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Course notes

[EE424 Introduction to Optimization September 3, 2020
KAIST, Fall 2020 Changho Suh (chsuh@kaist.ac_kr)

Lecture 2: Definition of Convex Optimization

Recap

Last time, I told yvou a story of how the optimization theory was developed. There were two
breakthroughs in the history of optimization. The first was made by the famous Gauss. In
the process of solving an astronomy problem of figuring out the orbit of Ceres (which many
astronomers were trving to address in the 1800s), he could develop an optimization problem,
which is now known as the least-squares problem. The beauty of the least-sguares problem is
two-folded: (i) it has a closed form solution; (i) there is an algorithm which enables computing
the matrix inverse efficiently which is required to compute the solution. It turned out the beauty
of the problem opened up the optimization field and has played a significant role in the field.

Convex Optimization
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Figure 1: A class of tractable optimization problems: Convex optimization.

The second breakthrough was made by Leonid Kantorovich. In the process of solving a military-
related resource-allocation problem, he could formulate a problem which is now known as linear
program (LP). The good thing of LP is that there developed an efficient algorithm which allows
us to compute the optimal solution reliably and efficiently although the closed form solution
is unknown. In other words, Kantorovich came up with the concept of iraciable optimization
problems which can be solved via an algorithm without the knowledge of the optimal solution
form. This motivated many followers to mimic his approach, thereby coming up with a class of
tractable optimization problems: convex optimization; see Fig. 1.

The goal of today’s lecture is to understand what convex optimization js. To this end, we
will eover fou QHT‘ Flrst formulation of
optimization ut tl ﬁ of our main
interest requir m’rwcr netio i @unctinns relies
on the concept of conver sets. o in the second part, we will study what the convex set is and
also investigate some important examples in an effort to be familiar with the concept. Next
we will study the definition of convex functions together with a couple of examples and crucial

Previously we investigated examples of convex sets where only affine functions are introduced.
Actually there are many convex sets which concern convex functions. Here we list a couple of
such examples

One such example is:
(13)

where f(z) is a convex function. Here is the proof that 5 is a convex set. Suppose 2,y € 8. Then,
f(x) < 0 and f(y) < 0. This together with the convexity of f, reflected in the condition (9),
gives:

fAr+(1-Ay) 0,
which in turn implies that Az + (1 — A)y € S. This completes the proof.
Another example is the intersection of such convex sets:
S-5nN8

(14)
={r:fi(z) <0}, Sy={z: fa(x) <0}

Try the proof in Problem Set (PS) 1. Actually the intersection of arbitrary convex sets is also
convex - check in PS1 as well.

Convex optimization problem in standard form

‘We are now ready to define the convex optimization problem. It is an optimization problem
which satisfies the following three: (i) The objective function is convex; (i) The set induced by
inequality constraints is convex; and (ifi) The set induced by equality constraints is convex. So
the standard form of the convex optimization problem is (2) in which (i) f(z) is convex; (ii)
fi{x) is convex: and (iii} &;(z) is affine. Notice that the set induced by affine equality constraints

izati in such a
robl| e, we will
;\hle nvest]gatmg

Look ahead




Preview slides

Gefinition: A real-valued function f(x) is said to be
convex if
i

(ii)
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Lecture slides

Convex function

G}finition: A real-valued function f(x) is said to be
convex if

(i) (m,y c domf : VA € [0,1]
FOz + (1= Ny) < Af() + (1 - N f(y)

dom/f convex set

(i
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L_ecture videos

Recap: A simplified form
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Problem sets

[EE424 Introduction to Optimization September 3, 2020
KAIST, Fall 2020 Changho Suh (chsuh@kaist.ac.kr)

Problem Set 1

Due: September 11 (Friday)
Note 1: Submit your solution (a soft copy) to klms systemn (PS1 tap is created in our websile).
Note 2: Each problem will be graded by a different TA (indexed by TAI, TA2, TA3):

TA1: Sihyung; TA2: Jongseong; TA3: Jinyeop

1. (TA1) (Least Squares) Let A := [a1 --- am]T and b := [by --- by)? where a; € R? and
b;eR,1€{1,...,m}.

(a) Consider a function f: R? = R : f(z) = [lal = —b1]| +--- + |[aZ,z — by |. A student claims
that the function f can be represented as:

f(x) = || Az —b]|. (1)

Prove or disprove the claim.
(b) Consider another function f : R — R
fz) = Az = b||*. (2)

(Only) using the definition of a convex function, show that f(x) is convex in z.

1. #2LHE Oloh 23S B 221 =4l KIS



Problem sets

6. (TA1) (Monty Hall Problem — Python lab) In this problem, you are asked to perform some
simulations to empirically verify what we proved in the Monty Hall Problem:

; (2)

2
P(win w/ switching) = 3 (3)

P(win w/ sticking) =

| =

For your sake, let us repeat the game procedure. Suppose there are three doors. The prize “car”
is behind one door, but it is unknown to the trader, while being revealed to the host (Monty
Hall). Behind the other two doors there are two goats (sort of “qquang”). The trader is first
asked to choose one out of three doors. The host then opens one door behind which there is a
goat. Next, the trader is given an option between sticking with the initial choice vs switching
to another unopened door. Let N be the number of games tried out in simulation.

(a) Suppose the trader takes the sticking strategy. Implement a Python function that returns
1 (for winning) or 0 (for losing) for one game.
Hint: You may want to use functions like random. randint.

number of winnings}

b) Using the python function in part (a), plot the empirical winning rate (=
g the py P P P g i
as a function of N. How does the winning rate converge in light of (2) as N grows?

(¢) Now suppose the trader takes the switching strategy. Repeat parts (a) and (b). Of course,
in this case, you should compare to (3).

Solution:

(a) Insticking strategy, set switch as false and num_doors as 3. With random.randint(0, num_doors-
1), we randomly choose the location of car and player between 0, 1 and 2. In this problem, we
don’t care about switching. If the index of player is equal to the index of car, the program ecode
returns 1, otherwise 0.

[1]:

import random
import math
import matplotlib.pyplot as plt

In [2]: | def open_doors(nun_doors: Int, door_car: int, door_player: int) = int:
;

In [3]:

def

num_doors: number of doors
door_car: the index of the door with car behind
deor_player: the index of the door which player chese

if door_player != door_car:
return door_car

alse:
return (door_player + 1) % num_doors

game(switch: bool, num_doors: int) > int:
switeh: whether the player switch or not
num_doors: number of doors

# index of doors
# fndex of the door with car befind
# index of the dvor plaver chose

doors = [x for x in range(num doors)]

door_car = random.randint(0, num_doors—1)
door_player = random.randint(0. num_doors-1)
door_left_closed = open_doors{num_doors, door_car, door_player)

ir switch:
door_player = door_left_closed

return 1 if door_player == door_car else 0

2. Python/TensorFlow &2 1= 2/l IS



Exam guidelines

June 8, 2020
Changho Suh (chsuh@kaist.ac kr)

EE321 Communication Engineering
KAIST, Spring 2020

Final instructions

Logistics: The exam runs live online via zoom, as promised. It starts from 12:50 pm and ends
at 2:10 pm on June 17 (Wednesday), 2020. You are allowed to use one cheating sheet, Ad-sized
and double-sided. The total score is 100 + 10 points. The maximum score that you can get
is 100 points though. The overflowing points (if any) would contribute to compensating for a
loss (if any) that oecurred in your midierm exam. Please show all of your work in details to
maximize chances for partial credits. For details, see “final notice” that would be uploaded by
the head TA (Minguen Kang) on KLMS.

Contents: The best preparation for the final is to carefully review all of the lecture slides,
course notes, problem sets, exercise problems and related reference. I strongly recommend this
as a first-order preparation tool. Here is a summary of the key topics covered in this course as

well as the corresponding references.
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(a) A digital communication architecture

(b

(e

(h

CN1, LS1.
Prob 4,5 in PS1.

Review of probability laws and random variable
Chapters 1 ~ 3 in BT.

Prob 1 ~ 3 in PS1; Prob 1,2 in PS2; Prob 1 ~ 3 in PS3; Prob 1 in PS4; Prob 1 ~ 5 in EP1.

Gaussian noise model, PAM, optimum receiver principles, error probability analysis
CN2 ~ 6, L82 ~ 6.
Prob 6 of PS1; Prob 3 ~ 6 in PS2; Prob 4 ~ 7 in PS3; Prob 2 in PS4; Prob 6 in EP1.

Sequential communication and repetition coding
CN7 ~ 8, LS7 ~ 8.
Prob 5 ~ 7 in P53, Prob 2 ~ 6 in PS4; Prob 7 in EP1; Prob 1 in PS5,

Capacity of the AWGN channel
CN9, LS9.
Prob 7 in PS4; Prob 8 in EP1.

Waveform shaping
CN10 ~ 11, LS10 ~ 11.
Prob 2 ~ 3 in P55,

ISI channel modeling
CN12 ~ 13, L512 ~ 13.
Prob 4 ~ 5 in P55,

Viterbi algorithm
CN13 ~ 14, LS13 ~ 14.
Prob 6 in PS5: Prob 1 in PS6.
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