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Abstract—The high repair cost of (n, k) Maximum Distance
Separable (MDS) erasure codes has recently motivated a new
class of codes, called Regenerating Codes, that optimally trade
off storage cost for repair bandwidth. In this paper, we address
bandwidth-optimal (n, k, d) Exact-Repair MDS codes, which
allow for any failed node to be repaired exactly with access to
arbitrary d survivor nodes, where k ≤ d ≤ n− 1. Under scalar-
linear codes which do not permit symbol-splitting, we construct
Exact-Repair MDS codes that are optimal in repair bandwidth
for the case of k/n ≤ 1/2 and d ≥ 2k − 1. Our codes are
deterministic and require a finite-field size of at most 2(n − k).
Under vector-linear codes which allow for the break-up of stored
symbols into arbitrarily small subsymbols, we show the existence
of optimal Exact-Repair codes for the entire admissible range of
possible (n, k, d), i.e., k < n and k ≤ d ≤ n − 1. That is, we
establish the existence of vector-linear Exact-Repair MDS codes
that match the fundamental cutset lower bound. Our approach
for both the constructive scalar-linear code design and for the
existence of vector-linear codes is based on interference alignment
techniques.

I. INTRODUCTION

In distributed storage systems, Maximum Distance Separa-
ble (MDS) erasure codes are well-known coding schemes that
can offer maximum reliability for a given storage overhead.
For an (n, k) MDS code for storage, a source file of size M
bits is divided equally into k units (of size M

k
bits each), and

these k data units are expanded into n encoded units, and
stored at n nodes. The code guarantees that a user or Data
Collector (DC) can reconstruct the source file by connecting
to any arbitrary k nodes. While MDS codes are optimal in
terms of reliability versus storage overhead, they come with a
significant maintenance overhead when it comes to repairing
failed encoded nodes.

This challenge has motivated a new class of coding schemes,
called Regenerating Codes [1], [2], which target the optimal
tradeoff between storage cost and repair bandwidth. On one
end of this spectrum of Regenerating Codes are Minimum
Storage Regenerating codes that can match the minimum
storage cost of MDS codes while also significantly reducing
repair bandwidth. In [1], [2], the fundamental tradeoff between
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storage cost α and repair bandwidth γ was characterized by

(α, γ) =

(
M

k
,
M

k
·

d

d − k + 1

)
, (1)

where d denotes the number of nodes that are connected to
repair a failed node, simply called the degee d where k ≤ d ≤
n − 1. Note that this code requires the same minimal storage
cost as that of conventional MDS codes, while substantially
reducing repair bandwidth by a factor of k(d−k+1)

d
(e.g., for

(n, k, d) = (31, 6, 30), there is a 5x bandwidth reduction). In
this paper, we call this code Repair MDS code.

While Repair MDS codes enjoy substantial benefits over
conventional MDS codes, they come with some limitations
in construction. Specifically, the achievable schemes in [1],
[2] restore failed nodes in a functional manner only, using a
random-network-coding based framework. This means that the
replacement nodes maintain the MDS-code property but do not
exactly replicate the information content of the failed nodes.
In many settings of interest, it is important to have exact repair
of failed nodes. This forms the subject of this paper.

Specifically, we ask the following question: is there a
price for attaining the optimal tradeoff of (1) with the extra
constraint of exact repair? The work in [3] sheds some light
on this question. Specifically, it was shown that under scalar
linear codes1, when k

n
> 1

2 + 2
n
, there is a price for exact

repair. For large n, this case boils down to k
n

> 1
2 . Now what

about for k
n
≤ 1

2?
The first contribution of this paper is to resolve this open

problem by showing that scalar-linear Exact-Repair MDS
codes come with no extra cost over the optimal tradeoff of (1)
for the case of k

n
≤ 1

2 and d ≥ 2k − 1. Our codes are
deterministic and require a field size of at most 2(n − k).
Our result draws its inspiration from the work in [3], which
guarantees exact repair of systematic node, while satisfying the
MDS code property, but which does not provide exact repair of
failed parity nodes. In providing a constructive solution for the
exact repair of all nodes, we use geometric insights to propose
a large family of repair codes. This both provides insights into
the structure of codes for exact repair of all nodes, as well as
opens up a rich design space for constructive solutions. This
will be explained in Section III.

1In scalar linear codes, symbols are not allowed to be split into arbitrarily
small subsymbols.
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The second contribution is to establish the following fact.
Under vector linear codes which allow for the break-up of
stored symbols into arbitrarily small subsymbols, we show the
existence of Exact-Repair MDS codes that achieve the optimal
tradoff of (1) for the entire admissible spectrum of (n, k, d),
i.e., k < n and k ≤ d ≤ n− 1.2 That is we show that there is
no theoretical gap between exact repair and functional repair
codes for the entire range of (n, k, d). This will be explained
in Section IV.

Our results for both constructive scalar-linear codes and
vector-linear codes build on the concept of interference align-
ment, which was introduced in the context of wireless com-
munication networks [5], [6].

Due to space constraints, we will provide only a terse
description of our proposed constructions and refer the reader
to [7] for details related to constructive scalar linear Exact-
Repair codes for k

n
≤ 1

2 and d ≥ 2k−1, and to [8] for details
related to the existence of vector linear Exact-Repair codes for
the entire admissible spectrum of (n, k, d).

II. INTERFERENCE ALIGNMENT FOR REPAIR CODES

Our achievable scheme builds on on the concept of in-
terference alignment. The idea of interference alignment is
to align multiple interference signals in a signal subspace
whose dimension is smaller than the number of interferers
[5], [6], [9]. This concept relates intimately to our repair
problem that involves recovery of a subset (related to the
subspace spanned by a failed node) of the overall aggregate
signal space (related to the entire user data dimension). This
attribute was first observed in [10], where it was shown that
the interference alignment concept could be exploited for
Exact-Repair MDS codes having small k (k = 2). However,
generalizing interference alignment to large values k (even
k = 3) proves to be challenging, as we describe in the
sequel. In order to appreciate this better, let us first review the
scheme of [10] that was applied to the exact repair problem.
We will then address the difficulty of extending interference
alignment for larger systems and describes how to address this
in Section III.

Review of (4, 2) Exact-Repair MDS Codes [10]: We con-
sider the degree d = 3. In this paper, we normalize the repair-
bandwidth-per-link (γ

d
) to be 1, making M = k(d−k+1) = 4.

One can partition a whole file into smaller chunks so that each
has a size of k(d−k+1). The optimal tradeoff point (1) then
gives storage cost α = 2.

Fig. 1 illustrates interference alignment for exact repair of
failed node 1. We introduce matrix notation for illustrative
purpose. Let a = (a1, a2)

t and b = (b1, b2)
t be 2-dimensional

information-unit vectors, where (·)t indicates a transpose.
Let Ai and Bi be 2-by-2 encoding submatrices for parity
node i (i = 1, 2). Let us explain the interference alignment
scheme. First notice that since the repair-bandwidth-per-link
is 1, each survivor node j uses a 2-dimensional projection

2Independently, Cadambe-Jafar-Maleki [4] have shown the existence of
vector linear Exact-Repair MDS codes that attain the optimal tradeoff of (1)
for (n, k, d) where k < n and d = n− 1.

 

Fig. 1. Interference alignment for exact repair of failed node 1 for a (4, 2)
Exact-Repair MDS code.

vector vαj to project its data into a scalar. By connecting
to three nodes, we get: b

t
vα1; a

t(A1vα2) + b
t(B1vα2);

a
t(A2vα3) + b

t(B2vα3).
Here the goal is to decode 2 desired unknowns out of

3 equations including 4 unknowns. To achieve this goal,
we need: (i) the matrix associated with the desired signal
“a” should have full rank; (ii) the matrix associated with
interference “b” should have rank 1. The second condition can
be met by setting vα2 = B

−1
1 vα1 and vα3 = B

−1
2 vα1. This

choice forces the interference space to be collapsed into a one-
dimensional linear subspace, thereby achieving interference
alignment. We can also satisfy the first condition by carefully
choosing Ai’s and Bi’s.

III. A CONSTRUCTIVE FRAMEWORK FOR

SCALAR-LINEAR CODES

This idea cannot be generalized to arbitrary (n, k): it
provides the optimal codes only for the case of k = 2.
For k ≥ 3 (more-than-two interfering information units),
achieving interference alignment for exact repair turns out
to be significantly more complex than the k = 2 case. We
propose a common-eigenvector based conceptual framework
to overcome the challenge. Specifically, our approach is based
on a certain elementary matrix property [11].

Our framework consists of four components: (1) developing
a family of codes for exact repair of systematic codes based
on the common-eigenvector concept; (2) drawing a dual
relationship between the systematic and parity node repair;
(3) guaranteeing the MDS-code property; (4) constructing
codes with finite-field alphabets. Step (2) of our framework
is a significant distinction from that of [3] and is needed to
tackle the full exact repair problem not addressed there. The
framework covers the case of n ≥ 2k (and d ≥ 2k−1). It turns
out that the (2k, k, 2k − 1) code case contains the key design
ingredients and the case of n ≥ 2k can be derived from this.
Hence, we first focus on the simplest example: (6, 3, 5) Exact-
Repair MDS codes. Later in Section III-E, we will generalize
this to arbitrary (n, k, d) repair codes in the class.

A. Systematic Node Repair

Fig. 2 illustrates the example of repairing systematic node
1 for a (6, 3, 5) code. By the optimal tradeoff (1), the choice
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Fig. 2. Illustration of exact repair of systematic node 1 for (6, 3, 5) Exact-
Repair MDS codes.

of M = 9 gives α = 3 and γ

d
= 1. Let a = (a1, a2, a3)

t,
b = (b1, b2, b3)

t and c = (c1, c2, c3)
t. We define 3-by-3

encoding submatrices of Ai, Bi and Ci (for i = 1, 2, 3); and
3-dimensional projection vectors vαi’s.

By connecting to the five nodes, we get the five equations.
In order to successfully recover the desired signal components
of a, the matrix associated with a should have full rank
of 3, while the other matrices corresponding to b and c

should have rank 1, respectively. In accordance with the (4, 2)
code example in Fig. 1, if one were to set vα3 = B

−1
1 vα1,

vα4 = B
−1
2 vα1 and vα5 = B

−1
3 vα1, then it is possible to

achieve interference alignment with respect to b. However, this
choice also specifies the interference space of c. If the Bi’s
and Ci’s are not designed judiciously, interference alignment
is not guaranteed for c. Hence, it is not evident how to achieve
interference alignment at the same time.

In order to address the challenge of simultaneous interfer-
ence alignment, we invoke a common eigenvector concept.
The idea consists of two parts: (i) designing the (Ai,Bi,Ci)’s
such that v1 is a common eigenvector of the Bi’s and Ci’s, but
not of Ai’s3; (ii) repairing by having survivor nodes project
their data onto a linear subspace spanned by this common
eigenvector v1. We can then achieve interference alignment for
b and c at the same time, by setting vαi = v1, ∀i. As long as
[A1v1,A2v1,A3v1] is invertible, we can also guarantee the
decodability of a. See Fig. 2.

The challenge is now to design encoding submatrices to
guarantee the existence of a common eigenvector while also
satisfying the decodability of desired signals. The difficulty
comes from the fact that in our (6, 3, 5) repair code example,
these constraints need to be satisfied for all six possible failure
configurations. The structure of elementary matrices [11] (gen-
eralized matrices of Householder and Gauss matrices) gives
insights into this. To see this, consider a 3-by-3 elementary
matrix A = uv

t + αI, where u and v are 3-dimensional

3Of course, five additional constraints also need to be satisfied for the other
five failure configurations for this (6, 3, 5) code example.

vectors. Here is an observation that motivates our proposed
structure: the dimension of the null space of v is 2 and the
null vector v

⊥ is an eigenvector of A, i.e., Av
⊥ = αv

⊥.
This motivates the following structure:

A1 = u1v
t
1 + α1I; B1 = u1v

t
2 + β1I; C1 = u1v

t
3 + γ1I

A2 = u2v
t
1 + α2I; B2 = u2v

t
2 + β2I; C2 = u2v

t
3 + γ2I

A3 = u3v
t
1 + α3I; B3 = u3v

t
2 + β3I; C3 = u3v

t
3 + γ3I,

(2)

where

(C1)

{
V = [v1,v2,v3] is invertible;
U = [u1,u2,u3] is invertible,

(3)

and the values of the αi’s, βi’s and γi’s can be arbitrary non-
zero values. Only for this section, we consider the simple case
of V = I, although these need not be orthogonal, but only
invertible. We then see that: Aiv1 = αiv1 + ui;Biv1 =
βiv1;Civ1 = γiv1, for i = 1, 2, 3. Importantly, notice that
v1 is a common eigenvector of the Bi’s and Ci’s, while
simultaneously ensuring that the vectors of Aiv1 are linearly
independent. Hence, setting vαi = v1 for all i, it is possible
to achieve simultaneous interference alignment while also
guaranteeing the decodability of the desired signals. See Fig. 2.
On the other hand, this structure also guarantees exact repair
for b and c. We can use v2 for exact repair of b. Similarly,
v3 is used for c.

B. Dualization for Parity Node Repair

Parity nodes can be repaired by drawing a dual relationship
with systematic nodes. The procedure has two steps. The first
is to remap parity nodes with a

′, b
′, and c

′, respectively:⎡
⎣ a

′

b
′

c
′

⎤
⎦ :=

⎡
⎣ A

t
1 B

t
1 C

t
1

A
t
2 B

t
2 C

t
2

A
t
3 B

t
3 C

t
3

⎤
⎦

⎡
⎣ a

b

c

⎤
⎦ .

Systematic nodes can then be rewritten in terms of the prime
notations:

a
t = a

′t
A

′

1 + b
′t
B

′

1 + c
′t
C

′

1,

b
t = a

′t
A

′
2 + b

′t
B

′
2 + c

′t
C

′
2,

c
t = a

′t
A

′

3 + b
′t
B

′

3 + c
′t
C

′

3,

(4)

where the newly mapped encoding submatrices (A′
i,B

′
i,Ci)’s

are defined as:⎡
⎣ A

′
1 A

′
2 A

′
3

B
′
1 B

′
2 B

′
3

C
′
1 C

′
2 C

′
3

⎤
⎦ :=

⎡
⎣ A1 A2 A3

B1 B2 B3

C1 C2 C3

⎤
⎦
−1

. (5)

With this remapping, one can dualize the relationship between
systematic and parity node repair. Specifically, if all of the
A

′
i’s, B

′
i’s, and C

′
i’s are elementary matrices and form a

similar structure as in (2), exact repair of the parity nodes
becomes transparent.

The challenge is now how to guarantee the dual structure.
We show that a special relationship between {u} and {v}
through (αi, βi, γi)’s can guarantee this dual relationship.
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Lemma 1: Suppose

P : =

⎡
⎣ α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

⎤
⎦ is invertible. (6)

(C2) κU = V
′
P. (7)

where U = [u1,u2,u3], V
′ = [v′

1,v
′
2,v

′
3] is the dual basis

matrix i.e., v
′t
i vj = δ(i − j) and κ is an arbitrary non-zero

value s.t. 1 − κ2 �= 0. Then, all of the A
′
i’s, B

′
i’s, and C

′
i’s

are elementary matrices and form a similar structure as in (2),
thus ensuring exact repair of parity nodes.

Proof: See [7] for the detailed proof.

C. The MDS-Code Property

The third part of the framework is to guarantee the MDS-
code property, which allows us to identify specific constraints
on the (αi, βi, γi)’s and/or (V, U). Consider all four pos-
sibilities corresponding to the Data Collector (DC) (i) (1) 3
systematic nodes; (ii) 3 parity nodes; (iii) 1 systematic and 2
parity nodes; (iv) 1 systematic and 2 parity nodes. It turns out
that the following condition ensures the MDS-code property:

(C3) Any submatrix of P is invertible. (8)

We use the Gaussian elimination method to check invertibility
of the composite matrix for each case. See [7] for the detailed
verification.

D. Code Construction with Finite-Field Alphabets

The last part is to design invertible matrices (P, V, U)
such that the conditions (C1), (C2), (C3) hold. In order to
guarantee (C3), we can use a Cauchy matrix as introduced
for the code in [3].

Definition 1 (A Cauchy Matrix [12]): A Cauchy matrix P

is an m × l matrix with entries pij in the form:

pij =
1

xi − yj

, ∀i = 1, · · · , m, j = 1, · · · , l, xi �= yj,

where xi and yj are elements of a field and {xi} and {yj} are
injective sequences, i.e., elements of the sequence are distinct.

The injective property of {xi} and {yj} requires a finite
field size of 2m for an m × m Cauchy matrix. Therefore,
in our (6, 3, 5) repair code example, the finite field size of 6
suffices. The field size condition for guaranteeing invertibility
of V is more relaxed.

Theorem 1 ((6, 3, 5) Exact-Repair MDS Codes): Suppose
P of (6) is a Cauchy matrix. Each element of P is in GF(q)
and q ≥ 6. Suppose (V,U) satisfy (C1), (C2). Then, the
code is the Exact-Repair MDS code that achieves the optimal
tradeoff of (1).

Example: Fig. 3 shows a numerical example for exact
repair of (a) systematic node 1 and (b) parity node 1 where
[v1,v2,v3] = [2, 2, 2; 2, 3, 1; 2, 1, 3]. Notice that the projec-
tion vector solution for systematic node repair is simple:
vαi = 2−1

v1 = (1, 1, 1)t, ∀i. Note that this choice enables
simultaneous interference alignment, while guaranteeing the
decodability of a. Notice that (b1, b2, b3) and (c1, c2, c3) are

aligned into b1 + b2 + b3 and c1 + c2 + c3, respectively, while
three equations associated with a are linearly independent. The
dual structure also guarantees exact repair of parity nodes.
Importantly, we have chosen (P,V,U) from a family of
codes in [7] such that parity node repair is quite simple. As
shown in Fig. 3 (b), downloading only the first equation from
each survivor node ensures exact repair. Notice that the five
downloaded equations contain only five unknown variables of
(a′

1, a
′
2, a

′
3, b

′
1, c

′
1) and three equations associated with a

′ are
linearly independent. Hence, we can successfully recover a

′.

E. Generalization

The proposed framework gives insights into generalization
to (2k, k, 2k−1) Exact-Repair MDS codes. The key observa-
tion is that when assuming M = k(d − k + 1), storage cost
is α = M/k = d − k + 1 = k and this number is equal to
the number of systematic nodes and furthermore matches the
number of parity nodes. Notice that the storage size matches
the size of encoding submatrices, which determines the size of
V. Therefore, we can easily design P,V,U ∈ F

k×k
q such that

(C1), (C2), (C3) hold, as long as q ≥ 2k. This immediately
provides (2k, k, 2k − 1) Exact-Repair MDS codes.

Now what if k is less than the size (= α = d − k + 1) of
encoding submatrices, i.e., d ≥ 2k − 1? Note that this case
automatically implies that n ≥ 2k, since n ≥ d + 1. The
key observation in this case is that the encoding submatrix
size is bigger than k, and therefore we have more degrees of
freedom than the number of constraints. Hence, exact repair
of systematic nodes becomes transparent. This was observed
in [3], where it was shown that for this regime, exact repair of
systematic nodes only can be guaranteed by carefully manip-
ulating (2k, k, 2k − 1) codes through a puncturing operation.
We show that the puncturing technique in [3] can also carry
over to ensure exact repair of all nodes for our family of codes.
We state the theorem only. See [7] for technical details.

Theorem 2 ( k
n
≤ 1

2 , d ≥ 2k − 1): Suppose that (k−1) sys-
tematic nodes are connected for exact repair. Then, under exact
repair constraints of all nodes, the optimal tradeoff of (1) can
be attained with a deterministic scheme requiring a field size
of at most 2(n − k).

IV. EXISTENCE OF OPTIMAL EXACT-REPAIR MDS CODES

The interference alignment scheme in [6] that permits an
arbitrarily large number of symbol extensions (i.e., vector
linear codes) forms the basis of our results here. The results
in [3] say that under scalar linear codes, the case of either
k
n

> 1
2 + 2

n
or k + 1 ≤ d ≤ max(k + 1, 2k− 4) induces more

constraints than the available number of design variables. This
parallels the problem encountered by Cadambe and Jafar [6]
in the conceptually similar but physically different context of
wireless interference channels. Cadambe and Jafar resolve this
issue using the idea of symbol-extension, which is analogous
to the idea of vector linear codes for the distributed stor-
age repair problem studied here. Building on the connection
described in [7] between the wireless interference channel
and the distributed storage repair problems, we leverage the
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Fig. 3. A (6, 3, 5) Exact-Repair MDS code defined over GF(4) where a generator polynomial g(x) = x2 +x+1. Since we choose U = I, for parity node
repair, the projection vector solution is much simpler. We download only the first equation from each survivor node; systematic node repair is a bit involved:
setting all of the projection vectors as 2−1v1 = (1, 1, 1)t .

scheme in [6] to the repair problem, showing the existence of
Exact-Repair MDS codes that achieve minimum repair band-
width (matching the cutset lower bound) for all admissible
values of (n, k, d). Due to space constraints, we state the
theorem only. See [8] for the proof and more technical details.

Theorem 3 ((n, k, d) Exact-Repair MDS Codes): There
exist vector linear Exact-Repair MDS codes that achieve
the minimum repair bandwidth corresponding to the cutset
bound of (1), allowing for any failed node to be exactly
repaired with access to any arbitrary d survivor nodes, where
k ≤ d ≤ n − 1, provided storage symbols can be split into
a sufficiently large number of subsymbols, and the field size
can be made sufficiently large.

V. CONCLUSION

We have systematically developed interference alignment
techniques for both scalar-linear and vector-linear Exact-
Repair MDS codes. Under scalar-linear codes, we have con-
structed Exact-Repair MDS codes that achieve the cutset lower
bound on repair band for the case of k

n
≤ 1

2 ; and d ≥ 2k − 1.
Our codes provide insights into a dual relationship between
the systematic and parity node repair, as well as opens up a
larger constructive design space of solutions. Furthermore, we
have shown the existence of vector-linear Exact-Repair MDS
codes that are optimal in repair bandwidth, for all admissible
values of (n, k, d).
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