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Abstract—The goal of differentially private data publishing is
to release a modified dataset so that its privacy can be ensured
while allowing for efficient learning. We propose a new data
publishing algorithm in which a released dataset is formed by
mixing ¢ randomly chosen data points and then perturbing them
with an additive noise. Our privacy analysis shows that as ¢
increases, noise with smaller variance is sufficient to achieve a
target privacy level. In order to quantify the usefulness of our
algorithm, we adopt the accuracy of a predictive model trained
with our synthetic dataset, which we call the utility of the dataset.
By characterizing the utility of our dataset as a function of /,
we show that one can learn both linear and nonlinear predictive
models so that they yield reasonably good prediction accuracies.
Particularly, we show that there exists a sweet spot on ¢ that
maximizes the prediction accuracy given a required privacy level,
or vice versa. We also demonstrate that given a target privacy
level, our datasets can achieve higher utility than other datasets
generated with the existing data publishing algorithms.

A full version of this paper is accessible at: http://csuh.kaist.
ac.kr/ISIT2019_DPMix_full.pdf

I. INTRODUCTION

In a wide variety of machine learning applications, the
training dataset consists of sensitive data such as medical
records, personal photos or proprietary data. It is known that
a model trained with standard machine learning algorithms is
subject to data breach [1]. In order to protect data, one may
first synthesize a private version of the original training dataset
and then train a model solely with the private one [2]-[4].

Differential privacy, introduced by Dwork et al. [5], has
been adopted as a common notion of privacy by multiple
research communities. Based on this notion, various differ-
entially private data publishing algorithms have been pro-
posed in literature, but most of them are inapplicable to
high-dimensional data due to their prohibitive computational
costs [3]. This calls for computationally efficient algorithms
that can be used for high-dimensional data.

In this work, we propose a new data publishing algorithm,
which we call Differentially Private Mix (DPMix). DPMix
mixes more than one data points, perturbs the mixtures with
additive noise, and then publish the perturbed mixtures as an
output dataset. We call the constant number of data points
involved in each mixture the mixture degree, denoted by /.
DPMix with mixture degree ¢ is denoted by DPMix(¢). See
Fig. 1 for sample outputs generated from our algorithm.

We characterize the privacy guarantee of DPMix, showing
that noise with smaller variance is sufficient to attain a target
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Fig. 1: Differentially private datasets generated out of MNIST
and CIFARI10 datasets for a varying mixture degree ¢. Here, ¢
denotes the differential privacy parameter; the lower ¢ is, the
higher the privacy level is.

privacy level as ¢ increases. To show the usefulness of our
dataset for the purpose of learning, we characterize how the
performance of a model trained with our synthetic dataset,
which we call the utility of the dataset, behaves as a function of
£. We show that one can learn both linear and nonlinear models
with datasets generated by DPMix, achieving reasonably good
prediction accuracies. See Fig. 2 for visualization. Particularly,
for the case of nonlinear models (Fig. 2b), we show that
the utility first increases and then decreases as ¢ increases,
implying the existence of a sweet spot on ¢. We show the
existence of such a sweet spot via real-data experiments. We
also compare the utility of our algorithm with those of the
existing data publishing algorithms, which will be detailed
soon [6]-[11].

A. Related work

1) Differentially private data publishing algorithms: A
variety of differentially private data publishing algorithms
have been proposed in literature [12], [13]. For a detailed
overview, we refer the readers to a recent survey paper [3].
Unfortunately, the computational complexities of most of the
existing algorithms are exponential in the dimensionality of
the dataset, so they are not applicable to most deep learning
applications that deal with high-dimensional data.

Local perturbation is a simple data publishing algorithm
that corrupts every data point with additive noise [6]-[9]. This
algorithm is applicable to high-dimensional data due to its low
computational complexity. In addition, another advantage of
local perturbation is that the synthetic data belongs to the same
data domain as the original one. It allows for one to make use
of existing learning algorithms that are developed for the origi-
nal data. For instance, if the original dataset consists of images,
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Fig. 2: Utility of our dataset as a function /.

the synthetic dataset also consists of images (although noisy).
Thus, with such a synthetic dataset, one may train an efficient
deep learning model such as convolutional neural network
(CNN). However, local perturbation must inject excessively
large additive noise to achieve a high privacy level, making
the synthetic dataset barely useful for subsequent learning.

Another data publishing algorithm is based on random
projection [10], [11]. This algorithm first extracts lower-
dimensional features via random projection and then corrupts
them with an additive noise. Note that one cannot make use
of domain-specific models or algorithms in this case since the
synthetic data lies in a different domain.

2) Differentially private algorithms for machine learning:
Differentially private algorithms have been extensively studied
for a variety of machine learning problems such as regres-
sion [14]-[16], online learning [17], graphical models [18],
empirical risk minimization [19]-[22], and deep learning [23]-
[25]. This line of work considers a slightly different goal:
Instead of designing a differentially private dataset (the input
end of machine learning pipeline), their goal is to design
learning algorithms that can be used to obtain differentially
private models (the output end of the pipeline). Since any
model trained with a differentially private dataset is also
differentially private [5], this goal is a relaxed version of that
of the differential private data publishing problem.

While differentially private models are relevant to many
scenarios, they fail to protect the data under extreme scenarios.
For instance, if an adversary has an access to the input end
of machine learning systems, e.g., data storages, the training
data flowing into the input end would be at stake.

3) Learning with mixtures: Karakus et al. show that a sim-
ple linear model can be trained with noiseless mixtures [26].
We will show that one can train a linear model even with noisy
mixtures using a variant of stochastic gradient descent (SGD).

Learning nonlinear models with mixtures has also been
investigated in recent studies [27]-[31]. In [27], Tokozume
et al. show that one can train a sound recognition model
with mixtures of audio signals. Similarly, a few contemporary
studies show that one can train an image classification model
with mixtures of images [28]-[30]. While noiseless mixtures
of only two or three data points are considered in these
studies, we will empirically show that one can train deep
neural networks with noisy mixtures of much larger degrees.

B. Notation

Let [n] := {1,2,...,n}. Let I,, be the identity matrix of
size n x n. The i" standard basic vector is denoted by e;.

Adopting the MATLAB notation, [Ay; As] := [A] AJ]T.
We write C ~ Bern(p) if C € {0,1} is a Bernoulli
random variable with parameter p. For the case of a Gaussian
random variable with mean p and variance o2, we write
C ~ N(p,0?). Similarly, we write C' ~ N(u,%) if C € R?
is a multivariate Gaussian random variable whose mean vector
is u € R< and the covariance matrix is & € S%, where Si
is the set of positive semidefinite matrices of size d by d. We
use a shorthand notation {z;}?, for {z; : 1 <i <n}. If not
specified otherwise, || - || denotes the Lo norm of a vector or
the L2 2 norm (or the Frobenius norm) of a matrix.

II. DATA PUBLISHING ALGORITHM

We introduce our data publishing algorithm: DPMix. Con-
sider the labeled dataset with n data points consisting of a
feature matrix X := [X; Xo X,] € R¥x*" and a
label matrix YV := [V; Yz --- Y, ] € R X" where (X;,Y;)
is the ¢" data point. The data owner wants to generate a
differentially private version of this dataset. For simplicity, we
assume that X (Y) is normalized such that X € [0, 1]4x*"
(Y €[0,1]%*") and || X;| <1 (||Y;|| £ 1) for all i € [n].

Given the size of synthetic dataset 7', DPMix({) generates
T random mixtures of degree ¢ and then corrupts them with
an additive noise. That is,

(X{,Y;/) = (XCt + Qt,YCt + Rt), Vt € [T], (1)

where for each ¢, C; = [Cy1;Cy2;- - ;Crp), and Q; and R,
are white Gaussian noise processes, i.e., Q¢ ~ N(0,0% L4y )
and Ry ~ N(0,0%21,,) for some (cx,oy). Here, ¢ en-
tries of C; are % while others are 0, and the ¢ entires are
chosen uniformly at random, independently of others. The
noise parameters (ox,oy) are used to control the privacy
level of the output dataset. The computational complexity
is O(T¢(dx + dy)). Shown in Fig. 1 are sample mixtures
generated from MNIST and CIFAR10 datasets with various
values of ¢ and (ox,0y).

III. MAIN RESULTS

In this section, we first show that the output of DPMix is
differentially private, where the privacy level is determined by
¢, (ox,0y),and T. We also study the usefulness of the private
datasets generated by DPMix. Particularly, we are interested in
the performance of a predictive model trained with a synthetic
dataset, which we call the utility of the dataset. For the case of
linear models, we prove that the utility of our synthetic dataset
increases as ¢ increases, i.e., the optimal mixture degree ¢* is
n. For the case of nonlinear models, we empirically show that
the utility first increases and then decreases as ¢ increases,
implying 1 < £* < n.

A. Differential privacy guarantees

We first review the concept of differential privacy [5]. An
algorithm is called differentially private if the distribution of
the random output of the algorithm does not alter much when
the input data is marginally modified. Clearly, this implies
that one cannot guess with high confidence whether or not a
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Fig. 3: € as a function of ox for varying values of ¢. Here,
dx =dy =50, n =T =105 6 = 1/n, and oy = oy.

certain data point is included in the dataset. A formal definition
is as follows. Let two datasets D = {(X;,Y;)}", and D’ =
{(X,Y/)}_, be adjacent if |[D’\ D|=1and |D\ D'| =1,
i.e., D and D’ are identical except for one data point!. For
adjacent D and D', we write D ~ D’. Given this definition, a
data publishing algorithm M(D) is called (e, d) differentially
private ((e, d)-DP for short) if it satisfies

Pr[M(D) € A] < e*Pr[M(D') € A] +6 2)

for any D ~ D’ and any set of outputs of the mechanism A.
We now present the privacy guarantee of DPMix.
Theorem 1 (Privacy guarantee): Fix the mixture degree ¢,

the noise levels (0x, oy ) and the number of mixtures 7T". For

any d > 0, DPMix(¥) is (e,d)-DP such that

log (1/6
e min T, 4080/ 3)
ac{2,3,...} a—1
where
2 2 2
a=— i - log (1 T (é) (‘;‘) min (4 (e% - 1) ,26%) +4G(a)>,

o)=3 (L) (3)vBaL-BEm,

j=3
0
. i(i—1) A2
5o =y ()5, arm (B 0
=0 ¢

Before we prove the theorem, we first visualize how ¢
behaves as a function of (ox,o0y) for varying values of ¢
in Fig. 3. Observe that for a fixed noise level, the privacy
guarantee increases with an increase in ¢. Therefore, if one
chooses a larger value of ¢, then a smaller amount of noise is
sufficient to achieve the target privacy level.

Proof: Our proof is a direct consequence of recent devel-
opments in Rényi differential privacy [32] and privacy ampli-
fication via subsampling [33]. We first give a brief overview
of the Rényi divergence and Rényi differential privacy. The
Rényi divergence of order o > 1 for two distributions P and

Q is defined as
P(x)\"
ocena |(Ge) | @

'Note that some works use a different notion of neighbor datasets: For
instance, in [10], [11], neighboring datasets are defined as those that differ
only in one entry instead of one data point.

Du(PIIQ) = ——

where P(z) and Q(x) are the densities of P and @ evaluated
at x, respectively. Rényi differential privacy generalizes the
concept of differential privacy based on the Rényi diver-
gence. Particularly, a mechanism M (D) is said to have e-
Rényi differential privacy of order « ((«, €)-RDP for short) if
Do (M(D)||M(D’)) < e for any two adjacent datasets D and
D’. The Rényi differential privacy has some useful properties.
First, if a mechanism (o, ¢)-RDP, it is (e + %,6)—
DP for any § > 0 [32, Proposition 3]. That is, any RDP
mechanism can be translated into a DP mechanism. Another
useful property is about composition: If M; is (a,e1)-RDP
and M, is («,e2)-RDP, the simultaneous release (M, Ms)
is (a,e1 + €2)-RDP [32, Proposition 1].

We next provide the overview of the proof, deferring the
full proof to the full version. Our proof consists of three
steps. First, we show that a single mixture is («, e/,)-RDP. To
show this, we make use of a recent development in privacy
amplification via subsampling [33]. Due to the composition
property, T mixtures are («, 7, )-RDP. By converting the
RDP guarantee into a DP guarantee, we then have (Te/, +
bi(%, ) for any § > 0. Since this holds for any «, we take
the minimum over all possible values of « to yield (3). ®

We remark that when (ox,oy) is relatively low, i.e., the
low privacy regime, the privacy guarantee in Thm. 1 becomes
loose. In this case, a slightly modified version of DPMix
can obtain an improved privacy guarantee. More details are
provided in the appendix of the full version.

B. Learning linear models with a private dataset

Consider a scenario when one tries to learn a linear model,
ie., Y = WX. In this section, we will show that our private
dataset can be used to train such a linear model. To see why
this is the case, consider a degree-2 mixture composed of two
data points (X1, Y7) and (X3, Y2). Assume that the data points
perfectly fit with a certain linear model, i.e., ¥Y; = WX, for
¢ € {1,2}. Then, the mixture also fits well with the linear
model since Y7 + Y2 = W(X; + X5). One can easily see that
this property holds for any mixture degree. Therefore, one may
be able to train this model solely with the private dataset, and
the trained model can make predictions in the original domain.

An important question is whether a computationally effi-
cient algorithm like Stochastic Gradient Descent (SGD) or its
variants can serve to train a model with a private dataset. The
following theorem affirms that a variant of SGD can be used
to train a model with a private dataset. We defer the rigorous
statements and proofs to the full version.

Theorem 2 (Convergence guarantee): Consider a cost func-
tion J(W) = 5-||Y — WX||%. Under mild conditions, the
output of a variant of SGD, denoted by W, satisfies

E[F(W') = TW*)] < Qlox,ov)(1 +1ogT)/T, (5

where W* = arg miny J (W), Q(ox,0y) is increasing both
in ox and oy, and the expectation is over randomness of
DPMix.

This theorem asserts that for a fixed 7', the optimality gap is
an increasing function of the noise level. According to Thm. 1,
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TABLE I: The test accuracy of CNN on MNIST and CIFAR10.

MNIST CIFAR10
0 e=o00 =20 =10 e=o0c0 =30 =20
1 0.993 0.098 0.098 0.713 0.100 0.100
2 0.982 0.098 0.098 0.637 0.100 0.100
4 0.974 0.098 0.098 0.559 0.100 0.105
8 0.964 0.272 0.098 0.461 0.112 0.117
16 0.949 0.698 0.484 0.374 0.143 0.150
32 0.934 0.765 0.585 0.349 0.156 0.152
64 0.916 0.800 0.782 0.204 0.204 0.191
128 0.895 0.791 0.764 0.346 0.269 0.244
256 0.867 0.759 0.691 0.262 0.239 0.222
512 0.839 0.687 0.629 0.188 0.142 0.104

a smaller amount of noise suffices to achieve the same privacy
level as ¢ increases. Hence, by choosing ¢ = n, one can
maximize the utility of the dataset, i.e., £* = n.

C. Learning nonlinear models with a private dataset

While it is rather straightforward that one can train linear
models with linear mixtures, it is not clear whether one can
do so for nonlinear models. While several recent studies show
that one can train deep neural networks with degree-2 or
degree-3 mixtures [27]-[30], it is not clear whether one can
train with mixtures of larger degrees.

To answer this, we first generate (non-private) syn-
thetic datasets out of MNIST and CIFARI10 datasets with
(ox,0v) = (0,0) [34], [35]. While these datasets are not
private, i.e., € = oo, the utilities of these datasets can serve
as an upper bound on those of private datasets. We also vary
the mixture degree by setting ¢ € {1,2,4,...,256,512}. We
then train a small CNN on each dataset and measure its test
accuracy. Note that these performances are measured with
respect to the original test dataset, which consists of ‘unmixed’
data points. More details about the experimental setting are
provided in the appendix of the full version of this paper. The
test accuracies are reported in column ‘MNIST (¢ = o0)’ and
‘CIFAR10 (¢ = 00)’ of Table I. Observe that one can still train
a deep neural network on synthetic datasets with mixtures of
very large degree. However, the utility of noiseless mixtures
decreases as ¢ increases. For instance, we can achieve the
average test accuracy of 0.895 when ¢ = 128 (See Fig. 1 for
sample images) and that of 0.839 when ¢ = 512 on MNIST.

Let us now consider the utility of private dataset with noisy
mixtures. As shown in Thm. 1, the minimum amount of noise
required for a fixed privacy level decreases as £ increases. That
is, the utility reduction due to noise is a decreasing function
in ¢. Therefore, the utility of noisy mixtures might have a
sweet spot £* (1 < ¢* < n) as shown in Fig. 2b. In order
to show the existence of such a sweet spot, we repeat the
above experiments with private datasets generated by DPMix.
For each value of ¢, we set (ox,oy) such that the synthetic
dataset should satisfy the same privacy level. Shown in Table I
are the experimental results. One can observe that the best test
accuracies are achieved by nontrivial mixture degrees for both
datasets. For instance, /* = 64 for the MNIST dataset with
e = 20, and ¢* = 128 for the CIFAR10 dataset with ¢ = 30.

TABLE II: Performance Comparisons. The first four two are
for DPMix(¢*) and the other four rows are for baselines.

MNIST CIFAR10
ALGORITHM e =20 e =10 e =30 e =20
DPMiIx 0.800 0.782 0.269 0.244
DPMIX + DENOISING 0.806 0.785 0.289 0.278
LOCAL PERTURBATION 0.098 0.098 0.100 0.100
RAND. PROJ. (d = 50) 0.102 0.099 0.099 0.102
RAND. PROJ. (d = 100) 0.102 0.099 0.103 0.100
RAND. PROJ. (d = 200) 0.102 0.101 0.102 0.100
RAND. PROJ. (d = 400) 0.104 0.100 0.100 0.101

IV. EXPERIMENTAL RESULTS

We now compare the performance of DPMix with other
data publishing algorithms. Detailed descriptions are deferred
to the appendix in the full version. The first baseline is local
perturbation, which applies the Gaussian mechanism to each
data point, i.e., £ = 1. The second baseline is the random
projection algorithm. This algorithm first draws a random
projection matrix, say R € R¥9x for some d < dx,
and transforms each data point by multiplying it with R.
It then adds Gaussian noise whose standard deviation is
o(R)(1/log(1/(20) + €)/e, where o(R) is the spectral norm
of matrix R. It can be shown that this setting yields (e, d)-
DP [10], [11]. Note that this approach maps the training
data into a completely random space, and hence one cannot
anymore train a CNN on the released dataset. Thus, we instead
train a fully connected network with two hidden layers.

One advantage of differentially private data publishing al-
gorithm is that post-processing of the released dataset does not
incur a privacy loss. For instance, one can apply arbitrary post-
processing procedures to the synthetic dataset to aid learning.
Leveraging this property, we apply Gaussian denoising filters
of unit variance prior to training deep learning models. See
sample images of denoised mixtures in the appendix of the
full version.

The performance comparisons are given in Table. II. Notice
that our algorithm achieves the best performances, signifi-
cantly outperforming others. We also observe that the per-
formance of DPMix can be improved by applying denoising
before training. On the other hand, the models trained with
the datasets generated with the existing algorithms achieve the
accuracy of about 0.1, which is the same as that of a random
guess.

V. CONCLUSION

We propose DPMix, a new data publishing algorithm that
linearly combines ¢ randomly chosen data points with an
additive noise. We provide the differential privacy guarantee
of DPMix, showing that it can achieve a reasonably high
level of privacy. We also show that one can train both linear
and nonlinear models with the dataset generated by DPMix.
Particularly, we show that the performance of a deep learning
model can be maximized by carefully choosing the value of /.
Via extensive experiments, we show that DPMix can achieve
significantly improved performances compared to existing data
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publishing algorithms such as local perturbation and random
projection.
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