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Abstract—The high repair bandwidth cost of maximum
distance separable (MDS) erasure codes has motivated a new class
of codes that can reduce repair bandwidth over that of conven-
tional MDS codes. In this paper, we address exact repair
MDS codes, which allow for any single failed node to be repaired
exactly with access to any arbitrary set of survivor nodes. We
show the existence of exact repair MDS codes that achieve min-
imum repair bandwidth (matching the cut-set lower bound) for
arbitrary admissible , i.e., . Moreover,
we extend our results to show the optimality of our codes for mul-
tiple-node failure scenarios in which an arbitrary set of
failed nodes needs to repaired. Our approach is based on asymp-
totic interference alignment proposed by Cadambe and Jafar. As
a byproduct, we also characterize the capacity of a class of multi-
source nonmulticast networks.

Index Terms—Distributed storage, exact-repair maximum
distance separable (MDS) codes, interference alignment, network
codes.

I. INTRODUCTION

I N distributed storage systems, maximum distance separable
(MDS) erasure codes are well-known coding schemes that

can offer maximum reliability for a given storage overhead.
Consider a scenario where a file of size is to be stored in
distributed storage nodes. The file is equally split into parts
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of size and stored in the first storage nodes, known as
systematic nodes. The remaining nodes, known as parity
nodes or nonsystematic nodes, store data of the same size, i.e.,

, adding redundancy to protect from failures of storage
nodes. The parity nodes are designed such that a failure of up to

storage nodes can be tolerated, i.e., any nodes out of the
nodes can recover the original file. Clearly, for this problem,

storing the data using an MDS code suffices to achieve
the required reconstruction criterion, since an MDS code pro-
tects the data from erasures.
Consider the case where nodes fail, and a repair

center is introduced to recover the data stored in the failed nodes.
The total amount of data to be downloaded by the repair center
to regenerate failed nodes will be henceforth referred to as the
repair bandwidth. Clearly, a repair bandwidth of suffices to
repair failed nodes since the repair center can download data
of total size from any of the remaining surviving
nodes to reconstruct the entire file, and from it, the data stored
in the failed nodes. However, note the inherent inefficiency in
the solution: to repair nodes, each of size , the newcomer
downloads data of size , i.e., times the size of the data to
be repaired. In particular, if node fails, the total data
downloaded by the repair center is times the amount of data
needed to be replaced. A question of interest is whether this inef-
ficiency is fundamental or whether the node can be repaired with
downloading data of size less than . More specifically, we ask
the following question: what is the minimum repair bandwidth
required to repair failed nodes?This question has been studied
previously for the case of a single-node failure from two per-
spectives [3]–[10]. The first is called functional repair [3] and
the second is called exact repair [4]–[10].
The functional repair problem requires that the failed nodes

are replaced so that the reconstructed new nodes along with
the other nodes satisfy the MDS code property. In other words,
the repaired nodes are functionally equivalent to the originally
stored data. Note that the data in the repaired nodes need not
be identical to the data in the failed nodes: all that is required
is that the repaired nodes along with the other nodes form an
MDS code. It has been shown in [3] that this problem is equiva-
lent to the well-studied multicast problem. With the help of the
well-established results on the multicast problem, Dimakis et al.
[3] have shown that in the case of any single node failure, when
accessing to any arbitrary 1 of the remaining sur-
viving nodes, the minimum repair bandwidth required is

(1)

1Note that the repair center has to connect to at least nodes to recover the
lost data.
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This result implies that functional repair requires a smaller re-
pair bandwidth over that of the naive approach which constructs
all the data with access to any nodes. It gains by a factor of

, e.g., for there is a 5× bandwidth
reduction.
In this paper, we focus on the exact repair problem where the

failed nodes are required to be replaced with identical copies of
the failed nodes. An advantage of exact repair is that the storage
system can be oblivious to the repair operation, as the storage
code coefficients remain unchanged after the repair operation.
This is contrast to functional repair where the code is changed
in general whenever the failed nodes are repaired. Moreover,
exact repair guarantees a desirable systematic structure to the
code which enables a client to download the data without any
decoding.
Since any solution to the exact repair problem is also a solu-

tion to the functional repair problem, the bound (1) can serve as
a lower bound to the minimum repair bandwidth for the exact
repair problem. However, whether or not this bound is tight has
been open. In this paper, we settle the open problem on the min-
imum repair bandwidth. Specifically, we show that the lower
bound of (1) is indeed tight and achievable via linear codes for
arbitrary values of . Moreover, as a byproduct, we find
that our solution to the exact repair problem leads to the ca-
pacity characterization of a class of multisource nonmulticast
networks.

A. Related Work

The topic of exact repair of MDS codes has received atten-
tion in the recent literature [3]–[8], [11]. It was pioneered byWu
and Dimakis [4] who showed the optimality of the bound (1) for
the case of . Later, Cullina et al. [5] showed the
optimality of the bound (1) for . Progress
in construction of exact repair codes beyond these special cases
was made by Shah et al. [7], [12], [13], Wu [6], and Suh and
Ramchandran [8]. Shah et al. [7], [13] developed partial exact
repair codes for the case of , where exact repair is
limited to the systematic component of the code. Suh and Ram-
chandran [8] showed the optimality of (1) for the repair of all
nodes (including parity nodes) for . However, these
results [7], [8], [13] relied on the assumption that all of the sur-
viving systematic nodes participate in repair. Later it was shown
in [9] that this constraint can be removed without loss of opti-
mality. In [9], a product matrix-based construction is developed
for that do not depend on the assumption. On the
other hand, Wu [6] and Rashmi et al. [12] presented explicit
code constructions for the case of .
For all other remaining cases, the establishment of funda-

mental limits of repair bandwidth for exact repair remained
open. Our main contribution of this paper is to settle this open
problem. Note that the condition of restricts the
code rate of to be at most , as . This means that
the unresolved regime of is especially relevant
for high code rate, which has been of significant interest in
practice. Indeed, many literature in the MDS code design for
storage systems have been devoted to systems with two parity
nodes, i.e., [14], [15]. For this practically relevant
low redundancy regime, the only previous insight comes from

[7] where it is shown that for , scalar linear codes
cannot achieve the limit of (1). The question of whether (1) is
tight allowing for vector linear and nonlinear codes has been
open.
A related line of work is the area of cooperative regener-

ating codes [16], [17] which deal with a multiple-node failure
scenario, unlike the previous works intended for a single-node
failure case. In the model considered in these references, when

nodes fail, new nodes enter the system with each new
node intending to repair one failed destination. These nodes
can cooperate in a limitedmanner. In this model, the authors aim
to minimize the amount of repair bandwidth—a weighted sum
of the bandwidth required between each surviving node and a re-
generating node, and the bandwidth required among the regen-
erating nodes. Hu et al. [16] solve this problem for the case of
functional regeneration of the failed nodes. In the case of exact
repair, for , Shum [18] shows that a simple Reed–Solomon
code can achieve the functional repair bandwidth lower bound.
On the other hand, our study considers the case where the
regenerating nodes can fully cooperate each other, and for this
case, we show the optimality of (1) for all admissible values of

.

B. Summary of Contribution

Our first result concerns an storage system—a
storage system where a file of size is stored using an
MDS code, and a single-node failure is repaired by a repair
center connecting to an arbitrary set of surviving nodes

.
Theorem 1 (Single Node Failure): Consider an MDS

code used to store a file of size . Let
indicate a failure node. Let denote
the set of nodes participating in repair. Let repre-
sent the corresponding repair bandwidth. Then, for any

1)

2) there exists an MDS code such that

(2)

Since depends only on , we denote this by . Theorem
2 (to be stated shortly) includes the above theorem as a special
case.
Remark 1: Notice that approaches (1) as tends to in-

finity. This implies that exact repair is asymptotically equally
efficient as functional repair in the limit of large file size. Unlike
[7] and [8] which provide explicit code constructions, our ap-
proach shows only the existence of optimal exact repair codes.
Instead, our result affords the extension to the multiple-node
failure scenario that was not available in the previous literature.
This generalization and other notable aspects of our result are
listed below.
1) Our approach can be easily generalized to the multiple-
node failure scenario where nodes fail. We focus on the
case of , since for , the optimal
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repair strategy is straightforward: reconstructing the entire
file and then regenerating the failed nodes. Using our ap-
proach, we characterize the optimal repair bandwidth anal-
ogous to (2), thus developing Theorem 2 that will be stated
shortly.

2) An interesting property of our codes is that the code coeffi-
cients can be designed regardless of . In other words,
the same code can be used to handle one or multiple node
failures, and arbitrary admissible values of . This is in
contrast to previous works [7], [8] where the code coef-
ficients depend on the value of . Thus, our solution pro-
vides more flexibility to the code design.

3) An interesting aspect of our code is that the coding subma-
trices are diagonal and hence optimal from the perspective
of encoding/update complexity [19].

Theorem 2 (Multiple Node Failures): Consider an
MDS code. Suppose indicate the set of
nodes that fail. The repair center regenerates all the nodes in
by connecting to nodes . Let

denote the corresponding repair bandwidth for the simulta-
neous repair of nodes in . Then, for any ,

1)

2) there exists an MDS code such that

(3)

where and .
Since depends only on and , we denote

the minimum repair bandwidth by in the remainder of this
paper.

Proof: See Sections III and IV for the achievability proof.
For the converse proof, see the proof of the second claim of
Theorem 3 in Section V.
Notice from (2) and (3) that for sufficiently

large file size. Considering the fact that is the minimum
repair bandwidth under noncooperative one-by-one repair, our
multiple node failure scenario requires less repair bandwidth.
This is because our setup considers full cooperation: all of the
failed nodes are repaired by only one repair center. In fact, our
setup is a special case of a partially cooperative repair setup
[16], [18] where there are separate repair centers cooperating
each other through some limited communication links. Note that
our case can be viewed as the case where there are separate
repair centers fully cooperating each other. Focusing on the full
cooperation case, our result shows the optimality of (3) for all
admissible values of . On the other hand, Shum [18]
shows the optimality for the case of , although its setup is
more general.

II. ROLE OF INTERFERENCE ALIGNMENT IN EXACT REPAIR

Making use of the connectionmade in [8] between the storage
repair problem and the wireless interference channel problem,
we leverage the scheme in [20] to show the information-the-
oretic optimality of exact-repair codes for all feasible values
of . Let us first review a simple example of

Fig. 1. Pictorial representation of problem definition for
.

codes which will illustrate the connection to the wireless in-
terference channel problem through the concept of interference
alignment.
Review of Exact-Repair MDS Codes [4]: We assume

that the source file size is 4 so that each node stores
. Let and be two-dimensional vec-
tors where indicates a transpose. Systematic nodes 1 and 2
store uncoded information in the form of row vectors, i.e., and
, respectively. Let and be 2-by-2 encoding submatrices

(i.e., constitutes a generator submatrix) for parity node
. For example, parity node 1 stores a two-dimen-

sional vector . Assuming that , are chosen
so that the code is an MDS code, and can be decoded from
any two nodes.
Suppose that node 1 fails. One can download four linear com-

binations of by downloading all of the informa-
tion from any two nodes, and thus can recover .
With this naive approach, node 1 can be repaired using a total
repair bandwidth of four equations. However, we will show that
this repair can be done by downloading only three equations in
total, matching the bound of Theorem 1. The idea of achiev-
ability is interference alignment.
Here, we use a scalar linear code where each survivor node

uses a projection vector to project its data into a scalar.
The example illustrated in Fig. 2 shows exact repair of failed
node 1 using interference alignment. By connecting to three
nodes, we get: ; ;

. Recall that the goal is to decode two desired un-
knowns out of three equations including four unknowns

. To achieve this goal, we need

(4)
The second condition can be met by setting and

. This choice forces the interference space to be
aligned into a one-dimensional linear subspace. The alignment
of the interference into a single dimension ensures that three
equations are sufficient to resolve the two desired unknowns.
With this setting, the first condition now becomes

(5)

We can satisfy this condition by carefully choosing s and
s.
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Fig. 2. Interference alignment for a exact-repair MDS code. The choice of and enables achieving interference
alignment, thus allowing us to decode the desired signals .

Connection to the wireless systems: The technique of inter-
ference alignment was developed in the context of wireless sys-
tems—in particular in the wireless interference and chan-
nels [20]–[22] (See [23] for a tutorial on the same). Broadly
speaking, interference alignment is the concept that the inter-
fering signals occupy overlapping dimensions, whereas the de-
sired signal remains separable from the overlapped interference.
Since interference occurs naturally in wireless systems due to
the broadcast nature of themedium, it has been explored broadly
in the context of wireless communication systems.
The applicability of interference alignment in our paper stems

from an analogue between the wireless setting and the storage
setting. Here, we describe the connection between these two
settings. At a high level, in a wireless setting, each receiver
gets linear combinations of the transmitted signals including
both desired signals and interfering signals. The coefficients
as to how the desired and interfering signals are combined to-
gether are determined by the channel coefficients. In an
storage system, with linear coding, each of the parity nodes
store linear combinations of the original data ( , in the pre-
vious example). When a node, say node , fails, the goal in
this storage setting is to recover the failed node ( in the ex-
ample above) from the parity nodes. Note however that the
parity nodes store linear combinations of node 1—the desired
signal—with the remaining systematic components of
the code—the interferers. The coefficients as to how the de-
sired signal is mixed with the interference are determined by the
coding coefficients. There is hence a parallel2 between channel
coefficients (in the wireless setting) and the coding coefficients
(in the storage setting).
In the wireless setting, interference alignment enables effi-

ciency by reducing the effect of the interference at a receiver
and hence freeing up greater number of dimensions for the
desired signal. Such interference alignment is enabled by
carefully choosing beamforming vectors based on the channel
gain matrices. In the distributed storage setting, interference
alignment reduced the effect of the interfering signals

2Note that one significant difference between the wireless and storage settings
is that signaling in the former setting happens over real/complex field, whereas
in the latter setting, the codes are over finite fields. As we will see later on, for
the purpose of this paper, operating over sufficiently large finite fields dissolves
this difference.

at repair center, enabling downloading of a fewer number of
linear combinations of the interferers to cancel the interference,
hence reducing the repair bandwidth. For instance, in the

code example earlier, when node 1 fails, interference
alignment enables cancelation of through downloading of one
scalar ; the naive solution which does not align would
download both scalars associated with . In general, such
interference alignment is enabled by carefully choosing the
repair vectors based on the code-generator matrices. Therefore,
there is a parallel between the repair combining vectors in the
distributed storage setting and transmit beamforming vectors in
the wireless setting.
To see this connection in a concrete setting, we turn to the

code example described earlier. Observe the three equa-
tions shown in Fig. 2

Notice that the goal of repair is to reconstruct . Separating into
two parts, we can relate this repair problem to the wireless in-
terference channel problem wherein a subset of the information
needs to be decoded in the presence of interference. Notice the
following analogy for the terms of and :

The matrix and vector correspond, respectively, to
the channel matrix and beamforming vector in the wireless
problem.
The connection indeed lies at the heart of our solution. As we

will see in the next section, the previous strategy is not general-
izable for arbitrary values of because of the need for
simultaneous interference alignment across many coding sub-
matrices. The technique that is of central importance in solving
this problem is the asymptotic interference alignment technique
introduced in [20]. We next describe our approach, first in the
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Fig. 3. Difficulty of achieving interference alignment for a scalar linear code.

context of a specific example in Section III and later for general
values of in Section IV.
Remark 2 (Benefits of the Storage-Code Design Flexibility):

Before proceeding, as a side note, we emphasize the great
potential to make use of the storage-code design flexibility in
achieving interference alignment. In addition to previous work
[7], [8] which exploited this connection, [24]–[28] which were
published following our study show this potential as well. In
particular, Cadambe et al. [27] exploited the concept of sub-
space interference alignment [29] as well as the storage-code
design flexibility, thereby developing a practical code construc-
tion for optimal repair of some storage systems.

III. ASYMPTOTIC INTERFERENCE ALIGNMENT:
REPAIR MDS CODE

The main goal of this paper is to develop a solution frame-
work for optimal repair based on the asymptotic interference
alignment scheme of [20]. In general, our solution framework
covers all feasible values of . This contrasts the
scalar-linear code-based framework in [7] and [8] which covers
a subset of all feasible values through a deterministic code con-
struction with finite alphabet size. In contrast, here we target
only the existence of exact-repair codes without specifying
constructions. This allows for a simpler characterization of the
solution space for the entire range of admissible repair code
parameters. For ease of exposition, we first focus on the specific
scenario of —the simplest case
that was not resolved in [8] and [13]. This example scenario
will enable us to present all the relevant ideas, and is a repre-
sentative of the general case. We discuss this special case in
detail here and later provide the generalization in Section IV.
We will begin by focusing on repair of a failed systematic node.
Parity node repair will be dealt with later in the section.
We start by examining the insufficiency of the approach of the

previous section. For , , , , achieving in-
terference alignment for exact repair turns out to be more com-
plex than the case of . Fig. 3 illustrates this difficulty
through the example of repairing node 1 for a code. In
accordance with the code example in Fig. 2, we choose
the total amount of data in the storage system to be .
Note that each node stores equations over a field
where will be specified soon. Along the lines of the pre-

vious section, suppose that we use scalar linear codes, i.e., we

download a scalar from each node. We define ,
and ; 2-by-2 encoding submatrices

of , , and (for ); and two-dimensional pro-
jection vectors s.
Suppose that survivor nodes participate in exact

repair of node 1. We then get the following linear mix-
tures:

In order to successfully recover the two components of from
the four downloaded equations, the matrices associated with
and should have rank 1, respectively, while the matrix associ-
ated with should have full rank of 2. In accordance with the

code example in Fig. 2, if one were to set
and , then it is possible to achieve interference
alignment with respect to and reduce the corresponding rank
to 1.
However, this choice also specifies the interference space of
. If the s and s are not designed judiciously, interference
alignment is not guaranteed for . Hence, it is not evident how
to achieve interference alignment at the same time. This case

is later solved in [9] through a
judicious construction ofmatrices (referred to in the reference as
the product matrix construction). However, the solution of [9] is
a scalar code that is not generalizable for all feasible choices of

. In fact, as demonstrated in [7], scalar linear codes,
in general, involve a larger repair bandwidth as compared to
the cut-set bound. We will present a vector coding approach to
resolve the case of . Later, in
Section IV, we will show how our approach is generalizable.
To address a similar simultaneous interference alignment

problem in wireless interference channels, Cadambe and Jafar
[20] invoked the idea of symbol extensions—the notion that
multiple symbols can be grouped together and viewed as a
vector. By coding jointly over the components of the vector, the
reference could achieve simultaneous interference alignment
in the wireless context. Here, based on the analogy between
the interference channel and the repair context established in
the previous section, we invoke the idea of vector coding in
the storage context. In vector linear codes, we allow to
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Fig. 4. Illustration of exact repair of systematic node 1.

be a larger parameter of choice,3 so that each node stores an
dimensional vector over the field . The field

size will be (implicitly) specified later in this section. The size
of the vector is analogous to the size of the symbol extension
used in the interference channel.
Fig. 4 illustrates exact repair of systematic node 1. Drawing

parallels from [20], each node stores a -dimensional
vector, where is an arbitrarily large positive integer and the
exponent is carefully chosen depending on code parameters.
Specifically

(6)

This choice of and the form of are closely related to the
scheme to be described in the sequel. In this example, .
Note that storage node contains a -dimensional vector, e.g.,

, where indicates the th component
of the vector. Now with this vectorization, we show a repair
strategy that downloads an -dimensional vector from each
of nodes and an -dimensional vector from each
of nodes to repair node 1. With this strategy, and noting
that , we achieve

as desired according to Theorem 1. Note that since we need
or equivalently , the cut-set lower bound

is achieved in the limit of arbitrarily large file size. Before we
describe the repair strategy, let us briefly examine the file-size
requirements.
Remark 3 (File-Size Requirements): Consider the case of

. In this case, . The repair bandwidth is
. This repair bandwidth of 34 is larger than that

of the trivial approach of downloading the entire file of .

3Note that for sufficiently large file size, is indeed a parameter of choice.
This is because for sufficiently large file size, the file can be split into multiple
blocks, each of size , and coding can be done separately over each of these
blocks.

However, as increases, the repair bandwidth reduces and for
, the repair bandwidth for our strategy is smaller than that

for the trivial approach. In particular, for our strategy, the repair

bandwidth reduces with the file size , as .
Our solution works by achieving the following three objec-

tives (See Fig. 4).
1) Interference alignment: The rank of the interference ma-
trix corresponding to and the interference matrix corre-
sponding to are restricted to . Such simultaneous
alignment w.r.t. both and enables successful interfer-
ence cancelation by just downloading linear com-
binations from each of nodes 2 and 3.

2) Recovery of desired components: The matrix corre-
sponding to has full rank of , thus enabling
reconstruction.

3) MDS property: The aforementioned two properties ensure
successful reconstruction for a single-node failure, with the
desired repair bandwidth. Along with this, we also need
to ensure the MDS property that the original information

can be reconstructed from any three nodes in the
system.

Note that downloading a total of equations
from the surviving nodes suffices as long as the first two con-
ditions discussed previously are satisfied. We next describe our
solution which achieves this repair bandwidth. For the purpose
of this section, the field of operation is assumed to be where
is a prime number which is chosen to be sufficiently large for
purposes to be specified later in this construction.
Design of encoding submatrices: The size of encoding sub-

matrices is -by- . We consider diagonal
encoding submatrices. As pointed out in [20], the diagonal ma-
trix structure ensures a commutative property which is central
to the interference alignment scheme (to be described shortly)

...
...

. . .
...

(7)
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Repair strategy: Failed node 1 is exactly repaired through the
following steps. Assume that survivor nodes partic-
ipate in exact repair of node 1: systematic nodes
and parity nodes. One can alternatively use
one systematic node and three parity nodes for repair instead.
This does not fundamentally alter the analysis, and will be dis-
cussed in Section III-B. For the time being, assume the previous
configuration for the connection: systematic nodes and

parity nodes. To describe the repair strategy, we de-
note by the projection matrix used by the parity
nodes to project their data. Thus, the data obtained by the repair
center from the parity nodes can be written as

The repair center also downloads data from systematic nodes
2 and 3. To cancel the effect of and from the above data,
the repair center has to download at least
equations from node 2 and at least equa-
tions from node 3. The goal of the repair strategy is to align

with and simultaneously align with so
that the number of equations is minimized. In particular, we will
design so that

The first two conditions discussed earlier imply that down-
loading scalars from each of systematic nodes 2
and 3 suffices for canceling the effect of and from the
equations downloaded from the parity nodes. The last condition
ensures reconstruction of . This leads to a repair bandwidth of

as required.
Next, we shall describe the repair strategy. We begin with the

case of , where is just a 2 1 vector. Each of the two
parity survivor matrices participating in repair project their data
along a single 2 1 vector so that the data
received by the repair center is

where is equal to . The receiver hence gets two scalars.
In general, note that and can be linearly independent
since they lie in at two-dimensional space. Thus, the rank of

can be 2 since there is no any overlap (alignment)
between and . If this is the case, all the data stored
in systematic node 2 has to be downloaded for repair. Similarly,
for the case of , all the data stored in systematic node 3
has to be downloaded for repair. Now, we increase the extent
of alignment for . In this case are all
-dimensional vectors. Each of the two parity nodes projects

its data into the following -dimensional vector whose
vectors are indexed as follows:

(8)

where is chosen to be have the column vectors from the set

The previous matrix has 16 columns as required. Now, observe
that the columns of can be written as

Similarly, the columns of can be written as

Notice that the following set of column vectors are common to
and :

In other words, we achieve partial alignment between and
, as 4 of the 16 column vectors are common. A similar

overlap occurs between and . Finally, note that each
of the columns of is contained in the
set

(9)

whose cardinality is . Hence, using the
previous set of columns as a projection matrix for nodes 2 and
3, we can achieve a repair bandwidth of .
We next generalize the previous approach. We intend to show

that our construction gives

To ensure the previous rank constraints, each of the two parity
survivor nodes participating in repair projects its data with the
following projection matrix:

(10)

where . The set is defined as

(11)
where .
Remark 4: Alternatively, the entries of the can be chosen

randomly and independently from the field. See [30] for ex-
ample. This choice makes little difference to the proofs in our
paper.
Note that . The vector maps to a different se-

quence of . For example, we can map

... (12)
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Consider the equations downloaded from parity nodes 1 and 2
(nodes 4 and 5). Note that contains the following column
vectors:

An important observation is that any column vector is an
element of defined as

(13)
Similarly, any column vector in , or is an el-
ement of . This implies that is a
rank-deficient matrix, i.e., .
Similarly, . This enables simulta-
neous interference alignment although the same projection ma-
trix is used for and . This observation motivates the sys-
tematic survivor nodes to project their data using the following
projection matrix:

(14)

where and is mapped to a difference sequence of
as in (12). We can then guarantee that

(15)

Hence, using and (downloaded from systematic
survivor nodes), we can completely remove any interference

, thereby obtaining
. Put simply, we have satisfied the interference

alignment condition which is one of the three objectives stated
previously. To successfully reconstruct , we need

(16)

In other words, must have full rank. Finally, to
complete the proof, we also need the MDS property—the last
objective. The proofs of (16) and the MDS property are based
on the Schwartz–Zippel Lemma [31]. Specifically, we show
that there exist diagonal encoding submatrices
such that these two properties are satisfied. The argument is as
follows.
1) Consider (16). In the matrix on the left-hand side, notice
that the design of does not depend on and .
Therefore, each entry of the matrix is a different mono-
mial in the diagonal entries of the encoding submatrices

. Based on this observation, it can be shown
(see [30, Lemma 1]) that if the field size is large enough, the
determinant of the matrix in (16) is a nonzero polynomial
in the diagonal entries of . Let
us denote this polynomial by . Note that for (16) to be
satisfied, we need to evaluate to a nonzero value in the
field.

2) The MDS property means that the code must be able
to tolerate the failure of any three storage nodes in the
system. Equivalently, any set of three nodes in the system,
when interpreted as equations in must have
full rank of and hence the matrix representing
these equations, must have a nonzero determinant. Note
that there are possible sets of three nodes in the storage
system. The MDS property is therefore equivalent to
showing that determinants are all nonzero. Note
that each determinant is a polynomial in the entries of
the encoding submatrices. In the next section, we will
show in the more general context of arbitrary and that
even with diagonal coding submatrices chosen here, all
these polynomials are nonzero as long as the field size is
sufficiently large. To summarize, we show that as long
as the field size is sufficiently large, the MDS property
corresponds to 20 nonzero polynomials in the entries of
the diagonal elements of each evaluating
to a nonzero value. We will denote these polynomials by

.
From the above, we only need to show that there exists a

realization of diagonal entries for the coding submatrices so
that the polynomials and the polyno-
mial evaluate to a nonzero value in the field. Showing
this will ensure the existence of codes satisfying the final two
objectives—the MDS property and the recovery of the desired
components—to complete the proof. To do so, we invoke the
Schwartz–Zippel Lemma to product polynomial
which is a nonzero polynomial, by virtue of each of its factors
being nonzero polynomials. Over a sufficiently large field, the
lemma guarantees, via a probabilistic argument, the existence
of diagonal matrices so that this product poly-
nomial and hence each of its factors evaluate to some nonzero
value and hence completes the proof.

A. Parity Node Repair

So far, we have discussed an achievable scheme for repairing
a systematic node. The codes constructed here
can also be used to create an optimal repair strategy for a failed
parity node in the same manner. The key idea is the following.
In an MDS code, any nodes are information equivalent to
the original information in a system and therefore can be inter-
preted as systematic nodes. The data stored in the remaining

nodes are functions of these nodes and can therefore
be interpreted as parity nodes. Hence, through a remapping of
the nodes and an appropriate transformation, a parity node of a
code can be interpreted as a systematic node of a virtual alter-
nate code—a parity node failure can therefore be interpreted as
a systematic node failure under a virtual alternate code. Specifi-
cally, for linear MDS codes, by using a change of basis, a parity
node in the original code can be virtually interpreted as a sys-
tematic node of a virtual alternate code. As long as the alternate
code shares properties similar to the original code (diagonal en-
coding submatrices, etc.), the ideas of systematic node repair
can be applied to parity node repair as well. Let us crystallize
this idea in the context of an example. Suppose that a parity
node, say node 6, fails. We can now remap the nodes so that



2982 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 5, MAY 2013

this failed node is systematic node . Therefore, in this alter-
nate virtual code, we have three systematic nodes :

(17)

With the remaping, is now a parity node. The three parity
nodes can be expressed as

(18)
Let us denote the th parity node (i.e., node )
as so that for example

and so on. From the previous expressions, all the
encoding submatrices are diagonal. This is be-
cause the sum, product, and inverse of two diagonal matrices
are diagonal. The diagonal property ensures that the encoding
submatrices commute even in this virtual code. This means that
by picking the repair vectors in a manner analogous to (11)
and (13), we can satisfy a corresponding condition analogous to
(15). Using an argument similar to the previous section, it can
be shown that the desired components can also be completely
recovered. The detailed proof is omitted here to avoid tedious
notation.
Remark 5 (Field Size Requirements): Note that a failure of

each node is with respect to a different polynomial which has
to be shown to evaluate to a nonzero number. Also note that
there exists a such that over field , for each of
these polynomials is a nonzero polynomial. This is because for
sufficiently large , the product of these polynomials is nonzero
over the field (due to the Schwartz–Zippel Lemma). To use the
lemma, we assume that the field size is large enough to be much
greater than the degree of this composite polynomial. It is worth
noting that the degree of the product polynomial depends on
and the repair bandwidth that we intend to achieve (i.e., ). As
increases, the repair bandwidth approaches optimality, the

degree of the product polynomial grows, and hence the field size
required for application of the Schwartz–Zippel Lemma also
grows.

B. Participation of Arbitrary Nodes for Exact Repair

We have considered a somewhat restrictive configuration for
exact repair: connecting to surviving systematic nodes
and to other parity nodes. We now consider more
general connection configurations. For example, consider the
case when node 1 fails. Suppose we connect to nodes
for exact repair of node 1: one systematic node and three parity
nodes. We use the idea similar to that of parity node repair. We
remap one parity node to make it look like a systematic node.
We then virtually connect to two systematic and to two parity
nodes. Specifically, we can remap node 6 with and perform
conversions similar to (17) and (18). Applying the same proce-
dures as before, we can then guarantee the exact repair of .

IV. GENERALIZATION

We will now prove the achievability of Theorem 2 by gener-
alizing the previous setting to the case where is arbitrary;

nodes fail; and nodes are contacted
for repair. While this setting is more general, most of the ideas
follow from the previous section. We therefore only provide a
sketch of the main ideas.
Consider a storage system which stores total data in

an MDS code-based distributed storage system. The
total data are represented by the -dimensional ma-
trix , where is an -dimensional
vector stored by systematic node . Node
( being a parity node) stores the

vector where is
an square matrix for . Because of
the systematic structure of the code, we assume that for :

(19)

The previous assumption implies that the data stored in node
are the vector shown as follows:

(20)

Note that the encoding submatrices for
are a design choice that defines the storage code coef-

ficients. We need to choose these matrices so that the code is an
MDS code, i.e., using any subset of nodes, the entire
vector of data must be reconstructible. Thus, we need to ensure
that

...
...

. . .
...

(21)

for any distinct .
Now, suppose that nodes fail. We consider

the case where the failed nodes are systematic nodes. Later,
the scenario will be generalized to the case where the failed
nodes can be parity nodes as well. Without loss of generality,
we assume that the first systematic nodes fail. We assume that
the repair center connects to the surviving systematic
nodes and the first parity nodes so that it connects
to a total of nodes. As usual, the goal is to repair the lost data

. In this case, we set where
. The goal of the solution will be

to download equations from each of the
surviving systematic nodes, and equations from the

parity nodes that the repair center connects to. Note that
as , the total repair bandwidth is
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Remark 6: Note from the previous expression that bandwidth
reduces with file size as .
Similar to the previous section, to achieve the above repair

bandwidth, we aim for the following three objectives.
1) Interference alignment: The interference corresponding to
each of is aligned simultaneously so
that it can be completely canceled.

2) Recovery of desired components: The vectors
can be regenerated at the repair center.

3) MDS property: The code is an MDS code, i.e., (21)
is satisfied.

Our repair strategy is as follows.
1) From each of surviving systematic nodes, the repair
center downloads vectors where and

. These downloaded vectors contain
no information associated with the desired data
and will be used as side information to cancel interference.

2) From each of the parity nodes, the repair center
downloads vectors of the form

where and . These
downloaded vectors contain both desired components and
interfering components.

The goal of our solution will be to completely cancel the inter-
ference from the latter sets of vectors using the former

sets of vectors listed earlier, and then to regenerate
the components of
using the latter sets of vectors. In order to com-
pletely cancel the interference related to , we will need that

:

(22)

Note that the above are the desired relations analogous to (15) in
the previous section. The previous condition ensures that the en-
tire interference can be canceled. After interference cancelation,
each of the matrices is of the form for

. For reconstruction of ,
we need

...
...

. . .
...

(23)

The previous condition ensures that the desired lost data can be
reconstructed after interference cancelation.
Thus, we need to design , , and for

and such that (21), (22), and (23)
are satisfied. We now proceed to describe our construction.

Design of encoding submatrices : As in Section III, we
choose the -dimensional matrices

to be diagonal matrices

...
...

. . .
...

(24)

Design of repair matrices and : As in Section III, we
choose the set of column vectors of and , respectively, from
the sets and described as follows:

(25)

(26)

where denotes . It can be verified that with the
previous choice of column vectors, for

, and therefore (22)
holds.
Proof of (21) and (23): We have chosen encoding subma-

trices and repair matrices so that (22) is satisfied. In order to
show that the matrices of (21) and (23) have full rank, it is
enough to show that their determinants are nonzero. Notice that
the determinant of the matrix in the left-hand side of (21) is a
polynomial in its entries. Note that there are polynomials of
this kind, which can be represented, for , as

where

denotes the set of all the diagonal entries of the coding matrices.
In the appendix, we show that each of these polynomials is a
nonzero polynomial.
Let us now show (23). To show that the square matrix on the

left-hand side of the equation has full rank of , we need to
show that its determinant is nonzero. Since a determinant is a
polynomial function of its entries, the determinant expansion
above is a polynomial

An argument similar to [30, Lemma 1] can be used to show
that the polynomial formed by this matrix for our solution is
a nonzero polynomial. See also [20, Appendix III]. Thus, the
product is a nonzero polynomial of .



2984 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 5, MAY 2013

Fig. 5. Multisource nonmulticast network translated from the storage-repair problem.

Using the Schwartz–Zippel Lemma, for sufficiently large , we
have at least one choice of encoding submatrices and repair ma-
trices such that these polynomials evaluate to a nonzero value
and therefore a solution exists so that (21) and (23) are satisfied.
Thus, we have satisfied all the desired objectives, and complete
the proof.
Parity node repair and connecting to arbitrary nodes: The

extension to parity node repair and arbitrary configurations
(w.r.t. the connection to survivor nodes for repair) is similar
to the case of discussed in
Section III. The key idea is to use a change of bases and remap
the nodes, thus making these generalized cases identical to the
previously handled case. We omit details for the sake of brevity.
Remark 7 (Universality of Our Code): For all possible values

of , note that the encoding submatrices are diagonal. Also
because of the nature of the Schwartz–Zippel Lemma, the di-
agonal entries can be chosen randomly to satisfy the desired
properties (alignment, MDS property and recovery of the de-
sired components) with nonzero probability. Therefore, we can
choose a sufficiently large value of and random diagonal en-
coding submatrices to build a code which can simultaneously
perform optimal repair of different failure scenarios. For in-
stance, to build a code which can handle ,

, we need to choose to be the least
common multiple of and . Such a
code can be interpreted as multiple blocks of size
for the case of and so that the strategy de-
scribed earlier can be used for repair of each block separately.
Similarly for the case of , the code can be interpreted
as multiple blocks of size . Thus, following this
argument, storage codes can be designed, independent of .
This is in contrast to the constructions in [7] and [8] where the
storage code is dependent on the repair parameter .

V. CAPACITY OF A CLASS OF MULTISOURCE
NONMULTICAST NETWORKS

As in the literature [3], [8], our storage network can be cast
into a class of traditional communication networks. Specifically,
it can be translated into a multisource nonmulticast network.
The main distinction of our translation w.r.t. the previous work
is to include the multiple-node failure scenario, thus leading to
havingmore destinations with specific communication demands
in the network. In this study, we exploit this connection to es-
tablish the capacity of the translated communication network.
Let us start by illustrating the network translation. For com-

pleteness, we will describe details on the translation, although
they have significant overlaps with those in [3] and [8]. The
translated network consists of three layers: a source layer, a
storage layer, and a destination layer. See Fig. 5. The source
layer has source nodes, each having a uniformly distributed
message independent of all other messages. We assume that
the number of network uses is and each message has rate .
So, is a vector. The network has an intermediate
node which has incoming edges from each source via an infi-
nite-capacity link. The storage layer comprises nodes. The top
nodes are connected with a corresponding source node via a
-capacity link, representing systematic nodes in the storage

network. The bottom nodes are linked with the inter-
mediate node through a -capacity link, representing parity
nodes. Note that link capacity w.r.t. a storage node is analogous
to the storage cost. The destination layer consists of two types
of nodes—repair destination nodes andMDS-destination nodes.
Each repair scenario is represented by a repair destination node.
In this network, we consider systematic-node repair scenarios
only.
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We partition the repair destination nodes into sets based
on
1) the number of storage nodes that a repair destination node
connects to;

2) the number of failed systematic storage nodes,
where denote the set of all repair destination nodes that
wish to decode messages with access to storage nodes. On a
failure of nodes, we have storage nodes that survive,
so . Since there are repair scenarios
and systematic-node failure scenarios, the total number of
destination nodes in is . We assume a capacity of

for the link between a repair destination node in and
each of its corresponding storage nodes. To ensure the MDS
property, we have a set of MDS-destination nodes which intend
to decode all of the messages with access to the top storage
nodes. Note that there are such MDS-destination nodes. We
assume a capacity of for an incoming link.
A rate tuple is said to be achievable if there

exists a code such that every destination node can decode its
desired messages with a probability of error that vanishes as
tends to infinity. The capacity region of the network is the

convex closure of the set of all achievable rate tuples.
Theorem 3: If , then the capacity re-

gion is

If the rate tuple is achievable, then

for all and .
Remark 8: Note that the quantity is analogous

to the total repair bandwidth in the storage setup, given that
the rate tuple is achievable. Since
the second claim in this theorem shows that cannot be
less than , it also shows that the repair bandwidths in
Theorems 1 and 2 are optimal.

Proof: Part 1: The achievability proof is straightforward.
It simply follows from that of Theorem 1. Specifically, the link
from the intermediate node to the storage node carries an

vectors of the form (20). Also, the repair strategy in
the storage setup determines the vector associated with the link
between a storage and a repair destination node. The converse
is simply due to the MDS property. An MDS destination node
must be able to decode all of the messages. Since each storage
node has an incoming link of rate , we have .
Part 2: We employ a cut-set bound argument. Consider a re-

pair destination node which wants to decode
with access to some storage nodes, say , among
nodes . Note that this repair destination
node should have the information contained in the first storage
nodes. The MDS property implies that the repair destination
node combined with any of the storage nodes other than
nodes must be able to reconstruct all the original
messages.
We now construct a cut in the network as follows. The desti-

nation side of the cut consists of the repair destination node and

part of the connected storage nodes . Note that
. All of the other nodes in the system belong to the

source side of the cut. For example, in Fig. 5, the shaded nodes
indicate the destination side of the cut for the bound on .
Note that the flow across the cut should be at least 1—the total
rate of all the messages.
The total flow across this cut is equal to the sum of the two:

1) total flow into storage nodes ; and 2) the
total flow into the repair destination node from the remaining
connected storage nodes . Therefore, we need

This implies that

This completes the proof.

VI. CONCLUSION

We explored the exact repair problem in distributed storage
systems to characterize the minimum repair bandwidth for a
multiple-node failure in MDS codes. We showed that in con-
trast to the result of [32], the repair bandwidth for exact repair
is asymptotically the same as that of functional repair.
As a byproduct, we also established the capacity region of

a class of multisource nonmulticast networks. An interesting
technical aspect of the result involves the achievable scheme
that inherits the asymptotic interference alignment developed
in the context of wireless interference channels.
Our study spawns some interesting research directions. The

first is w.r.t. translating our theoretical insights into practice.
Note that our codes suffer from the following limitations.
1) Our result is w.r.t. the existence of optimal codes.
2) Our codes achieve the minimum repair bandwidth only in
the limit of a large file size, and over a sufficiently large
field size.

This requires significant efforts in developing explicit MDS
codes with a finite field size. In fact, subsequent to our study,
several works [26]–[28], [33]–[35] have addressed many of
the previous issues through explicit MDS code constructions.
Despite these efforts, however, explicit code constructions are
far from being closed, especially for handling multiple node
failures, and for all possible values of .
The second research direction is to apply interference align-

ment to nonmulticast multihop networks. In this regard, there
has been recent interest in [36]–[40] where interference-align-
ment-based network coding schemes are developed for multiple
unicast networks. We believe that our study provides different
insights and therefore helps making significant progress on the
networks.

APPENDIX
PROOF OF (21)

We intend to show that the determinant of the matrix
in (21) is a nonzero polynomial in its entries. Assume
without loss of generality that are in as-
cending order. Let and
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. We want to
show that the determinant of the following matrix is a nonzero
polynomial of its entries:

...
...

. . .
...

...
...

. . .
...

Since

the previous matrix is equal to

...
. . .

...
. . .

...

...
...

...
. . .

...

It suffices to show that the determinant formed by the pre-
vious matrix is a nonzero polynomial. To show this, it suffices
if there is a choice of coding coefficients (i.e., diagonal entries
of for which the deter-
minant is nonzero scalar (since the zero polynomial evaluates to
0 for all possible coding co-efficients). Suppose we choose our
coding coefficients as follows:

Then, the previous matrix is the identity matrix which clearly
has a nonzero determinant. This implies that the determinant a
nonzero polynomial in the diagonal entries of .
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