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Abstract— We characterize the symmetric capacity of the two-
user Gaussian interference channel with feedback to within 1
bit/s/Hz. The result makes use of a deterministic model to provide
insights into the Gaussian channel. We derive a new outer bound
to show that a proposed scheme can achieve the symmetric
capacity to within one bit for all channel parameters. One
consequence of the result is that feedback provides unbounded
gain, i.e., the gain becomes arbitrarily large for certain channel
parameters. It is a surprising result because feedback has been
so far known to provide no gain in memoryless point-to-point
channels and only power gain (bounded gain) in the multiple
access channels. The gain comes from using feedback to fully
exploit the side information provided by the broadcast nature of
the wireless medium.

I. INTRODUCTION

Shannon showed that feedback does not increase capacity in
the discrete-memoryless point-to-point channel [1]. However,
in the multiple access channel (MAC), Gaarder and Wolf [2]
showed that feedback could increase capacity although the
channel is memoryless. Inspired by this result, Ozarow [3]
found the feedback capacity region for the two-user Gaussian
MAC. Ozarow’s result implies that feedback provides only
power gain (bounded gain). The reason of bounded gain is
that transmitters cooperation induced by feedback can at most
boost signal power (via aligning signal directions) in the
MAC. Boosting signal power provides a capacity increase of
a constant number of bits.

Now a question is “Will feedback help significantly in other
channels where a receiver wants to decode only desired mes-
sages in the presence of undesired messages (interferences)?”
To answer this question, we focus on the simple two-user
Gaussian interference channel where each receiver wants to
decode the messages only from its corresponding transmitter.
We first characterize the symmetric feedback capacity for a
linear deterministic model [4] well capturing key properties
of the Gaussian channel. Gaining insights from this model,
we develop a simple two-staged achievable scheme in the
Gaussian channel. We then derive a new outer bound to show
that the proposed scheme achieves the symmetric capacity to
within one bit for all channel parameters.

An interesting consequence of this result is that feedback
can provide unbounded gain in interference channels. This can
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Fig. 1. The generalized degrees-of-freedom of the Gaussian interference
channel with feedback

be shown from the generalized degrees-of-freedom (g.d.o.f.) in
Fig. 1, defined in [5] as d(α) , limSNR,INR→∞

Csym(SNR,INR)
log SNR ,

where α (x-axis) indicates the ratio of INR to SNR in dB scale:
α , log INR

log SNR . Notice that in certain weak interference regimes
(0 ≤ α ≤ 2

3 ) and in the very strong interference regime (α ≥
2), feedback gain becomes arbitrarily large as SNR and INR
go to infinity. We will provide qualitative insights as to where
this gain comes from.

Some work has been done in the interference channel with
feedback [6], [7], [8], [9]. In [6], [7], Kramer developed a
feedback strategy and derived an outer bound in the Gaussian
channel. However, the gap between the outer bound and the
inner bound becomes arbitrarily large with the increase of
SNR and INR, for almost all cases except one specific point1.
Recently, Jiang-Xin-Garg [9] found an achievable region in the
discrete memoryless interference channel with feedback. How-
ever, their scheme employs three auxiliary random variables
(requiring further optimization) and block Markov encoding
(requiring a long block length). Also they did not provide
any upper bounds. On the other hand, we propose a simple
achievable scheme which is explicit and has only two stages.
Also we derive a new tighter outer bound to characterize
capacity to within 1 bit. Later we will provide more detailed
comparison to Kramer’s scheme [6] in Section IV-D.

1Although this strategy can be arbitrarily far from optimality, a careful
analysis reveals that it can also provide unbounded feedback gain. See Fig. 4
for this.
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Fig. 2. Interference channels with feedback

II. MODEL

Fig. 2 (a) describes the Gaussian interference channel with
feedback. We consider the symmetric interference channel
where g11 = g22 = gd, g12 = g21 = gc, and P1 = P2 = P .
Without loss of generality, we assume that signal power and
noise power are normalized to 1, i.e., Pk = 1, Zk ∼ CN (0, 1),
∀k = 1, 2. Hence, signal-to-noise ratio and interference-to-
noise ratio can be defined to capture channel gains: SNR ,
|gd|2, INR , |gc|2. There are two independent and uniformly
distributed sources, Wk ∈ {1, 2, · · · ,Mk} ,∀k = 1, 2. Due
to feedback, the encoded signal Xki of user k at time i is
a function of its own message and past output sequences:
Xki = f i

k

(
Wk, Y i−1

k

)
, where we use shorthand notation Y i−1

k

to indicate the sequence up to i− 1. The symmetric capacity
is defined by Csym = sup {R : (R, R) ∈ C}, where C is the
capacity region.

III. THE DETERMINISTIC INTERFERENCE CHANNEL

As a first step, we approximate the Gaussian channel by the
deterministic model as shown in Fig. 2 (b). This model is use-
ful because in the non-feedback case, the deterministic channel
approximates the Gaussian channel to within a constant gap
[10]. Our approach is to first come up with an optimal scheme
for this model and then mimic it on the Gaussian channel.

The symmetric channel is characterized by two values: n =
n11 = n22 and m = n12 = n21, where n and m indicate
the number of signal bit levels that can be sent through direct
link and cross link, respectively. Let Vk be a part of Xk visible
to the other receiver. For each level, we assume a modulo-2-
addition. Here, n and m correspond to channel gains (in dB
scale) in the Gaussian channel: n = blog2 SNRc and m =
blog2 INRc.

Theorem 1: The symmetric feedback capacity of the deter-
ministic interference channel is given by

Csym = max
(m

2
, n− m

2

)
. (1)

A. Proof of Achievablility

Review of a non-feedback scheme [10]: Let us start by
examining the schemes in the non-feedback case. The schemes
are different depending on the strength of the interference. In
the strong interference channel (m ≥ n), the key observation
is that all of the feasible rate tuples are decodable at both
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Fig. 3. An achievable scheme of the deterministic interference channel with
feedback

receivers: all messages are common. Since the maximum
number of levels is m and maximally deliverable bits are
limited by n, an achievable scheme is to send min(m

2 , n). On
the other hand, in the weak interference channel, information
can be split into two parts: common m bits (visible to the other
receiver); private (n−m) bits (invisible to the other receiver).
An achievable scheme is to send (n−m) private bits on the
lower levels (invisible to the other receiver) and some number
of common bits on the upper levels. The number of common
bits is decided depending on m and n.

The strong interference regime (m ≥ n): Now let us go
back to the feedback case. We explain the scheme with the
simple example in Fig. 3 (a). Mimicking the non-feedback
case, transmitters send only common information. The scheme
uses two stages. In the first stage, transmitter 1 and 2 send
(a1, a2, a3) and (b1, b2, b3), respectively. Each receiver defers
decoding to the second stage. In the second stage, using
feedback, each transmitter decodes information of the other
user: transmitter 1 and 2 decode (b1, b2, b3) and (a1, a2, a3),
respectively. Each transmitter then sends information of the
other user. Now each receiver can decode its own data from
two received signals. Notice that the second stage was used
for refining all bits sent previously, without sending additional
information. Therefore, the symmetric rate is 3

2 . Notice the
improvement from the non-feedback rate of 1. We can easily
extend the scheme to general (n,m). In the first stage, each
transmitter sends m bits using all the levels. Using two stages,



these m bits can be recovered with the help of feedback.
Hence, we can achieve Rsym = m

2 .

The weak interference regime (m < n): We explain the
scheme with the simple example in Fig. 3 (b). Similar to
the non-feedback case, information is split into two parts. In
the first stage, transmitter 1 sends private information a2 on
the lower level (invisible to the other receiver) and common
information a1 on the upper signal level (visible to the other
receiver). Similarly transmitter 2 sends b1 and b2. Receiver
1 then gets the clean signal a1 on the upper level but gets
the interfered signal a2⊕ b1 on the lower level. Each receiver
defers decoding to the second stage. In the second stage, with
feedback, transmitter 1 and 2 can decode common information
of the other user b1 and a1, respectively. Each transmitter then
sends the other user information on the upper level; and sends
new private information on the lower level. Now receiver 1 can
decode the corrupted symbol a2 sent in the first stage and also
new private information a3 by stripping a1. During two stages,
each receiver decodes three symbols during two time slots.
Therefore, the symmetric rate is 3

2 . Notice the improvement
from the non-feedback rate of 1, achieved by each user sending
one bit at the lower level.

This scheme can be easily generalized to arbitrary (n,m).
In the first stage, each transmitter sends m bits on the upper
levels and (n−m) bits on the lower levels. In the second stage,
each transmitter forwards m bits of the other user on the upper
levels and sends new (n−m) private bits on the lower levels.
Then, each receiver can decode all of the n bits sent in the
first stage and new (n − m) private bits sent in the second
stage. Therefore, we can achieve Rsym = n+(n−m)

2 = n− m
2 .

Remarks: There is feedback gain in both the strong and
the weak regimes, but the nature of the gain is different. The
gain in the strong interference regime is due to the fact that
feedback provides a better alternative path through the two
cross links . This concept coincides with correlation routing
in [6]. On the other hand, in the weak interference channel,
there is no better alternative path. In spite of this, it turned out
that feedback gain could also be obtained in this regime. To
understand this counterintuitive gain, let us look at the example
of Fig. 3 (b) again. In the non-feedback case, every bit we get
from the upper level, we have to pay $2. This is because using
the upper level causes the interference to the other receiver due
to the broadcast nature of the wireless medium. This precludes
us from using the top level for one user when we are already
using the bottom level for the other user. On the other hand,
if feedback is allowed, the broadcast nature can be exploited.
We can see this from transmitter 1’s sending of b1 at time
2. This transmission allows receiver 1 to refine the corrupted
symbol a2 from a2⊕b1 without causing interference to receiver
2, since it already had the side information of b1 from the
previous broadcasting. We paid $2 for the earlier transmission
of b1 at time 1, but now we can get a rebate of $1. In other
words, we exploited the previous broadcast transmission to
reduce the cost of the broadcast transmission at time 2.

B. Proof of Converse

N(R1 + R2 − εN )
(a)

≤ I(W1;Y N
1 |W2) + I(W2;Y N

2 )
(b)
= H(Y N

1 |W2) + I(W2; Y N
2 ) ≤ H(Y N

1 , V N
1 |W2) + I(W2;Y N

2 )
(c)
= H(Y N

1 |V N
1 ,W2) + H(Y N

2 )
(d)

≤
∑

[H(Y1i|V1i, V2i) + H(Y2i)]

where (a) follows from the independence of (W1,W2) and
Fano’s inequality; (b) follows from the fact that Y N

1 is a
function of W1 and W2; (c) follows from H(V N

1 |W2) =
H(Y N

2 |W2) (see Claim 1); (d) follows from the fact that XN
2

is a function of (W2, V
N−1
1 ) (see Claim 2), V N

2 is a function
of XN

2 ; and conditioning reduces entropy.
Claim 1: H(V N

1 |W2) = H(Y N
2 |W2).

Proof:
H(Y N

2 |W2) =
∑

H(Y2i|Y i−1
2 ,W2)

(a)
=

∑
H(V1i|Y i−1

2 ,W2)
(b)
=

∑
H(V1i|Y i−1

2 ,W2, X
i
2, V

i−1
1 )

(c)
= H(V N

1 |W2),

where (a) follows from the fact that Y2i is a function of
(X2i, V1i) and X2i is a function of (W2, Y

i−1
2 ); (b) follows

from the fact that Xi
2 is a function of (W2, Y

i−1
2 ) and V i−1

1

is a function of (Xi−1
2 , Y i−1

2 ); (c) follows from the fact that
Y i−1

2 is a function of (Xi−1
2 , V i−1

1 ) and Xi
2 is a function of

(W2, V
i−1
1 ) (by Claim 2).

Claim 2: For all i ≥ 1, Xi
1 is a function of (W1, V

i−1
2 ) and

Xi
2 is a function of (W2, V

i−1
1 ).

Proof: By symmetry, it is enough to prove only one.
Since the channel is deterministic (noiseless), Xi

1 is a function
of W1 and W2. In Fig. 2 (b), we can easily see that information
of W2 delivered to the first link must pass through V2i. Also
note that X1i depends on the past output sequences until
i − 1 (due to feedback delay). Therefore, Xi

1 is a function
of (W1, V

i−1
2 ).

If (R1, R2) is achievable, then εN → 0 as N →∞. Hence,
we get: R1+R2 ≤ H(Y1|V1, V2)+H(Y2). We can easily show
that the RHS is maximized when X1 and X2 are uniform and
independent. Therefore, we get the desired result.

IV. THE GAUSSIAN INTERFERENCE CHANNEL

A. An Achievable Rate

Theorem 2: In the strong Gaussian interference channel
(INR ≥ SNR), we can achieve

Rstrong
sym =

1
2

log (1 + INR) . (2)

In the weak Gaussian interference channel (INR ≤ SNR),
we can achieve

Rweak
sym =

{
log

(
1 + SNR

2INR

)
+ 1

2 log (1 + INR)− 1
2 , INR ≥ 1;

log
(
1 + SNR

INR+1

)
, INR ≤ 1.

(3)
Proof: The strong interference regime (INR ≥ SNR):

Mimicking the deterministic case, each transmitter sends only
common information and employs two stages. In the first
stage, each transmitter sends its own signal. In the second



stage, each transmitter sends the information of the other user
after decoding it with the help of feedback. In the Gaussian
noisy channel, we need to be careful in how to combine the
received signals (during two stages) to decode the message.
Alamouti’s scheme [11] gives insights into this. Notice that
with feedback both messages are available at transmitters in
the second stage. However, in spite of knowing both messages,
transmitters cannot control the signals already sent in the
first stage. Hence, they can only partially collaborate in the
second stage. However, the beauty of Alamouti’s scheme is
that received signals can be designed to be orthogonal (for
two time slots), although the signals in the first time slot are
sent without any coding. This was well exploited and pointed
out in distributed space-time codes [12]. Therefore, with
Alamouti’s scheme, transmitters are able to encode messages
so that received signals are orthogonal. In the interference
channel, orthogonality between different signals guarantees to
completely remove the other signals (interference). This helps
to improve performance significantly.

In the first stage (block), transmitter 1 and 2 send codewords
XN

1 and XN
2 with rates R1 and R2, respectively. In the

second stage, using feedback, transmitter 1 and 2 decode
XN

2 and XN
1 , respectively. This can be decoded if R1, R2 ≤

1
2 log (1 + INR) bits/s/Hz. Now we apply Alamouti’s scheme.
In the second stage, transmitter 1 sends XN∗

2 and transmitter 2
sends −XN∗

1 . Then, receiver 1 can gather two received signals:
for 1 ≤ i ≤ N ,[

Y
(1)
1i

Y
(2)∗
1i

]
=

[
gd gc

−g∗c g∗d

] [
X1i

X2i

]
+

[
Z

(1)
1i

Z
(2)∗
1i

]
.

To extract X1i, receiver 1 multiplies the row vector orthogonal
to the vector corresponding to X2i. Then, the codeword XN

1

can be decoded if R1 ≤ 1
2 log (1 + SNR + INR) bits/s/Hz.

Similar operations are done at receiver 2. From all the rate
constraints, we get the desired result (2).

The weak interference regime (INR ≤ SNR): Similar to
the deterministic case, a scheme has two stages and informa-
tion is split into common and private parts. Also recall that
only common information is sent twice during two stages.
Therefore, a natural idea is to apply Alamouti’s scheme only
for common information. Private information is newly sent for
both stages.

In the first stage, transmitter 1 independently generates a
common codeword XN

1c and a private codeword X
N,(1)
1p with

rates R1c and R
(1)
1p , respectively. For power splitting, we adapt

the simplified Han-Kobayashi scheme [5] where private power
is set such that private information is received at the noise
level: λp = min

(
1

INR , 1
)
;λc = 1−λp. Now we assign power

λp and λc to X
(1)
1p,i and X1c,i, ∀i, respectively; and superpose

two signals to form channel input. Similarly transmitter 2
sends X

N,(1)
2p + XN

2c . In the second stage, with feedback
transmitter 1 and 2 decode XN

2c and XN
2c , respectively. This

can be decoded if R1c, R2c ≤ 1
2 log

(
1 + λcINR

λpINR+1

)
bits/s/Hz.

Now we apply Alamouti’s scheme only for common infor-
mation. Transmitter 1 sends XN∗

2c and just adds new private

information X
N,(2)
1p . Transmitter 2 sends −XN∗

1c and X
N,(2)
2p .

Then, receiver 1 can gather the signals received during two
stages. By the previous rate constraints for R1c and R2c, re-
ceiver 1 can decode XN

1c and XN
2c . Now each receiver decodes

its private messages after subtracting common information:
R

(1)
1p , R

(1)
2p ≤ log

(
1 + λpSNR

λpINR+1

)
bits/s/Hz. Under the simple

power setting of λp and λc, we get the desired result (3).

B. An Outer Bound

Theorem 3: The symmetric capacity of the Gaussian inter-
ference channel with feedback is upper-bounded by

Csym ≤ 1
2

sup
0≤ρ≤1

[
log

(
1 +

(1− ρ2)SNR

1 + (1− ρ2)INR

)

+ log
(
1 + SNR + INR + 2ρ

√
SNR · INR

)]
.

(4)

Proof: For side information, we consider the interference
plus noise: S1 = gcX1 + Z2. Using this, we get

N(R1 + R2 − εN )
(a)

≤ I(W1; Y N
1 , SN

1 |W2) + I(W2;Y N
2 )

= h(Y N
1 , SN

1 |W2)− h(Y N
1 , SN

1 |W1, W2) + I(W2; Y N
2 )

(b)
= h(Y N

1 , SN
1 |W2)−

∑
[h(Z1i) + h(Z2i)] + I(W2; Y N

2 )
(c)
= h(Y N

1 |SN
1 ,W2, X

N
2 )−

∑
h(Z1i) + h(Y N

2 )−
∑

h(Z2i)
(d)

≤
∑

[h(Y1i|S1i, X2i)− h(Z1i) + h(Y2i)− h(Z2i)]

where (a) follows from the fact that adding side in-
formation increases mutual information; (b) follows from
h(Y N

1 , SN
1 |W1,W2) =

∑
[h(Z1i) + h(Z2i)] (see Claim 3);

(c) follows from the fact that h(SN
1 |W2) = h(Y N

2 |W2) (see
Claim 4) and XN

2 is a function of (W2, S
N−1
1 ) (see Claim 5);

(d) follows from the fact that conditioning reduces entropy.
Claim 3: h(Y N

1 , SN
1 |W1,W2) =

∑
[h(Z1i) + h(Z2i)] .

Proof:
h(Y N

1 , SN
1 |W1,W2) =

∑
h(Y1i, S1i|W1,W2, Y

i−1
1 , Si−1

1 )
(a)
=

∑
h(Y1i, S1i|W1,W2, Y

i−1
1 , Si−1

1 , X1i, X2i)
(b)
=

∑
h(Z1i, Z2i|W1,W2, Y

i−1
1 , Si−1

1 , X1i, X2i)
(c)
=

∑
[h(Z1i) + h(Z2i)] ,

where (a) follows from the fact that X1i is a function of
(W1, Y

i−1
1 ) and X2i is a function of (W2, S

i−1
1 ) (by Claim 5);

(b) follows from the fact that Y1i = gdX1i + gcX2i + Z1i and
S1i = gcX1i +Z2i; (c) follows from the memoryless property
of the channel and the independence assumption of Z1i and
Z2i.

Claim 4: h(SN
1 |W2) = h(Y N

2 |W2).
Proof:

h(Y N
2 |W2) =

∑
h(Y2i|Y i−1

2 ,W2)
(a)
=

∑
h(S1i|Y i−1

2 ,W2)
(b)
=

∑
h(S1i|Y i−1

2 ,W2, X
i
2, S

i−1
1 )

(c)
= h(SN

1 |W2),

where (a) follows from the fact that Y2i is a function of
(X2i, S1i) and X2i is a function of (W2, Y

i−1
2 ); (b) follows

from the fact that Xi
2 is a function of (W2, Y

i−1
2 ) and Si−1

1

is a function of (Y i−1
2 , Xi−1

2 ); (c) follows from the fact that



Y i−1
2 is a function of (Xi−1

2 , Si−1
1 ) and Xi

2 is a function of
(W2, S

i−1
1 ) (by Claim 5).

Claim 5: For all i ≥ 1, Xi
1 is a function of (W1, S

i−1
2 ) and

Xi
2 is a function of (W2, S

i−1
1 ).

Proof: By symmetry, it is enough to prove only one.
Notice that Xi

2 is a function of (W1,W2, Z
i−2
1 , Zi−1

2 ). In Fig.
2 (a), we can easily see that information of (W1, Z

i−2
1 ) de-

livered to the second link must pass through Si−1
1 . Also Si−1

1

contains Zi−1
2 . Therefore, Xi

2 is a function of (W2, S
i−1
1 ).

If (R1, R2) is achievable, then εN → 0 as N →∞. Hence,
we get: R1 + R2 ≤ h(Y1|S1, X2)− h(Z1) + h(Y2)− h(Z2).
Assume that X1 and X2 have covariance ρ, i.e., E[X1X

∗
2 ] =

ρ. Then, by straightforward computation, we can easily get
the desired result.

C. Improvement to the Scheme

Explicit calculation using Theorem 2 and 3 shows that
the maximum gap between two bounds is upper-bounded by
1
2 log

(
32
3

) ≈ 1.7075 bits/s/Hz and occurs at α ≈ 1 [13]. The
worst gap can however be improved. The previous scheme
includes the decode-and-forward operation at the senders after
receiving the feedback. This limits the rate. This rate limitation
can be avoided by instead performing amplify-and-forward:
with feedback, the transmitters get the interference plus noise
and then forward it subject to the power constraints. In the
first stage, each transmitter k sends codeword XN

k with rate
Rk. In the second stage, with feedback transmitter 1 gets the
interference plus noise: SN

2 = gcX
N
2 + Z

(1),N
1 . The complex

conjugation technique based on Alamouti’s scheme is still
applied to make XN

1 and SN
2 well separable. Transmitter

1 and 2 send SN∗
2√

1+INR
and − SN∗

1√
1+INR

, respectively, where√
1 + INR a normalization factor. Under Gaussian input distri-

bution, we can compute the rate under MMSE demodulation:
1
2I(X1; Y

(1)
1 , Y

(2)
1 ). Straightforward calculations give

Rsym =
1
2

log

(
(1 + SNR + INR)2 − SNR

1+INR

1 + 2INR

)
. (5)

With (5) and Theorem 3, we obtain the one-bit-gap result.
Theorem 4: For all channel parameters SNR and INR, we

can achieve all rates R up to Csym − 1, i.e.,

Csym − 1 ≤ Csym ≤ Csym. (6)

D. Comparison to Related Work [6], [7], [8]

For comparison, we plot the generalized degrees-of-freedom
of Kramer’s scheme and the outer bounds [7], [8] in Fig. 4.
Refer to [13] for detailed derivations. When INR is similar
to SNR, his scheme is very close to the outer bound. In fact,
it achieves the capacity when INR = SNR −

√
2SNR [7].

However, if INR is quite different from SNR, it becomes far
away from the outer bound.

1

1
12
23
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Fig. 4. The generalized degrees-of-freedom of the optimum and Kramer’s
scheme

V. CONCLUSION

We found the symmetric capacity to within 1 bit/s/Hz for the
two-user Gaussian interference channel with feedback. From
this result, we discovered a significant role of feedback that
it could provide unbounded gain in many-to-many channels.
Interestingly, unbounded gain could be obtained even in the
weak interference regime where feedback provides no better
alternative path. The gain comes from using feedback to fully
exploit the broadcast nature of the wireless medium.
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