
Two-way Function Computation
Seiyun Shin

Department of Electrical Engineering
KAIST, Daejeon, South Korea
Email: seiyun.shin@kaist.ac.kr

Changho Suh
Department of Electrical Engineering

KAIST, Daejeon, South Korea
Email: chsuh@kaist.ac.kr

Abstract— We explore the role of feedback for the problem
of reliable computation over two-way multicast networks.
Specifically we consider a scenario in which there are forward-
message computation demands and feedback is offered through
the backward network for aiding the forward-message compu-
tation. We characterize the feedback computation capacity of
a four-node Avestimehr-Diggavi-Tse deterministic network in
which two nodes in one side wish to compute modulo-2 sums
of two independent Bernoulli sources generated from the other
two nodes. As a consequence of this result, we show that the
backward network can be more efficiently used for feedback,
rather than if it were used for independent backward-message
computation. Our achievability proof builds upon a network
decomposition framework developed in our earlier work.

I. INTRODUCTION

Earlier results on the role of feedback in communications
were somewhat discouraging. In the 50s, Shannon proved
that feedback has no bearing on capacity for memoryless
point-to-point channels [1]. Subsequent work showed that
feedback provides gain for point-to-point channels with
memory [2], [3] as well as for many multi-user channels [4]–
[6]. For many scenarios, capacity improvements due to
feedback are rather modest. However, one notable recent
result in [7] has changed the traditional viewpoint on the
role of feedback. It is shown in [7] that feedback provides
more significant capacity gains for the Gaussian interference
channel. Subsequent work in [8] shows more promise on the
use of feedback, demonstrating that feedback can provide a
net increase in capacity even if feedback cost is taken into
consideration.

Our interest is to examine the benefit of feedback for more
general scenarios in which nodes now intend to compute
functions of the raw messages rather than the messages
themselves. For an idealistic perfect feedback scenario, Suh-
Gastpar [9] have recently shown that feedback provides a sig-
nificant gain for computation as in classical communication
settings [7]. However the result does not take into account
feedback cost. Whether or not there exists a feedback gain
for computation in the presence of feedback cost has been
unexplored. This motivates us to investigate the feedback
gain for a more realistic scenario that respects feedback cost.

Specifically, we explore a computation scenario in which
there are forward function-multicast traffics and the back-
ward network is employed only for the purpose of feedback
to help forward-message computation. As in [9], we consider
the Avestimehr-Diggavi-Tse (ADT) deterministic network
model [10] which well abstracts wireless Gaussian networks.

In the context of classical communication, it has been
well known that ADT networks can approximate wireless
Gaussian networks within a constant gap to the optimality in
capacity [10], [11]. Recently, a similar approximation result
has been established for the problem of computation in which
a single receiver wishes to compute a linear function of
multiple Gaussian sources [12]. Specifically [12] employs
lattice codes to show that a multiple source single-destination
Gaussian network can be approximated to a class of linear
deterministic networks (which includes the ADT network
as a special case), within a constant factor of the optimal
performance w.r.t. the distortion for computing the sum
of Gaussian sources. We expect that this approximation
approach can be applied to our computation scenario. So as
an intermediate model towards the Gaussian model, we take
the ADT model. Specifically we consider a four-node ADT
deterministic network where the two nodes in one side want
to compute modulo-2 sums of two independent Bernoulli
sources generated from the other two nodes.

Motivated by the setting in [8], in order to count feedback
cost, we introduce a design parameter that captures possi-
bly different symbol rates between forward and backward
networks. Specifically we define the parameter λ as the
total time spent in the backward network for the purpose of
feedback normalized by the total time spent in the forward
network.

For this model, we develop a new achievable scheme and
derive matching upper bounds, thereby establishing the feed-
back computation capacity. Our achievable scheme builds
upon a network decomposition framework developed in [13].
As in [13], [14], we observe that for our problem setting,
coding separately over decomposed orthogonal components
achieves the optimal performance, i.e., the decomposition
holds without loss of optimality. Moreover, from this result,
we demonstrate that as in classical communication settings,
the backward network can be more efficiently used for the
purpose of feedback, rather than if it were used for indepen-
dent backward-message computation. The gain comes from
the fact that feedback enables us to exploit side information
at nodes, thus making the backward network effectively more
capable.

II. MODEL

We consider a four-node ADT deterministic network il-
lustrated in Fig. 1. Node k (k = 1, 2) sends its own message
SKk during N time slots where SK1 and SK2 are assumed

978-1-4799-8009-3/14/$31.00 ©2014 IEEE 1309

Fifty-second Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
October 1 - 3, 2014

Enc 1

Enc 2

Dec 1

Dec 2

Enc ~1

Enc ~2

V1i

V2i

~Y1i

~Y2i

Y1i

Y2i

~X1i

~X2i

n

m

~V1i

~V2i

~n

~m

X1i

X2i

~Y i¡ 1
1

~Y i¡ 1
2

Y i¡ 1
1

Y i¡ 1
2

time

time

Node 1 Node ~1

Node 2 Node ~2

dS1 © S2

dS1 © S2

Node 1 Node ~1

Node 2 Node ~2

S1
» Bern(1

2
)

S2
» Bern(1

2
)

Feedback

Forward tra± c

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAA

Fig. 1. A four-node ADT deterministic network.

to be independent and identically distributed according to
Bern(12). Node k̃ (k̃ = 1, 2) wishes to compute modulo-2
sums of the two Bernoulli sources SK1 and SK2 . Here we
use shorthand notation to indicate the sequence up to K,
e.g., SK1 := (S11, · · · , S1K). This network consists of the
forward and backward parts. In the forward network, n and
m indicate the number of signal bit levels for direct and
cross links respectively. The corresponding values for the
backward network are denoted by (ñ, m̃).

Let Xk ∈ Fq2 (k = 1, 2) be an encoded signal of node k
where q = max(m,n) and Vk ∈ Fm2 be part of Xk visible to
node j̃ (6= k). Similarly, let X̃k ∈ Fq̃2 be an encoded signal of
node k̃ where q̃ = max(m̃, ñ) and Ṽk be part of X̃k visible
to node j (6= k̃). The received signals at node k and node k̃
are then given by

Y1 =Gq−nX1 ⊕Gq−mX2, Ỹ1 = G̃q̃−ñX̃1 ⊕ G̃q̃−m̃X̃2,

Y2 =Gq−mX1 ⊕Gq−nX2, Ỹ2 = G̃q̃−m̃X̃1 ⊕ G̃q̃−ñX̃2,

where G and G̃ are shift matrices and operations are
performed in F2: [G]ij = 1 {i = j + 1} (1 ≤ i, j ≤ q),
[G̃]ij = 1 {i = j + 1} (1 ≤ i, j ≤ q̃).

The encoded signal Xki of node k at time i is a function
of its own message and past feedback signals: Xki =
fki(S

K
1 , Ỹ

i−1
k). We define Ỹ i−1

k := {Ỹkt}i−1
t=1 where Ỹkt

denotes the feedback signal received at node k at time t.
The encoded signal of node k̃ at time i, denoted by X̃ki,
is a function of its past received sequences Y i−1

k : X̃ki =
f̃ki(Y

i−1
k).

We consider a full-duplex system in which we can send
signals through forward and backward networks simultane-
ously. We introduce a design parameter λ which indicates
the total time spent in the backward network for the purpose
of feedback normalized by the total time spent in the forward
network. Note that the forward network is fully utilized for
transmission. Hence 0 ≤ λ ≤ 1. Here X̃N

k is regarded
as a whole vector that includes feedback signals as well
as null signals, e.g., X̃N

k = {∅, X̃k2,∅, X̃k4, · · · }, thus

(2) independent backward-

message computation

forward-message computation

(1) Sending feedback for aiding

¸
1

1

0

Capacity

Gain

gainnet

2

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AA

Fig. 2. An efficient use of backward networks: (m,n) = (0, 3), (m̃, ñ) =
(2, 1).

∑N
i=1H(X̃ki) ≤ Nλmax(m̃, ñ).
Node k̃ uses a decoding function dk to estimate {S1i ⊕

S2i}Ki=1 from its received signal Y Nk . An error occurs when-
ever S1i ⊕ S2i 6= ̂S1i ⊕ S2i for some i. The probabilities of
error are then given by λk = P

{
dk 6= {S1i ⊕ S2i}Ki=1

}
, k =

1, 2. We say that the computation rate R = K
N is achievable

if there exists a family of codebooks and encoder/decoder
functions such that the error probabilities of both λ1 and λ2
go to zero as code length N tends to infinity. We define the
computation capacity C as the supremum of all achievable
computation rates.

III. MAIN RESULTS

Theorem 1 (Feedback computation capacity): Let α :=
m
n .

C =

 min {Cno + λm̃, Cpf} , α < 1,
min {Cno + λñ, Cpf} , α > 1,
Cno, α = 1.

where Cno and Cpf indicate the nonfeedback and perfect
feedback computation capacities respectively [13], [9]:

Cno =

 min
{
m, 23n

}
, α < 1,

min
{
n, 23m

}
, α > 1,

n, α = 1.

Cpf =

2
3n, α < 1,
2
3m, α > 1,
n, α = 1.

Proof: See Sections IV and V.
An Efficient Use of Backward Networks: In our

model, we assume that the fraction λ of time is used for the
purpose of feedback to aid forward-message computation.
Here we investigate whether or not using the backward
network for feedback can be more beneficial than other
possible uses of the backward network. It turns out that for
a wide range of channel parameters, the backward network
can be more efficiently used rather than if it were used
for other purposes. To show this clearly, let us consider
an example where (m,n) = (0, 3) and (m̃, ñ) = (2, 1).
Specializing Theorem 1 to this case, we get the capacity

1310

Fig. 3. Net feedback gain in computation.

gain due to the use of the backward network for feedback:

∆C =min

{
λm̃,

2

3
n−m

}
= 2λ. (1)

We now consider the opportunity cost: the capacity gain due
to the use of the backward network for other purposes. One
natural alternative in this context is to use the backward
network for its own message computation. In this case, the
capacity gain is:

∆C =λCno = λ. (2)

From (1) and (2), one can see that the backward network
offers larger capacity gain when it is used for the purpose of
feedback. Fig. 2. plots the corresponding two capacity gains
as a function of λ. Notice that when λ = 1, the capacity
gain due to the use for feedback is 2 bits, while the capacity
gain due to the use for backward-message computation is 1
bit.

Furthermore, using the above, one can quantify net feed-
back gain as follows. We can view the feedback cost as the
opportunity cost since it is the capacity gain due to other
alternative, meaning the price that should be paid for using
the backward network for feedback. Hence the net feedback
gain can be quantified as:

Capacity gain due to feedback - opportunity cost.

In the above example, the net feedback gain is 2λ−λ = λ ≥
0. From the above, one can also see that the strictly positive
net gain implies that the backward network is more efficiently
used for the purpose of feedback than other purposes. Fig 3.
shows the entire channel parameter regimes in which there
is net feedback gain.

IV. PROOF OF ACHIEVABILITY

By symmetry, we consider only the regime of α ≤ 1. A
simple uncoded transmission can yield R = n for the case
of α = 1. For 2

3 ≤ α < 1, the nonfeedback scheme in [13]
gives R = 2

3n. Hence, our focus is the case of 0 ≤ α ≤ 2
3 .

Our achievability proof consists of two parts. We first
employ the network decomposition developed in [13] to
decompose a forward network into elementary orthogonal
subnetworks. We then apply achievable schemes separately
for the elementary subnetworks. We will show that these
two parts lead us to obtain the desired achievable rate of an
original network, as claimed.

A. Achievability via Network Decomposition

Let us first review the network decomposition in [13], for
the regime 0 ≤ α ≤ 2

3 of our interest.
Theorem 2 (Network Decomposition): The (m,n) net-

work can be separated into a combination of the subnetworks
as follows.

(m,n) −→
{

(0, 1)n−2m × (1, 2)m, 0 ≤ α ≤ 1
2 ,

(1, 2)2n−3m × (2, 3)2m−n, 1
2 ≤ α ≤

2
3 .

Here we use the symbol × for the concatenation of orthogo-
nal models, just like in R2 = R×R. Theorem 2 implies that
fundamental building blocks constitute only three models:
(0, 1), (1, 2), and (2, 3). Hence, we focus on these models.

Lemma 1 (Achievable Rates for Elementary Subnetworks):
Let R(m,n) be the computation rate of (m,n) model.

R(0,1) =min

{
λm̃,

2

3

}
,

R(1,2) =min

{
1 + λm̃,

4

3

}
,

R(2,3) =2.

Proof: See Section IV-B.
As mentioned above, we focus on the regime of 0 ≤

α ≤ 2
3 . To apply the network decomposition theorem, let

us consider two cases: a) 0 ≤ α < 1
2 ; b) 1

2 ≤ α ≤
2
3 .

a) 0 ≤ α ≤ 1
2 : Using the decomposition in Theorem

2, we get:

R =(n− 2m) ·R(0,1) +m ·R(1,2)

=min

{
m+ λm̃,

2

3
n

}
. (3)

where the second inequality is due to detailed yet straight-
forward calculation given in Appendix A.

b) 1
2 ≤ α ≤ 2

3 : From Theorem 2, (m,n) forward
network can be decomposed as: (m,n) −→ (1, 2)2n−3m ×
(2, 3)2m−n. We use (m̃, ñ) backward network for the trans-
mission associated with the number 2n − 3m of (1, 2)
forward networks. We also split the fraction λ of time
(assigned to the backward network) equally into each of
2n − 3m parts. We then use the split fraction λ

2n−3m of
the backward network for aiding the transmission w.r.t. each
(1, 2) forward network. This gives

R(1,2) =min

{
1 +

λ

2n− 3m
· m̃, 4

3

}
.

1311

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

Time 1Time 3 Time 2 Time 3

a1

b2

a2 © b2

a1 © b1

a1 © b2

a1 © b2(a1 © b1)

(a2 © b2)© (a1 © b1)

© (a2 © b2)

Time 1

a1

b2

a1

b2

a2 © b2

a1 © b1

a1 © b1

a2 © b2

;

;

;

;

Node 1 Node ~1

Node 2 Node ~2

Node 1 Node ~1

Node 2 Node ~2

a1 © b1

a2 © b2

Time 2

a2 © b2

a1 © b1

Fig. 4. An achievable scheme for (m,n) = (0, 1), (m̃, ñ) = (1, 1) and λ = 2
3

.

So we get:

R =(2n− 3m) ·R(1,2) + (2m− n) ·R(2,3)

=min

{
2n− 3m+ λm̃,

8n

3
− 4m

}
+ 4m− 2n

=min

{
m+ λm̃,

2

3
n

}
.

B. Proof of Lemma 1

(m,n) = (0,1), ∀(m̃, ñ): Let us start by reviewing the
perfect feedback scheme for the case of (m,n) = (0, 1) [9].
While one can readily see that there is no way to compute
functions for the nonfeedback case, i.e., R = 0, feedback can
provide a positive rate. The idea is to exploit the following
paths with the help of feedback:

[Node 1→ Node 1̃→ feedback→ Node 2→ Node 2̃],

[Node 2→ Node 2̃→ feedback→ Node 1→ Node 1̃].

The perfect feedback scheme consists of three time slots.
In time 1, node 1 and 2 transmit a1 and b2 respectively.
Node 1̃ can then deliver the received symbol a1 to node
2 through feedback. This symbol can now be used to pre-
compute a1⊕b1 at node 2. Similarly, node 1 can pre-compute
a2 ⊕ b2. In time 2, node 1 and 2 can forward these pre-
computed functions to node 1̃ and 2̃ respectively. Until the
end of time 2, a1 ⊕ b1 is not delivered to node 1̃. Similarly
a2 ⊕ b2 is missing at node 2̃. Using one more time slot, we
can deliver these symbols to intended nodes. With feedback,
node 1 can get a1⊕b1. Forwarding this at time 3, node 1̃ can
obtain the a1 ⊕ b1. Similarly node 2̃ can get a2 ⊕ b2. Hence
node 1̃ and 2̃ can obtain (a1⊕ b1, a2⊕ b2) during three time
slots. This gives a rate of 2

3 .
Our model, however, provides feedback in the limited

fashion since feedback signals are delivered only through
the backward network. We next develop a new achievable
scheme that uses the backward network efficiently.

We focus on an example network that turns out to play a
key role in generalizing into arbitrary values of (m̃, ñ) and
λ: (m,n) = (0, 1), (m̃, ñ) = (1, 1) and λ = 2

3 . See Fig. 4.
Our achievable scheme consists of three time slots. In time

1, node 1 and 2 deliver a1 and b2 respectively. Node 1̃ and
2̃ then get a1 and b2 respectively. Through the backward
network, node 1̃ and 2̃ feed back a1 and b2 respectively.
Node 1 and 2 then get the same symbol: a1 ⊕ b2. Unlike
the perfect feedback scheme, it seems impossible for each
node to pre-compute the desired modulo-2 sum from a1⊕b2.
However, we can actually pre-compute the desired functions
as in the perfect feedback scheme. Specifically node 1 and 2
can pre-compute a2 ⊕ b2 and a1 ⊕ b1 respectively. The key
idea is to exploit the previously transmitted symbols as side
information. Exploiting a1 as side information, node 1 can
decode b2 from a1 ⊕ b2, thus obtaining a2 ⊕ b2. Similarly,
node 2 can obtain a1⊕b1. Forwarding these symbols at time
2, node 1̃ and 2̃ can get a2 ⊕ b2 and a1 ⊕ b1 respectively.

As before, node 1̃ and 2̃ simply feed back the received
symbols a2 ⊕ b2 and a1 ⊕ b1 respectively. Then node 1
and 2 get (a1 ⊕ b1) ⊕ (a2 ⊕ b2). Node 1 can now exploit
the transmitted symbol at time 2 (a2 ⊕ b2) to get a1 ⊕ b1.
Similarly, node 2 can get a2⊕ b2 using a1⊕ b1. Forwarding
these two symbols at time 3, node 1̃ and 2̃ get a1 ⊕ b1
and a2 ⊕ b2 respectively. In summary, node 1̃ and 2̃ can
obtain (a1 ⊕ b1, a2 ⊕ b2) during three time slots. This gives
R(0,1) = 2

3 .
A generalization into arbitrary values of (m̃, ñ) and λ is

described in Appendix II. This yields the desired result:

R(0,1) = min

{
λm̃,

2

3

}
. (4)

(m,n) = (1,2), ∀(m̃, ñ): We focus on an example
network that turns out to play a key role in generalization:
(m,n) = (1, 2), (m̃, ñ) = (1, 1) and λ = 1

3 . See Fig. 5.
Our scheme consists of three time slots. In time 1, node 1
sends a1 and a2; node 2 sends b2 and b1. We then achieve
a2 ⊕ b2 at node 1̃. Similarly we achieve a1 ⊕ b1 at node
2̃. Observe that the bottom level at node 1̃ and 2̃ naturally
form the modulo-2 sum function of interest. In time 2, we
repeat this w.r.t. new symbols, thus achieving a4 ⊕ b4 and
a3⊕ b3 at node 1̃ and 2̃ respectively. Note that until the end
of time 2, (a1 ⊕ b1, a3 ⊕ b3) are not delivered yet to node

1312

a2 © b2

a1 © b1
a3 © b3

Time 1Time 2Time 3 Time 1 Time 2 Time 3

a2 © b2

a1 © b1

(a2 © b1)

(a1 © b1)

(a1 © b1)

(a2 © b2)© (a4 © b4)

© (a3 © b3)

(a2 © b2)(a2 © b2)

(a1 © b1)

;

;

;

;(a2 © b1)© (a3 © b3)

© (a3 © b3)

© (a4 © b4)

© (a4 © b4)

;

;

;

;

a4 © b4

a3 © b3

© (a4 © b4)

© (a3 © b3)

© (a3 © b3)

© (a4 © b4)

© (a4 © b4)

© (a3 © b3)

© (a3 © b3)
© (a4 © b4)

;

;

(a2 © b2)© (a3 © b3)

© (a4 © b4)

a3

a2a4

b4

b3 b1

b2

a1 a1 a3

b4b2

© a1

© b2

(a1 © b1)

© (a4 © b4)

© (a3 © b3)

Node 1 Node ~1

Node 2

Node 1

Node 2 Node ~2

Node ~2

Node ~1

a4 © b4
want

want

Fig. 5. An achievable scheme for (m,n) = (1, 2), (m̃, ñ) = (1, 1) and λ = 1
3

.

1̃. Similarly (a2 ⊕ b2, a4 ⊕ b4) are missing at node 2̃. With
feedback, however, we can accomplish the transmission of
these signals very efficiently.

Through the backward network, node 1̃ and 2̃ simultane-
ously feed back the following symbols at the end of time
2:

node 1̃: (a2 ⊕ b2)⊕ (a4 ⊕ b4)⊕ a1,
node 2̃: (a1 ⊕ b1)⊕ (a3 ⊕ b3)⊕ b2.

Node 1 and 2 then get: (a2 ⊕ b1) ⊕ (a3 ⊕ b3) ⊕ (a4 ⊕ b4).
One way to achieve modulo-2 sums at node 1̃ and 2̃ is
to pre-compute the functions and forward these functions.
However, the exact pre-computation of the desired modulo-
2 sums from (a2⊕b1)⊕(a3⊕b3)⊕(a4⊕b4) seems impossible.
Hence, instead of striving to extract the desired modulo-2
sums, we take a new approach as follows. Exploiting (a1, a2)
and (b1, b2) at node 1 and 2 respectively, node 1 and 2 can
compute the following:

node 1: (a1 ⊕ b1)⊕ (a3 ⊕ b3)⊕ (a4 ⊕ b4),
node 2: (a2 ⊕ b2)⊕ (a3 ⊕ b3)⊕ (a4 ⊕ b4).

In time 3, node 1 and 2 forward these two symbols only on
the top level. Node 1̃ and 2̃ then get the two symbols. Notice
that these two symbols contain the desired functions. Now
the key to observe is that node 1̃ and 2̃ already had (a2⊕b2,
a4 ⊕ b4) and (a1 ⊕ b1, a3 ⊕ b3) respectively. These past
received symbols can now be exploited to help obtaining the
desired ai⊕bi ’s that node 1̃ and 2̃ could not compute before.
Specifically, node 1̃ can decode a3 ⊕ b3 from (a2 ⊕ b2) ⊕
(a3⊕ b3)⊕ (a4⊕ b4) using (a2⊕ b2, a4⊕ b4). Subsequently,
exploiting (a3⊕ b3, a4⊕ b4), node 1̃ can also decode a1⊕ b1
from the received symbol (a1⊕ b1)⊕ (a3⊕ b3)⊕ (a4⊕ b4).

Similarly, node 2̃ can obtain a2 ⊕ b2 and a4 ⊕ b4. Here the
key observation is that node 1̃ and 2̃ exploit past received
symbols as side information to aid computation. As a result,
node 1̃ and 2̃ can obtain ai ⊕ bi ’s for i = 1, · · · , 4, during
three time slots, thus achieving R(1,2) = 4

3 .
We find that this idea can be extended to arbitrary values

of (m̃, ñ) and λ. With this, we can get the desired result:

R(1,2) = min

{
1 + λm̃,

4

3

}
. (5)

(m,n) = (2,3), ∀(m̃, ñ): Using the nonfeedback
scheme [13], we get R(2,3) = 2.

V. PROOF OF CONVERSE

The proof for the case of α = 1 is straightforward due
to the standard cut-set argument: N(R − εN) ≤ I(SK1 ⊕
SK2 ;Y N1) ≤

∑
H(Y1i) ≤ N max(m,n). If R is achievable,

then εN → 0 as N tends to infinity, and hence R ≤
max(m,n) = n. For the case of α 6= 1, one can see that it
suffices to prove the following bounds:

R ≤ min

{
m+ λm̃, n+ λñ,

2

3
max(m,n)

}
.

Note that the third bound matches the perfect feedback
bound [9]. Hence it is also an outer bound of our network.
We include the proof of the first bound of m+λm̃ as below.
By symmetry, the proof of the second bound can be derived
in a similar manner.

1313

Starting with Fano’s inequality, we get

N(R− εN) ≤ I(SK1 ⊕ SK2 ;Y N1)

(a)

≤ I(SK1 ⊕ SK2 ;Y N1 , SK1)

(b)
= H(Y N1 |SK1)

≤ H(Y N1 , Ṽ N2 |SK1)

=
∑

H(Y1i, Ṽ2i|SK1 , Y i−1
1 , Ṽ i−1

2)

(c)
=
∑

H(Y1i, Ṽ2i|SK1 , Y i−1
1 , Ṽ i−1

2 , X̃i
1, Ỹ

i−1
1 , X1i)

≤
∑

[H(Y1i|X1i) +H(Ṽ2i)]

=
∑

[H(V2i) +H(Ṽ2i)]

(d)

≤ N(m+ λm̃)

where (a) follows from the nonnegativity of mutual infor-
mation; (b) follows from the independence of SK1 and SK2 ;
(c) follows from the fact that X̃i

1 is a function of Y i−1
1

and X1i is a function of (SK1 , Ỹ
i−1
1); (d) follows from∑

H(Ṽ2i) ≤ Nλm̃. If R is achievable, then εN → 0 as
N tends to infinity. Hence we get R ≤ m+ λm̃.

VI. CONCLUSION

For the four-node ADT deterministic network, we devel-
oped a new achievable scheme and derived upper bounds,
thereby establishing feedback computation capacity. Our
achievable scheme takes a separation approach based on
a network decomposition framework. Our future work is
along several new directions: (1) Generalizing to four-source
scenarios in which two nodes that transmitted the forward
messages also wish to compute a function of two additional
backward messages generated from the other two nodes; (2)
extending to arbitrary multi-hop networks [15], [16].

ACKNOWLEDGEMENT

The authors thank Prof. Michael Gastpar for discussions
on the optimality of network decomposition in [13]. This
work was supported by ICT R&D program of MSIP/IITP.
[1391104004, Development of Device Collaborative Giga-
Level Smart Cloudlet Technology]

APPENDIX I
DERIVATION OF (3)

By Theorem 2, for the case where 0 ≤ α ≤ 1
2 , (m,n)

forward network can be decomposed as:

(m,n) −→ (0, 1)n−2m × (1, 2)m.

Let

k =
n− 2m

n−m
+

1
3nm−

2
3m

2

(23n−m)(n−m)
. (6)

Note that 0 ≤ k ≤ 1. It will be clearer as to why k is set as
above. Among all the values of λ, during kλ, we use (m̃, ñ)
backward network for the transmission associated with the
number n − 2m of (0, 1) forward networks. The next step
is that we split the fraction kλ of time equally into each of

n − 2m parts. We then use the split fraction kλ
n−2m of the

backward network to help the transmission w.r.t. each (0, 1)
forward network. This gives

R(0,1) =min

{
kλ

n− 2m
· m̃, 2

3

}
.

Similarly, for the remaining (1− k)λ, we use the backward
network for the transmission associated with (1, 2)m forward
networks. We also split the fraction (1−k)λ of time equally
into each of m parts. So we use the split fraction (1−k)λ

m
of the backward network to aid the transmission w.r.t. each
(1, 2) forward network. This gives

R(1,2) =min

{
1 +

(1− k)λ
m

· m̃, 4
3

}
.

Hence we get:

R =(n− 2m) ·R(0,1) +m ·R(1,2)

=min

{
m+ λm̃, kλm̃+

4

3
m,

m+ (1− k)λm̃+
2

3
(n− 2m),

2

3
n

}
. (7)

Now it suffices to show that (7) becomes
min

{
m+ λm̃, 23n

}
. To show this, let us divide into

two cases.

A. m+ λm̃ ≥ 2
3n (i.e., λm̃ ≥ 2

3n−m)

In this case, one can readily get:

kλm̃+
4

3
m− 2

3
n

≥ k
(
2

3
n−m

)
+

4

3
m− 2

3
n

(a)
=

1

n−m

{
(n− 2m)

(
2

3
n−m

)
+

1

3
nm− 2

3
m2

}
+

4

3
m− 2

3
n

=
1

n−m

{
2

3
n2 − 2nm+

4

3
m2

}
+

4

3
m− 2

3
n

=
1

n−m

{
2

3
n2 − 2

3
nm

}
− 2

3
n

= 0,

where (a) follows from (6). Using (6), we also get:

m+ (1− k)λm̃+
2

3
(n− 2m)− 2

3
n

≥ (1− k)
(
2

3
n−m

)
− 1

3
m

=
1

n−m

{
m

(
2

3
n−m

)
− 1

3
nm+

2

3
m2

}
− 1

3
m

=
1

n−m

{
1

3
nm− 1

3
m2

}
− 1

3
m

= 0.

From the two inequalities as above, one can see R = 2
3n.

1314

B. m+ λm̃ < 2
3n (i.e., λm̃ < 2

3n−m)

In this case, one can easily get:

kλm̃+
4

3
m− (m+ λm̃)

=
1

3
m+ (k − 1)λm̃

(a)
>

1

3
m+ (k − 1)

(
2

3
n−m

)
(b)
=

1

3
m+

1

n−m

{
1

3
nm− 2

3
m2 −m

(
2

3
n−m

)}
= 0,

where (a) follows from the fact that 0 ≤ k ≤ 1; and (b)
follows from (6). Similarly, we can also get:

m+ (1− k)λm̃+
2

3
(n− 2m)− (m+ λm̃)

= −kλm̃+
2

3
(n− 2m)

> −k
(
2

3
n−m

)
+

2

3
(n− 2m)

=
1

n−m

{
− (n− 2m)

(
2

3
n−m

)
− 1

3
nm+

2

3
m2

}
+

2

3
(n− 2m)

=
1

n−m

{
−2

3
n2 + 2nm− 4

3
m2

}
+

2

3
(n− 2m)

= 0,

From the two inequalities as above, one can see R = m +
λm̃.

Consequently, from the cases A and B, we can conclude
that (7) becomes

min

{
m+ λm̃,

2

3
n

}
.

This completes the proof of (3).

APPENDIX II
PROOF OF (4)

We provide a complete proof of (4) for arbitrary values
of (m̃, ñ) and λ. We focus on the case of α̃ ≤ 1. The other
case similarly follows.

A. Achievability

Lemma 2: Let (m,n) = (0, 1) and (m̃, ñ) = (r̃, r̃ + 1).
In time i, suppose node 1 and 2 transmit a2i−1 and b2i
respectively, i = 1, · · · , r̃. During the next 2r̃ time slots,
node 1̃ and 2̃ can obtain aj ⊕ bj , j = 1, · · · , 2r̃. This can be
achieved through using the backward network twice.

Proof: See Appendix II-B.
Lemma 3: Let (m,n) = (0, 1), ∀(m̃, ñ). In time i,

suppose node 1 and 2 send a2i−1 and b2i respectively,
i = 1, · · · , m̃. During the next 2m̃ time slots, node 1̃ and
2̃ can obtain aj ⊕ bj , j = 1, · · · , 2m̃. This can be achieved
through using the backward network twice.

Proof: We first apply Network decomposition theorem
in [13] for (m̃, ñ) backward network. Then the network can
be separated as follows.

(m̃, ñ) −→ (r̃, r̃ + 1)ñ−m̃−ã × (r̃ + 1, r̃ + 2)ã,

where

r̃ =

⌊
m̃

ñ− m̃

⌋
,

ã =m̃ mod ñ− m̃.

We now apply Lemma 2 for the number ñ−m̃−ã of (r̃, r̃+1)
subnetworks and the number ã of (r̃+1, r̃+2) subnetworks.
Since

(ñ− m̃− ã) · 2r̃ + ã · 2 (r̃ + 1) = 2(r̃(ñ− m̃) + a) = 2m̃,

we can verify that node 1̃ and 2̃ can obtain aj ⊕ bj ,
j = 1, · · · , 2m̃ using each subnetwork twice (hence using
(m̃, ñ) backward network twice). Note that we use addi-
tional 2m̃ time slots: (ñ− m̃− ã) · 2r̃ + ã · 2 (r̃ + 1) =
2 (r̃(ñ− m̃) + a) = 2m̃.
With Lemma 3, we now show R(0,1) = min

{
λm̃, 23

}
. To

do this, let us divide into two subcases.
1) λm̃ > 2

3 : In this case, for the first m̃ time slots, node
1 and 2 deliver a2i−1 and b2i respectively, i = 1, · · · , m̃.
By Lemma 3, for the next 2m̃ time slots, node 1̃ and 2̃ can
obtain aj⊕bj , j = 1, · · · , 2m̃. As the total time spent in the
forward network is 3m̃ and λ · 3m̃ > 2, it is guaranteed to
use the backward network twice. The computation rate for
(0, 1) network is therefore

R(0,1) =
0 + 2m̃

m̃+ 2m̃
=

2

3
.

2) λm̃ ≤ 2
3 : Our strategy in this case is: For the first m̃

time slots, node 1 and 2 deliver a2i−1 and b2i respectively,
i = 1, · · · , m̃. By Lemma 3, for the next 2m̃ time slots, node
1̃ and 2̃ can obtain aj ⊕ bj , j = 1, · · · , 2m̃. Notice that this
can be achieved through using the backward network twice.
However, as the total time spent in the forward network is
3m̃ and λ ·3m̃ ≤ 2, it is not guaranteed to use the backward
network twice yet. We solve this by waiting for the next l
time slots. Here we set l := 2

λ−3m̃. Then we now guarantee
to use the backward network twice because λ · (3m̃+ l) = 2.
This yields the computation rate of

R(0,1) =
0 + 2m̃+ 0

m̃+ 2m̃+ l
= λm̃.

From these two subcases, we verify that R(0,1) =
min

{
λm̃, 23

}
.

B. Proof of Lemma 2

If node 1 and 2 send a2i−1 and b2i respectively at time i,
i = 1, · · · , r̃, node 1̃ and 2̃ get a2i−1 and b2i respectively.
One can readily see that until the end of time r̃, there is no
way to compute the modulo-2 sum functions. We will now
explain how node 1̃ and 2̃ can obtain ak⊕bk, k = 1, · · · , 2r̃
for the next 2r̃ time slots.

1315

Node 1̃ feeds back symbols, a1 to a2r̃−1, through the
signal bit levels and each symbol is sent to each level
respectively from the top. Similarly, node 2̃ feeds back b2i
for i = 1, 2, · · · , r̃. However, there are r̃+1 signal bit levels
in total. Hence, we note that node 1̃ and 2̃ send nothing
through the lowest signal bit level ((r̃ + 1)th level).

Let us first consider symbols that come through the bottom
level at node 1. Since node 1̃ and 2̃ feed back nothing on
the bottom level of (r̃, r̃+1) backward network, node 1 gets
b2r̃ that comes only through the cross link between node 1
and node 2̃. Similarly, node 2 gets a2r̃−1 on the bottom level.
Exploiting a2r̃ as side information, node 1 can now get a2r̃⊕
b2r̃. Similarly, node 2 can get a2r̃−1 ⊕ b2r̃−1. Forwarding
these symbols at time r̃ + 1, node 1̃ and 2̃ obtain a2r̃ ⊕ b2r̃
and a2r̃−1 ⊕ b2r̃−1 respectively.

Let us now consider symbols that come through the r̃− 1
signal bit levels among the remaining r̃ signal bit levels. This
excludes the symbols from the top level. From the 2nd level
to r̃th level, node 1 and 2 get:

node 1: a2j−1 ⊕ b2(j−1),

node 2: a2(j−1)−1 ⊕ b2j ,

j = 2, · · · , r̃. Node 1 and 2 then exploit (a2j−1, a2(j−1))
and (b2(j−1)−1, b2j) to get a2(j−1)⊕b2(j−1) and a2(j−1)−1⊕
b2(j−1)−1 respectively. In time r̃+ j, node 1 and 2 transmit
these two symbols through (0, 1) forward network. Node 1̃
and 2̃ then obtain a2(j−1)⊕b2(j−1) and a2(j−1)−1⊕b2(j−1)−1

respectively, j = 2, · · · , r̃.
The next step is that node 1̃ and 2̃ simply feed back what

they received: Node 1̃ sends symbols, a2 ⊕ b2 to a2r̃ ⊕ b2r̃,
through the signal bit levels and each symbol is sent to each
level respectively from the top; similarly, node 2̃ feeds back
a2i−1 ⊕ b2i−1 for i = 1, 2, · · · , r̃.

Consider symbols that come through the bottom level at
node 1 and 2. Since node 1̃ and 2̃ feed back nothing on the
bottom level, node 1 and 2 get a2r̃−1⊕ b2r̃−1 and a2r̃ ⊕ b2r̃
respectively. Forwarding these symbols at time 2r̃+1, node
1̃ and 2̃ get a2r̃−1 ⊕ b2r̃−1 and a2r̃ ⊕ b2r̃ respectively.

Now consider symbols that come through the r̃−1 signal
bit levels among the remaining r̃ signal bit levels. This
excludes the symbols from the top level. From the 2nd level
to r̃th level, node 1 and 2 get:

node 1: (a2j ⊕ b2j)⊕ (a2(j−1)−1 ⊕ b2(j−1)−1),

node 2: (a2(j−1) ⊕ b2(j−1))⊕ (a2j−1 ⊕ b2j−1),

j = 2, · · · , r̃. Node 1 can now exploit the previously
transmitted symbol a2j ⊕ b2j to get a2(j−1)−1 ⊕ b2(j−1)−1;
similarly node 2 gets a2(j−1) ⊕ b2(j−1), j = 2, · · · , r̃.
Forwarding these two symbols at time 2r̃+ j, node 1̃ and 2̃
get a2(j−1)−1⊕b2(j−1)−1 and a2(j−1)⊕b2(j−1) respectively,
j = 2, · · · , r̃.

In summary, node 1̃ and 2̃ obtain ak ⊕ bk, k = 1, · · · , 2r̃.
Notice that we use the backward network twice. This com-
pletes the proof of Lemma 2.

REFERENCES

[1] C. E. Shannon, “The zero error capacity of a noisy channel,” IRE
Transactions on Information Theory, vol. 2, pp. 8–19, Sept. 1956.

[2] T. M. Cover and S. Pombra, “Gaussian feedback capacity,” IEEE
Transactions on Information Theory, vol. 35, pp. 37–43, Jan. 1989.

[3] Y.-H. Kim, “Feedback capacity of the first-order moving average
Gaussian channel,” IEEE Transactions on Information Theory, vol. 52,
pp. 3063–3079, July 2006.

[4] N. T. Gaarder and J. K. Wolf, “The capacity region of a multiple-
access discrete memoryless channel can increase with feedback,” IEEE
Transactions on Information Theory, Jan. 1975.

[5] L. H. Ozarow, “The capacity of the white Gaussian multiple access
channel with feedback,” IEEE Transactions on Information Theory,
vol. 30, no. 4, pp. 623–629, July 1984.

[6] L. H. Ozarow and S. K. Leung-Yan-Cheong, “An achievable region
and outer bound for the Gaussian broadcast channel with feedback,”
IEEE Transactions on Information Theory, vol. 30, pp. 667–671, 1984.

[7] C. Suh and D. Tse, “Feedback capacity of the Gaussian interference
channel to within 2 bits,” IEEE Transactions on Information Theory,
vol. 57, pp. 2667–2685, May 2011.

[8] C. Suh, I.-H. Wang, and D. Tse, “Two-way interference channels,”
Proc. IEEE International Symposium on Information Theory, July
2012.

[9] C. Suh and M. Gastpar, “Interactive function computation,” Proc. IEEE
International Symposium on Information Theory, July 2013.

[10] A. S. Avestimehr, S. N. Diggavi, and D. Tse, “Wireless network
information flow: A deterministic approach,” IEEE Transactions on
Information Theory, vol. 57, pp. 1872–1905, Apr. 2011.

[11] G. Bresler and D. Tse, “The two-user Gaussian interference channel:
a deterministic view,” European Transactions on Telecommunications,
vol. 19, pp. 333–354, June 2008.

[12] J. Zhan, S. Y. Park, M. Gastpar, and A. Sahai, “Function compuation
in networks: Duality and constant gap results,” in Proc. 49th Annu.
Allerton Conf. Communication, Control, and Computing, Sep. 2011.

[13] C. Suh, N. Goela, and M. Gastpar, “Computation in multicast net-
works: Function alignment and converse theorems,” Submitted to the
IEEE Transactions on Information Theory.

[14] C. Suh and M. Gastpar, “Network decomposition for function com-
putation,” IEEE 14th Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), 2013.

[15] A. Ramamoorthy and M. Langberg, “Communicating the sum of
sources over a network,” arXiv:1001.5319, Jan. 2010.

[16] B. Rai and B. Dey, “On network coding for sum-networks,” IEEE
Transactions on Information Theory, vol. 58, pp. 50–63, Jan. 2012.

1316

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryList_V1
 qi2base

