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Absrmcr-This paper deals with carrier frequency estimation for 
transmissions with antenna diversity. A joint maximum likelihood es- 
timates (MLEs) of channel and frequency offset are derived and peri- 
odic space-time training sequences that can simplify the implementa- 
tion of the ML frequency estimate, while minimizing the mean square 
error (MSE) of the estimate are designed. Statistical analysis indicates 
that the MLE is unbiased and almost achieves the C r k r - R a o  bound 
(CRB). Simulation shows that MLE with optimal training sequences 
is preferable to one with arbitrary training sequences in mobile com- 
munications. 

I. INTRODUCTION 

The stability requirements of recent communication sys- 
tems on the camer frequency offset between the oscillators 
of the transmitter and the receiver are stringent. It is re 
quired, for example, that the frequency offset between the 
canier frequencies of a base station and a receiver is within 
0.1 PPM in the 3rd generation partnership project (3GPP) 
recommendations for 3G wireless communication systems 
[I]. One way to relieve this need is to recover the carrier 
frequency at a receiver via digital signal processing 

Various techniques have been proposed for canier fre- 
quency recovery [2], [3]. Among these, data-aided tech- 
niques [4]-[ lo] using a training sequence (TS) are widely 
used because they can attain a good performance with short 
TSs. Most of the techniques proposed so far consider the 
transmission with a single antenna over such channels as 
additive white Gaussian noise (AWGN) [4]-[5], flat fading 
[6], [7], or frequency-selective fading channels [8]-[10]. In 
[ 101, it was observed that the estimators in [SI-[lO] can be 
directly applied to frequency estimation of a system with 
transmitter antenna diversity when each transmission path 
experiences flat fading. When channels associated with 
multiple transmitter antennas are frequency-selective, these 
estimators should be properly modified. This paper deals 
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with such modification. In particular, we derive joint ML 
channel and frequency offset estimators by extending the 
results in [9]. Two types of MLEs are developed: an MLE 
is derived first for an arbitrary TS, and then the result is 
modified for a periodic TS. The properties of these MLEs 
are analyzed, and a class of periodic TSs that can minimize 
the MSE of the MLE is classified. 

11. COMMUNICATION SYSTEM MODEL 

The baseband system considered in this paper is shown 
in Fig. 1. Here p ( t )  is the baseband pulse shape, ci( t )  is 
the channel impulse response, n(t) is AWGN, 8 is the initial 
random phase and A f represents the canier frequency off- 
set. The system has r transmitter antennas and one receiver 
antenna. It is assumed that a linear modulation (e.g. PSK 
or QAM) is employed. The output of the space-time (ST) 
coder at time k is given by 

where d ( k + j - I , N )  = [dtij-l,dfij-l,--* ,dzj - l ]  and 
4) denotes the output of the i-th antenna at time k. The 
receiver filter output sampled at t = kT, (Ts denotes the 
symbol duration) is 

where gt; is the impulse response of the equivalent channel 
from the i-th transmitter antenna to the receiver antenna at 
time k due to an impulse that is applied 1 time units earlier. 
It describes bothp(t) and ~ ( t )  in the discrete time domain, 
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Fig. I. Baseband system model. 

and its duration is L. 9 k  is a zero-mean Gaussian noise with 
variance ui.  

Suppose that a training sequence of length N, { 5 I 0 5 
n 5 N - l} with N 2 Lr, is inputted to the ST encoder. 
Then the encoder produces d(O,N), which will be referred 
to as the training matrix. To compensate for the effect of 
multipath fading, it is necessary to start transmission at time 
-L  + 1: for -L  + 1 5 k 5 -1, last L - 1 columns of 
d(O,N) are transmitted successively, i.e., q k + N , N )  is sent 
at time k. Under the assumption that the channel is time- 
invariant over the training period, i.e., g t {  = g/i), -L+ 1 < 
k 5 N - 1, thereceivedsignal { T D , T ~ , - . .  , T N - ~ }  can be 
written in vector form as 

r = O ( u ) D N g  + r) (3) 

where r = [To, T i , .  * - , T I V - ~ ] ~ ,  ?I = [Vo, 91,. . . , 7]N-1IT,  

@(v) = diag[l, ejaXU, - - 0  , ej2n(N-1)u] and g is an Lr  di- 
mensional vector defined as g = [g:), gr), . . , go (r) , g1 (1) , 
gf), . - - , gFlllT. v = A f T, denotes the normalized fre- 
quency offset and DN is an N-by-LI? dimensional ma- 
trix defined as DN = [dp,,), d{,,,) -. . , d&$,], where 
dt,,,) is the matrix formed by the i-th cyciic shift of the 

~ o w s  in ~ ( o , N ) ,  i.e., d!,,,) = [ & - - I , N ) ,  
T 

, ~ ( N - I , N ) ,  
T 

&N), * .  . ,&N-i-I,N)l . 
111. ML FREQUENCY OFFSET ESTIMATION 

A .  Derivation of Joint ML estimator 

function A of r is given by 
Given g and v ,  the conditional joint probability density 

(4) 

and the joint ML estimation of g and u can be found by 
maximizing the right-hand side of (4). This is equivalent to 
minimizing 

11. - @(v)DNgl12. (5’) 

Suppose v is fixed. Then the problem is reduced to the clas- 
sical least squares minimization problem whose solution is, 
under the assumption that the columns of D N are linearly 
independent, 

where H denotes the Hermitian transpose. Using (6) in (3, 
I/r - O(v)DNg/12=IJr - o(v)BO(v)Hrl12=llrl12 - 
I10(v)B@(v)Hr/12 where 

B = DN(D$DN)-’D$. (7) 

B is the orthogonal projection matrix onto the column space 
of DN. After removing the terms irrelevant to the estima- 
tion, minimizing (5) is equivalent to maximizing 

h(v) = rH@(v)BO(v)Hr.  (8) 

The ML estimator for v is represented as 

D = argm,a” h(v). {:9) 

We call this estimator the MLEl. This estimate can be ob- 
tained by exhaustively searching the frequency range 12)) 5 
0.5, which is the acquisition range of the MLE1. Following 
[9], (9) is rewritten as 

O N - 1  

D = m y  { -p(O) + 2Re { 2 p(m)e 
m=O 

where Re{-} represents the real part and p(m) is the 
weighted correlation of the received samples, defined as 

(1  1) 
In( l l ) ,B(k, l )  isthe(k,l)thentryofan N-by-Nmatrir.B. 
The term in the bracket of (10) can be efficiently computed 
by using the fast Fourier transform (FFT) and computational 
load for evaluating MLEl can be reduced. The estimator in 
(9) and (IO) is a direct extension of the one in [9]: when 
I’ = 1, the former reduces to the latter. 

For joint estimation of the channel and frequency offset, 
(IO) should be evaluated prior to (6). Any TSs can be em- 
ployed for the estimates, as long as D:D, is nonsingu~ar. 
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B. Mean and MSE of MLEl 

Under the assumption of high signal-to-noise ratio 
(SNR), the mean and the MSE of MLEl can be approxi- 
mated as follows [3, pp. 343-3441: 

where h’ and h” denote the first and the second derivative 
of h(v) in (8). By repeating almost verbatim the argument 
in [9] 

E[tlg] M u. (14) 

where y = 2 n M D ~ g  with M = diag[O, 1,. . . , N - 11. 
(14) shows that the MLEl is nearly unbiased. Under the 
assumption that the bias can be neglected, the CRB for the 
estimate in MLEl can be derived again by repeating almost 
verbatim the argument in [9] and using the conditional den- 
sity function in (4). The CRB (called CRBI) is given by 

(16) 

Since (15) coincides with (16), the MSE of MLEl is close 
to the CRB. 

4 CRBl = 
2 y H ( h  - B)Y ‘ 

IV. ML FREQUENCY OFFSET ESTIMATION FOR 
PERIODIC TSS 

A.  Derivation of M U 2  

Suppose that a TS of length N consists of P identical 
subsequences of length K (K 2 Lr): the TS is periodic 
and N = KP. In this case, the matrix DN can be written 
as follows. 

DN = [Dz, DZ,. . - , D;JT (17) 

where the K-by-Lr dimensional matrix D K is given by 
dL-1  

DK = [d(0,K)7dt0,K),.‘- > (O,K)].  (I8) 

Here d(o,+ and df,,,) are the matrices defined in (1) and 
(3), respectively. When K = Lr, the matrix B in (7) is 
simplified as shown below. 

Property 1. If K = Lr, then the orthogonal projection 
. matrix B in (7) becomes: 

TABLE I. 
COMPUTATIONAL LOAD. 

I MLEl real products I 2N(2N+2+@p10g2BN) 
real additions I N(3N+ 1+3Bulon,BN) 

~ ~ ~~~ 

real products I 2N(N+K+~plog2(,BN/K))/K I MLE2 1 real additions 1 N(2N+2K-2+3/?plog2(/3N/K))/K) 1 
This is derived by using (17) in (7). When B is given by 
(19), MLEl in (10) becomes 

where 

(21) 
The acquisition range of this estimator, which will be re- 

ferred to as MLE2, is / V I  < 1 / ( 2 K ) .  Notice that P correla- 
tions {C(m)} are needed in (ZO), whereas N(=KP) corre- 
lations {p(m)} are in (10) and that FFT is performed over 
,BP points in (ZO), whereas PN points in (10). Therefore, 
the computational complexity for implementing MLEl is 
reduced approximately by a factor of 1/K (see Table I, 
CL = 1 - (log, B + 2 / P  - 2 ) /  1% 2(B”. 

B. Mean and MSE of MLE2 
MLE2 is unbiased like MLE1, because the result in (14) 

holds for any TSs for which DZDN is nonsingular. The 
MSE of MLE2 can be computed from (15). After some cal- 
culation (see Appendix A), the MSE is expressed as follows. 

As in MLE1, (22) is identical to the CRE? (called CRB2) of 
MLE2. 

C. Training matrix Design 

In this subsection, we classify a class of TS matrices that 
minimize the MSE E[(t - v ) ~ ] ,  under the assumption that 
the channel g is complex Gaussian. 

Property 2. The MSE of MLE2, E[(D - u)~], is mini- 
mized if DK satisfies 

D E D ,  = KI,. (23) 

The proof of this property is rather long and omitted due 
to page length limitation. Generation of a training matrix 
d(O,K) satisfying (23) is addressed in the following proper- 
ties. 
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multi 
path 

rraining 

matrix 

d( 0.K ) 

sequence 

sequence 

TABLE 11. 
TRAINING MATRICES THAT MINIMIZE THE MSE OF MLE2. 

Property 3. When the channel is flat fading (L = l), 
(23) is satisfied if and only if l / a d ( o , K )  is unitary. 

This is a direct consequence of the fact that DK = d(O,K) 
and d(O,K) is a K-by-K square matrix when L = 1. For 
flat fading channels, well-known unitary matrices such as 
Hadamard matrix can be employed as l / f l d ( O , K ) ,  to 
yield the minimum MSE. In addition, Alamouti’s 2-by-2 
ST code [l 11 and cirnrlant matrices whose first column 
is a constant-amplitude zero autocorrelation (CAZAC) se- 
quence [3] of length K are also unitary; therefore, they can 
also be employed. 

Property 4. When the channel is frequency-selective fad- 
ing (L  2 2), a training matrix d(O,K) expressed as 

(O), (L), (2L)  ,... ,c$‘-l)L)l (24) d(O,K) = [‘K ‘K ‘ K  

satisfies (23), where cg) is a CAZAC sequence and cc)  
denotes i-th cyclic shift of the column vector c g ) .  

Outline of the proof of this property is as follows. For 
d p K )  given by (24), each cg), 1 5 i < K - 1, appears 
exactly once in the columns of D K in (1 8). The orthogo- 
nality of the cyclic shifts of a CAZAC sequence implies that 
Property 2 is satisfied. 

Table I1 shows some examples of the training matrix 
when L = 1,2,4. 

v. APPLICATION TO THE FREQUENCY SELECTIVE 
FADING CHANNELS 

The performances of MLEl and MLE2 were assessed by 
applying them to a Rayleigh fading channel. For the simu- 
lation, the system model depicted in Fig. 2 was used. The 
number of training symbols N was 16, and the number of 

antenna I’ was 2. A raised-cosine filter with a rolloff of 0.5 
was used for pulse shaping. For MLE 1, a CAZAC sequence 
of length 16 was employed; the training matrix was 

d(o,is)=[(l, 1,1, Lj ,  -1, - j ,  1, -1,L -L1, - j ,  -hj, 
(-l,l,-l,l,-j,-l,j,l,l,l,l,l,j,-l,-j,l)~]. 

For MLE2, K = 8 and the training matrix d(O,K) was 
the one associated with (K, I?) = (8,2) in Table 11; d(O,K) 

successively transmitted twice. The channel response g t {  in 
(2), i = 1,2, was obtained independently by extending the 
time-invariant channel in [SI. Specifically, gzi, i = 1,2, is 
given by 

g t j  = 5 t j ( k ) P ( j T S  - rj - t o ) ,  --03 5 1 5 00 (25) 
j=O 

where { < j ( k ) }  and {rj} are the attenuation and delays of 
the paths, respectively, and to  is the timing phase, which 
was selected as equal to LLI2JT-thereby guaranteeing 
that (ggil0 5 1 5 L - 1) encompassed the L most sig- 
nificant channel elements. The normalized delays { 7 j / T S }  

were set at { 0, 0.054, 0.135, 0.432, 0.621, 1.351). For 
a given j, {&(k)l - co < k < oo} was a zero-mean 
complex Gaussian random process where the power spet- 
tral density (PSD) was bandlimited to a range f f D ,  where 
fo was the maximum Doppler shift. For different patla, 
{{j(k)10 5 j 5 5 )  were statistically independent and their 
variances were equal to { -3,0, -2, -6, -8, -10 } (in decibels). 
{<j(k)} for the j-th path were generated by passing a coim- 
plex Gaussian white noise through a baseband Doppler ffil- 
ter in [lo]. After obtaining the time-varying channel {gt,]}, 
i = 1,2, MLEl and MLE2 were implemented as follows. 

For MLEl, L is upper bounded by N / r .  Ewas  set at 
8 for this estimator, because {gXi10 5 1 5 7) encom- 
passed all significant channel elements, as observed in [9] 
for the corresponding time-invariant channel. For MLIE2, 
L 5 K / r ,  and L 5 4. Therefore, MLE2 should as- 
sume a channel with a duration of less than or equal to 4. 
For MLEl and MLE2, the parameter @ in (10) and (20) 
was fixed at 8. The normalized maximum Doppler shift 
f D T s  = 7.0 x in Fig. 3(a), and fDTs = 1.5 x lo-’ 

Fig. 2. System model used for simulation. 
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Fig. 3. Performance comparison for frequency-selective fading channel 
(&/No=l5dB). (a) ~ D T ~  = 7.0 X @) fDT.e = 1.5 X 

in Fig. 3(b), and E*/& is fixed to 15 dB. The normalized 
carrier frequency offset u varies from 0 to 0.04. In the simu- 
lation, the MSE values were empirically estimated through 
5,000 trials. The results are shown in Fig. 3. MLE2 that 
employs an optimal training matrix outperformed MLEl 
whose training matrix was not optimally designed. The 
performances of the estimators were invariant in the range 
Ivl 5 0.04, which was the acquisition range of MLE2. 

VI. CONCLUSION 

Two types of joint ML channel and frequency offset es- 
timates called MLEl and MLE2, were derived for a system 
with transmitter diversity. MLEl was developed for an arbi- 
trary TS and MLEZ was derived for a periodic TS. The per- 
formance of these estimators were analyzed. In addition, for 
MLEZ a class of training matrices that minimize the MSE 
was classified. Simulation results indicated that MLE2 with 
an optimal training matrix can outperform MLEl. Deriva- 
tion of optimal training matrices for MLEl remains as fur- 
ther work. 

APPENDIX 

A. Derivation of the MSE of MLE2 

( 15) can be rewritten as 

Our objective is to show that D;M(IN - B)MDN = 
N2(P2 - 1)/(12P)DzD~. Define Mi = diag[iK,iK + 
1, - -  - ,iK+K-l], thenM = diag[Mo, MI, - -  - , MP--11. 
After a direct calculation using the block structure of the 
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matrices M(IN - B)M becomes: 

(P- l )M$ -MOM1 - * .  --MOMp-I 
(P - 1)M: ... 

P 
--Mp-iMO -Mp-iMl . * -  (P - l)M$-I 

(W 
This implies that M(IN - B)M = D ~ A D K  where 

A = (xf:; ME - xtz; E:;’ MkML). Now, it is 
enough to show that A = N2(P2 - 1)/(12P)I~. Since A 
is already diagonal, the mth diagonal term of A is 

1 P-1 p-lp-l 

C ( k K + m ) 2 -  - C ( k K + m ) ( l K + m )  
k=O k 0  k=O 

= P ( P 2  - 1)/(12P). (‘43) 
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