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Abstract—We consider the problem of recovering communities
of users and communities of items (such as movies) based on a
partially observed rating matrix as well as side-information in the
form of similarity graphs of the users and items. The user-to-user
and item-to-item similarity graphs are generated according to the
celebrated stochastic block model (SBM). We develop a lower
bound on the minimum expected number of observed ratings
(also known as the sample complexity) needed for this recovery
task, which is a function of various parameters including the
quality of the graph side-information manifested in the intra-
and inter-cluster probabilities of the SBMs. Our information-
theoretic results quantify the benefits of the two-sided graph
side-information for recovery, and further analysis reveals that
the two pieces of graph side-information produce an interesting
synergistic effect under certain scenarios. This means that if one
observes only one of the two graphs, then the required sample
complexity worsens to the case in which none of the graphs is
observed. Thus both graphs are strictly needed to reduce the
sample complexity.

Index Terms—Community detection, matrix completion,
stochastic block model, graph side-information.
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I. INTRODUCTION

Recommender systems aim to accurately predict users’
preferences and recommend appropriate items for users based
on available data that is usually scant and/or of low quality.
For example, Nexflix’s movie recommender system relies
heavily on the rating matrix that comprises users’ evaluations
of movies, and various recommendation algorithms (such as
collaborative filtering [2]) have been developed. However,
merely exploiting the available ratings may not be sufficient
for high-quality recommendations, since (i) the rating matrices
are usually highly incomplete, and (ii) the preferences of new
users are always unavailable (i.e., the cold start problem).
Meanwhile, it has been noticed that community information—
either the communities of users (e.g., the friendships in Face-
book) or the communities of movies (e.g., the categories/genres
of movies in the Netflix database)—may effectively improve
the quality of recommendations [3], [4] and tackle the cold
start problem [5], as users in the same community are more
likely to share similar preferences, and movies in the same
community are more likely to attract similar users.
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Foundation (NRF) Fellowship (R-263-000-D02-281). This work of Changho
Suh is supported in part by the Air Force Office of Scientific Research under
award number FA2386-19-1-4050.

While most of the attention has focused on the algorithmic
developments of the graph-aided recommender systems as
well as their accompanying analyses, the fundamental limits
of such problems are also worth exploring. Ahn et al. [4]
considered the problem of recovering the binary rating matrix
(which comprises users’ ratings to movies) based on a partially
observed matrix and a user-to-user similarity graph. They char-
acterized a sharp threshold on the sample complexity needed
for recovery as a function of the quality of the graph and the
amount of noise in the measurements, and also quantified the
gains due to graph side-information. In practice, the item-to-
item similarity graph can also be constructed from the features
of items [6], [7]; hence one may ask whether the additional
item-to-item graph provides strictly more benefits, and whether
observing two pieces of graph side-information simultaneously
has synergistic effects. This work precisely addresses these
questions by investigating the benefits of the two-sided graph
side-information for a recovery problem. To the best of our
knowledge, there were no prior works studying the benefits
of exploiting two graphs in the graph-aided recommender
systems from an information-theoretic perspective.

We consider a concrete example of movie recommender
systems with n users and m movies, wherein users’ ratings to
movies are either 0 (dislike) or 1 (like). Users are partitioned
into communities of men and women (of equal size), while
movies are partitioned into communities of action movies and
romance movies (of equal size). The assumptions on binary
ratings and two equal-sized communities are mainly for ease
of presentation, and extensions to general settings are certainly
also possible. Typically, action movies attract more men and
romance movies attract more women, but we also allow the
existence of atypical action movies and romance movies. The
nominal ratings from a certain community of users to a certain
type of movies are pre-specified in Table I.1 A personalized
rating of each individual rating is a perturbed version of the
corresponding nominal rating (being flipped with probability
less than 1/2), modeling the different preferences of users in
the same community to a certain movie. The n × m binary

1As an initial effort, we assume there is only one type of atypical movies
that is completely different from typical ones (e.g., typical action movies
attract men while atypical action movies attract women). For future work,
one may extend to a more general setting wherein three types of atypical
movies with different likabilities are considered (e.g., atypical action movies
may attract women only, both men and women, or neither).
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Action movies Romance movies
Typical Atypical Typical Atypical

Men 1 0 0 1
Women 0 1 1 0

TABLE I: Nominal ratings from a certain community of users to a
certain type of movies

rating matrix comprises n users’ ratings to all the m movies.
Under this setting, three pieces of information are observed

by the learner: (i) Entries in the rating matrix that are ob-
served/sampled (independently) with a fixed sample proba-
bility, (ii) The user-to-user similarity graph that is generated
according to the celebrated symmetric stochastic block model
(SBM) [8], [9] with two equal-sized communities (also known
as the planted bisection model), and (iii) The item-to-item sim-
ilarity graph that is generated according to another independent
symmetric SBM with two equal-sized communities. The task
here is to exactly recover the communities of men and women,
the communities of action and romance movies, as well as to
uncover the atypical action and romance movies.
Main Contributions: We develop a lower bound on the sam-
ple complexity needed for recovery as a function of the qual-
ities of the user-to-user similarity graph (i.e., the row graph)
and the item-to-item similarity graph (i.e., the column graph).
The qualities of the graphs can be quantified by the difference
between the intra- and inter-cluster connection probabilities
of the SBMs that govern them. Our theoretical studies show
that, from the viewpoint of the sample complexity, gains due
to the two-side graph side-information appear for a wide range
of parameters. More interestingly, we show that there exists
a certain regime in which there is a synergistic effect of the
two-sided graph side-information—simultaneously observing
both graphs is helpful for recovery, while observing only one
graph is equivalent to observing neither.
Related Works: The community detection problem, which
aims to partition vertices into different communities (or clus-
ters) based on the density of connections, has been well-
studied from an information-theoretic perspective [9]–[14].
Moreover, it has been shown that side-information (e.g., node
values [15]–[19], edge weights [20], similarity between data
points [21]) is also helpful in recovering hidden communities.
In our problem, we aim to recover the communities of users
and movies given realizations from two symmetric SBMs with
a partially observed matrix. Also, we note that the task in [22]
(joint recovery of rows and columns communities) is similar
to ours, but therein, the graph information is not available.

The matrix completion problem focuses on the recovery
of low-rank matrices from sparse observations, and has wide
applications in recommender systems [23]. Unlike the standard
setting in which the linear dependence of rows and columns of
the low-rank matrix is unstructured, the graph side-information
in recommender systems also imposes additional structures on
the low-rank matrix to be completed. For instance, [4], [24],
[25] considered a specific binary matrix completion problem
with the aid of one-sided graph side-information (the user-
to-user graph), while [6] and [26] studied matrix completion
models whereby additional proximity information about both
rows and columns is available. The task in this work is strictly

more challenging than merely recovering a low-rank matrix
(as discussed in Remark 1 in Section II-D); nonetheless, one
can view the problem of recovering a low-rank matrix with
two-sided graph side-information as a by-product of our task.

II. PROBLEM STATEMENT
A. Notation

For any integer a ≥ 1, [a] represents the set of integers
{1, . . . , a}. For any integers a, b such that a < b, [a : b]
represents the set of integers {a, a+ 1, . . . , b}. For any event
E , the conditional probability P(·|E) is abbreviated as PE(·).
B. Model

Consider n users and m movies, and we require m =
ω(log n) and n = ω(logm) for technical reasons (which
essentially excludes very “fat” and very “thin” matrices). The
sets of men and women are respectively denoted byM andW ,
whereM,W ⊂ [n], |M| = |W| = n/2, andM∩W = ∅. The
sets of action and romance movies are respectively denoted
by A and R, where A,R ⊂ [m], |A| = |R| = m/2, and
A ∩ R = ∅. Meanwhile, there may also exist an unknown-
sized subset of atypical action movies A0 ⊆ A and an
unknown-sized subset of atypical romance movies R0 ⊆ R.
Let Ā , A \ A0 and R̄ , R \R0.

Let ξM,W,A,R,A0,R0
be an aggregation of the parameters

of interest, and we sometimes abbreviate it as ξ for notational
convenience. The sets of men, women, action and romance
movies, atypical action and romance movies (associated with
ξ) are respectively denoted by ξM, ξW , ξA, ξR, ξA0

, ξR0
. In

order to avoid any indeterminacies, without loss of generality,2

we assume that the majority of the first n/2 users are men (i.e.,
|ξM∩ [n/2]| > n/4), and the majority of the first m/2 movies
are action movies (i.e., |ξA ∩ [m/2]| > m/4). The parameter
space Ξ is the collection of valid parameters ξM,W,A,R,A0,R0

.
The nominal ratings from users to movies, as stated in

Table I, reflects our assumption that typical action movies
Ā and atypical romance movies R0 attract more men, while
typical romance movies R̄ and atypical action movies A0

attract more women. The taste of each individual user also
differs from the nominal taste of the communities. For each
individual man or woman, the ratings to action movies are
independently perturbed (i.e., flipped from nominal ratings)
by Bernoulli random variables Bern(θA), while the ratings
to romance movies are independently perturbed by Bernoulli
random variables Bern(θR), where θA, θR ∈ (0, 1

2 ) are the
personalization parameters for action and romance movies, re-
spectively. The difference between θA and θR is an important
statistic for distinguishing action and romance movies.

For any ξ ∈ Ξ, the corresponding n×m non-personalized
binary rating matrix Bξ denotes users’ nominal ratings to
all the movies. Note that Bξ is uniquely determined by ξ
according to Table I (e.g., (Bξ)ij = 1 if i ∈ ξM, j ∈ ξĀ,
and (Bξ)ij = 0 if i ∈ ξW , j ∈ ξR0

), but a same matrix
B may correspond to different distinct instances in Ξ (see
Remark 1 below for an example). The n × m personalized

2Without this assumption, for any ξ, one can always find a ξ′ with ξ′W =
ξM, ξ′R = ξA, ξ′R0

= ξA0 , and ξ′A0
= ξR0 (i.e., simultaneously flipping

the communities of users and movies) such that ξ and ξ′ are indistinguishable.
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Fig. 1: An illustration of V Ω, G1, and G2 that are generated
according to the model parameterized by ξ, where ξM = {1, 2, 3, 4}
(gray), ξW = {5, 6, 7, 8} (orange), ξA = {1, 2, 3, 4, 5, 6} (blue),
ξA0 = {6} (light blue), ξR = {7, 8, 9, 10, 11, 12} (red), and
ξR0 = {12} (pink).

binary rating matrix Vξ denotes all the users’ actual ratings
to all the movies, where (Vξ)ij equals (Bξ)ij ⊕ Bern(θA) if
j ∈ A, and (Bξ)ij ⊕ Bern(θR) if j ∈ R. The i-th row of Vξ
is the i-th user’s ratings to all the movies, whereas the j-th
column of Vξ is all the users’ ratings to the j-th movie.

C. Observations

The learner observes three pieces of information.
(a) The partially observed matrix V Ω. For each (i, j) ∈ [n]×
[m], the (i, j)-th entry of V Ω is given by

(V Ω)ij =

{
(Vξ)ij , with probability p,
⊥, with probability 1− p.

where ⊥ denotes the erasure symbol, and p is the sample
probability. The sample complexity then equals nmp, which
corresponds to the expected number of observed entries.
(b) The row graph G1 with n nodes corresponding to the n
users. For any pairs of nodes i 6= j, they are connected with
probability α1 = a1 logn

n if i and j are in the same community,
and with probability β1 = b1 logn

n otherwise.
(c) The column graph G2 with m nodes corresponding to the
m movies. For any pairs of nodes i 6= j, they are connected
with probability α2 = a2 logm

m if i and j are in the same
community, and with probability β2 = b2 logm

m otherwise.
An example of the three pieces of information V Ω, G1, and

G2 is illustrated in Fig. 1. Note that a1, a2, b1, b2 are constants,
while α1, β1 = Θ( logn

n ) and α2, β2 = Θ( logm
m ). We define

I1 , (
√
a1−

√
b1)2 as the quality of the row graph G1, since

a larger difference between a1 and b1 makes recovery easier.
A well-known result [9] shows that exact recovery is possible
if I1 > 2 and impossible if I1 < 2. Similarly, we define
I2 , (

√
a2 −

√
b2)2 as the quality of the column graph G2.

D. Objective

Based on the observations V Ω, G1, and G2, the learner aims
to use an estimator φ = φ(V Ω, G1, G2) to recover ξ, including
the sets of users (ξM and ξW ), the sets of movies (ξA and ξR),
and the sets of atypical movies (ξA0 and ξR0 ).

Definition 1 (Exact recovery). For any estimator φ, the
maximum probability of error is defined as

Perr(φ) , max
ξ∈Ξ

Pξ(φ(V Ω, G1, G2) 6= ξ), (1)

where Pξ(·) represents the probability of error when V Ω, G1,
and G2 are generated according to the model parameterized
by ξ. An estimator φ satisfies the exact recovery property if
Perr(φ) goes to zero as n tends to infinity.

As a by-product, an estimator φ with a vanishing Perr(φ)
is also able to reliably recover the non-personalized binary
rating matrix Bξ with high probability. However, as stated in
Remark 1 below, the ability of merely recovering the binary
rating matrix Bξ does not suffice for our task.

Remark 1. For two different instances ξ 6= ξ′, their cor-
responding non-personalized binary rating matrices Bξ and
Bξ′ may be the same. This can be shown via the following
example with m = 6, n = 2:
• ξM = {1}, ξW = {2}, ξA = {1, 2, 3}, ξR = {4, 5, 6},
ξA0

= {3}, and ξR0
= ∅;

• ξ′M = {1}, ξ′W = {2}, ξ′A = {1, 2, 4}, ξ′R = {3, 5, 6},
ξ′A0

= {4}, and ξ′R0
= ∅.

In both cases,

Bξ = Bξ′ =

(
1 1 0 0 0 0
0 0 1 1 1 1

)
.

Essentially, movies that attracts men may be either typical
action movies or atypical romance movies. This observation
also applies to movies that attract women. Because of this flex-
ibility in the classification of movies, the ability of recovering
Bξ does not guarantee reliable recovery of ξ.

III. MAIN RESULTS

For ease of presentation, the following results are stated in
terms of the sample probability p (which is proportional to
the sample complexity nmp), and we sometimes use these
two notions interchangeably. Theorem 1 below provides a
lower bound on the sample probability p, as a function of
personalization parameters θA, θR, and I1 and I2 (the qualities
of two graphs). We first define three functions of θA and θR:

τAR , 1−
√
θAθR −

√
(1− θA)(1− θR),

νA , 1− 2
√
θA(1− θA), νR , 1− 2

√
θR(1− θR).

Theorem 1. (a) Consider the regime in which θA 6= θR. For
any ε > 0, if

p ≥ max

{
(2(1 + ε)− I1) log n

(νA + νR)m
,

(1 + ε) logm

min{νA, νR} · n
,

(2(1 + ε)− I2) logm

2τARn

}
, (2)

there exists a sequence of estimators estimator φ satisfying
limn→∞ Perr(φ) = 0.

(b) Consider the regime in which θA = θR. For any ε > 0,
if I2 ≥ 2(1 + ε) and

p ≥ max

{
(2(1 + ε)− I1) log n

(νA + νR)m
,

(1 + ε) logm

min{νA, νR} · n

}
, (3)

there exists a sequence of estimators estimator φ satisfying
limn→∞ Perr(φ) = 0.
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(a) Partitions of the (θA, θR)-plane.
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(c) (θA, θR) = (0.3, 0.15)

Fig. 2: Fig. 2a shows the dominant term of equation (2) for I1 = I2 = ε = 0 and different values of (θA, θR): the second and third terms
are respectively the dominant term when (θA, θR) falls into the red and green regions. Fig. 2b and Fig. 2c plot the sample probability p as
a function of I2 (for n = m = 10, 000 and arbitrary I1).

In particular, the estimator φ in Theorem 1 can be chosen
as the maximum likelihood estimator φML, and we sketch the
analysis of φML in Section IV.

Remark 2. By noting that θA = θR implies τAR = 0, the
achievability result in (3) can be interpreted as a limiting
consequence of (2) as θA → θR. When I2 ≥ 2(1 + ε), the
third term of (2) is non-positive and thus plays no role in the
overall expression. When I2 < 2, no achievability result is
provided since the third term of (2) becomes infinity.

To distinguish movies that attract same community of users
(e.g., typical action movies and atypical romance movies), one
wishes to use both the column graph G2 and the partially
observed matrix V Ω governed by θA and θR. However, the
matrix V Ω becomes useless in distingushing such movies when
θA = θR, hence the column graph G2 must be good enough
(i.e., I2 ≥ 2(1+ε) as stated in Theorem 1) so that communities
of movies can be exactly recovered based on G2 only.

Example 1 (n = m). Note that regardless of the values of I1
and (θA, θR), in both (2) and (3), the first term (2(1+ε)−I1) logn

(νA+νR)m

is always upper bounded by the second term (1+ε) logm
min{νA,νR}·n .

This implies that when n = m, the first term is inactive, and
observing the row graph G1 (with I1 > 0) does not help to
reduce the sample complexity compared to the scenario in
which G1 is not observed. In fact, the above observation can
be generalized to every (m,n)-pair such that n ≤ m.

Another natural question to ask is that whether observing the
column graph G2 (with I2 > 0) helps to reduce the sample
complexity. We assume the slackness parameter ε = 0, and
analyze three different cases in the following.
(a) When (θA, θR) falls into the red region in Fig. 2a, the
right-hand side (RHS) of (2) is dominated by the second term
regardless of the value of I2, hence observing the column
graph G2 does not reduce the sample probability. Fig. 2b plots
the sample probability p as a function of I2 for (θA, θR) =
(0.4, 0.1), and note that p stays constant as I2 increases. This
conclusion intuitively makes sense since the “big difference”
between θA and θR makes it easy to distinguish the action
and romance movies from the partially observed matrix V Ω,
and the column graph G2 then becomes useless.
(b) When (θA, θR) falls into the green region in Fig. 2a and
satisfies θA 6= θR, observing the column graph G2 does help

to reduce the sample probability. This is because the sample
probability is dominated by the third term of (2) when I2 =
0, and increasing I2 effectively decreases the third term. As
illustrated in Fig. 2c for (θA, θR) = (0.3, 0.15), the sample
probability with any positive I2 is strictly smaller than that
with I2 = 0. Another interesting phenomenon is that once
I2 exceeds the “threshold” 2 − 2τAR

min{νA,νR} (which is strictly
positive), the second term of (2) then becomes active, and the
gain of increasing I2 saturates. In Fig. 2c, as I2 increases, the
sample probability first decreases and then stays constant.
(c) When θA = θR, exact recovery is possible if I2 > 2.
Thus, observing the column graph G2 is helpful only when
the quality of G2 is sufficiently high (i.e., I2 > 2).

Example 2 (n = 5m). Again, we assume the slackness
parameter ε = 0, and analyze several cases as follows.
(a) When (θA, θR) falls into the red region (including the
boundary between the red and yellow regions) in Fig. 3a, the
RHS of (2) is dominated by the second term regardless of the
values of (I1, I2), hence neither the row graph G1 nor the
column graph G2 helps to reduce the sample probability.
(b) When (θA, θR) falls into the yellow region in Fig. 3a, the
RHS of (2) is dominated by the first term, hence observing the
row graph G1 (with I1 > 0) reduces the sample probability.
Fig. 3b plots the sample probability p as a function of I1 for
(θA, θR) = (0.3, 0.03) and three different values of I2. Note
that (i) regardless of the value of I2, the sample probability
with any positive I1 is strictly smaller than that with I1 = 0;
and (ii) the column graph G2 (with I2 > 0) is also helpful
when I1 exceeds the red point, and is useless otherwise.
(c) When (θA, θR) falls into the green region in Fig. 3a and
satisfies θA 6= θR, the RHS of (2) is dominated by the third
term, hence observing the column graph G2 (with I2 > 0)
reduces the sample probability.
(d) When (θA, θR) is on the boundary between the yellow and
green regions in Fig. 3a, the first and the third terms in (2) are
equal and RHS of (2) is dominated by both of the two terms.
In this regime, observing both the row and column graphs G1

and G2 (with I1 > 0, I2 > 0) reduces the sample probability
compared to the scenario in which neither is observed. More
interestingly, observing only one of the two graphs is equiv-
alent to observing neither. Thus, there is a synergistic effect
when both pieces of side-information (i.e., both graphs) are
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Fig. 3: Fig. 3a shows the dominant term of equation (2) for I1 = I2 = ε = 0 and different values of (θA, θR). The first, the second, and
the third terms are respectively the dominant term when (θA, θR) falls into the yellow region, the red region, and the green region. Fig. 3b
and Fig. 3c plot the sample probability p as a function of I1 for n = 5m = 10, 000 and different values of (θA, θR).

observed. The above argument is also illustrated in Fig. 3c for
the boundary point (θA, θR) = (0.35, 0.1156).

IV. PROOF SKETCH OF ACHIEVABILITY

The maximum likelihood estimator φML can be used to
reconstruct ξM,W,A,R,A0,R0

, and as long as the sample proba-
bility p exceeds the lower bound in equation (2) (for θA 6= θR)
or equation (3) (for θA = θR), one can show that Perr(φML)
tends to zero as n tends to infinity. We sketch the analysis
here, and defer the detailed proof to the full version [1].

For any ξ ∈ Ξ, let L(ξ) , − logPξ(V Ω, G1, G2) be the
negative log-likelihood of ξ. The estimation rule of φML is

ξ̂ = φML(V Ω, G1, G2) = argmin
ξ∈Ξ

L(ξ).

Even though it may not be a priori clear, it turns out that the
probabilities of error for different ground truths ξ∗ ∈ Ξ with
different sizes of A0 and R0 are exactly the same. Hence,

Perr(φML) = Pξ∗(φML(V Ω, G1, G2) 6= ξ∗)

≤
∑

ξ∈Ξ:ξ 6=ξ∗
Pξ∗(L(ξ) ≤ L(ξ∗)), (4)

where ξ∗ can be chosen arbitrarily and (4) follows from
the union bound. Consider a specific ξ 6= ξ∗, and we
aim to calculate the probability that L(ξ) ≤ L(ξ∗). We
define k1 , |ξM \ ξ∗M| = |ξW \ ξ∗W | as the amount of
overlap between the communities of users in ξ∗ and ξ, and
define k2 , |ξA \ ξ∗A| = |ξR \ ξ∗R| in a similar way.
Let tA be the number of movies that belong to both ξ∗A
and ξA, but only one out of ξ∗A and ξA is atypical, i.e.,
tA ,

∣∣{j ∈ [m] : j ∈ (ξ∗Ā ∩ ξA0) ∪ (ξ∗A0
∩ ξĀ)

}∣∣. Similarly,
let tR , |{j ∈ [m] : j ∈ (ξ∗R̄ ∩ ξR0

) ∪ (ξ∗R0
∩ ξR̄)}|. With

some calculations deferred to [1] and by applying the Chernoff
bound P(X > κ) ≤ mint>0 e

−tκ ·E(etX) with t = 1
2 , we note

that Pξ∗(L(ξ) ≤ L(ξ∗)) depends only on the four parameters
k1, k2, tA, tR defined above. Hence, we partition ξ ∈ Ξ\{ξ∗}
into different type classes parameterized by k1, k2, tA, tR,
which are further denoted by Ξξ∗(k1, k2, tA, tR). Note that
all the elements ξ in one type class have the same probability
of error, denoted by Perr(k1, k2, tA, tR). Let T be the set
of valid (k1, k2, tA, tR)-tuples satisfying k1 ∈ [0 : n

4 ], k2 ∈

[0 : m
4 ], tAA ∈ [0 : m

2 − k2], tRR ∈ [0 : m
2 − k2], and

(k1, k2, tA, tR) 6= (0, 0, 0, 0). Then, (4) can be expressed as∑
(k1,k2,tA,tR)∈T

|Ξξ∗(k1, k2, tA, tR)| · Perr(k1, k2, tA, tR).

For each (k1, k2, tA, tR) ∈ T , we calculate the number of
ξ in the type class Ξξ∗(k1, k2, tA, tR) and its corresponding
Perr(k1, k2, tA, tR). As expected, the most delicate analysis
occurs when both k1 and k2 are small, since instances ξ that
are closer to the ground truth ξ∗ are likelier to cause errors.
Nonetheless, it turns out that as long as p exceeds the lower
bound in equation (2) or equation (3), one can ensure that
limn→∞ Perr(φML) = 0. This completes the proof sketch.

V. CONCLUSION AND FUTURE DIRECTIONS

This paper investigates a novel community recovery prob-
lem based on a partially observed rating matrix and two-sided
graph side-information. We quantify the gains due to graph
side-information; in particular, there exists a certain regime
in which simultaneously observing two pieces of graph side-
information is critical to reduce the optimal sample probability.
In addition to the achievability result, we also develop a
converse in [1] showing that for any ε > 0, the probability
of error of any estimator must tend to one if (i) θA 6= θR and

p < max

{
(2(1− ε)− I1) log n

(νA + νR)m
,

(1− ε) logm

min{νA, νR} · n
,

((1− ε)− I2) logm

2τARn

}
,

or (ii) θA = θR and

p < max

{
(2(1− ε)− I1) log n

(νA + νR)m
,

(1− ε) logm

min{νA, νR} · n

}
.

Note that the achievability and converse results match for
a wide range of parameters of interest, and match up to a
constant factor of two for the remaining parameter regime.

Finally, we propose two promising directions for future
work: (i) In addition to the fundamental limits, another direc-
tion that is worth exploring is the algorithmic developments
and analyses for such a problem. (ii) It would also be interest-
ing to investigate a more general setting. For instance, users’
ratings to movies may not necessarily be binary, and both users
and movies may form multiple unequal-sized communities.
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