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Abstract—As machine learning becomes prevalent in our
daily lives involving a widening array of applications such as
medicine, finance, job hiring and criminal justice, one morally
& legally motivated need for machine learning algorithms is
to ensure fairness for disadvantageous against advantageous
groups. Fairness in machine learning aims at guaranteeing the
irrelevancy of a prediction output to sensitive attributes like
race, sex and religion. To this end, we take an information-
theoretic approach using mutual information (MI) which can
fully capture such independence. Inspired by the fact that MI
between prediction and the sensitive attribute being zero is the
“sufficient and necessary condition” for independence, we develop
an MI-based algorithm that well trades off prediction accuracy
for fairness performance often quantified as Disparate Impact
(DI) or Equalized Odds (EO). Our experiments both on synthetic
and benchmark real datasets demonstrate that our algorithm
outperforms prior fair classifiers in tradeoff performance both
w.r.t. DI and EO.

I. INTRODUCTION

The last decade has seen an unprecedented explosion of
academic and popular interests in machine learning. Machine
learning is no longer just an engine behind image classifiers
and spam filters. It is now employed to make critical decisions
that affect human lives, cultures, and rights, e.g., filtering job
applicants, and informing bail & parole decisions. With a surge
of such sensitive applications, one major criterion in the design
of machine learning algorithms is to ensure fairness.

Fairness research has developed metrics that capture various
notions of discrimination. There are largely two types of
measures: (i) group fairness [1], [2], [3], [4], [5], which
ensures similar statistics between different demographics; (ii)
individual fairness [6], [7], [8], [9], which guarantees similar
prediction results across nearby examples. In this work, we
focus on the former that has been widely studied in various ap-
plications. Major measures for group fairness include disparate
impact [1], [4], equal opportunity [3] and equalized odds [3].
All of these capture a degree of fairness by quantifying
how prediction outputs are different depending on sensitive
attributes such as race, sex, age and religion. For instance,
the ratio of prediction outputs (e.g., criminal reoffending vs.
non-reoffending probabilities) w.r.t. a sensitive attribute (e.g.,
blacks vs. whites) is one prominent fairness metric.

There has been a proliferation of fairness algorithms [3],
[4], [6], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21] which intend to prevent discrimination. It
turns out it is non-trivial to express a fairness measure in
terms of model parameters (often neural-net parameters) which
serve as optimization variables in an associated optimization.

Hence, one prominent approach is to introduce an expressible
proxy for fairness measure and then incorporate the proxy
into formulating a regularization term in the optimization
problem. For example, Zafar et.al. [4] employ as a fairness
proxy a covariance function between a sensitive attribute and a
prediction output. However, such proxy-based approach comes
with a challenge in enforcing fairness constraints. This is
because the proxy serves only as a weak constraint. For
instance, a small covariance between a sensitive attribute and a
prediction output guarantees a small correlation, but the small
correlation does not ensure independence that fairness aims at.
Hence, such method does not provide any theoretical guarantee
for many practical scenarios in which real data may not
admit the one-to-one relationship between uncorrelatedness
and independence.

In order to overcome the above challenge, we take a
different approach which enables us to fully respect fairness
constraints and therefore to achieve the optimal fairness per-
formance given a certain accuracy and vice versa. As an initial
effort, we focus on two prominent group fairness measures:
disparate impact (DI) [4] and equalized odds (EO) [3]1. These
constraints target the complete independence between predic-
tion and a sensitive attribute unconditionally (disparate impact)
or conditionally (equalized odds). Our approach employs one
key information-theoretic notion, mutual information (MI), to
fully capture such independence. The approach is inspired by
the fact that MI between prediction and the sensitive attribute
being zero is the “sufficient and necessary condition” for inde-
pendence. We then establish mathematical relationships which
enable tractability of the associated MI computation. With
this theory, we propose an efficient fair classifier architecture
that is easily trainable with well-known optimizers such as
stochastic gradient descent (SGD) and Adam optimizer [22],
[23]. We also find an intimate connection with generative
adversarial networks (GANs) [16] as well as with a GAN-
based fair classifier [24]. Our experiments conducted both on
synthetic and benchmark real datasets (COMPAS [25] and
Adult Census [26]) corroborate our theory, demonstrating that
our MI-based fair classifier obtains the state-of-the-art tradeoff
performances both w.r.t. DI and EO.

Related work: Among the fairness algorithms [3], [4],
[6], [10], [11], [12], [13], [14], [15], [16], [19], [20], [21],
we point out two works [15], [24] that are relevant to ours

1We also cover another fairness measure, called equal opportunity [3], as
it is a special case of equalized odds that emphasizes positive examples.
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in architecture. Xu et.al. [15] adopt an adversarial training
idea [16] to generate fairness-ensured fake data. While their
optimization bears a structural similarity with ours, it belongs
to a distinct framework, as it targets generating fairness-
ensured fake data, instead of developing a fair classifier that we
aim at here. The second related work is Zhang et.al. [24]. This
is also inspired by adversarial training [16]: the classifier is
designed such that an adversary cannot discriminate a sensitive
attribute from a prediction output. It takes an insightful yet
heuristic procedure in training, thereby preventing it from
being interpreted precisely as an MI-based one; see Remark 2
for details. This way, no theoretical guarantee can be made
for many interested scenarios. Further it suffers from a severer
stability issue in training compared to ours; also see Fig. 4.

II. PROBLEM FORMULATION

Fig. 1 illustrates a supervised learning fair-classifier setting
that we focus on herein. There are two types of data employed:

fig1’

classifier

Fig. 1. A fair classifier that attempts to yield a prediction output ŷ from
normal data x ∈ Rd and sensitive attribute z so that ŷ is independent of
sensitive attribute z as much as possible. Here {(x(i), z(i), y(i))}mi=1 indicate
the ith data, sensitive attribute and label, respectively and m denotes the
number of examples.

(i) normal (possibly objective) data; (ii) sensitive data (or
called sensitive attributes). We denote the normal data by
x ∈ Rd. In the case of recidivism score prediction [25], such
x may refer to a collection of the number of prior criminal
records and a criminal type, e.g., misdemeanour or felony.
For sensitive data, we employ a different notation, say z. In
the above example, z may indicate a race type among white
(z = 1) and black (z = 0). In general, the alphabet size of
z is arbitrary. For instance, there are many race types such
as Black, White, Asian, Hispanic, to name a few. Also there
could be multiple sensitive attributes like gender and religion.
In order to reflect such practical scenarios, we consider z ∈ Z
with an arbitrary alphabet size that can represent a collection
of possibly many sensitive attributes. Let ŷ be the classifier
output which aims to represent the ground-truth conditional
distribution p(y|x, z). Here y ∈ Y denotes the ground-truth
label. In the recidivism score prediction case, y = 1 means
reoffending in the near future, say within two years (y = 0
otherwise), while ŷ indicates the probability of such event
being occurred. We consider a supervised learning setup, so
we are given m example triplets: {(x(i), z(i), y(i))}mi=1. We
assume that both (x, z) serve as the input, although z may not
be part of the input in an effort to automatically respect the
constraint w.r.t. disparate treatment [4] (another group fairness

measure capturing an unequal treatment that occurs directly
because of sensitive attributes). This is because our algorithm
(to be presented) does care about the fairness issue while being
designed.

We consider two major group fairness measures: disparate
impact (DI) and equalized odds (EO). Mathematical defini-
tions of DI and EO rely on a few notations. Let Z ∈ Z
be a random variable that indicates a sensitive attribute. Let
Ỹ ∈ Y be a hard-decision value of the predictor output Ŷ at
certain thresholds. For instance, in the binary classifier case,
Ỹ := 1{Ŷ ≥ 0.5}. The DI is then defined as a ratio of
likelihoods of positive example events Ỹ = 1 for different
Z = z:

DI := min
z∈Z

min
ẑ 6=z

Pr(Ỹ = 1|Z = ẑ)

Pr(Ỹ = 1|Z = z)
. (1)

One natural interpretation is that a classifier is more fair when
the ratio is closer to 1; becomes unfair if the ratio is far away
from 1. So the DI quantifies such fairness degree: the larger
DI, the more fair the situation is. On the other hand, the EO
is defined as the same ratio except that the ground-truth label
Y = y is given:

EO := min
y∈Y

min
z∈Z

min
ẑ 6=z

Pr(Ỹ = 1|Z = ẑ, Y = y)

Pr(Ỹ = 1|Z = z, Y = y)
. (2)

Now how to design a classifier so as to maximize the DI
or EO? One natural approach is to incorporate a fairness-
related constraint as a regularization term into the conventional
classifier optimization which often takes the following form:

min
w

1

m

m∑
i=1

`CE(y
(i), ŷ(i)) (3)

where `CE(y, ŷ) := −∑j yj log ŷj indicates cross entropy
loss [22], and w denotes weights (parameters) for a classifer.
Here we assume that the label y is of one-hot-vector type:
y := [y1, . . . , y|Y|]

T . Since maximizing DI is equivalent to
minimizing 1 − DI (due to 0 ≤ DI ≤ 1), an interested
optimization reads:

min
w

1

m

m∑
i=1

`CE(y
(i), ŷ(i)) + λ · (1− DI) (4)

where λ denotes a regularization factor that balances predica-
tion accuracy against the DI-associated objective (minimizing
1 − DI). Similarly one can formulate an EO-associated opti-
mization by replacing 1− DI with 1− EO.

Here a challenge arises in solving the regularized opti-
mization (4). Recalling the definition (1) of DI, we see that
DI is a complicated function of w. We have no idea as to
how to express DI in terms of w. One effort to address this
challenge was made by Zafar et.al. [4]. They introduce an
easily-expressible proxy for the fairness measure, reflected in
1−DI. Specifically they employ a covariance function between
Ŷ and Z. However, this proxy serves only as a weak constraint
because a small covariance does not necessarily imply the
independence although the reverse always hold. In this work,
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we introduce a different regularization term that can serve
as a strong constraint for the independence. Details will be
presented in Section III for DI, and in Section IV for EO.

III. DISPARATE IMPACT

Our approach is inspired by mutual information (MI).
Notice that DI = 1 means that the sensitive attribute Z is
independent of the hard decision Ỹ of the prediction. One key
property of MI is that MI between two input random varibles
being zero is the “sufficient and necessary condition” for the
independence between the two inputs. This motivates us to
represent the constraint of DI = 1 as I(Z; Ỹ ) = 0. This
captures the complete independence between Z and Ỹ . Since
the predictor output is Ŷ (instead of Ỹ ), we consider another
stronger condition that concerns Ŷ directly:

I(Z; Ŷ ) = 0. (5)

Notice that the condition (5) is indeed stronger than I(Z; Ỹ ) =
0 because I(Z; Ỹ ) ≤ I(Z; Ỹ , Ŷ ) = I(Z; Ŷ ) where the
equality comes from the fact that Ỹ is a function of Ŷ . Notice
that this together with (5) gives I(Z; Ỹ ) = 0. Hence, the
condition (5) enforces the DI = 1 constraint.

This motivates us to consider the following optimization:

min
w

1

m

m∑
i=1

`CE(y
(i), ŷ(i)) + λ · I(Z; Ŷ ). (6)

Now the question of interest is: How to express I(Z; Ŷ ) in
terms of classifier parameters w? We found an interesting way
to express it. To see this, let us investigate the relationship
between MI and Kullback-Leibler (KL) divergence [27]:

I(Z; Ŷ ) = DKL

(
PŶ ,Z‖PŶ PZ

)
=
∑
ŷ,z

PŶ ,Z(ŷ, z) log
PŶ ,Z(ŷ, z)

PŶ (ŷ)PZ(z)

=
∑
ŷ,z

PŶ ,Z(ŷ, z) log
PŶ ,Z(ŷ, z)

PŶ (ŷ)︸ ︷︷ ︸
=:D∗(ŷ;z)

+H(Z).

(7)

where PŶ , PZ and PŶ ,Z indicate probability distributions of
Ŷ , Z and (Ŷ , Z), respectively. Defining the log-inside term in
the above as D∗(ŷ; z), we get:

∑
zD
∗(ŷ; z) = 1 ∀ŷ. Here a

key trick is to represent (7) in terms of a function optimization
such that the objective function can be expressed in terms of
the classifier parameter w. In this work, we establish such trick
via the following theorem:

Theorem 1 (MI via function optimization for DI):

I(Z; Ŷ ) = H(Z)+

max
D(ŷ;z):

∑
z D(ŷ;z)=1

∑
ŷ,z

PŶ ,Z(ŷ, z) logD(ŷ; z). (8)

Proof: Using the multiple equality constraints, reflected
in
∑
zD(ŷ; z) = 1, we define the Lagrange function w.r.t. the

max optimization in (8) as:

L(D(ŷ; z), ν(ŷ)) =
∑
ŷ,z

PŶ ,Z(ŷ, z) logD(ŷ; z)

+
∑
ŷ

ν(ŷ)

(
1−

∑
z

D(ŷ; z)

)
where ν(ŷ)’s are Lagrange multipliers. Since the objective
function is concave in D(·; ·), one can solve the problem via
the KKT conditions [28]:

dL(D(ŷ; z), ν(ŷ))

dD(ŷ; z)
=
PŶ ,Z(ŷ, z)

D?(ŷ; z)
− ν?(ŷ) = 0 ∀ŷ, z

dL(D(ŷ; z), ν(ŷ))

dν(ŷ)
= 1−

∑
z∈Z

D?(ŷ; z) = 0 ∀ŷ.

Notice that plugging the following,

D?(ŷ; z) =
PŶ ,Z(ŷ, z)

PŶ (ŷ)
, ν?(ŷ) = PŶ (ŷ).

we satisfy the KKT conditions. This implies that D?(ŷ, z) is
indeed the optimal solution. Since D?(ŷ; z) is exactly the same
as D∗(ŷ; z) that we defined in (7), we complete the proof.

Next let us express the formula (8) in terms of the classifier
parameter w. Notice that the formula (8) contains probability
quantities PŶ ,Z(ŷ, z)’s which are not available. Instead we are
given m examples: {(x(i), z(i), y(i))}mi=1. So we need to worry
about how to compute the probability quantities only with
such examples. Once the classifier weight w is given, one can
first compute {ŷ(i)}mi=1 from the train samples. This together
with the samples allows us to compute empirical distributions:
QŶ ,Z(ŷ

(i), z(i)). So as an estimate, here we take the empirical
version of the true distributions:

QŶ ,Z(ŷ
(i), z(i)) =

1

m
∀i. (9)

Putting this into (8), we then get:

I(Z; Ŷ ) ≈ max
D(ŷ;z):

∑
z D(ŷ;z)=1

m∑
i=1

1

m
logD(ŷ(i); z(i)) +H(Z).

Lastly by parameterizing D(·; ·) with θ and excluding H(Z)
(irrelevant of (θ, w)), we obtain the following optimization:

min
w

max
θ:
∑
z Dθ(ŷ;z)=1

1

m

{
m∑
i=1

`CE(y
(i), ŷ(i))

+λ

m∑
i=1

logDθ(ŷ
(i); z(i))

}
.

(10)

In view of this optimization, our fair classifier architecture
can be illustrated as in Fig. 2. Notice that we have the number
|Z| of outputs in Dθ(ŷ; ·) that we call the “discriminator”.
In an attempt to ensure the equality constraint in (10), one
can use the softmax activation in the output [22]. Here for
parameterization, we use neural networks. For training (w, θ),
we use alternating GD; and for training each model, we
employ either GD, SGD or Adam optimizer [22], [23].
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fig2’

softmax

classifier discriminator

Fig. 2. A proposed fair classifier for disparate impact.

Remark 1 (Connection with GANs [16]): Specializing
to the binary sensitive attribute setting, we can make an
intimate connection with GANs. To see this, we rewrite the
regularization term in (10) as: when |Z| = 2 and z(i) ∈ {0, 1},
1

m

m∑
i=1

z(i) logDθ(ŷ
(i); z(i)) + (1− z(i)) log

(
1−Dθ(ŷ

(i); z(i))
)
.

Note that this is the same as the value function in GANs [16].
While it bears a strong similarity to GANs, it comes with two
major distinctions. First our setting has a classifier instead of a
generator; hence, it includes additional loss term that captures
prediction accuracy reflected in the cross entropy loss. Second
we have the number |Z| of outputs (possibly more than two)
in the discriminator where each Dθ(ŷ; z) can be interpreted
as the probability that ŷ belongs to z. �

Remark 2 (Connection with Zhang et.al. [24]): An adver-
sarial learning idea was already introduced in the context of
fair classifiers [24]. So the fair classifier proposed therein
is similar to ours in architecture. However it comes with a
couple of distinctions. The first is that the weight update
in their training procedure includes an additional “projection
term” on top of the gradient of a loss function. Second, the
additional term effectively makes the regularization factor λ
in the objective function (10) vary as a function of iteration,
thus making the tuning knob for fairness not fully controllable.
Lastly their algorithm suffers from severer stability in training,
compared to ours; see Fig. 4 for details. �

IV. EQUALIZED ODDS

In this section, we extend to another fairness measure EO.
First we make a connection between the definition (2) of
EO and I(Z; Ŷ |Y ). As before, we can easily show that the
constraint of I(Z; Ŷ |Y ) = 0 implies I(Z; Ỹ |Y ) = 0, thereby
leading to EO = 1. This then naturally motivates the following
optimization:

min
w

1

m

m∑
i=1

`CE(y
(i), ŷ(i)) + λ · I(Z; Ŷ |Y ). (11)

Next, as in (7), one can manipulate I(Z; Ŷ |Y ) as:

I(Z; Ŷ |Y ) =
∑
y,ŷ,z

PŶ ,Z,Y (ŷ, z, y) log
PŶ ,Z|y(ŷ, z)

PŶ |y(ŷ)︸ ︷︷ ︸
=:D∗(ŷ;z,y)

+H(Z|Y )

where PŶ ,Z,Y indicates the joint distribution of (Ŷ , Z, Y );
and PŶ ,Z|y and PŶ |y denote the distributions of (Ŷ , Z) and

Ŷ , respectively, conditioned on Y = y. Here a key trick
corresponding to Theorem 1 is to represent the above in terms
of another function optimization, formally stated below.

Theorem 2 (MI via function optimization for EO):

I(Z; Ŷ |Y ) = H(Z|Y )+ (12)

max
D(ŷ;z,y):

∑
z D(ŷ;z,y)=1

∑
ŷ,y,z

PŶ ,Z,Y (ŷ, z, y) logD(ŷ; z, y).

Proof: First define the Lagrange function w.r.t. the max
optimization in the above as:

L(D(ŷ; z, y), ν(ŷ, y)) =
∑
ŷ,z,y

PŶ ,Z,Y (ŷ, z, y) logD(ŷ; z, y)

+
∑
ŷ,y

ν(ŷ, y)

(
1−

∑
z

D(ŷ; z, y)

)

where ν(ŷ, y)’s are Lagrange multipliers. Since the objective
function is concave in D(·; ·, ·), we can solve the problem via
the KKT conditions:

dL(D(ŷ; z, y), ν(ŷ, y))

dD(ŷ; z, y)
=
PŶ ,Z,Y (ŷ, z, y)

D?(ŷ; z, y)
− ν?(ŷ) = 0 ∀ŷ, z, y

dL(D(ŷ; z, y), ν(ŷ, y))

dν(ŷ, y)
= 1−

∑
z

D?(ŷ; z, y) = 0 ∀ŷ, y.

Using the uniqueness of optimality, one can readily find:

D?(ŷ; z, y) =
PŶ ,Z|y(ŷ, z)

PŶ |y(ŷ)
, ν?(ŷ, y) = PŶ ,Y (ŷ, y).

Since D?(ŷ; z, y) is the same as D∗(ŷ; z, y), we complete the
proof.

Again using the empirical version of the true distribution
PŶ ,Z,Y (ŷ, z, y), one can approximate I(Z; Ŷ |Y ) as:

I(Z; Ŷ |Y ) ≈ H(Z|Y )+

max
D(ŷ;z,y):

∑
z D(ŷ;z,y)=1

m∑
i=1

1

m
logD(ŷ(i); z(i), y(i)).

Finally parameterizing D(·; ·, ·) with θ, we obtain:

min
w

max
θ:
∑
z Dθ(ŷ;z,y)=1

1

m

{
m∑
i=1

`CE(y
(i), ŷ(i))

+λ

m∑
i=1

logDθ(ŷ
(i); z(i), y(i))

}
.

(13)

Here to ensure the equality constraint in (13), we use the
number |Y| of softmax activations in the output. Again we
employ neural networks for (w, θ); and alternating GD for
training.

V. EXPERIMENTS

We provide experimental results on synthetic and two
benchmark real datasets (COMPAS [25] and Adult Cen-
sus [26]). All of our results are on a separate test set and
we use the metrics DI and EO represented in (1) and (2).
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Fig. 3. (Left) Visualization of our synthetic dataset; (Right) Accuracy-fairness
performance on the synthetic dataset w.r.t. disparate impact.

The conditional probabilities of the hard decision value Ỹ are
empirically approximated.

For the synthetic data, we consider a simple yet non-trivial
dataset (called the Moon dataset [29]) which is not linearly
separable. See the left figure in Fig. 3. We consider a setting
in which m = 10, 000, x has two non-sensitive attributes (say
x1 and x2), z is binary (say z = 0 for blacks and z = 1 for
whites), and y is also binary (say y = 1 for re-offending; y = 0
otherwise). To generate an unfair dataset, we employ a simple
method. We first generate m labels y(i)’s so that they are i.i.d.
each being according to Bern(0.5). For indices of positive
examples (y(i) = 1), if x(i)1 ∈ (0.262, 1.734), we generate z(i)

as per Bern(0.55); otherwise, z(i) follows Bern(0.1) (more
biased towards z = 0 blacks). On the other hand, for negative
examples (y(i) = 0), if x(i)1 ∈ (−0.734, 0.734), we generate
z(i) as per Bern(0.9); otherwise, z(i) follows Bern(0.35). This
way, we could generate a balanced yet unfair dataset in which
Pr(Y = 1|Z = 0) ≈ 0.658 and Pr(Y = 1|Z = 1) ≈ 0.352,
while respecting Y ∼ Bern(0.5) and Z ∼ Bern(0.5).

Fig. 3 (right) demonstrates accuracy and fairness perfor-
mance for disparate impact (DI), evaluated on the synthetic
test dataset (mtest = 5, 000) while sweeping the tuning knob
λ from 0 and 1. Given the value of λ, we also normalize
cross entropy loss by multiplying (1 − λ). Here each point
corresponds to a particular λ and it represents an average
value over 5 trials with different seeds in training. We see that
our fair classifier outperforms by respecful margins the other
two baselines : (i) Zafar et.al. [4] (employing a covariance
proxy for fairness measure); (ii) Zhang et.al. [24] (a GAN-
based fair classifier). We also find a similar tradeoff tendency
for equalized odds (EO) although it is not reported herein.

While Fig. 3 (right) shows a similar tradeoff performance
between ours and Zhang et.al. [24], they exhibit different
stability performances in training. See Fig. 4. Each point
in the figures represents a performance evaluated only on a
particular seed in training. So the spreadness of different points
along the same λ captures the degree of stability in training;
the more dispersed, the more unstable. We see that Zhang
et.al. [24] yields more spread points, relative to ours, meaning
that our algorithm is more stable. We also find that the stability
issue is sensitive to a choice of optimizers for classifier and
discriminator. In the reported setting, we employ Adam for
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Fig. 4. Accuracy (left) and DI (right) performance as a function of a tuning
knob λ that emphasizes a fairness constraint.

classifier and SGD for discriminator.
We also evaluate on real datasets: COMPAS [25] and Adult

Census [26]. For simplicity, we consider only one sensitive
attribute (race for COMPAS, sex for AdultCensus), so z is
binary. Table I demonstrates tradeoff performances that focus
more on a fairness performance. To generate each number, we
consider a range of λ in which DI (or EO) is beyond 0.9,
and the reported numbers indicate the average and standard
deviation over 5 trials with different seeds in training. If there
is no such λ, we choose a λ that maximizes DI (or EO) at best.
Notice that our algorithm outperforms the two baselines both
w.r.t. DI and EO in most cases. Here Zafar et.al. [4] yields
the same performance for different seeds in training; hence,
the standard deviation is zero, reflected in NA in the table.

TABLE I
ACCURACY AND FAIRNESS PERFORMANCES ON REAL DATASETS

(COMPAS [25] AND ADULT CENSUS [26]).

Data Method DI Acc. EO Acc.
Proposed 0.959(±0.012) 0.675(±0.005) 0.908(±0.029) 0.638(±0.008)

COMPAS Zafar et.al. [4] 0.986(±NA) 0.641(±NA) 0.752(±NA) 0.641(±NA)

Zhang et.al. [24] 0.951(±0.037) 0.654(±0.010) 0.890(±0.049) 0.626(±0.033)

Proposed 0.942(±0.052) 0.837(±0.002) 0.753(±0.220) 0.844(±0.004)

AdultCensus Zafar et.al. [4] 0.849(±NA) 0.822(±NA) 0.606(±NA) 0.822(±NA)

Zhang et.al. [24] 0.883(±0.039) 0.837(±0.002) 0.791(±0.084) 0.842(±0.004)

VI. CONCLUSION

We developed an MI-based fair classifier that achieves the
best tradeoff performance between prediction accuracy and a
fairness performance quantified as disparate impact (DI) or
equalized odds (EO). The proposed algorithm is based on our
representation for MI in terms of function optimization which
bears a strong similarity to the GAN formulation. One future
work of interest is to address the stability issue in training that
our algorithm still suffers from, as identified in Fig. 4.
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