with GTACrash, and
compare their performances on YouTubeCrash test set.
Shown in Table 2 are the comparison results. When trained
with YouTubeCrash, the best performance is achieved by
the simplest classifier ‘B.Box-size’. This is due to overfit-
ting since the model complexity of the other classifiers is
too large considering the small training dataset.

On the other hand, when trained with GTACrash, the
best performance is achieved by our proposed classifier
(RGB + B.Box). This demonstrates the usefulness of syn-
thetic data for training dangerous vehicle classifier since it
enables training of highly complex models that take into ac-
count of additional source of information.

We also observe that it is beneficial to use all of the three
frames in a sample to achieve the best performance: See
Supplemental Materials for more details.

Domain adaptation
To further improve the classification performance, we ap-
ply our domain adaptation algorithms for features and/or
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Figure 6: Missed detection rate vs time-to-collision. GTA:
trained w/ GTACrash; YT: trained w/ YouTubeCrash.

labels. In Table 3, we report the performance of our pro-
posed classifier (RGB + B.Box) with and without domain
adaptation, and refer the readers to Supplemental Materi-
als for similar comparison results for additional experimen-
tal results. We observe that the classification performance
improves when we apply either label adaptation or feature
adaptation. The best performance is achieved when we apply
both adaptation algorithms. Compared with the best perfor-
mance achieved with YouTubeCrash, AUC is increased
by 4.5%. We make a remark that even though our approach
is trained only with our synthetic dataset GTACrash, it can
easily match or outperform the best performance achieved
with YouTubeCrash. We refer the readers to Supplemen-
tary Materials for a demo video.

Missed detection vs time-to-collision
We now observe missed detection rates as a function of TTC.
We first set the classification threshold such that all algo-
rithms have the same false alarm rate of 0.15. We then group
samples into bins of length 0.3 s according to their TTC. For
instance, the first group is for TTC between 0.1 s and 0.3 s,
and the last group is for TTC between 1.6 s and 1.8 s. We
then measure the missed detection rate of each group.

Plotted in Fig. 6 are the experimental results. Our ap-
proach, plotted as a red curve, achieves the best performance
when TTC is larger than or equal to 0.7 s. When TTC is be-
tween 1.6 s and 1.8 s, our approach reduces the missed de-
tection rate by 18.5%. The blue curve corresponds to the per-
formance of CNN trained with real data, i.e., the approach
proposed in (Wang and Kato 2017). We also train other base-
line algorithms (5-layer NN with B.Box-size and CNN with
B.Box) with real data. One can see that the performance
of B.Box size-based classifier is the best when TTC is less
than 0.8 s, implying that very imminent accidents can be pre-
dicted simply by inspecting the size of bounding boxes.

Let us elaborate on why our proposed model significantly
outperforms other simple baselines when TTC is large and
why other simple baselines are better when TTC is small.
When TTC is small, dangerous vehicles are closely located
to the ego-vehicle, so it is easy to predict accidents based on
bounding boxes. Thus, in this regime, simple baselines such
as CNN with B.Box and 5-layer NN with B.Box-size would
suffice to achieve a good performance while our model could
suffer from overfitting. When TTC is large, a complex model
is necessary for identifying distant dangerous vehicles.

−30 −15 0 15 30
Wheel angle, rw

0.50

0.75

1.00

p

(a) p vs wheel angle (b) Varying wheel angles

0 30 60 90 120 150 180
Vehicle orientation, rv

0.0

0.5

1.0

p

(c) p vs orientation (d) Varying vehicle orientations

v = 1 v = 0 v = -1

(e) Varying velocities

Figure 7: Key visual factors of dangerous vehicles

Learning key visual factors
In the previous sections, we observed a non-negligible per-
formance gap between CNN (RGB + B.Box) and CNN
(B.Box). This is because CNN (B.Box) cannot distinguish
between two images with different appearances but with the
same bounding boxes. A natural question then arises: What
are the subtle visual factors that help classify dangerous ve-
hicle? By examining our CNN (RGB + B.Box) classifier op-
timized on GTACrash, we identify the following key visual
factors of dangerous cars.
• (wheel angle) As wheels face toward the ego-vehicle, the

accident probability increases (Fig. 7a, 7b).
• (vehicle orientation) As a vehicle faces toward the central

line, the accident probability increases (Fig. 7c, 7d).
• (velocity) As a vehicles moves further away, the accident

probability remains zero. As a vehicle moves toward the
ego-vehicle, the higher its velocity is, the higher the acci-
dent probability (Fig. 7e).
We refer the readers to Supplemental Materials for de-

tailed description of experimental setups.

Different CNN architecture
We remark that we simply chose VGG16 as our main
CNN model since we observed similar experimental re-
sults with various CNN approaches. To verify this, we sub-
stituted the base CNN of our proposed algorithm (CNN
with RGB+B.Box) and the baseline algorithm (CNN with
B.Box) with Resnet50. Our proposed algorithm trained
with GTACrash achieved test AUC of 0.9097, whereas
the best test AUC among the algorithms trained with
YoutubeCrash is 0.8776 by CNN with B.Box. This
demonstrates the efficacy of our synthetic dataset, regardless
of the base CNN model. Furthermore, with our proposed do-
main adaptation method, we could improve the performance
from 0.9097 to 0.9241, demonstrating that our adaptation
method works regardless of the CNN architectures.



Conclusion
In order to develop a computer vision-based algorithm for
dangerous vehicle classification, we develop a synthetic data
generator and propose a novel domain adaptation algorithm
for labels. We show that our classifier trained with synthetic
data outperforms those trained with real data.

We conclude the paper by presenting future directions.
The distribution of accident patterns implemented in our
simulator is still far from that of real accidents, and one in-
teresting open question is how this gap can be reduced. One
may also collect an even richer dataset that includes stereo
camera inputs, rear/side camera inputs and audio input.
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