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Abstract—We develop a network-decomposition framework to
provide elementary parallel subnetworks that can constitute an
original network without loss of optimality. In our earlier work,
a network decomposition is constructed for the Avestimehr-
Diggavi-Tse deterministic network which well captures key
properties of wireless Gaussian networks. In this work, we
apply this decomposition framework to general problem settings
where receivers intend to compute functions of the messages
generated at transmitters. Depending on functions, these settings
include a variety of network problems, ranging from classical
communication problems (such as multiple-unicast and multicast
problems) to function computation problems. For many of these
problems, we show that coding separately over the decomposed
orthogonal subnetworks provides optimal performances, thus
establishing a separation principle.

I. INTRODUCTION
Communication networks are typically designed based on

a separation approach where the whole task is divided into
various modules and each module can then be independently
designed. This separation methodology has been advocated
due to its engineering advantages. For certain scenarios such
as point-to-point source-channel coding problems [1], this
approach also provides an optimal communication architecture
although it does not guarantee the optimal performance in
general.
In this work, we intend to develop a separation principle in

the context of wireless networks which ensures the optimality
of separate tasks independently performed across decomposed
orthogonal modules. As an initial effort, we consider a sim-
ple abstraction model of wireless networks: the Avestimehr-
Diggavi-Tse (ADT) deterministic network which well captures
superposition and broadcast properties of wireless Gaussian
networks [2].
In our earlier work [3], we developed a network decompo-

sition for a two-transmitter two-receiver ADT network which
enables splitting an original network into several orthog-
onal subnetworks. In [3], the network decomposition was
investigated for a certain network scenario in which both
receivers want to compute a linear function (modulo-2 sum) of
Bernoulli sources generated at the transmitters. Interestingly,
it was shown that in the scenario, coding separately over
the decomposed orthogonal components achieves the optimal
performance, i.e., the decomposition holds without loss of
optimality. Subsequently in [4] it was also shown that the
decomposition is optimal even in the presence of feedback.
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Fig. 1. Two-transmitter two-receiver Avestimehr-Diggavi-Tse (ADT) deter-
ministic network.

Our interest is to examine the optimality of the network
decomposition for more general scenarios in which receivers
wish to compute arbitrary functions of the messages. Notice
that depending on functions, these settings encompass a variety
of network problems ranging from classical communication
problems – such as multiple-unicast and multicast problems –
to function computation problems. In this work, we show that
the network decomposition is optimal also for two additional
scenarios. The first scenario represents the two-unicast prob-
lem where each receiver wants to decode a message from its
corresponding transmitter. The second scenario indicates the
classical multicast problem in which both receivers want to
decode all the messages of transmitters. Moreover, we estab-
lish the separation principle even in the presence of feedback.
This result has potential to provide significant ramifications for
the design of structured computation codes [5], [6] in wireless
networks.

II. MODEL

We consider a two-transmitter two-receiver ADT determin-
istic network as depicted in Fig. 1. This network is described
by four integer parameters nij which indicates the number of
signal bit levels from transmitter i (i = 1, 2) to receiver j
(j = 1, 2). Let X! ∈ F

q
2 be transmitter !’s encoded signal

where q = maxij nij . The received signals are then given by

Y1 = G
q−n11X1 ⊕G

q−n21X2,

Y2 = G
q−n12X1 ⊕G

q−n22X2,
(1)

where G is the q-by-q shift matrix, i.e., [G]ij = 1{i = j+1}
(1 ≤ i ≤ q; 1 ≤ j ≤ q), and operations are performed in
F2. We focus on a simple setting where n := n11 = n22 and
m := n12 = n21. We denote this network by (m,n) model.
Receiver ! wishes to compute a function f!(W1,W2) of the
two independent messages W1 and W2, generated at the two
transmitters, with N uses of the network, ! = 1, 2.
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We consider two cases, depending on the presence of
feedback. In the nonfeedback case, the encoded signal X!i of
transmitter ! at time i is a function of its own message W!. In
the feedback case, on the other hand, X!i is a function of W!

and past feedback signals from both receivers (Y i−1
1 , Y i−1

2 ).
Here we use shorthand notation to indicate the sequence
up to i − 1, e.g., Y i−1

1 := (Y11, · · · , Y1(i−1)). Receiver !
uses a decoding function d! to estimate f!(W1,W2) from
its received signal Y N

! . An error occurs whenever d! %=
f!(W1,W2). The average probabilities of error are given by
λ! = E [P (d! %= f!(W1,W2))], ! = 1, 2.
We say that a rate pair (R1, R2) is achievable if there exists

a family of codebooks and encoder/decoder functions such
that the average decoding error probabilities go to zero as
code length N tends to infinity. The capacity region C is the
closure of the set of the achievable rate pairs. The symmetric
capacity is defined as Csym := sup{R : (R,R) ∈ C}.
Depending on the functions, we consider three scenarios:

(1) the function multicast problem considered in [3], [4]; (2)
the two-unicast problem; (3) the classical multicast problem:

(S1) : f1(W1,W2) = f2(W1,W2) = W1 ⊕W2;

(S2) : f1(W1,W2) = W1, f2(W1,W2) = W2;

(S3) : f1(W1,W2) = f2(W1,W2) = (W1,W2).

In the first scenario, we consider a binary sequence for
messages: W! = (S!1, · · · , S!K), where S!i’s are independent
and identically distributed Bernoulli sources with Bern(12 ).

III. NETWORK DECOMPOSITION
We state the network decomposition established in the

context of the first scenario (S1) [3].
Theorem 1 (Network Decomposition): For an arbitrary

(m,n) model, the following network decompositions hold:

(m,n) (2)

=

{

(r, r + 1)n−m−a × (r + 1, r + 2)a, m < n;
(r + 1, r)m−n−a × (r + 2, r + 1)a, m > n.

where

r =

⌊

min{m,n}

|n−m|

⌋

,

a = min{m,n} mod |n−m|.

(3)

Here we use the symbol × for the concatenation of orthogonal
models, just like in R2 = R× R.

Proof: See [3] for the complete proof. Here we only
provide a network decomposition idea with two representative
examples, each belonging to the regimes 0 ≤ α ≤ 1

2 and
1
2 ≤ α ≤ 2

3 respectively. Here we define α := m
n
. Notice

from (2) that

(m,n) = (0, 1)n−2m × (1, 2)m, 0 ≤ α ≤
1

2
;

(m,n) = (1, 2)2n−3m × (2, 3)2m−n,
1

2
≤ α ≤

2

3
.

Fig. 2(a) shows the network decomposition for the regime
of 0 ≤ α ≤ 1

2 . The decomposition idea is to use graph
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Fig. 2. Network Decomposition.

coloring. Start with assigning a color (say, blue) to the first
level at transmitter 1. We then assign the same blue color
to all the levels that are connected with the first level at
transmitter 1. These are the first level at receiver 1 and the
second bottom level at receiver 2. Now do the same procedure
starting from transmitter 2. Specifically, assign the blue color
to the first level at transmitter 2, then assign the same color
to all of the connected levels: the first level at receiver 2
and the second bottom level at receiver 1. We then obtain
an independent graph of model (1, 2) and are left with model
(m−1, n−2). For the remaining graph of model (m−1, n−2),
repeat the above procedure. We then obtain (1, 2)2 and are
left with model (m− 2, n− 2). Here we used the same blue
color, as the additionally obtained graph is of the same model
(1, 2). Repeating this procedure m times, we finally obtain
(1, 2)m × (0, 1)n−m. Using the same graph coloring idea, we
can also prove the second decomposition. See Fig. 2(b) for
details.
Remark 1: Theorem 1 suggests that fundamental building

blocks are of form (r, r + 1) or (r + 1, r), that is, “gap-1”
models. !

IV. MODULO-2 SUM MULTICAST (S1)

In this scenario, both receivers want to decode the same
function. Hence, the performance metric should be multicast-
ing capacity defined as

max
(R1,R2)∈C

min{R1, R2}.

It can be readily seen that the multicast capacity is identical to
the symmetric capacity defined in Section II. The symmetric
capacity was already characterized both for the nonfeedback
case [3] and for the feedback case [4]. Here we restate the
main results in [3], [4] with an emphasis on the separation
principle.
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A. Nonfeedback Case
Theorem 2: The network decomposition (2) is optimal, i.e.,

coding separately over decomposed orthogonal subnetworks
achieves the symmetric capacity:

Csym =























m, 0 ≤ α ≤ 2
3 ;

2
3n,

2
3 ≤ α < 1;

n,α = 1;
2
3m, 1 < α ≤ 3

2 ;
n,α ≥ 3

2 ,

where α := m
n
.

Proof: Since elementary subnetworks are of form (r, r+
1) or (r + 1, r) as suggested in Theorem 1, we focus on the
rates of the “gap-1” models.
Lemma 1: The following rates are achievable:
(1) For the models of (0, 1) and (1, 0), Rsym = 0.
(2) For the models of (1, 2) and (2, 1), Rsym = 1.
(3) For the models of (r, r + 1) and (r + 1, r) with r ≥ 2,

Rsym = 2
3 (r + 1).

(4) For the model (r, r), Rcomp = r.
The proof of this lemma is given in [3].
We will now show the optimality of the network decompo-

sition. We focus on the case of m < n. The mirror case of
m > n similarly follows. The case of m = n is straightfor-
ward. For the case of 0 ≤ α ≤ 1

2 , the decomposition is given
by (m,n) = (0, 1)n−2m× (1, 2)m. Thus, using Lemma 1, the
symmetric rate is Rsym = 0 · (n− 2m) + 1 ·m = m. For the
case of 1

2 ≤ α ≤ 2
3 , (m,n) = (1, 2)2n−3m×(2, 3)2m−n. Thus,

using Lemma 1, the symmetric rate is Rsym = 1·(2n−3m)+2·
(2m−n) = m. Finally, consider the case of α ≥ 2

3 . Applying
the decomposition (2), we find that in this case, r ≥ 2. So we
get

Rcomp =
2

3
(r + 1)(n−m− a) +

2

3
(r + 2)a

=
2

3
{r(n−m) + a+ (n−m)}

(a)
=

2

3
{m+ (n−m)} =

2

3
n.

where (a) is due to (3). Together with the converse proof
established in [3], we complete the proof.

B. Feedback Case
Theorem 3: The network decomposition (2) is optimal, i.e.,

the separation approach can achieve the symmetric feedback
capacity:

CFB
sym =







2
3n, α< 1;
n,α = 1;
2
3m, α> 1.

Proof: We find that nontrivial “gap-1” models in the
feedback case are of (0, 1), (1, 0), (1, 2) and (2, 1). We employ
nonfeedback strategies for the other models. The symmetric
feedback rates of the key models are given in the following
lemma. See [4] for the proof.
Lemma 2: The following rates are achievable:

(1) For the models of (0, 1) and (1, 0), RFB
sym = 2

3 .
(2) For the models of (1, 2) and (2, 1), RFB

sym = 4
3 .

As in the nonfeedback case, we focus on the case of m < n.
For the case of 0 ≤ α ≤ 1

2 , (m,n) = (0, 1)n−2m × (1, 2)m.
Using Lemma 2, we can then achieve RFB

sym = 2
3 · (n −

2m) + 4
3 · m = 2

3n. For the case of 1
2 ≤ α ≤ 2

3 ,
(m,n) = (1, 2)2n−3m × (2, 3)2m−n. Using Lemma 2, we
get RFB

sym = 4
3 · (2n − 3m) + 2 · (2m − n) = 2

3n. For the
case of α ≥ 2

3 , we employ nonfeedback schemes to achieve
RFB

sym = 2
3n. Using the converse proof established in [4], we

complete the proof.

V. TWO-UNICAST (S2)

For simplicity, we examine the optimality of the separation
approach only for the symmetric capacity, although the general
performance metric is the capacity region in this scenario.

A. Nonfeedback Case
Theorem 4: The network decomposition (2) is optimal, i.e.,

coding separately over decomposed orthogonal subnetworks
achieves the symmetric capacity [7], [8]:

Csym =























n−m, 0 ≤ α ≤ 1
2 ;

m, 1
2 ≤ α ≤ 2

3 ;
n− m

2 ,
2
3 ≤ α ≤ 1;

m
2 , 1 ≤ α ≤ 2;
n,α ≥ 2.

Proof: The symmetric rates of the gap-1 models are given
in the following lemma. See [7], [8] for the proof.
Lemma 3: The following rates are achievable:

(1a) For the model (0, 1), Rsym = 1.
(1b) For the model (1, 0), Rsym = 0.
(2) For the model (1, 2), Rsym = 1.

(3a) For the model (r, r + 1) with r ≥ 2, Rsym = r
2 + 1.

(3b) For the model (r + 1, r) with r ≥ 1, Rsym = r+1
2 .

(4) For the model (r, r), Rcomp = r
2 .

For 0 ≤ α ≤ 1
2 , (m,n) = (0, 1)n−2m × (1, 2)m. Hence

using Lemma 3, we get Rsym = 1 · (n−2m)+1 ·m = n−m.
For 1

2 ≤ α ≤ 2
3 , (m,n) = (1, 2)2n−3m × (2, 3)2m−n. Using

Lemma 3, we get Rsym = 1 · (2n− 3m) + 2 · (2m− n) = m.
For 2

3 ≤ α ≤ 1, we get

Rsym =
(r

2
+ 1

)

(n−m− a) +

(

r + 1

2
+ 1

)

a

=
(n−m)r + a

2
+ n−m

(a)
= n−

m

2
.

where (a) is due to (3). For 1 ≤ α ≤ 2, we get

Rsym =

(

r + 1

2

)

(m− n− a) +

(

r + 2

2

)

a

=
(m− n)r + a

2
+

m− n

2
(a)
=

m

2
.
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where (a) is due to (3). Finally for α ≥ 2, the decomposition
is given by (m,n) = (1, 0)m−2n × (2, 1)n and hence we get
Rsym = n. Using the converse proof established in [7], we
complete the proof.

B. Feedback Case
Theorem 5: The network decomposition (2) is optimal, i.e.,

the separation approach can achieve the symmetric feedback
capacity:

CFB
sym =

{

n− m
2 , 0 ≤ α ≤ 1;

m
2 , α ≥ 1.

Proof: It turns out that in the feedback case, nontrivial
“gap-1” models are of (1, 0), (1, 2). We employ nonfeedback
strategies for the other models. The symmetric feedback rates
of the key models are given in the following lemma. See [9]
for the proof.
Lemma 4: The following rates are achievable:
(1) For the model (1, 0), RFB

sym = 1
2 .

(2) For the model (1, 2), RFB
sym = 3

2 .
For the case of 0 ≤ α ≤ 1

2 , (m,n) = (0, 1)n−2m× (1, 2)m.
Using Lemma 4, we can then achieve RFB

sym = 1 · (n− 2m) +
3
2 · m = n − m

2 . For
1
2 ≤ α ≤ 2

3 , (m,n) = (1, 2)2n−3m ×
(2, 3)2m−n. Using Lemma 4, we get RFB

sym = 3
2 · (2n− 3m)+

2 · (2m − n) = n − m
2 . For the case of

2
3 ≤ α ≤ 2, we

employ nonfeedback schemes. Finally for α ≥ 2, (m,n) =
(1, 0)m−2n× (2, 1)n and hence we get RFB

sym = 1
2 · (m−2n)+

1 ·n = m
2 . Using the converse proof in [9], [10], we complete

the proof.

VI. CLASSICAL MULTICAST (S3)

As in the first scenario (S1), the performance metric is
the multicast capacity which coincides with the symmetric
capacity defined in Section II. In this scenario, the symmetric
capacity can be easily derived from the intersection of the
capacity regions of two individual multiple access channels
associated with two receivers. Specifically it is given by

Csym = sup{R1 +R2 : (R1, R2) ∈ CMAC1 ∩ CMAC2}

= min {2min(m,n),max(m,n)}

where CMAC1 = {(R1, R2) : R1 ≤ n,R2 ≤ m,R1 + R2 ≤
max(m,n)} and CMAC2 = {(R1, R2) : R1 ≤ m,R2 ≤
n,R1 +R2 ≤ max(m,n)}.

A. Nonfeedback Case
Theorem 6: The network decomposition (2) is optimal, i.e.,

coding separately over decomposed orthogonal subnetworks
achieves the symmetric capacity:

Csym =















2m, 0 ≤ α ≤ 1
2 ;

n, 1
2 ≤ α ≤ 1;

m, 1 ≤ α ≤ 2;
2n α ≥ 2.

Proof: The symmetric rates of the gap-1 models are given
in the following lemma. The proof is straightforward.
Lemma 5: The following rates are achievable:

(1) For the models of (0, 1) and (1, 0), Rsym = 0.
(2) For the models of (r, r + 1) and (r + 1, r) with r ≥ 1,

Rsym = r + 1.
(3) For the model (r, r), Rcomp = r.
We focus on the case of m ≤ n. The other case similarly

follows. For 0 ≤ α ≤ 1
2 , (m,n) = (0, 1)n−2m × (1, 2)m.

Hence using Lemma 5, we get Rsym = 0 · (n− 2m)+ 2 ·m =
2m. For 1

2 ≤ α ≤ 1, we get

Rsym = (r + 1)(n−m− a) + (r + 2)a

= {(n−m)r + a}+ n−m

(a)
= n.

where (a) is due to (3). This completes the proof.

B. Feedback Case
Theorem 7: The network decomposition (2) is optimal, i.e.,

the separation approach can achieve the symmetric feedback
capacity [11]:

CFB
sym =

{

n, 0 ≤ α ≤ 1;
m,α ≥ 1.

Proof: It turns out that (0, 1) and (1, 0) are the only
nontrivial models where feedback provides a capacity increase.
The symmetric feedback rates of these models are given in the
following lemma. See [11] for the proof.
Lemma 6: For the models of (0, 1) and (1, 0), RFB

sym = 1.
By symmetry, it suffices to consider the case of 0 ≤ α ≤ 1

2 .
In this case, (m,n) = (0, 1)n−2m×(1, 2)m. The above lemma
yields RFB

sym = 1 · (n − 2m) + 2 ·m = n. This completes the
proof together with the converse proof in [11].

VII. CONCLUSION
We revisited the network composition for the two-

transmitter two-receiver ADT network. We showed the opti-
mality of our separation approach based on the network com-
position for three scenarios: (S1) modulo-2 sum multicast;
(S2) two-unicast; (S3) classical multicast.
Our future work is along the following directions: (1) ex-

ploring the optimality of our separation approach for arbitrary
ADT networks with four channel parameters; (2) extending
to multi-hop ADT networks [12], [13]; (3) translating to the
Gaussian wireless networks [6], [14].
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